AD5440YRUZ-REEL [ADI]

Dual 8-/10-/12-Bit, High Bandwidth, Multiplying DACs with Parallel Interface; 双8位/ 10位/ 12位,高带宽,乘法DAC ,并行接口
AD5440YRUZ-REEL
型号: AD5440YRUZ-REEL
厂家: ADI    ADI
描述:

Dual 8-/10-/12-Bit, High Bandwidth, Multiplying DACs with Parallel Interface
双8位/ 10位/ 12位,高带宽,乘法DAC ,并行接口

转换器 数模转换器 光电二极管
文件: 总32页 (文件大小:717K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 8-/10-/12-Bit, High Bandwidth,  
Multiplying DACs with Parallel Interface  
AD5428/AD5440/AD5447  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
10 MHz multiplying bandwidth  
INL of 0.2ꢀ LSB ꢁ 8 bits  
20-lead and 24-lead TSSOP packages  
2.ꢀ V to ꢀ.ꢀ V supply operation  
10 V reference input  
The AD5428/AD5440/AD54471 are CMOS, 8-, 10-, and 12-bit,  
dual-channel, current output digital-to-analog converters (DACs),  
respectively. These devices operate from a 2.5 V to 5.5 V power  
supply, making them suited to battery-powered and other  
applications.  
21.3 MSPS update rate  
As a result of being manufactured on a CMOS submicron process,  
they offer excellent 4-quadrant multiplication characteristics,  
with large signal multiplying bandwidths of up to 10 MHz.  
Extended temperature range: −40°C to +12ꢀ°C  
4-quadrant multiplication  
Power-on reset  
0.ꢀ μA typical current consumption  
Guaranteed monotonic  
Readback function  
AD7ꢀ28 upgrade (ADꢀ428)  
AD7ꢀ47 upgrade (ADꢀ447)  
The DACs use data readback, allowing the user to read the  
contents of the DAC register via the DB pins. On power-up, the  
internal register and latches are filled with 0s, and the DAC  
outputs are at zero scale.  
The applied external reference input voltage (VREF) determines  
the full-scale output current. An integrated feedback resistor (RFB)  
provides temperature tracking and full-scale voltage output when  
combined with an external I-to-V precision amplifier.  
APPLICATIONS  
Portable battery-powered applications  
Waveform generators  
Analog processing  
The AD5428 is available in a small 20-lead TSSOP package, and  
the AD5440/AD5447 DACs are available in small 24-lead TSSOP  
packages.  
Instrumentation applications  
Programmable amplifiers and attenuators  
Digitally controlled calibration  
Programmable filters and oscillators  
Composite video  
1 U.S. Patent Number 5,689,257.  
Ultrasound  
Gain, offset, and voltage trimming  
FUNCTIONAL BLOCK DIAGRAM  
V
A
REF  
AD5428/AD5440/AD5447  
R
V
R
A
DD  
FB  
DB0  
DATA  
INPUTS  
I
A
OUT  
INPUT  
BUFFER  
8-/10-/12-BIT  
R-2R DAC A  
LATCH  
DB7  
DB9  
DB11  
AGND  
DAC A/B  
R
R
I
B
CONTROL  
LOGIC  
FB  
CS  
B
R/W  
OUT  
8-/10-/12-BIT  
R-2R DAC B  
LATCH  
DGND  
POWER-ON  
RESET  
V
B
REF  
Figure 1. AD5428/AD5440/AD5447  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights ofthird parties that may result fromits use. Specifications subject to change without notice. No  
licenseis granted byimplication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2004–2011 Analog Devices, Inc. All rights reserved.  
 
AD5428/AD5440/AD5447  
Data Sheet  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Divider or Programmable Gain Element................................ 20  
Reference Selection .................................................................... 20  
Amplifier Selection .................................................................... 20  
Parallel Interface......................................................................... 22  
Microprocessor Interfacing....................................................... 22  
PCB Layout and Power Supply Decoupling ........................... 23  
Evaluation Board for the AD5447............................................ 23  
Power Supplies for the Evaluation Board................................ 23  
Bill of Materials............................................................................... 27  
Overview of AD54xx Devices....................................................... 28  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 15  
General Description....................................................................... 16  
DAC Section................................................................................ 16  
Circuit Operation ....................................................................... 16  
Single-Supply Applications ....................................................... 19  
Adding Gain................................................................................ 19  
REVISION HISTORY  
Changes to General Description Section .................................... 16  
Changes to Figure 37...................................................................... 16  
Changes to Single-Supply Applications Section......................... 19  
Changes to Figure 40 Through Figure 42.................................... 19  
Changes to Divider or Programmable Gain Element Section.... 20  
Changes to Figure 43...................................................................... 20  
Changes to Table 9 Through Table 11 ......................................... 21  
Changes to Microprocessor Interfacing Section ........................ 22  
Added Figure 44 Through Figure 46 ........................................... 22  
Added 8xC51-to-AD5428/AD5440/AD5447  
8/11—Rev. B to Rev. C  
CS  
Changes to  
Pin Description, Table 6........................................ 9  
3/11—Rev. A to Rev. B  
Changes to Evaluation Board For the AD5447 Section ............ 23  
Changes to Figure 47 Caption....................................................... 24  
Changes to Figure 49...................................................................... 25  
Change to U1 Description in Table 12......................................... 27  
Change to Ordering Guide............................................................ 29  
7/05—Rev. 0 to Rev. A  
Changed Pin DAC A/B to DAC /B................................Universal  
Interface Section........................................................................ 22  
Added ADSP-BF5xx-to-AD5428/AD5440/AD5447  
A
Changes to Features List.................................................................. 1  
Changes to Specifications................................................................ 3  
Changes to Timing Characteristics................................................ 5  
Change to Figure 2 ........................................................................... 5  
Change to Absolute Maximum Ratings Section........................... 6  
Change to Figure 13, Figure 14, and Figure 18........................... 11  
Change to Figure 32 Through Figure 34 ..................................... 14  
Interface Section........................................................................ 22  
Changes to Power Supplies for the Evaluation Board Section.... 23  
Changes to Table 13 ....................................................................... 28  
Updated Outline Dimensions....................................................... 29  
Changes to Ordering Guide.......................................................... 29  
7/04—Revision 0: Initial Version  
Rev. C | Page 2 of 32  
Data Sheet  
AD5428/AD5440/AD5447  
SPECIFICATIONS1  
VDD = 2.5 V to 5.5 V, VREF = 10 V, IOUT2 = 0 V. Temperature range for Y version: −40°C to +125°C. All specifications TMIN to TMAX, unless  
otherwise noted. DC performance is measured with OP177, and ac performance is measured with AD8038, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
STATIC PERFORMANCE  
AD5428  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD544±  
±±.25  
±ꢀ  
Guaranteed monotonic  
Guaranteed monotonic  
Guaranteed monotonic  
Resolution  
ꢀ±  
±±.5  
±ꢀ  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5447  
Resolution  
ꢀ2  
±ꢀ  
–ꢀ/+2  
±25  
Bits  
LSB  
LSB  
mV  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
Gain Error Temperature Coefficient  
Output Leakage Current  
±5  
ppm FSR/°C  
nA  
nA  
±5  
±ꢀ5  
Data = ±x±±±±, TA = 25°C  
Data = ±x±±±±  
REFERENCE INPUT  
Reference Input Range  
VREFA, VREFB Input Resistance  
VREFA-to-VREFB Input  
Resistance Mismatch  
±ꢀ±  
ꢀ±  
ꢀ.6  
V
kΩ  
%
8
ꢀ3  
2.5  
Input resistance TC = –5± ppm/°C  
Typ = 25°C, max = ꢀ25°C  
Input Capacitance  
Code ±  
Code 4±95  
3.5  
3.5  
pF  
pF  
DIGITAL INPUTS/OUTPUT  
Input High Voltage, VIH  
ꢀ.7  
ꢀ.7  
V
V
VDD = 3.6 V to 5.5 V  
VDD = 2.5 V to 3.6 V  
Input Low Voltage, VIL  
Output High Voltage, VOH  
Output Low Voltage, VOL  
±.8  
±.7  
V
V
V
V
V
V
μA  
pF  
VDD = 2.7 V to 5.5 V  
VDD = 2.5 V to 2.7 V  
VDD = 4.5 V to 5.5 V, ISOURCE = 2±± μA  
VDD = 2.5 V to 3.6 V, ISOURCE = 2±± μA  
VDD = 4.5 V to 5.5 V, ISINK = 2±± μA  
VDD = 2.5 V to 3.6 V, ISINK = 2±± μA  
VDD − ꢀ  
VDD − ±.5  
±.4  
±.4  
Input Leakage Current, IIL  
Input Capacitance  
4
ꢀ±  
DYNAMIC PERFORMANCE  
Reference-Multiplying BW  
Output Voltage Settling Time  
ꢀ±  
MHz  
VREF = ±3.5 V p-p, DAC loaded all ꢀs  
RLOAD = ꢀ±± Ω, CLOAD = ꢀ5 pF, VREF = ꢀ± V  
DAC latch alternately loaded with ±s and ꢀs  
Measured to ±ꢀ mV of FS  
Measured to ±4 mV of FS  
Measured to ±ꢀ6 mV of FS  
Digital Delay  
ꢀ±% to 9±% Settling Time  
Digital-to-Analog Glitch Impulse  
8±  
35  
3±  
2±  
ꢀ5  
3
ꢀ2±  
7±  
6±  
4±  
3±  
ns  
ns  
ns  
ns  
ns  
nV-sec  
Interface delay time  
Rise and fall times, VREF = ꢀ± V, RLOAD = ꢀ±± Ω  
ꢀ LSB change around major carry, VREF = ± V  
Rev. C | Page 3 of 32  
 
AD5428/AD5440/AD5447  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
Multiplying Feedthrough Error  
DAC latches loaded with all ±s, VREF = ±3.5 V  
ꢀ MHz  
ꢀ± MHz  
DAC latches loaded with all ±s  
DAC latches loaded with all ꢀs  
Feedthrough to DAC output with CS high and  
alternate loading of all ±s and all ꢀs  
@ ꢀ kHz  
7±  
48  
ꢀ7  
3±  
dB  
dB  
pF  
pF  
Output Capacitance  
Digital Feedthrough  
ꢀ2  
25  
nV-sec  
Output Noise Spectral Density  
Analog THD  
Digital THD  
25  
8ꢀ  
nV/√Hz  
dB  
VREF = 3.5 V p-p, all ꢀs loaded, f = ꢀ±± kHz  
Clock = ꢀ± MHz, VREF = 3.5 V  
ꢀ±± kHz fOUT  
5± kHz fOUT  
6ꢀ  
66  
dB  
dB  
SFDR Performance (Wide Band)  
Clock = ꢀ± MHz  
5±± kHz fOUT  
AD5447, 65k codes, VREF = 3.5 V  
55  
63  
65  
dB  
dB  
dB  
ꢀ±± kHz fOUT  
5± kHz fOUT  
Clock = 25 MHz  
5±± kHz fOUT  
ꢀ±± kHz fOUT  
5±  
6±  
62  
dB  
dB  
dB  
5± kHz fOUT  
SFDR Performance (Narrow Band)  
Clock = ꢀ± MHz  
5±± kHz fOUT  
AD5447, 65k codes, VREF = 3.5 V  
73  
8±  
87  
dB  
dB  
dB  
ꢀ±± kHz fOUT  
5±k Hz fOUT  
Clock = 25 MHz  
5±± kHz fOUT  
ꢀ±± kHz fOUT  
7±  
75  
8±  
dB  
dB  
dB  
5± kHz fOUT  
Intermodulation Distortion  
f= 4± kHz, f2 = 5± kHz  
f= 4± kHz, f2 = 5± kHz  
POWER REQUIREMENTS  
Power Supply Range  
IDD  
AD5447, 65k codes, VREF = 3.5 V  
Clock = ꢀ± MHz  
Clock = 25 MHz  
72  
65  
dB  
dB  
2.5  
5.5  
±.7  
ꢀ±  
±.±±ꢀ  
V
μA  
μA  
%/%  
TA = 25°C, logic inputs = ± V or VDD  
TA = −4±°C to +ꢀ25°C, logic inputs = ± V or VDD  
∆VDD = ±5%  
±.5  
Power Supply Sensitivity  
Guaranteed by design, not subject to production test.  
Rev. C | Page 4 of 32  
Data Sheet  
AD5428/AD5440/AD5447  
TIMING CHARACTERISTICS  
All input signals are specified with tr = tf = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. VDD = 2.5 V to 5.5 V,  
REF = 10 V, IOUT2 = 0 V, temperature range for Y version: −40°C to +125°C. All specifications TMIN to TMAX, unless otherwise noted.  
V
Table 2.  
Parameter1  
Limit at TMIN, TMAX  
Unit  
Conditions/Comments  
Write Mode  
R/W to CS setup time  
R/W to CS hold time  
CS low time  
tꢀ  
±
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
t2  
±
t3  
ꢀ±  
ꢀ±  
±
6
±
t4  
t5  
t6  
t7  
Address setup time  
Address hold time  
Data setup time  
Data hold time  
R/W high to CS low  
CS min high time  
t8  
5
t9  
7
Data Readback Mode  
tꢀ±  
tꢀꢀ  
tꢀ2  
±
±
5
25  
5
ns typ  
ns typ  
ns typ  
ns max  
ns typ  
ns max  
MSPS  
Address setup time  
Address hold time  
Data access time  
tꢀ3  
Bus relinquish time  
ꢀ±  
2ꢀ.3  
Update Rate  
Consists of CS min high time, CS low time, and output  
voltage settling time  
Guaranteed by design and characterization, not subject to production test.  
t1  
t2  
t8  
t2  
R/W  
t9  
t3  
CS  
t5  
t4  
t10  
t11  
DACA/DACB  
t8  
t12  
t13  
t7  
DATA VALID  
DATA VALID  
DATA  
Figure 2. Timing Diagram  
200μA  
I
OL  
V
+ V  
2
OH (MIN)  
OL (MAX)  
TO OUTPUT  
PIN  
C
L
50pF  
200μA  
I
OH  
Figure 3. Load Circuit for Data Output Timing Specifications  
Rev. C | Page 5 of 32  
 
AD5428/AD5440/AD5447  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Transient currents of up to 100 mA do not cause SCR latch-up.  
TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
VDD to GND  
VREFA, VREFB, RFBA, RFBB to DGND  
IOUTꢀ, IOUT2 to DGND  
Logic Inputs and Outputꢀ  
Operating Temperature Range  
Automotive (Y Version)  
Storage Temperature Range  
Junction Temperature  
Stresses above those listed in Absolute Maximum Ratings may  
cause permanent damage to the device. This is a stress rating  
only; functional operation of the device at these or any other  
conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability. Only one absolute maximum rating may be applied  
at any one time.  
Rating  
–±.3 V to +7 V  
–ꢀ2 V to +ꢀ2 V  
–±.3 V to +7 V  
–±.3 V to VDD + ±.3 V  
–4±°C to +ꢀ25°C  
–65°C to +ꢀ5±°C  
ꢀ5±°C  
ꢀ43°C/W  
ꢀ28°C/W  
ESD CAUTION  
2±-lead TSSOP θJA Thermal Impedance  
24-lead TSSOP θJA Thermal Impedance  
Lead Temperature, Soldering (ꢀ± sec)  
IR Reflow, Peak Temperature (<2± sec)  
3±±°C  
235°C  
CS  
W
Overvoltages at DBx, , and R/ are clamped by internal diodes.  
Rev. C | Page 6 of 32  
 
Data Sheet  
AD5428/AD5440/AD5447  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
AGND  
I
B
B
OUT  
I
A
A
A
R
FB  
OUT  
3
R
V
V
B
FB  
REF  
DD  
AD5428  
TOP VIEW  
(Not to Scale)  
4
V
REF  
5
DGND  
DAC A/B  
DB7  
R/W  
CS  
6
7
DB0 (LSB)  
DB1  
8
DB6  
9
DB5  
DB2  
10  
DB4  
DB3  
Figure 4. Pin Configuration 20-Lead TSSOP (RU-20)  
Table 4. AD5428 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
AGND  
DAC Ground Pin. This pin should typically be tied to the analog ground of the system, but can be biased to  
achieve single-supply operation.  
2, 2±  
3, ꢀ9  
IOUTA, IOUT  
RFBA, RFBB  
B
DAC Current Outputs.  
DAC Feedback Resistor Pins. These pins establish voltage output for the DAC by connecting to an external  
amplifier output.  
4, ꢀ8  
5
VREFA, VREF  
DGND  
B
DAC Reference Voltage Input Terminals.  
Digital Ground Pin.  
6
DAC A/B  
Selects DAC A or DAC B. Low selects DAC A; high selects DAC B.  
7 toꢀ4  
ꢀ5  
DB7 to DB±  
CS  
Parallel Data Bits 7 Through ±.  
Chip Select Input. Active low. Used in conjunction with R/W to load parallel data to the input latch or to read  
data from the DAC register.  
ꢀ6  
ꢀ7  
R/W  
VDD  
Read/Write. When low, used in conjunction with CS to load parallel data. When high, used in conjunction  
with CS to read back contents of the DAC register.  
Positive Power Supply Input. This part can be operated from a supply of 2.5 V to 5.5 V.  
Rev. C | Page 7 of 32  
 
AD5428/AD5440/AD5447  
Data Sheet  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
AGND  
I
B
B
OUT  
I
A
A
A
R
FB  
OUT  
3
R
V
V
B
FB  
REF  
DD  
4
V
REF  
AD5440  
TOP VIEW  
(Not to Scale)  
5
R/W  
CS  
DGND  
DAC A/B  
DB9  
6
7
NC  
NC  
8
DB8  
9
DB7  
DB0 (LSB)  
DB1  
10  
DB6  
DB5 11  
12  
DB2  
DB4  
DB3  
NC = NO CONNECT  
Figure 5. Pin Configuration 24-Lead TSSOP (RU-24)  
Table 5. AD5440 Pin Function Descriptions  
Pin No. Mnemonic  
Function  
AGND  
DAC Ground Pin. This pin should typically be tied to the analog ground of the system, but can be biased to  
achieve single-supply operation.  
2, 24  
3, 23  
IOUTA, IOUT  
B
DAC Current Outputs.  
DAC Feedback Resistor Pins. Establish voltage output for the DAC by connecting to an external amplifier  
output.  
RFBA, RFBB  
4, 22  
5
VREFA, VREF  
DGND  
B
DAC Reference Voltage Input Terminals.  
Digital Ground Pin.  
DAC A/B  
6
Selects DAC A or DAC B. Low selects DAC A; high selects DAC B.  
7 toꢀ6  
DB9 to DB±  
Parallel Data Bits 9 Through ±.  
Chip Select Input. Active low. Used in conjunction with R/W to load parallel data to the input latch or to read  
data from the DAC register.  
CS  
ꢀ9  
Read/Write. When low, used in conjunction with CS to load parallel data. When high, used in conjunction with  
CS to read back contents of the DAC register.  
R/W  
VDD  
2±  
2ꢀ  
Positive Power Supply Input. This part can be operated from a supply of 2.5 V to 5.5 V.  
Rev. C | Page 8 of 32  
Data Sheet  
AD5428/AD5440/AD5447  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
AGND  
I
B
B
OUT  
I
A
A
A
R
FB  
OUT  
3
R
V
V
B
FB  
REF  
DD  
4
V
REF  
AD5447  
TOP VIEW  
(Not to Scale)  
5
DGND  
DAC A/B  
DB11  
R/W  
CS  
6
7
DB0 (LSB)  
DB1  
8
DB10  
9
DB9  
DB2  
10  
DB8  
DB3  
DB7 11  
12  
DB4  
DB6  
DB5  
Figure 6. Pin Configuration 24-Lead TSSOP (RU-24)  
Table 6. AD5447 Pin Function Descriptions  
Pin No. Mnemonic  
Description  
AGND  
DAC Ground Pin. This pin should typically be tied to the analog ground of the system, but can be biased to  
achieve single-supply operation.  
2, 24  
3, 23  
IOUTA, IOUT  
RFBA, RFBB  
B
DAC Current Outputs.  
DAC Feedback Resistor Pins. Establish voltage output for the DAC by connecting to an external amplifier  
output.  
4, 22  
5
VREFA, VREF  
DGND  
B
DAC Reference Voltage Input Terminals.  
Digital Ground Pin.  
6
DAC A/B  
Selects DAC A or DAC B. Low selects DAC A; high selects DAC B.  
7 to ꢀ8  
ꢀ9  
DBꢀꢀ to DB±  
CS  
Parallel Data Bits ꢀꢀ Through ±.  
Chip Select Input. Active low. Used in conjunction with R/W to load parallel data to the input latch or to read  
data from the DAC register.  
2±  
2ꢀ  
R/W  
VDD  
Read/Write. When low, used in conjunction with CS to load parallel data. When high, used in conjunction with  
CS to read back the contents of the DAC register. When CS and R/W are held low, the latches are transparent.  
Any changes on the data lines are reflected in the relevant DAC output.  
Positive Power Supply Input. This part can be operated from a supply of 2.5 V to 5.5 V.  
Rev. C | Page 9 of 32  
AD5428/AD5440/AD5447  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.20  
0.20  
0.15  
0.10  
0.05  
0
T
= 25°C  
T
= 25°C  
A
A
V
V
= 10V  
V
V
= 10V  
REF  
= 5V  
REF  
= 5V  
0.15  
0.10  
0.05  
0
DD  
DD  
–0.05  
–0.10  
–0.15  
–0.20  
–0.05  
–0.10  
–0.15  
–0.20  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
CODE  
CODE  
Figure 7. INL vs. Code (8-Bit DAC)  
Figure 10. DNL vs. Code (8-Bit DAC)  
0.5  
0.4  
0.5  
0.4  
T
V
V
= 25°C  
T
V
V
= 25°C  
A
A
= 10V  
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
DD  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
CODE  
CODE  
Figure 8. INL vs. Code (10-Bit DAC)  
Figure 11. DNL vs. Code (10-Bit DAC)  
1.0  
0.8  
1.0  
0.8  
T
V
V
= 25°C  
T
V
V
= 25°C  
A
A
= 10V  
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
DD  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
CODE  
CODE  
Figure 9. INL vs. Code (12-Bit DAC)  
Figure 12. DNL vs. Code (12-Bit DAC)  
Rev. C | Page ꢀ± of 32  
 
Data Sheet  
AD5428/AD5440/AD5447  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
8
7
6
5
4
3
2
1
0
T
= 25°C  
A
MAX INL  
V
= 5V  
DD  
T
V
= 25°C  
= 5V  
A
DD  
MIN INL  
–0.1  
–0.2  
–0.3  
V
= 3V  
DD  
V
= 2.5V  
DD  
2
3
4
5
6
7
8
9
10  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
REFERENCE VOLTAGE  
INPUT VOLTAGE (V)  
Figure 13. INL vs. Reference Voltage  
Figure 16. Supply Current vs. Logic Input Voltage  
1.6  
–0.40  
–0.45  
–0.50  
–0.55  
–0.60  
–0.65  
–0.70  
T
V
= 25°C  
A
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
= 5V  
DD  
I
I
1 V = 5V  
DD  
OUT  
OUT  
1 V = 3V  
DD  
MIN DNL  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
REFERENCE VOLTAGE  
Figure 14. DNL vs. Reference Voltage  
Figure 17. IOUT1 Leakage Current vs. Temperature  
5
4
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 5V  
V
= 5V  
DD  
DD  
3
2
ALL 0s  
ALL 1s  
1
0
V
= 2.5V  
V
= 2.5V  
DD  
DD  
–1  
–2  
–3  
–4  
–5  
ALL 1s  
ALL 0s  
V
= 10V  
REF  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Gain Error vs. Temperature  
Figure 18. Supply Current vs. Temperature  
Rev. C | Page ꢀꢀ of 32  
AD5428/AD5440/AD5447  
Data Sheet  
14  
3
0
T
= 25°C  
A
T
= 25°C  
A
LOADING ZS TO FS  
V
= 5V  
DD  
12  
10  
8
V
= 5V  
DD  
–3  
–6  
–9  
6
V
V
= 3V  
DD  
DD  
4
V
V
V
V
V
= ±2V, AD8038 C 1.47pF  
C
= 2.5V  
REF  
REF  
REF  
REF  
REF  
= ±2V, AD8038 C 1pF  
C
2
= ±0.15V, AD8038 C 1pF  
C
= ±0.15V, AD8038 C 1.47pF  
C
= ±3.51V, AD8038 C 1.8pF  
C
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Reference Multiplying Bandwidth vs. Frequency and  
Compensation Capacitor  
Figure 19. Supply Current vs. Update Rate  
6
0
T
= 25°C  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
ALL ON  
DB11  
DB10  
DB9  
DB8  
DB7  
A
0x7FF TO 0x800  
V
LOADING  
ZS TO FS  
T
V
= 25°C  
A
–6  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–72  
–78  
–84  
–90  
–96  
–102  
= 0V  
REF  
= 5V  
AMP = AD8038  
C
DD  
= 1.8pF  
COMP  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
V
= 3V  
DD  
0x800 TO 0x7FF  
= 3V  
V
DD  
T
V
= 25°C  
DD  
= ±3.5V  
= 1.8pF  
A
= 5V  
V
REF  
C
ALL OFF  
COMP  
AMP = AD8038  
–0.005  
–0.010  
V
= 5V  
DD  
1
10  
100  
1k  
10k  
100k  
1M 10M 100M  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
FREQUENCY (Hz)  
Figure 20. Reference Multiplying Bandwidth vs. Frequency and Code  
Figure 23. Midscale Transition, VREF = 0 V  
–1.68  
–1.69  
–1.70  
–1.71  
–1.72  
–1.73  
–1.74  
–1.75  
–1.76  
–1.77  
0.2  
0
T
V
= 25°C  
= 3.5V  
A
0x7FF TO 0x800  
= 5V  
REF  
AMP = AD8038  
= 1.8pF  
V
DD  
C
COMP  
–0.2  
–0.4  
V
= 3V  
DD  
V
= 5V  
V
DD  
= 3V  
DD  
T
V
V
= 25°C  
A
–0.6  
–0.8  
= 5V  
DD  
=
±
3.5V  
REF  
C
= 1.8pF  
COMP  
0x800 TO 0x7FF  
20 40 60  
AMP = AD8038  
1
10 100  
1k  
10k  
100k  
1M  
10M  
100M  
0
80  
100 120 140 160 180 200  
TIME (ns)  
FREQUENCY (Hz)  
Figure 21. Reference Multiplying Bandwidth—All 1s Loaded  
Figure 24. Midscale Transition, VREF = 3.5 V  
Rev. C | Page ꢀ2 of 32  
Data Sheet  
AD5428/AD5440/AD5447  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
T
V
= 25°C  
A
= 3V  
DD  
AMP = AD8038  
MCLK = 5MHz  
0
–20  
MCLK = 10MHz  
–40  
MCLK = 25MHz  
FULL SCALE  
ZERO SCALE  
–60  
–80  
T
V
= 25°C  
= 3.5V  
A
–100  
–120  
REF  
AMP = AD8038  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (kHz)  
1
100  
1k  
10k  
100k  
1M  
10M  
10  
FREQUENCY (Hz)  
Figure 25. Power Supply Rejection Ratio vs. Frequency  
Figure 28. Wideband SFDR vs. fOUT Frequency  
–60  
0
T
V
= 25°C  
A
T
V
V
= 25°C  
A
= 5V  
DD  
= 3V  
DD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
AMP = AD8038  
65k CODES  
= 3.5V p-p  
REF  
–65  
–70  
–75  
–80  
–85  
–90  
0
2
4
6
8
10  
12  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 26. THD + Noise vs. Frequency  
Figure 29. Wideband SFDR, fOUT = 100 kHz, Clock = 25 MHz  
100  
80  
60  
40  
20  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
= 25°C  
A
MCLK = 1MHz  
= 5V  
DD  
AMP = AD8038  
65k CODES  
MCLK = 200kHz  
MCLK = 0.5MHz  
T
V
= 25°C  
= 3.5V  
A
REF  
AMP = AD8038  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
fOUT (kHz)  
FREQUENCY (MHz)  
Figure 27. Wideband SFDR vs. fOUT Frequency  
Figure 30. Wideband SFDR, fOUT = 500 kHz, Clock = 10 MHz  
Rev. C | Page ꢀ3 of 32  
AD5428/AD5440/AD5447  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
V
= 25°C  
T = 25°C  
A
DD  
AMP = AD8038  
65k CODES  
A
= 5V  
V
= 3V  
DD  
AMP = AD8038  
65k CODES  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
70  
75  
80  
85  
90  
95  
100 105 110 115 120  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
Figure 31. Wideband SFDR, fOUT = 50 kHz, Clock = 10 MHz  
Figure 34. Narrow-Band IMD, fOUT = 90 kHz, 100 kHz, Clock = 10 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
T
V
= 25°C  
DD  
A
T
V
= 25°C  
DD  
A
= 3V  
= 5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
AMP = AD8038  
65k CODES  
AMP = AD8038  
65k CODES  
250 300 350 400 450 500 550 600 650 700 750  
0
50  
100  
150  
200  
250  
300  
350  
400  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 32. Narrow-Band SFDR, fOUT = 500 kHz, Clock = 25 MHz  
Figure 35. Wideband IMD, fOUT = 90 kHz, 100 kHz, Clock = 25 MHz  
300  
20  
T
= 25°C  
T
V
= 25°C  
DD  
A
A
ZERO SCALE LOADED TO DAC  
MIDSCALE LOADED TO DAC  
FULL SCALE LOADED TO DAC  
AMP = AD8038  
= 3V  
AMP = AD8038  
65k CODES  
0
–20  
250  
200  
150  
100  
50  
–40  
–60  
–80  
–100  
–120  
0
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
50  
60  
70  
80  
90  
100 110 120 130 140 150  
FREQUENCY (kHz)  
Figure 36. Output Noise Spectral Density  
Figure 33. Narrow-Band SFDR, fOUT = 100 kHz, Clock = 25 MHz  
Rev. C | Page ꢀ4 of 32  
Data Sheet  
AD5428/AD5440/AD5447  
TERMINOLOGY  
Relative Accuracy (Endpoint Nonlinearity)  
A measure of the maximum deviation from a straight line  
passing through the endpoints of the DAC transfer function. It  
is measured after adjusting for zero and full scale and is  
typically expressed in LSBs or as a percentage of the full-scale  
reading.  
Digital Feedthrough  
When the device is not selected, high frequency logic activity  
on the device’s digital inputs is capacitively coupled through the  
device and produces noise on the IOUT pins and, subsequently,  
on the following circuitry. This noise is digital feedthrough.  
Multiplying Feedthrough Error  
Differential Nonlinearity  
The error due to capacitive feedthrough from the DAC  
reference input to the DAC IOUT1 terminal when all 0s are  
loaded to the DAC.  
The difference in the measured change and the ideal 1 LSB  
change between two adjacent codes. A specified differential  
nonlinearity of −1 LSB maximum over the operating  
temperature range ensures monotonicity.  
Total Harmonic Distortion (THD)  
The DAC is driven by an ac reference. The ratio of the rms sum  
of the harmonics of the DAC output to the fundamental value is  
the THD. Usually only the lower-order harmonics are included,  
such as second to fifth harmonics.  
Gain Error (Full-Scale Error)  
A measure of the output error between an ideal DAC and the  
actual device output. For these DACs, ideal maximum output is  
V
REF – 1 LSB. The gain error of the DACs is adjustable to zero  
2
2
2
2
V2 +V3 +V4 +V5  
with an external resistance.  
THD = 20 log  
V1  
Output Leakage Current  
The current that flows into the DAC ladder switches when they  
are turned off. For the IOUT1 terminal, it can be measured by  
loading all 0s to the DAC and measuring the IOUT1 current.  
Minimum current flows into the IOUT2 line when the DAC is  
loaded with all 1s.  
Digital Intermodulation Distortion  
Second-order intermodulation distortion (IMD) measurements  
are the relative magnitude of the fa and fb tones digitally generated  
by the DAC and the second-order products at 2fa − fb and  
2fb − fa.  
Output Capacitance  
Capacitance from IOUT1 or IOUT2 to AGND.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the usable dynamic range of a DAC before spurious  
noise interferes or distorts the fundamental signal. SFDR is the  
measure of difference in amplitude between the fundamental  
and the largest harmonic or nonharmonic spur from dc to full  
Nyquist bandwidth (half the DAC sampling rate, or fs/2).  
Narrow-band SFDR is a measure of SFDR over an arbitrary  
window size, in this case 50%, of the fundamental. Digital SFDR  
is a measure of the usable dynamic range of the DAC when the  
signal is a digitally generated sine wave.  
Output Current Settling Time  
The amount of time for the output to settle to a specified level  
for a full-scale input change. For these devices, it is specified  
with a 100 Ω resistor to ground.  
Digital-to-Analog Glitch Impulse  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is normally  
specified as the area of the glitch in either pA-sec or nV-sec,  
depending on whether the glitch is measured as a current or  
voltage signal.  
Rev. C | Page ꢀ5 of 32  
 
AD5428/AD5440/AD5447  
Data Sheet  
GENERAL DESCRIPTION  
CIRCUIT OPERATION  
DAC SECTION  
Unipolar Mode  
The AD5428/AD5440/AD5447 are CMOS 8-, 10-, and 12-bit,  
dual-channel, current output DACs consisting of a standard  
inverting R-2R ladder configuration. Figure 37 shows a simplified  
diagram for a single channel of the 8-bit AD5428. The feedback  
resistor RFBA has a value of R. The value of R is typically 10 kΩ  
Using a single op amp, these devices can easily be configured to  
provide 2-quadrant multiplying operation or a unipolar output  
voltage swing, as shown in Figure 38. When an output amplifier  
is connected in unipolar mode, the output voltage is given by  
(with a minimum of 8 kΩ and a maximum of 12 kΩ). If IOUT  
1
VOUT = VREF × D/2n  
and AGND are kept at the same potential, a constant current  
flows into each ladder leg, regardless of digital input code.  
Therefore, the input resistance presented at VREFA is always  
constant and nominally of value R. The DAC output (IOUT) is  
code-dependent, producing various resistances and  
capacitances. When choosing an external amplifier, take into  
account the variation in impedance generated by the DAC on  
the amplifiers inverting input node.  
where:  
D is the fractional representation of the digital word loaded to  
the DAC.  
D = 0 to 255 (8-bit AD5428)  
= 0 to 1023 (10-bit AD5440)  
= 0 to 4095 (12-bit AD5447)  
n is the resolution of the DAC.  
R
R
R
V
REF  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages. These DACs are designed to  
operate with either negative or positive reference voltages. The  
VDD power pin is only used by the internal digital logic to drive  
the on and off states of the DAC switches.  
2R  
S1  
2R  
S2  
2R  
S3  
2R  
S8  
2R  
R
R
A
FB  
I
A
OUT  
AGND  
DAC DATA LATCHES  
AND DRIVERS  
These DACs are also designed to accommodate ac reference  
input signals in the range of –10 V to +10 V.  
Figure 37. Simplified Ladder  
With a fixed 10 V reference, the circuit in Figure 38 gives a  
unipolar 0 V to –10 V output voltage swing. When VIN is an ac  
signal, the circuit performs 2-quadrant multiplication.  
Access is provided to the VREF, RFB, and IOUT terminals of DAC A  
and DAC B, making the devices extremely versatile and  
allowing them to be configured in several operating modes,  
such as unipolar output mode, 4-quadrant multiplication  
bipolar mode, or single-supply mode. Note that a matching  
switch is used in series with the internal RFBA feedback resistor.  
If users attempt to measure RFBA, power must be applied to VDD  
to achieve continuity.  
Table 7 shows the relationship between digital code and the  
expected output voltage for unipolar operation using the 8-bit  
AD5428.  
Table 7. Unipolar Code  
Digital Input  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀ±±± ±±±±  
±±±± ±±±ꢀ  
±±±± ±±±±  
Analog Output (V)  
–VREF (255/256)  
–VREF(ꢀ28/256) = –VREF/2  
–VREF (ꢀ/256)  
–VREF (±/256) = ±  
Rev. C | Page ꢀ6 of 32  
 
 
 
Data Sheet  
AD5428/AD5440/AD5447  
V
A
IN  
(±10V)  
1
R1  
V
A
REF  
AD5428/AD5440/AD5447  
R
A
1
R2  
FB  
R
V
DD  
2
C1  
I
A
OUT  
DB0  
DATA  
8-/10-/12-BIT  
R-2R DAC A  
INPUT  
BUFFER  
INPUTS  
LATCH  
V
A
OUT  
DB7  
DB9  
DB11  
AGND  
AGND  
DAC A/B  
R
B
1
FB  
R4  
R
CONTROL  
LOGIC  
2
CS  
C2  
I
B
OUT  
R/W  
8-/10-/12-BIT  
R-2R DAC B  
V
B
LATCH  
OUT  
DGND  
AGND  
POWER-ON  
RESET  
V
B
REF  
1
R3  
V
B
IN  
(±10V)  
1
2
R1, R2 AND R3, R4 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
C1, C2 PHASE COMPENSATION (1pF TO 2pF) IS REQUIRED WHEN USING  
HIGH SPEED AMPLIFIERS TO PREVENT RINGING OR OSCILLATION.  
Figure 38. Unipolar Operation  
Rev. C | Page ꢀ7 of 32  
 
AD5428/AD5440/AD5447  
Data Sheet  
Bipolar Operation  
Table 8. Bipolar Code  
Digital Input  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀ±±± ±±±±  
±±±± ±±±ꢀ  
Analog Output (V)  
+VREF (ꢀ27/ꢀ28)  
±
–VREF (ꢀ27/ꢀ28)  
–VREF (ꢀ28/ꢀ28)  
In some applications, it may be necessary to generate full 4-quad-  
rant multiplying operation or a bipolar output swing. This can  
easily be accomplished by using another external amplifier and  
some external resistors, as shown in Figure 39. In this circuit, the  
second amplifier, A2, provides a gain of 2. Biasing the external  
amplifier with an offset from the reference voltage results in full  
4-quadrant multiplying operation. The transfer function of this  
circuit shows that both negative and positive output voltages are  
±±±± ±±±±  
Stability  
In the I-to-V configuration, the IOUT of the DAC and the inverting  
node of the op amp must be connected as close as possible, and  
proper PCB layout techniques must be used. Because every code  
change corresponds to a step function, gain peaking may occur  
if the op amp has limited gain bandwidth product (GBP) and  
there is excessive parasitic capacitance at the inverting node.  
This parasitic capacitance introduces a pole into the open-loop  
response, which can cause ringing or instability in the closed-  
loop applications circuit.  
created as the input data (D) is incremented from Code 0 (VOUT  
−VREF) to midscale (VOUT = 0 V) to full scale (VOUT = +VREF).  
When connected in bipolar mode, the output voltage is given by  
=
VOUT  
=
(
VREF ×D / 2n1  
VREF  
)
where:  
D is the fractional representation of the digital word loaded to  
the DAC.  
D = 0 to 255 (AD5428)  
= 0 to 1023 (AD5440)  
= 0 to 4095 (AD5447)  
n is the number of bits.  
An optional compensation capacitor, C1, can be added in parallel  
with RFBA for stability, as shown in Figure 38 and Figure 39. Too  
small a value of C1 can produce ringing at the output, whereas  
too large a value can adversely affect the settling time. C1 should  
be found empirically, but 1 pF to 2 pF is generally adequate for  
the compensation.  
When VIN is an ac signal, the circuit performs 4-quadrant  
multiplication. Table 8 shows the relationship between digital  
code and the expected output voltage for bipolar operation  
using the 8-bit AD5428.  
V
A
IN  
(±10V)  
R5  
20kΩ  
1
R1  
2
R6  
20kΩ  
V
A
REF  
AD5428/AD5440/AD5447  
2
A2  
R7  
10kΩ  
1
R2  
V
A
R
R
A
OUT  
FB  
V
DD  
3
C1  
R11  
5kΩ  
I
A
OUT  
DATA  
INPUTS  
DB0  
INPUT  
BUFFER  
8-/10-/12-BIT  
R-2R DAC A  
A1  
LATCH  
AGND  
DB7  
DB9  
DB11  
AGND  
AGND  
DAC A/B  
R
B
1
FB  
R4  
R
CONTROL  
LOGIC  
CS  
3
C2  
I
B
OUT  
R/W  
8-/10-/12-BIT  
R-2R DAC B  
A3  
LATCH  
R8  
20kΩ  
2
R9  
10kΩ  
DGND  
AGND  
A4  
2
R10  
POWER-ON  
RESET  
20kΩ  
V
B
OUT  
V
B
REF  
R12  
5kΩ  
1
R3  
AGND  
V
B
IN  
(±10V)  
1
R1, R2 AND R3, R4 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED. ADJUST R1 FOR V  
OUT  
A = 0V WITH CODE 10000000 IN DAC A LATCH.  
ADJUST R3 FOR V  
B = 0V WITH CODE 10000000 IN DAC B LATCH.  
OUT  
2
3
MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS R6, R7 AND R9, R10.  
C1, C2 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED IF A1/A3 IS A HIGH SPEED AMPLIFIER.  
Figure 39. Bipolar Operation (4-Quadrant Multiplication)  
Rev. C | Page ꢀ8 of 32  
 
 
Data Sheet  
AD5428/AD5440/AD5447  
V
= 5V  
DD  
SINGLE-SUPPLY APPLICATIONS  
Voltage-Switching Mode  
ADR03  
V
V
OUT  
IN  
GND  
Figure 40 shows the DACs operating in voltage-switching  
mode. The reference voltage, VIN, is applied to the IOUTA pin,  
and the output voltage is available at the VREFA terminal. In this  
configuration, a positive reference voltage results in a positive  
output voltage, making single-supply operation possible. The  
output from the DAC is voltage at constant impedance (the  
DAC ladder resistance). Therefore, an op amp is necessary to  
buffer the output voltage. The reference input no longer sees  
constant input impedance, but one that varies with code.  
Therefore, the voltage input should be driven from a low  
impedance source.  
+5V  
–5V  
C1  
V
R
A
DD  
FB  
8-/10-/12-BIT  
I
A
–2.5V  
OUT  
V
A
REF  
DAC  
V
=
AGND  
OUT  
0V to 2.5V  
GND  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 41. Positive Voltage Output with Minimum Components  
ADDING GAIN  
Note that VIN is limited to low voltages because the switches in  
the DAC ladder no longer have the same source-drain drive  
voltage. As a result, their on resistance differs and degrades the  
integral linearity of the DAC. Also, VIN must not go negative by  
more than 0.3 V, or an internal diode turns on, causing the  
device to exceed the maximum ratings. In this type of  
application, the full range of multiplying capability of the DAC  
is lost.  
In applications where the output voltage must be greater than  
VIN, gain can be added with an additional external amplifier, or  
it can be achieved in a single stage. Consider the effect of temper-  
ature coefficients of the thin film resistors of the DAC. Simply  
placing a resistor in series with the RFB resistor causes mismatches  
in the temperature coefficients, resulting in larger gain temper-  
ature coefficient errors. Instead, the circuit in Figure 42 shows  
the recommended method for increasing the gain of the circuit.  
R1, R2, and R3 should have similar temperature coefficients,  
but they need not match the temperature coefficients of the  
DAC. This approach is recommended in circuits where gains of  
greater than 1 are required.  
V
DD  
R1  
R2  
R
A V  
DD  
FB  
V
V
OUT  
I
A
V
IN  
OUT  
DD  
V
A
REF  
AGND  
GND  
C1  
V
R
A
DD  
FB  
I
A
R1  
OUT  
8-/10-/12-BIT  
V
V
IN  
OUT  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
AGND  
DAC  
V
A
REF  
R3  
R2  
GND  
R2 + R3  
R2  
GAIN =  
R2R3  
Figure 40. Single-Supply Voltage-Switching Mode  
R
=
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
1
R2 R3  
+
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Positive Output Voltage  
The output voltage polarity is opposite to the VREF polarity for  
dc reference voltages. To achieve a positive voltage output, an  
applied negative reference to the input of the DAC is preferred  
over the output inversion through an inverting amplifier  
because of the resistors tolerance errors. To generate a negative  
reference, the reference can be level-shifted by an op amp such  
that the VOUT and GND pins of the reference become the virtual  
ground and –2.5 V, respectively, as shown in Figure 41.  
Figure 42. Increasing Gain of Current Output DAC  
Rev. C | Page ꢀ9 of 32  
 
 
 
AD5428/AD5440/AD5447  
Data Sheet  
REFERENCE SELECTION  
DIVIDER OR PROGRAMMABLE GAIN ELEMENT  
When selecting a reference for use with the AD54xx series of  
current output DACs, pay attention to the reference’s output  
voltage temperature coefficient specification. This parameter not  
only affects the full-scale error, but can also affect the linearity  
(INL and DNL) performance. The reference temperature  
coefficient should be consistent with the system accuracy  
specifications. For example, an 8-bit system required to hold its  
overall specification to within 1 LSB over the temperature range  
0° to 50°C dictates that the maximum system drift with temp-  
erature should be less than 78 ppm/°C. A 12-bit system with the  
same temperature range to overall specification within 2 LSBs  
requires a maximum drift of 10 ppm/°C. Choosing a precision  
reference with low output temperature coefficient minimizes this  
error source. Table 9 lists some references available from Analog  
Devices that are suitable for use with these current output DACs.  
Current-steering DACs are very flexible and lend themselves to  
many applications. If this type of DAC is connected as the  
feedback element of an op amp and RFBA is used as the input  
resistor, as shown in Figure 43, the output voltage is inversely  
proportional to the digital input fraction, D.  
For D = 1 − 2−n, the output voltage is  
VOUT = −VIN / D = −VIN  
/
(
12n  
)
V
DD  
V
IN  
R
A
V
FB  
DD  
I
A
OUT  
V
A
REF  
AGND  
GND  
AMPLIFIER SELECTION  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset  
voltage. Because of the code-dependent output resistance of the  
DAC, the input offset voltage of an op amp is multiplied by the  
variable gain of the circuit. A change in the noise gain between  
two adjacent digital fractions produces a step change in the  
output voltage due to the amplifiers input offset voltage. This  
output voltage change is superimposed on the desired change in  
output between the two codes and gives rise to a differential  
linearity error, which, if large enough, could cause the DAC to  
be nonmonotonic. The input offset voltage should be <1/4 LSB  
to ensure monotonic behavior when stepping through codes.  
V
OUT  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 43. Current-Steering DAC Used as a Divider or  
Programmable Gain Element  
As D is reduced, the output voltage increases. For small values  
of the digital fraction D, it is important to ensure that the  
amplifier does not saturate and that the required accuracy is  
met. For example, an 8-bit DAC driven with the binary code  
0x10 (0001 0000)—that is, 16 decimal—in the circuit of  
Figure 43 should cause the output voltage to be 16 times VIN.  
However, if the DAC has a linearity specification of 0.5 LSB, D  
can have a weight in the range of 15.5/256 to 16.5/256 so that the  
possible output voltage is in the range of 15.5 VIN to 16.5 VIN—  
an error of 3%, even though the DAC itself has a maximum  
error of 0.2%.  
The input bias current of an op amp also generates an offset at  
the voltage output as a result of the bias current flowing in the  
feedback resistor, RFB. Most op amps have input bias currents  
low enough to prevent significant errors in 12-bit applications.  
Common-mode rejection of the op amp is important in voltage-  
switching circuits, because it produces a code-dependent error  
at the voltage output of the circuit. Most op amps have adequate  
common-mode rejection for use at 8-, 10-, and 12-bit resolution.  
DAC leakage current is also a potential error source in divider  
circuits. The leakage current must be counterbalanced by an  
opposite current supplied from the op amp through the DAC.  
Because only a fraction, D, of the current into the VREF terminal  
is routed to the IOUT1 terminal, the output voltage changes as  
follows:  
Provided that the DAC switches are driven from true wideband,  
low impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage-  
switching DAC circuit is determined largely by the output op  
amp. To obtain minimum settling time in this configuration,  
minimize capacitance at the VREF node (the voltage output node  
in this application) of the DAC by using low input capacitance  
buffer amplifiers and careful board design.  
Output Error Voltage Due to DAC Leakage  
=
(
Leakage × R  
)
/D  
where R is the DAC resistance at the VREF terminal.  
For a DAC leakage current of 10 nA, R = 10 kΩ, and a gain (that  
is, 1/D) of 16, the error voltage is 1.6 mV.  
Most single-supply circuits include ground as part of the analog  
signal range, which in turns requires an amplifier that can handle  
rail-to-rail signals. Analog Devices offers a wide variety of single-  
supply amplifiers (see Table 10 and Table 11).  
Rev. C | Page 2± of 32  
 
 
Data Sheet  
AD5428/AD5440/AD5447  
Table 9. Suitable ADI Precision References  
Part No. Output Voltage (V)  
Initial Tolerance (%)  
Temp Drift (ppm/°C)  
ISS (mA)  
Output Noise (μV p-p) Package  
ADR±ꢀ  
ADR±ꢀ  
ADR±2  
ADR±2  
ADR±3  
ADR±3  
ADR±6  
ADR±6  
ADR43ꢀ  
ADR435  
ADR39ꢀ  
ADR395  
ꢀ±  
ꢀ±  
5
±.±5  
±.±5  
±.±6  
±.±6  
±.ꢀ±  
±.ꢀ±  
±.ꢀ±  
±.ꢀ±  
±.±4  
±.±4  
±.ꢀ6  
±.ꢀ±  
3
9
3
9
3
9
3
9
3
3
9
9
±.8  
±.8  
±.ꢀ2  
±.ꢀ2  
2±  
2±  
ꢀ±  
ꢀ±  
6
SOIC-8  
TSOT-23, SC7±  
SOIC-8  
TSOT-23, SC7±  
SOIC-8  
TSOT-23, SC7±  
SOIC-8  
TSOT-23, SC7±  
SOIC-8  
SOIC-8  
TSOT-23  
TSOT-23  
5
2.5  
2.5  
3
3
2.5  
5
6
ꢀ±  
ꢀ±  
3.5  
8
5
8
2.5  
5
Table 10. Suitable ADI Precision Op Amps  
0.1 Hz to 10 Hz  
Noise (μV p-p)  
Part No.  
OP97  
OPꢀꢀ77  
AD855ꢀ  
AD86±3  
AD8628  
Supply Voltage (V)  
±2 to ±2±  
±2.5 to ±ꢀ5  
2.7 to 5  
ꢀ.8 to 6  
2.7 to 6  
VOS (Max) (μV)  
IB (Max) (nA)  
Supply Current (μA)  
Package  
25  
6±  
5
5±  
5
±.ꢀ  
2
±.±5  
±.±±ꢀ  
±.ꢀ  
±.5  
±.4  
2.3  
±.5  
6±±  
5±±  
975  
5±  
SOIC-8  
MSOP, SOIC-8  
MSOP, SOIC-8  
TSOT  
85±  
TSOT, SOIC-8  
Table 11. Suitable ADI High Speed Op Amps  
Part No.  
AD8±65  
AD8±2ꢀ  
AD8±38  
AD963ꢀ  
Supply Voltage (V)  
BW @ ACL (MHz)  
Slew Rate (V/μs)  
VOS (Max) (μV) IB (Max) (nA)  
Package  
5 to 24  
±2.5 to ±ꢀ2  
3 to ꢀ2  
ꢀ45  
49±  
35±  
32±  
ꢀ8±  
ꢀ2±  
425  
ꢀ,3±±  
ꢀ,5±±  
ꢀ,±±±  
3,±±±  
ꢀ±,±±±  
6,±±±  
ꢀ±,5±±  
75±  
SOIC-8, SOT-23, MSOP  
SOIC-8, MSOP  
SOIC-8, SC7±-5  
SOIC-8  
±3 to ±6  
7,±±±  
Rev. C | Page 2ꢀ of 32  
 
 
 
AD5428/AD5440/AD5447  
Data Sheet  
8xC51-to-AD5428/AD5440/AD5447 Interface  
PARALLEL INTERFACE  
Figure 45 shows the interface between the AD5428/AD5440/  
AD5447 and the 8xC51 family of DSPs. To facilitate external  
data memory access, the address latch enable (ALE) mode is  
enabled. The low byte of the address is latched with this output  
pulse during access to the external memory. AD0 to AD7 are  
the multiplexed low order addresses and data bus, and they  
require strong internal pull-ups when emitting 1s. During  
access to external memory, A8 to A15 are the high order  
address bytes. Because these ports are open drain, they also  
require strong internal pull-ups when emitting 1s.  
Data is loaded into the AD5428/AD5440/AD5447 in 8-, 10-, or  
12-bit parallel word format. Control lines  
and R/ allow  
CS  
data to be written to or read from the DAC register. A write  
event takes place when and R/ are brought low, data  
W
CS  
available on the data lines fills the shift register, and the rising  
edge of latches the data and transfers the latched data-word  
W
CS  
to the DAC register. The DAC latches are not transparent;  
therefore, a write sequence must consist of a falling and rising  
edge on  
to ensure that data is loaded into the DAC register  
CS  
and its analog equivalent is reflected on the DAC output.  
A8 TO A15  
ADDRESS BUS  
A read event takes place when R/ is held high and is  
W
CS  
brought low. Data is loaded from the DAC register, goes back  
into the input register, and is output onto the data line, where it  
can be read back to the controller for verification or diagnostic  
purposes. The input and DAC registers of these devices are not  
AD5428/  
AD5440/  
AD54471  
1
8051  
ADDRESS  
DECODER  
CS  
transparent; therefore, a falling and rising edge of  
is required  
CS  
WR  
R/W  
to load each data-word.  
DB0 TO DB11  
8-BIT  
LATCH  
ALE  
MICROPROCESSOR INTERFACING  
ADSP-21xx-to-AD5428/AD5440/AD5447 Interface  
AD0 TO AD7  
DATA BUS  
Figure 44 shows the AD5428/AD5440/AD5447 interfaced to  
the ADSP-21xx series of DSPs as a memory-mapped device. A  
single wait state may be necessary to interface the AD5428/  
AD5440/AD5447 to the ADSP-21xx, depending on the clock  
speed of the DSP. The wait state can be programmed via the  
data memory wait state control register of the ADSP-21xx (see  
the ADSP-21xx familys user manual for details).  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 45. 8xC51-to-AD5428/AD5440/AD5447 Interface  
ADSP-BF5xx-to-AD5428/AD5440/AD5447 Interface  
Figure 46 shows a typical interface between the AD5428/  
AD5440/AD5447 and the ADSP-BF5xx family of DSPs. The  
asynchronous memory write cycle of the processor drives the  
ADDR TO  
ADRR  
0
ADDRESS BUS  
13  
digital inputs of the DAC. The  
x line is actually four  
AMS  
memory select lines. Internal ADDR lines are decoded into  
3–0, and then these lines are inserted as chip selects. The  
AD5428/  
AD5440/  
AD54471  
1
ADSP-21xx  
AMS  
rest of the interface is a standard handshaking operation.  
ADDRESS  
DECODER  
DMS  
WR  
CS  
ADDR TO  
1
ADDRESS BUS  
R/W  
ADRR  
19  
DB0 TO DB11  
AD5428/  
AD5440/  
AD54471  
1
ADSP-BF5xx  
ADDRESS  
DECODER  
AMSx  
DATA 0 TO  
DATA 23  
CS  
DATA BUS  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
AWE  
R/W  
Figure 44. ADSP21xx-to-AD5428/AD5440/AD5447 Interface  
DB0 TO DB11  
DATA 0 TO  
DATA 23  
DATA BUS  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 46. ADSP-BF5xx-to-AD5428/AD5440/AD5447 Interface  
Rev. C | Page 22 of 32  
 
 
 
 
Data Sheet  
AD5428/AD5440/AD5447  
microstrip technique is by far the best method, but its use is not  
always possible with a double-sided board. In this technique,  
the component side of the board is dedicated to the ground  
plane, and signal traces are placed on the soldered side.  
PCB LAYOUT AND POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful  
consideration of the power supply and ground return layout  
helps to ensure the rated performance. The printed circuit  
board on which the AD5428/AD5440/AD5447 is mounted  
should be designed so that the analog and digital sections are  
separate and confined to certain areas of the board. If the DAC  
is in a system where multiple devices require an AGND-to-  
DGND connection, the connection should be made at one  
point only. The star ground point should be established as close  
as possible to the device.  
It is good practice to use compact, minimum lead length PCB  
layout design. Leads to the input should be as short as possible  
to minimize IR drops and stray inductance.  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error. To maximize high frequency  
performance, the I-to-V amplifier should be located as close as  
possible to the device.  
These DACs should have ample supply bypassing of 10 μF in  
parallel with 0.1 μF on the supply located as close as possible to  
the package, ideally right up against the device. The 0.1 μF  
capacitor should have low effective series resistance (ESR) and  
low effective series inductance (ESI), like the common ceramic  
types of capacitors that provide a low impedance path to ground  
at high frequencies, to handle transient currents due to internal  
logic switching. Low ESR 1 μF to 10 μF tantalum or electrolytic  
capacitors should also be applied at the supplies to minimize  
transient disturbance and filter out low frequency ripple.  
EVALUATION BOARD FOR THE AD5447  
The evaluation board consists of an AD5447 DAC and a  
current-to-voltage amplifier, the AD8065. Included on the  
evaluation board is a 10 V reference, the ADR01. An external  
reference may also be applied via an SMB input.  
The evaluation kit consists of a CD-ROM with self-installing  
PC software to control the DAC. The software simply allows the  
user to write a code to the device.  
POWER SUPPLIES FOR THE EVALUATION BOARD  
Components, such as clocks, that produce fast-switching signals  
should be shielded with digital ground to avoid radiating noise  
to other parts of the board, and they should never be run near  
the reference inputs.  
The board requires 12 V and +5 V supplies. The +12 V VDD  
and −12 V VSS are used to power the output amplifier; the +5 V  
is used to power the DAC (VDD1) and transceivers (VCC).  
Both supplies are decoupled to their respective ground plane  
with 10 ꢀF tantalum and 0.1 ꢀF ceramic capacitors.  
Avoid crossover of digital and analog signals. Traces on  
opposite sides of the board should run at right angles to each  
other. This reduces the effects of feedthrough on the board. A  
Rev. C | Page 23 of 32  
 
AD5428/AD5440/AD5447  
Data Sheet  
Figure 47. Schematic of AD5447 Evaluation Board  
Rev. C | Page 24 of 32  
Data Sheet  
AD5428/AD5440/AD5447  
Figure 48. Component-Side Artwork  
Figure 49. Silkscreen—Component-Side View (Top Layer)  
Rev. C | Page 25 of 32  
AD5428/AD5440/AD5447  
Data Sheet  
Figure 50. Solder-Side Artwork  
Rev. C | Page 26 of 32  
Data Sheet  
AD5428/AD5440/AD5447  
BILL OF MATERIALS  
Table 12.  
Name/Position Part Description  
Value  
Tolerance (%)  
Stock Code  
Cꢀ  
X7R ceramic capacitor  
±.ꢀ ꢁF  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
FEC 499-675  
FEC 499-675  
FEC ꢀ97-427  
FEC 499-675  
FEC ꢀ97-ꢀ3±  
FEC 499-675  
FEC 72ꢀ-876  
FEC 499-675  
FEC ꢀ97-427  
FEC 499-675  
FEC ꢀ97-427  
FEC 499-675  
FEC 499-675  
FEC ꢀ97-427  
FEC 499-675  
FEC ꢀ97-427  
FEC 499-675  
FEC ꢀ97-427  
FEC 499-675  
FEC ꢀ97-427  
FEC 499-675  
FEC 72ꢀ-876  
FEC ꢀ97-427  
FEC 499-675  
FEC ꢀ97-427  
FEC 499-675  
FEC 24±-345 (Pack)  
FEC 3ꢀ±-682  
FEC 3ꢀ±-682  
FEC 3ꢀ±-682  
FEC 3ꢀ±-682  
FEC 3ꢀ±-682  
FEC 3ꢀ±-682  
FEC 5ꢀꢀ-79ꢀ and FEC 528-456  
FEC ꢀ47-753  
FEC ꢀ5ꢀ-792  
FEC 24±-345 (Pack)  
FEC 24±-345 (Pack)  
AD5447YRU  
C2  
X7R ceramic capacitor  
±.ꢀ ꢁF  
C3  
Tantalum capacitor—Taj series  
X7R ceramic capacitor  
ꢀ± ꢁF 2± V  
±.ꢀ ꢁF  
C4  
C5  
Tantalum capacitor—Taj series  
X7R ceramic capacitor  
ꢀ± ꢁF ꢀ± V  
±.ꢀ ꢁF  
C6  
C7  
NPO ceramic capacitor  
ꢀ.8 pF  
C8  
X7R ceramic capacitor  
±.ꢀ ꢁF  
C9  
Tantalum capacitor—Taj series  
X7R ceramic capacitor  
ꢀ± ꢁF 2± V  
±.ꢀ ꢁF  
Cꢀ±  
Cꢀꢀ  
Cꢀ2  
Cꢀ3  
Cꢀ4  
Cꢀ5  
Cꢀ6  
Cꢀ7  
Cꢀ8  
Cꢀ9  
C2±  
C2ꢀ  
C22  
C23  
C24  
C25  
C26  
Tantalum capacitor—Taj series  
X7R ceramic capacitor  
ꢀ± ꢁF 2± V  
±.ꢀ ꢁF  
X7R ceramic capacitor  
±.ꢀ ꢁF  
Tantalum capacitor—Taj series  
X7R ceramic capacitor  
ꢀ± ꢁF 2± V  
±.ꢀ ꢁF  
Tantalum capacitor—Taj series  
X7R ceramic capacitor  
ꢀ± ꢁF 2± V  
±.ꢀ ꢁF  
Tantalum capacitor—Taj series  
X7R ceramic capacitor  
ꢀ± ꢁF 2± V  
±.ꢀ ꢁF  
Tantalum capacitor—Taj series  
X7R ceramic capacitor  
ꢀ± ꢁF 2± V  
±.ꢀ ꢁF  
NPO ceramic capacitor  
ꢀ.8 pF  
Tantalum capacitor—Taj series  
X7R ceramic capacitor  
ꢀ± ꢁF 2± V  
±.ꢀ ꢁF  
Tantalum capacitor—Taj series  
X7R ceramic capacitor  
ꢀ± ꢁF 2± V  
±.ꢀ ꢁF  
CS, DB± to DBꢀꢀ Red testpoint  
Jꢀ to J6  
SMB socket  
J2  
SMB socket  
J3  
SMB socket  
J4  
SMB socket  
J5  
SMB socket  
J6  
SMB socket  
LKꢀ  
3-pin header (2 × 2)  
36-pin Centronics connector  
6-pin terminal block  
Red testpoint  
Red testpoint  
AD5447  
Pꢀ  
P2  
RW  
TPꢀ to TP4  
Uꢀ  
U2  
ADR±ꢀ  
ADR±ꢀAR  
U3  
AD8±65  
AD8±65AR  
U4, U5  
U6  
74ABT543  
Fairchild 74ABT543CMTC  
CD74HCTꢀ39M  
AD8±65AR  
74ꢀ39  
U7  
AD8±65  
Each Corner  
Rubber stick-on feet  
FEC ꢀ48-922  
Rev. C | Page 27 of 32  
 
AD5428/AD5440/AD5447  
Data Sheet  
OVERVIEW OF AD54xx DEVICES  
Table 13.  
Part No.  
AD5424  
AD5426  
AD5428  
AD5429  
AD545±  
AD5432  
AD5433  
AD5439  
AD544±  
AD5451  
AD5443  
AD5444  
AD5415  
AD54±5  
AD5445  
AD5447  
AD5449  
AD5452  
AD5446  
AD5453  
AD5553  
AD5556  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
Resolution  
No. DACs  
INL (LSB)  
±±.25  
±±.25  
±±.25  
±±.25  
±±.25  
±±.5  
±±.5  
±±.5  
±±.5  
±±.25  
±1  
Interface  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Serial  
Parallel  
Parallel  
Parallel  
Serial  
Serial  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Package1  
RU-16, CP-2±  
RM-1±  
RU-2±  
Features  
8
1
1
2
2
1
1
1
2
2
1
1
1
2
2
2
2
2
1
1
1
1
1
2
2
1
1
2
2
1± MHz BW, 17 ns CS pulse width  
1± MHz BW, 5± MHz serial  
1± MHz BW, 17 ns CS pulse width  
1± MHz BW, 5± MHz serial  
1± MHz BW, 5± MHz serial  
1± MHz BW, 5± MHz serial  
1± MHz BW, 17 ns CS pulse width  
1± MHz BW, 5± MHz serial  
1± MHz BW, 17 ns CS pulse width  
1± MHz BW, 5± MHz serial  
1± MHz BW, 5± MHz serial  
1± MHz BW, 5± MHz serial  
8
8
8
8
RU-1±  
UJ-8  
RM-1±  
RU-2±, CP-2±  
RU-16  
1±  
1±  
1±  
1±  
1±  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
RU-24  
UJ-8  
RM-1±  
RM-8  
RU-24  
CP-4±  
±±.5  
±1  
±1  
1± MHz BW, 5± MHz serial  
1± MHz BW, 17 ns CS pulse width  
1± MHz BW, 17 ns CS pulse width  
1± MHz BW, 17 ns CS pulse width  
1± MHz BW, 5± MHz serial  
1± MHz BW, 5± MHz serial  
1± MHz BW, 5± MHz serial  
±1  
RU-2±, CP-2±  
RU-24  
±1  
±1  
±±.5  
±1  
±2  
±1  
RU-16  
UJ-8, RM-8  
RM-8  
UJ-8, RM-8  
RM-8  
RU-28  
1± MHz BW, 5± MHz serial  
4 MHz BW, 5± MHz serial clock  
4 MHz BW, 2± ns WR pulse width  
4 MHz BW, 5± MHz serial clock  
4 MHz BW, 2± ns WR pulse width  
4 MHz BW, 5± MHz serial clock  
4 MHz BW, 2± ns WR pulse width  
4 MHz BW, 5± MHz serial clock  
4 MHz BW, 2± ns WR pulse width  
±1  
±1  
±1  
RM-8  
RU-38  
±2  
±2  
RM-8  
RU-28  
±2  
±2  
RU-16  
RU-38  
1 RU = TSSOP, CP = LFCSP, RM = MSOP, UJ = TSOT.  
Rev. C | Page 28 of 32  
 
Data Sheet  
AD5428/AD5440/AD5447  
OUTLINE DIMENSIONS  
7.90  
7.80  
7.70  
6.60  
6.50  
6.40  
24  
13  
4.50  
4.40  
20  
11  
10  
4.50  
4.40  
4.30  
4.30  
6.40 BSC  
12  
1
6.40 BSC  
1
PIN 1  
0.65  
1.20  
PIN 1  
BSC  
MAX  
0.65  
BSC  
0.15  
0.05  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
8°  
0°  
SEATING  
PLANE  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
COMPLIANT TO JEDEC STANDARDS MO-153-AD  
Figure 51. 20-Lead Thin Shrink Outline Package [TSSOP]  
(RU-20)  
Figure 52. 24-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-24)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Resolution  
INL (LSB)  
±±.5  
±±.5  
±±.5  
±±.5  
±±.5  
±±.5  
±±.5  
±±.5  
±±.5  
±±.5  
±1  
Temperature Range  
Package Description  
2±-Lead TSSOP  
2±-Lead TSSOP  
2±-Lead TSSOP  
2±-Lead TSSOP  
2±-Lead TSSOP  
2±-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
Evaluation Kit  
Package Option  
RU-2±  
RU-2±  
RU-2±  
RU-2±  
AD5428YRU  
8
8
8
8
8
8
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
–4± °C to +125°C  
AD5428YRU-REEL  
AD5428YRU-REEL7  
AD5428YRUZ  
AD5428YRUZ-REEL  
AD5428YRUZ-REEL7  
AD544±YRU  
AD544±YRU-REEL  
AD544±YRU-REEL7  
AD544±YRUZ  
AD544±YRUZ-REEL  
AD544±YRUZ-REEL7  
AD5447YRU  
AD5447YRU-REEL  
AD5447YRUZ  
AD5447YRUZ-REEL  
AD5447YRUZ-REEL7  
EVAL-AD5447EBZ  
RU-2±  
RU-2±  
1±  
1±  
1±  
1±  
12  
12  
12  
12  
12  
12  
12  
RU-24  
RU-24  
RU-24  
RU-24  
RU-24  
RU-24  
±1  
±1  
±1  
±1  
±1  
RU-24  
RU-24  
RU-24  
RU-24  
±1  
RU-24  
1 Z = RoHS Compliant Part.  
Rev. C | Page 29 of 32  
 
AD5428/AD5440/AD5447  
NOTES  
Data Sheet  
Rev. C | Page 3± of 32  
Data Sheet  
NOTES  
AD5428/AD5440/AD5447  
Rev. C | Page 31 of 32  
AD5428/AD5440/AD5447  
NOTES  
Data Sheet  
©2004–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04462-0-8/11(C)  
Rev. C | Page 32 of 32  
 
 

相关型号:

AD5440YRUZ-REEL7

Dual 8-/10-/12-Bit, High Bandwidth, Multiplying DACs with Parallel Interface
ADI

AD5440_15

Dual 8-/10-/12-Bit, High Bandwidth, Multiplying DACs with Parallel Interface
ADI

AD5441

12-Bit Serial Input Multiplying DAC
ADI

AD5441BRMZ

12-Bit Serial Input Multiplying DAC
ADI

AD5441BRMZ-REEL7

12-Bit Serial Input Multiplying DAC
ADI

AD5442ABCPZ-1

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5442ABCPZ-1-RL7

SERIAL INPUT LOADING, 1us SETTLING TIME, 16-BIT DAC, PDSO10, 3 X 3 MM, ROHS COMPLIANT, MO-220WEED, LFCSP-10
ADI

AD5443

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443BRM

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443BRM-REEL7

IC IC,D/A CONVERTER,SINGLE,12-BIT,CMOS,TSSOP,10PIN, Digital to Analog Converter
ADI

AD5443YRM

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRM-REEL

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI