AD5441 [ADI]

12-Bit Serial Input Multiplying DAC; 12位串行输入乘法数模转换器
AD5441
型号: AD5441
厂家: ADI    ADI
描述:

12-Bit Serial Input Multiplying DAC
12位串行输入乘法数模转换器

转换器 数模转换器
文件: 总16页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit Serial Input  
Multiplying DAC  
AD5441  
Preliminary Technical Data  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
3 V to 5 V supply operation  
True 12-bit accuracy  
5 V operation @ <10 μA  
AD5441  
V
R
I
DD  
FB  
V
DAC  
REF  
OUT  
Fast 3-wire serial input  
12  
Fast 1 μs settling time  
LD  
DAC REG  
2.4 MHz, 4-quadrant multiply BW  
Upgrade for DAC8043 and DAC8043A  
Standard and rotated pinout  
12  
GND  
CLK  
SRI  
12-BIT SHIFT  
REGISTER  
APPLICATIONS  
Figure 1.  
Ideal for PLC applications in industrial control  
Programmable amplifiers and attenuators  
Digitally controlled calibration and filters  
Motion control systems  
GENERAL DESCRIPTION  
0.5  
0.4  
The AD5441 is an improved high accuracy 12-bit multiplying  
digital-to-analog converter (DAC) in space-saving 8-lead  
packages. Featuring serial input, double buffering, and excellent  
analog performance, the AD5441 is ideal for applications where  
PC board space is at a premium. Improved linearity and gain  
error performance permit reduced part counts through the  
elimination of trimming components. Separate input clock and  
load DAC control lines allow full user control of data loading  
and analog output.  
T
= –40°C, +25°C, +85°C  
A
V
= +5V  
DD  
V
= –10V  
REF  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
The circuit consists of a 12-bit serial-in/parallel-out shift  
register, a 12-bit DAC register, a 12-bit CMOS DAC, and  
control logic. Serial data is clocked into the input register on the  
rising edge of the CLOCK pulse. When the new data-word is  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
CODE  
LD  
clocked in, it is loaded into the DAC register with the  
input  
Figure 2. Integral Nonlinearity Error vs. Code  
pin. Data in the DAC register is converted to an output current  
by the DAC.  
Consuming only 10 μA from a single 5 V power supply, the  
AD5441 is the ideal low power, small size, high performance  
solution to many application problems.  
The AD5441 is specified over the extended industrial (−40°C to  
+125°C) temperature range. It is available in an 8-lead LFCSP  
and an 8-lead MSOP.  
Rev. PrA  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
AD5441  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Terminology.................................................................................... 10  
Parameter Definitions.................................................................... 11  
General Circuit Information..................................................... 11  
Output Impedance ..................................................................... 11  
Applications Information.......................................................... 11  
Unipolar 2-Quadrant Multiplying ........................................... 11  
Bipolar 4-Quadrant Multiplying .............................................. 12  
Interface Logic Information...................................................... 12  
Digital Section ............................................................................ 12  
Outline Dimensions....................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Table of Contents.............................................................................. 2  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
REVISION HISTORY  
3/07—Revision PrA: Preliminary Version  
Rev. PrA | Page 2 of 16  
Preliminary Technical Data  
AD5441  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
@ VDD = 5 V, VREF = 10 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min Typ  
Max  
Unit  
Condition  
STATIC PERFORMANCE  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
N
12  
Bits  
LSB  
LSB  
LSB  
ppm/°C  
nA  
INL  
DNL  
GFSE  
TCGFS  
ILKG  
±1.ꢀ  
±1.ꢀ  
±2.ꢀ  
±±  
All grades monotonic to 12 bits  
Data = FFFH  
IOUT pin measured  
Gain Temperature Coefficient1  
Output Leakage Current  
±±  
Data = ꢀꢀꢀH, IOUT pin measured  
±2±  
ꢀ.ꢀ3  
ꢀ.1±  
nA  
LSB  
LSB  
TA = –4ꢀ°C, +12±°C, Data = ꢀꢀꢀH, IOUT pin measured  
Data = ꢀꢀꢀH  
TA = −4ꢀ°C, +12±°C, Data = ꢀꢀꢀH  
Zero-Scale Error  
IZSE  
REFERENCE INPUT  
Input Resistance  
Input Capacitance1  
ANALOG OUTPUT  
Output Capacitance1  
RREF  
CREF  
7
1±  
kΩ  
pF  
Absolute temperature coefficient < ±ꢀ ppm/°C  
±
COUT  
2±  
3ꢀ  
pF  
pF  
Data = ꢀꢀꢀH  
Data = FFFH  
DIGITAL INPUTS  
Digital Input Low  
Digital Input High  
Input Leakage Current  
Input Capacitance1  
INTERFACE TIMING1, 2  
Data Setup  
Data Hold  
Clock Width High  
Clock Width Low  
Load Pulse Width  
LD DAC High to MSB CLK High  
LSB CLK to LD DAC  
AC CHARACTERISTICS1  
Output Current Settling Time  
DAC Glitch  
VIL  
VIH  
IIL  
ꢀ.8  
V
V
μA  
pF  
2.4  
1
1ꢀ  
VLOGIC = ꢀ V to ± V  
VLOGIC = ꢀ V  
CIL  
tDS  
tDH  
tCH  
tCL  
tLD  
tLD1  
tASB  
1ꢀ  
±
2±  
2±  
2±  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tS  
Q
1
2ꢀ  
μs  
nVs  
To ±ꢀ.ꢀ1ꢁ of full-scale, external op amp OP42  
Data = ꢀꢀꢀH to FFFH to ꢀꢀꢀH, VREF = ꢀ V  
Digital Feedthrough  
Feedthrough (VOUT/VREF  
TBD  
1
)
FT  
mV p-p  
dB  
nV/√Hz  
MHz  
V
VREF = 2ꢀ V p-p, data = ꢀꢀꢀH, f = 1ꢀ kHz  
VREF = 6 V rms, data = FFFH, f = 1 kHz  
1ꢀ Hz to 1ꢀꢀ kHz between RFB and IOUT  
−3 dB, VOUT/VREF, VREF = 1ꢀꢀ mV rms, data = FFFH  
Total Harmonic Distortion  
Output Noise Density  
Multiplying Bandwidth  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
THD  
en  
BW  
VDD RANGE  
IDD  
PDISS  
PSS  
−8±  
17  
2.4  
3
±
1ꢀ  
±ꢀ  
μA  
μW  
VLOGIC = ꢀ V or VDD  
VLOGIC = ꢀ V or VDD  
ΔVDD = ±±ꢁ  
Power Supply Sensitivity  
ꢀ.ꢀꢀ2 ꢁ/ꢁ  
1 These parameters are guaranteed by design and not subject to production testing.  
2 All input control signals are specified with tR = tF = 2 ns (1ꢀꢁ to 9ꢀꢁ of ± V) and timed from a voltage level of 1.6 V.  
Rev. PrA | Page 3 of 16  
AD5441  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
The AD5441 contains 346 transistors. The die size measures  
70.3 mm × 57.1 mm = 4014 square mm.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 2.  
Parameter  
Rating  
VDD to GND  
VREF to GND  
−ꢀ.3 V, +8 V  
±18 V  
RFB to GND  
±18 V  
Logic Inputs to GND  
VIOUT to GND  
−ꢀ.3 V, VDD + ꢀ.3 V  
−ꢀ.3 V, VDD + ꢀ.3 V  
±ꢀ mA  
ESD CAUTION  
IOUT Short Circuit to GND  
Package Power Dissipation  
Thermal Resistance  
θJA: 8-Lead MSOP  
(TJ max − TA)/θJA  
142°C/W  
7±°C/W  
θJA: 8-Lead LFCSP1  
θJC: 8-Lead MSOP  
θJC: 8-Lead LFCSP1  
44°C/W  
18°C/W  
Maximum Junction Temperature (TJ max)  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, 1ꢀ sec)  
1±ꢀ°C  
−4ꢀ°C to +12±°C  
−6±°C to +1±ꢀ°C  
3ꢀꢀ°C  
1 Exposed pad soldered to application board.  
Rev. PrA | Page 4 of 16  
Preliminary Technical Data  
AD5441  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VREF  
RFB  
1
2
3
4
8 VDD  
7 CLK  
5 SRI  
5 LD  
AD5441  
TOP VIEW  
(Not to Scale)  
VREF  
RFB  
1
2
3
4
8
7
6
5
VDD  
CLK  
SRI  
LD  
IOUT  
GND  
AD5441  
TOP VIEW  
(Not to Scale)  
IOUT  
GND  
Figure 4. 8-Lead MSOP Pin Configuration  
Figure 3. 8-LeadLFCSP Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic Descriptions  
1
2
3
4
±
VREF  
RFB  
IOUT  
GND  
LD  
DAC Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance vs. code.  
Internal Matching Feedback Resistor. Connect to external op amp output.  
DAC Current Output, full-scale output 1 LSB less than reference input voltage −VREF  
Analog and Digital Ground.  
.
Load Strobe, Level-Sensitive Digital Input. Transfers shift-register data to DAC register while active low.  
See Table 4 for operation.  
6
7
8
SRI  
CLK  
VDD  
12-Bit Serial Register Input, data loads directly into the shift register MSB first. Extra leading bits are ignored.  
Clock Input, positive-edge clocks data into shift register.  
Positive Power Supply Input. Specified range of operation ± V ± 1ꢀꢁ.  
Rev. PrA | Page ± of 16  
AD5441  
Preliminary Technical Data  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SRI  
CLK  
tLD1  
tASB  
LD  
DATA LOADED MSB(D11) FIRST  
Dxx  
DAC REGISTER LOAD  
SRI  
tDS  
tDH  
tCL  
CLK  
LD  
tCH  
tLD  
tS  
FS  
±1LSB  
V
OUT  
ERROR BAND  
ZS  
Figure 5. Timing Diagram  
Table 4. Control-Logic Truth Table  
CLK  
LD  
Serial Shift Register Function  
DAC Register Function  
1
H
Shift-register-data advanced one bit  
Latched  
H or L  
L
L
No effect  
No effect  
Updated with current shift register contents  
Latched all 12 bits  
1
1
equals positive logic transition.  
Rev. PrA | Page 6 of 16  
Preliminary Technical Data  
AD5441  
TYPICAL PERFORMANCE CHARACTERISTICS  
35  
10  
1
SS = 200 UNITS  
V
V
= 5V  
= 0V OR V  
DD  
LOGIC  
T
V
= 25°C  
= 5V  
A
DD  
30  
25  
20  
15  
10  
5
DD  
V
= 10V  
REF  
0.1  
0.01  
0
0.001  
0.5  
TOTAL UNADJUSTED ERROR (LSB)  
1.0  
–1.0  
–0.5  
0
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
Figure 6. Total Unadjusted Error Histogram  
Figure 9. Supply Current IDD vs. Temperature  
3500  
3000  
2500  
2000  
1500  
1000  
500  
V
= 5V  
= 10V  
= 25°C  
DD  
50  
V
REF  
SS = 200 UNITS  
= –40°C TO +85°C  
T
A
T
A
V
V
= 5V  
DD  
= 10V  
40  
30  
REF  
CODE = 0xF55  
CODE = 0x800  
20  
10  
0
CODE = 0xFFF  
0
1k  
10k  
100k  
1M  
10M  
100M  
0
1
2
FREQUENCY (Hz)  
FULL SCALE TEMPCO (ppm/°C)  
Figure 10. Supply Current IDD vs. Clock Frequency  
Figure 7. Full-Scale Output Temperature Coefficient Histogram  
100  
80  
ΔV = 5V ± 10%  
DD  
0.5  
T
V
= 25°C  
A
= 5V  
DD  
0.4  
0.3  
0.2  
0.1  
0
60  
40  
20  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
LOGIC INPUT VOLTAGE (V)  
Figure 11. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 8. Supply Current IDD vs. Logic Input Voltage  
Rev. PrA | Page 7 of 16  
AD5441  
Preliminary Technical Data  
0.5  
V
V
V
T
= 5V  
= 5V  
DD  
DD  
5V  
= 10V  
V
= 10V  
REF  
0.4  
REF  
= 25°C  
SUPERIMPOSED: T = –40°C, +25°C, +85°C  
A
A
CLK  
(5V/DIV)  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
OUT  
(5V/DIV)  
5V  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
TIME (1µs/DIV)  
CODE (Decimal)  
Figure 12. Linearity Error vs. Digital Code  
Figure 15. Large Signal Settling Time  
4
2
0
ALL BITS ON  
V
= 5V  
DD  
(MSB) B  
V
T
= 10V  
11  
REF  
12  
24  
36  
48  
60  
72  
84  
96  
108  
B
= 25°C  
10  
A
B
B
B
B
B
9
8
7
6
5
4
B
0
–2  
–4  
B
B
B
3
2
1
0
(LSB) B  
ALL BITS OFF  
100  
1k  
10k  
100k  
1M  
10M  
–2000  
–1000  
0
1000  
2000  
FREQUENCY (Hz)  
OP AMP OFFSET V (µV)  
OS  
Figure 13. Linearity Error vs. External Op Amp Offset VOS  
Figure 16. Reference Multiplying Bandwidth vs. Frequency and Code  
V
V
= 5V  
DD  
V
T
= 5V  
DD  
= 25°C  
A
= 10V  
REF  
0.50  
0.25  
0
fCLK = 2.5MHz  
CODE: 0x7FF TO 0x800  
V
OUT  
(10mV/DIV)  
LD  
(5V/DIV)  
–0.25  
–0.50  
20mV  
0
5
10  
TIME (200ns/DIV)  
|V  
| (V)  
REF  
Figure 17. Linearity Error vs. Reference Voltage  
Figure 14. Midscale Transition Performance  
Rev. PrA | Page 8 of 16  
Preliminary Technical Data  
AD5441  
0.0320  
1.2  
–70  
SAMPLE SIZE = 50  
V
= 4V p-p  
REF  
OUTPUT OP AMP: OP42  
1.0  
0.8  
0.6  
0.4  
0.0180  
–75  
–80  
CODE = 0xFFF  
0.0100  
0.0056  
0.0032  
–85  
–90  
–95  
CODE = 0x000  
0.2  
0
0.0018  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
0
100  
200  
300  
400  
500  
600  
HOURS OF OPERATION AT 150°C  
Figure 18. Long-Term Drift Accelerated by Burn-In  
Figure 19. THD vs. Frequency  
Rev. PrA | Page 9 of 16  
AD5441  
Preliminary Technical Data  
TERMINOLOGY  
Digital Feedthrough  
Relative Accuracy  
When the device is not selected, high frequency logic activity  
on the devices digital inputs may be capacitively coupled  
through the device and produce noise on the IOUT pins. This  
noise is coupled from the outputs of the device onto follow-on  
circuitry. This noise is digital feedthrough.  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for zero and full scale and is normally expressed in  
LSBs or as a percentage of the full-scale reading.  
Multiplying Feedthrough Error  
Differential Nonlinearity  
This is the error due to capacitive feedthrough from the DAC  
reference input to the DAC IOUT1 terminal when all 0s are  
loaded to the DAC.  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of −1 LSB maximum  
over the operating temperature range ensures monotonicity.  
Total Harmonic Distortion (THD)  
The DAC is driven by an ac reference. The ratio of the rms sum  
of the harmonics of the DAC output to the fundamental value is  
the THD. Usually only the lower order harmonics, such as  
second to fifth, are included.  
Gain Error  
Gain error or full-scale error is a measure of the output error  
between an ideal DAC and the actual device output. For these  
DACs, ideal maximum output is VREF − 1 LSB. Gain error of the  
DACs is adjustable to zero with external resistance.  
V22 + V32 + V4 + V52  
2
THD = 20log  
Zero Scale Error  
V
1
Calculated from worst-case RREF  
ZSE(LSB) = (RREF × ILKG × 4096)/VREF  
Output Leakage Current  
:
Compliance Voltage Range  
The maximum range of (output) terminal voltage for which the  
device will provide the specified characteristics.  
I
.
Output leakage current is the current that flows into the DAC  
ladder switches when they are turned off. For the IOUT terminal,  
it can be measured by loading all 0s to the DAC and measuring  
the IOUT current.  
Output Noise Spectral Density  
Calculation from  
en = √4KTRB  
where:  
Output Capacitance  
Capacitance from IOUT1 to AGND.  
K = Boltzmann Constant (J/°K)  
R = Resistance (Ω)  
Digital-to-Analog Glitch Impulse  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is normally  
specified as the area of the glitch in either pA-s or nV-s,  
depending on whether the glitch is measured as a current or  
voltage signal.  
T = Resistor temperature (°K)  
B = 1 Hz bandwidth  
Rev. PrA | Page 1ꢀ of 16  
Preliminary Technical Data  
AD5441  
PARAMETER DEFINITIONS  
GENERAL CIRCUIT INFORMATION  
OUTPUT IMPEDANCE  
The AD5441s output resistance, as in the case of the output  
capacitance, varies with the digital input code. This resistance,  
looking back into the IOUT terminal, may be between 10 kꢀ, the  
feedback resistor alone when all digital inputs are low, and  
7.5 kꢀ, the feedback resistor in parallel with approximate 30 kꢀ  
of the R-2R ladder network resistance when any single bit logic  
is high. Static accuracy and dynamic performance will be  
affected by these variations.  
The AD5441 is a 12-bit multiplying DAC with a low  
temperature coefficient. It contains an R-2R resistor ladder  
network, data input and control logic, and two data registers.  
The digital circuitry forms an interface in which serial data can  
be loaded under microprocessor control into a 12-bit shift  
register and then transferred, in parallel, to the 12-bit DAC  
register.  
The analog portion of the AD5441 contains an inverted R-2R  
ladder network consisting of silicon-chrome, highly stable  
(50 ppm/°C), thin-film resistors, and 12 pairs of NMOS  
current-steering switches, see Figure 20. These switches steer  
binarily weighted currents into either IOUT or GND; this yields a  
constant current in each ladder leg, regardless of digital input  
code. This constant current results in a constant input resistance  
at VREF equal to R. The VREF input may be driven by any  
reference voltage or current, ac or dc that is within the limits  
stated in the Absolute Maximum Ratings.  
APPLICATIONS INFORMATION  
In most applications, linearity depends upon the potential of  
the IOUT and GND pins being at the same voltage potential. The  
DAC is connected to an external precision op amp inverting  
input. The external amplifiers noninverting input should be tied  
directly to ground without the usual bias current compensating  
resistor (see Figure 21 and Figure 22). The selected amplifier  
should have a low input bias current and low drift over  
temperature. The amplifiers input offset voltage should be  
nulled to less than 200 mV (less than 10% of 1 LSB). All  
grounded pins should tie to a single common ground point to  
avoid ground loops. The VDD power supply should have a low  
noise level with adequate bypassing. It is best to operate the  
AD5441 from the analog power supply and grounds.  
10k  
20kΩ  
S1  
10kΩ  
20kΩ  
S2  
10kΩ  
20kΩ  
S3  
V
REF  
20kΩ  
20kΩ  
S12  
*
GND  
UNIPOLAR 2-QUADRANT MULTIPLYING  
I
OUT  
10kΩ  
R
The most straightforward application of the AD5441 is in the  
2-quadrant multiplying configuration shown in Figure 21.  
If the reference input signal is replaced with a fixed dc voltage  
reference, the DAC output will provide a proportional dc  
voltage output according to the transfer equation  
FEEDBACK  
*
BIT 1 (MSB)  
BIT 2  
BIT 3  
BIT 12 (LSB)  
DIGITAL INPUTS  
*THESE SWITCHES PERMANENTLY ON.  
NOTES  
1. SWITCHES SHOWN FOR DIGITAL INPUTS HIGH.  
Figure 20. Simplified DAC Circuit  
V
OUT = −D/4096 × VREF  
where:  
The 12 output current steering NMOS FET switches are in  
series with each R-2R resistor.  
D is the decimal data loaded into the DAC register.  
To further ensure accuracy across the full temperature range,  
permanently on MOS switches were included in series with the  
feedback resistor and the R-2R ladders terminating resistor.  
Figure 20 shows the location of the series switches. During any  
testing of the resistor ladder or RFEEDBACK (such as incoming  
inspection), VDD must be present to turn on these series  
switches.  
V
REF is the externally applied reference voltage source.  
V
DD  
R2  
C1  
V
R
DD  
FB  
I
1
OUT  
V
REF  
V
REF  
A1  
AD5441  
R1  
GND  
V
= 0 TO –V  
REF  
OUT  
LD CLK SRI  
AGND  
μCONTROLLER  
NOTES  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 21. Unipolar (2-Quadrant) Operation  
Rev. PrA | Page 11 of 16  
AD5441  
Preliminary Technical Data  
BIPOLAR 4-QUADRANT MULTIPLYING  
INTERFACE LOGIC INFORMATION  
Figure 22 shows a suggested circuit to achieve 4-quadrant  
multiplying operation. The summing amplifier multiplies VOUT1  
by 2 and offsets the output with the reference voltage so that a  
midscale digital input code of 2048 places VOUT2 at 0 V. The  
negative full-scale voltage will be VREF when the DAC is loaded  
with all zeros. The positive full-scale output will be −(VREF − 1  
LSB) when the DAC is loaded with all ones. Therefore, the  
digital coding is offset binary. The voltage output transfer  
equation for various input data and reference (or signal) values  
follows  
The AD5441 has been designed for ease of operation. The  
timing diagram in Figure 5 illustrates the input register loading  
sequence. Note that the most significant bit (MSB) is loaded  
first. Once the 12-bit input register is full, the data is transferred  
LD  
to the DAC register by taking  
momentarily low.  
DIGITAL SECTION  
LD  
The AD5441s digital inputs, SRI,  
, and CLK, are TTL  
compatible. The input voltage levels affect the amount of  
current drawn from the supply; peak supply current occurs as  
the digital input (VIN) passes through the transition region. See  
Figure 8 for the supply current vs. logic input voltage graph.  
Maintaining the digital input voltage levels as close as possible  
to the supplies, VDD and GND, minimizes supply current  
consumption. The AD5441s digital inputs have been designed  
with ESD resistance incorporated through careful layout and  
the inclusion of input protection circuitry. Figure 23 shows the  
input protection diodes and series resistor; this input structure  
is duplicated on each digital input. High voltage static charges  
applied to the inputs are shunted to the supply and ground rails  
through forward-biased diodes. These protection diodes were  
designed to clamp the inputs to well below dangerous levels  
during static discharge conditions.  
V
OUT2 = (D/2048 − 1) − VREF  
where:  
D is the decimal data loaded into the DAC register.  
V
REF is the externally applied reference voltage source.  
R3  
20k  
V
DD  
DD  
R5  
20kΩ  
R2  
C1  
V
R
FB  
R4  
10kΩ  
I
1
OUT  
V
±10V  
REF  
V
REF  
A1  
AD5441  
R1  
GND  
A2  
V
=
–V  
REF  
TO +V  
REF  
OUT  
LD  
CLK SRI  
AGND  
μCONTROLLER  
NOTES  
V
DD  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
ADJUST R1 FOR V = 0V WITH CODE 10000000 LOADED TO DAC.  
OUT  
2. MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS  
R3 AND R4.  
3. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1/A2 IS A HIGH SPEED AMPLIFIER.  
5k  
LD, CLK, SRI  
Figure 22. Bipolar (4-Quadrant) Operation  
GND  
Figure 23. Digital Input Protection  
Rev. PrA | Page 12 of 16  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
AD5441  
1.89  
1.74  
1.59  
3.25  
3.00  
2.75  
0.25  
0.20  
0.15  
0.55  
0.40  
0.30  
5
8
2.25  
2.00  
1.75  
1.95  
1.75  
1.55  
EXPOSEDPAD  
BOTTOM VIEW  
TOP VIEW  
0.60  
0.45  
0.30  
0.15  
0.10  
0.05  
4
1
PIN 1  
2.95  
2.75  
2.55  
INDICATOR  
0.50 BSC  
12° MAX  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
Figure 24. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
(CP-8-1)  
Dimensions are shown in millimeters  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 25. 8-Lead Mini Small Outline Package [MINI_SO]  
(RM-8)  
Dimensions are shown in millimeters  
Rev. PrA | Page 13 of 16  
AD5441  
NOTES  
Preliminary Technical Data  
Rev. PrA | Page 14 of 16  
Preliminary Technical Data  
NOTES  
AD5441  
Rev. PrA | Page 1± of 16  
AD5441  
NOTES  
Preliminary Technical Data  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR06492-0-3/07(PrA)  
Rev. PrA | Page 16 of 16  

相关型号:

AD5441BRMZ

12-Bit Serial Input Multiplying DAC
ADI

AD5441BRMZ-REEL7

12-Bit Serial Input Multiplying DAC
ADI

AD5442ABCPZ-1

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5442ABCPZ-1-RL7

SERIAL INPUT LOADING, 1us SETTLING TIME, 16-BIT DAC, PDSO10, 3 X 3 MM, ROHS COMPLIANT, MO-220WEED, LFCSP-10
ADI

AD5443

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443BRM

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443BRM-REEL7

IC IC,D/A CONVERTER,SINGLE,12-BIT,CMOS,TSSOP,10PIN, Digital to Analog Converter
ADI

AD5443YRM

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRM-REEL

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRM-REEL7

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRMZ

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRMZ-REEL

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI