AD5441BRMZ-REEL7 [ADI]

12-Bit Serial Input Multiplying DAC;
AD5441BRMZ-REEL7
型号: AD5441BRMZ-REEL7
厂家: ADI    ADI
描述:

12-Bit Serial Input Multiplying DAC

光电二极管 转换器
文件: 总17页 (文件大小:420K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit Serial Input  
Multiplying DAC  
AD5441  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
2.5 V to 5.5 V supply operation  
True 12-bit accuracy  
5 V operation @ <1 μA  
AD5441  
V
R
I
DD  
FB  
V
DAC  
REF  
OUT  
Fast 3-wire serial input  
12  
Fast 5 μs settling time  
LD  
DAC REG  
1.9 MHz, 4-quadrant multiply BW  
Upgrade for DAC8043 and DAC8043A  
Standard and rotated pinout  
12  
GND  
CLK  
SRI  
12-BIT SHIFT  
REGISTER  
APPLICATIONS  
Figure 1.  
Ideal for PLC applications in industrial control  
Programmable amplifiers and attenuators  
Digitally controlled calibration and filters  
Motion control systems  
GENERAL DESCRIPTION  
The AD5441 is an improved high accuracy 12-bit multiplying  
digital-to-analog converter (DAC) in space-saving 8-lead  
packages. Featuring serial input, double buffering, and excellent  
analog performance, the AD5441 is ideal for applications where  
PC board space is at a premium. Improved linearity and gain  
error performance permit reduced part counts through the  
elimination of trimming components. Separate input clock and  
load DAC control lines allow full user control of data loading  
and analog output.  
The circuit consists of a 12-bit serial-in/parallel-out shift register, a  
12-bit DAC register, a 12-bit CMOS DAC, and control logic.  
Serial data is clocked into the input register on the rising edge of  
the clock pulse. When the new data-word is clocked in, it is  
LD  
loaded into the DAC register with the  
input pin. Data in the  
DAC register is converted to an output current by the DAC.  
Consuming only 1 μA from a single 5 V power supply, the  
AD5441 is the ideal low power, small size, high performance  
solution to many application problems.  
The AD5441 is specified over the extended industrial (−40°C to  
+125°C) temperature range. It is available in an 8-lead LFCSP  
and an 8-lead MSOP.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2008–2011 Analog Devices, Inc. All rights reserved.  
 
AD5441* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DISCUSSIONS  
View all AD5441 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AD5441: 12-Bit Serial Input Multiplying DAC Data Sheet  
TECHNICAL SUPPORT  
REFERENCE MATERIALS  
Solutions Bulletins & Brochures  
Submit a technical question or find your regional support  
number.  
Digital to Analog Converters ICs Solutions Bulletin  
Multiplying DACs Flexible Building Blocks  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
DESIGN RESOURCES  
AD5441 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD5441  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Terminology.................................................................................... 10  
Parameter Definitions.................................................................... 11  
General Circuit Information..................................................... 11  
Output Impedance ..................................................................... 11  
Applications Information.......................................................... 11  
Unipolar 2-Quadrant Multiplying ........................................... 11  
Bipolar 4-Quadrant Multiplying .............................................. 12  
Interface Logic Information...................................................... 12  
Digital Section ............................................................................ 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Timing Characteristics ................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
3/11—Rev. 0 to Rev. A  
Deleted Figure 2................................................................................ 4  
Added Timing Diagrams Section................................................... 4  
Added New Figure 2, Figure 3, and Figure 4, Renumbered  
Figures Sequentially ......................................................................... 4  
Changes to Figure 5 and Table 6..................................................... 6  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 13  
1/08—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
AD5441  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = 5 V, VREF = 10 V, 40°C < TA < +155°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min Typ Max  
Unit  
Condition  
STATIC PERFORMANCE  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
Gain Temperature Coefficient1  
Output Leakage Current  
N
12  
Bits  
LSB  
LSB  
LSB  
INL  
DNL  
GFSE  
TCGFS  
ILKG  
±±.ꢀ  
±±.ꢀ  
±1  
±ꢀ  
±ꢀ  
All grades monotonic to 12 bits  
Data = FFFH  
ppm/°C IOUT pin measured  
nA  
nA  
Data = ±±±H, IOUT pin measured  
TA = –4±°C, +12ꢀ°C, data = ±±±H, IOUT pin measured  
±2ꢀ  
Zero-Scale Error  
IZSE  
±±.±3 LSB  
±±.1ꢀ LSB  
Data = ±±±H  
TA = −4±°C, +12ꢀ°C, data = ±±±H  
REFERENCE INPUT  
Input Resistance  
Input Capacitance1  
ANALOG OUTPUT  
Output Capacitance1  
RREF  
CREF  
7
1ꢀ  
kΩ  
pF  
Absolute temperature coefficient < ꢀ± ppm/°C  
COUT  
1
4
pF  
pF  
Data = ±±±H  
Data = FFFH  
DIGITAL INPUTS  
Digital Input Low  
Digital Input High  
Input Leakage Current  
Input Capacitance1  
AC CHARACTERISTICS1  
Output Current Settling Time  
VIL  
VIH  
IIL  
±.8  
1
V
V
μA  
pF  
2.4  
VLOGIC = ± V to ꢀ V  
VLOGIC = ± V  
CIL  
4.±  
tS  
Q
μs  
μs  
nVs  
nVs  
To ±±.±1ꢁ of full-scale, external op amp OP42  
To ±±.±1ꢁ of full-scale, 1±± Ω terminated to ground  
Data = ±±±H to FFFH to ±±±H, VREF = ± V, OP42  
Data = ±±±H to FFFH to ±±±H, VREF = ± V, 1±± Ω  
Using external op amp OP42  
±.ꢀ  
1
DAC Glitch  
4±  
Digital Feedthrough  
nV  
Feedthrough (VOUT/VREF  
)
FT  
THD  
en  
1.4  
−8ꢀ  
mV p-p  
dB  
nV/√Hz  
MHz  
VREF = 2± V p-p, data = ±±±H, f = 1± kHz  
VREF = 6 V rms, data = FFFH, f = 1 kHz  
1± Hz to 1±± kHz between RFB and IOUT  
−3 dB, VOUT/VREF, VREF = 1±± mV rms, data = FFFH  
Total Harmonic Distortion  
Output Noise Density  
Multiplying Bandwidth  
SUPPLY CHARACTERISTICS1  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
Power Supply Sensitivity  
17  
BW  
1.9  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
2.ꢀ  
ꢀ.ꢀ  
1±  
ꢀ.ꢀ  
±.±±2  
V
μA  
μW  
ꢁ/ꢁ  
VLOGIC = ± V or VDD  
VLOGIC = ± V or VDD  
ΔVDD = ±ꢀꢁ  
PSS  
1 These parameters are guaranteed by design and not subject to production testing.  
Rev. A | Page 3 of 16  
 
AD5441  
TIMING CHARACTERISTICS  
All input control signals are specified with tR = tF = 2 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2; VDD + 2.5 V  
to 5.5 V, VREF = 10 V; temperature range = −40°C to +125°C; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2. Timing Characteristics  
Parameter 2.5 V  
5.5 V  
Unit  
Conditions/Comments  
Data setup  
Data hold  
Clock width high  
Clock width low  
Load pulse width  
LD DAC high to MSB CLK high  
LSB CLK to LD DAC  
tDS  
tDH  
tCH  
tCL  
tLD  
tLD1  
tASB  
1±  
1ꢀ  
1ꢀ  
2±  
±
1±  
1±  
1±  
±
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
±
±
Timing Diagrams  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SRI  
CLK  
tLD1  
tASB  
LD  
DAC REGISTER LOAD  
Figure 2. Full Data Transmission  
DATA LOADED MSB(D11) FIRST  
Dxx  
SRI  
tDS  
tDH  
tCL  
CLK  
tCH  
Figure 3. Bit Data Transmission  
tLD  
LD  
FS  
ZS  
±1LSB  
ERROR BAND  
V
OUT  
Figure 4. Output Transition  
Table 3. Control Logic Truth Table  
LD  
CLK  
Serial Shift Register Function  
DAC Register Function  
1
H
Shift register data advanced one bit  
Latched  
L
L
Shift register data advanced one bit  
Transparent  
H or L  
No effect  
No effect  
Updated with current shift register contents  
Latched all 12 bits  
L
1
1
equals positive logic transition.  
Rev. A | Page 4 of 16  
 
 
 
 
AD5441  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
THERMAL RESISTANCE  
Rating  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
VDD to GND  
VREF to GND  
−±.3 V, +8 V  
±18 V  
RFB to GND  
Logic Inputs to GND  
IOUT to GND  
IOUT Short Circuit to GND  
Package Power Dissipation  
Maximum Junction Temperature (TJ max)  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, 1± sec)  
±18 V  
Table 5.  
−±.3 V, VDD + ±.3 V  
−±.3 V, VDD + ±.3 V  
ꢀ± mA  
(TJ max − TA)/θJA  
1ꢀ±°C  
−4±°C to +12ꢀ°C  
−6ꢀ°C to +1ꢀ±°C  
3±±°C  
Package Type  
8-Lead MSOP  
8-Lead LFCSP1  
θJA  
142  
7ꢀ  
θJC  
44  
18  
Unit  
°C/W  
°C/W  
1 Exposed pad soldered to the ground plane.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page ꢀ of 16  
 
 
 
AD5441  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
V
DD  
1
2
3
4
8
7
6
5
REF  
PIN 1  
V
1
2
3
INDICATOR  
8
7
6
5
V
DD  
REF  
AD5441  
TOP VIEW  
(Not to Scale)  
R
CLK  
SRI  
LD  
FB  
R
CLK  
SRI  
LD  
FB  
AD5441  
I
OUT  
I
TOP VIEW  
OUT  
GND  
(Not to Scale)  
GND 4  
NOTES  
1. THE EXPOSED PAD SHOULD BE  
CONNECTED TO THE GROUND PLANE.  
Figure 5. 8-Lead LFCSP Pin Configuration  
Figure 6. 8-Lead MSOP Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
VREF  
RFB  
IOUT  
GND  
LD  
DAC Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance vs. code.  
Internal Matching Feedback Resistor. Connect to external op amp output.  
DAC Current Output, full-scale output 1 LSB less than reference input voltage −VREF  
Analog and Digital Ground.  
.
Load Strobe, Level-Sensitive Digital Input. Transfers shift-register data to DAC register while active low.  
See Table 3 for operation.  
6
7
8
SRI  
CLK  
VDD  
EP  
12-Bit Serial Register Input. Data loads directly into the shift register MSB first. Extra leading bits are ignored.  
Clock Input. Positive-edge clocks data into shift register.  
Positive Power Supply Input. Specified range of operation ꢀ V ± 1±ꢁ.  
Exposed Pad. The exposed pad should be connected to the ground plane.  
Rev. A | Page 6 of 16  
 
AD5441  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.5  
0.5  
0.4  
T
V
V
= 25°C  
T = 25°C  
A
A
V
= 10V  
= 10V  
REF  
0.4  
0.3  
REF  
= 3V  
V
= 5V  
DD  
DD  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
Figure 7. INL vs. Code, 3 V  
Figure 10. INL vs. Code, 5 V  
0.5  
0.4  
0.5  
0.4  
T
V
V
= 25°C  
T
V
V
= 25°C  
A
A
= 10V  
= 10V  
REF  
REF  
= 5V  
DD  
= 3V  
DD  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
Figure 8. DNL vs. Code, 3 V  
Figure 11. DNL vs. Code, 5 V  
100  
0.25  
0.20  
0.15  
0.10  
0.05  
0
MAX INL  
75  
50  
25  
0
–0.05  
–0.10  
–0.15  
–0.20  
MIN INL  
T
V
= 25°C  
A
= 5V  
DD  
0
1
2
3
4
5
6
7
8
9
10  
–1.0  
–0.5  
0
0.5  
1.0  
REFERENCE VOLTAGE  
TOTAL UNADJUSTED ERROR (LSB)  
Figure 12. Total Unadjusted Error Histogram  
Figure 9. INL vs. Reference, 5 V  
Rev. A | Page 7 of 16  
 
AD5441  
4
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
T
V
V
= 25°C  
T
= 25°C  
A
A
= 10V  
REF  
= 5V  
DD  
OP42  
2
0
V
V
= 3V  
= 5V  
DD  
–2  
DD  
–4  
–2000  
–20  
–60  
–40  
0
20  
40  
60  
80  
100  
120  
–1000  
0
1000  
2000  
TEMPERATURE (°C)  
OP AMP OFFSET, V (µV)  
OS  
Figure 16. Supply Current vs. Temperature  
Figure 13. Integral Nonlinearity Error vs. External Op Amp  
50  
40  
30  
20  
10  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
F55  
800  
FFF  
10k  
100k  
1M  
10M  
100M  
0
1
2
3
FREQUENCY (Hz)  
FULL-SCALE TEMPERATURE COEFFICIENT (ppm/°C)  
Figure 14. Supply Current vs. Clock Frequency  
Figure 17. Full-Scale Output Temperature Coefficient Histogram  
5.34  
6
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
LDAC  
T
= 25°C  
A
5
5.32  
5.30  
5.28  
5.26  
5.24  
5.22  
5.20  
5.18  
5.16  
5.14  
5.12  
4
3
2
T
V
V
= 25°C  
= 10V  
A
1
REF  
= 5V  
DD  
0
7FF TO 800  
RISING EDGE  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TIME (µs)  
INPUT VOLTAGE (V)  
Figure 15. Supply Current vs. Logic Input Voltage  
Figure 18. Midscale Transitions  
Rev. A | Page 8 of 16  
 
AD5441  
4
–8  
100  
80  
60  
40  
20  
0
ALL BITS  
ON  
T
V
V
= 25°C  
A
= 10V  
REF  
= 5V  
DD  
–20  
–32  
–44  
–56  
–68  
–80  
T
= 25°C  
A
V
V
= 100mV rms  
REF  
= 5V  
DD  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. PSRR vs. Frequency  
Figure 19. Reference Multiplying Bandwidth  
Rev. A | Page 9 of 16  
AD5441  
TERMINOLOGY  
Digital Feedthrough  
Relative Accuracy (INL)  
When the device is not selected, high frequency logic activity  
on the digital inputs of the device may be capacitively coupled  
through the device and produce noise on the IOUT pins. This  
noise is coupled from the outputs of the device onto follow-on  
circuitry. This noise is digital feedthrough.  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for zero and full scale and is normally expressed in  
LSBs or as a percentage of the full-scale reading.  
Multiplying Feedthrough Error  
Differential Nonlinearity (DNL)  
This is the error due to capacitive feedthrough from the DAC  
reference input to the DAC IOUT1 terminal when all 0s are  
loaded to the DAC.  
DNL is the difference between the measured change and the  
ideal 1 LSB change between any two adjacent codes. A specified  
differential nonlinearity of −1 LSB maximum over the operating  
temperature range ensures monotonicity.  
Total Harmonic Distortion (THD)  
The DAC is driven by an ac reference. The ratio of the rms sum  
of the harmonics of the DAC output to the fundamental value is  
the THD. Usually only the lower order harmonics, such as  
second to fifth, are included.  
Gain Error  
Gain error or full-scale error is a measure of the output error  
between an ideal DAC and the actual device output. For these  
DACs, ideal maximum output is VREF − 1 LSB. Gain error of the  
DACs is adjustable to zero with external resistance.  
V22 +V32 +V42 +V52  
THD = 20log  
Zero Scale Error  
Calculated from worst-case RREF  
V1  
Compliance Voltage Range  
The maximum range of (output) terminal voltage for which the  
I
ZSE(LSB) = (RREF × ILKG × 4096)/VREF  
.
device provides the specified characteristics.  
Output Leakage Current  
Output leakage current is the current that flows into the DAC  
ladder switches when they are turned off. For the IOUT terminal,  
it can be measured by loading all 0s to the DAC and measuring  
the IOUT current.  
Output Noise Spectral Density  
Calculation from  
en = √4KTRB  
where:  
Output Capacitance  
K is Boltzmann Constant (J/°K).  
R is resistance (Ω).  
T is the resistor temperature (°K).  
B is the 1 Hz bandwidth.  
Capacitance from IOUT1 to AGND.  
Digital-to-Analog Glitch Impulse  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is normally  
specified as the area of the glitch in either pA-s or nV-s,  
depending on whether the glitch is measured as a current or  
voltage signal.  
Rev. A | Page 1± of 16  
 
AD5441  
PARAMETER DEFINITIONS  
During any testing of the resistor ladder or RFEEDBACK (such as  
incoming inspection), VDD must be present to turn on these  
series switches.  
GENERAL CIRCUIT INFORMATION  
The AD5441 is a 12-bit multiplying DAC with a low  
temperature coefficient. It contains an R-2R resistor ladder  
network, data input and control logic, and two data registers.  
OUTPUT IMPEDANCE  
The output resistance of the AD5441, as in the case of the  
output capacitance, varies with the digital input code. This  
resistance, looking back into the IOUT terminal, may be between  
10 kꢀ (the feedback resistor alone when all digital inputs are  
low) and 7.5 kꢀ (the feedback resistor in parallel with approximate  
30 kꢀ of the R-2R ladder network resistance when any single bit  
logic is high). Static accuracy and dynamic performance are  
affected by these variations.  
The digital circuitry forms an interface in which serial data can  
be loaded under microprocessor control into a 12-bit shift register  
and then transferred, in parallel, to the 12-bit DAC register.  
The analog portion of the AD5441 contains an inverted R-2R  
ladder network consisting of silicon-chrome, highly stable  
(50 ppm/°C), thin-film resistors, and 12 pairs of NMOS current-  
steering switches, see Figure 21. These switches steer binarily  
weighted currents into either IOUT or GND; this yields a constant  
current in each ladder leg, regardless of digital input code. This  
constant current results in a constant input resistance at VREF  
equal to R. The VREF input may be driven by any reference voltage  
or current, ac or dc, that is within the limits stated in the  
Absolute Maximum Ratings.  
APPLICATIONS INFORMATION  
In most applications, linearity depends upon the potential of  
the IOUT and GND pins being at the same voltage potential. The  
DAC is connected to an external precision op amp inverting input.  
The external amplifiers noninverting input should be tied directly  
to ground without the usual bias current compensating resistor (see  
Figure 22 and Figure 24). The selected amplifier should have a low  
input bias current and low drift over temperature. The amplifiers  
input offset voltage should be nulled to less than 200 mV (less than  
10% of 1 LSB). All grounded pins should tie to a single common  
ground point to avoid ground loops. The VDD power supply should  
have a low noise level with adequate bypassing. It is best to operate  
the AD5441 from the analog power supply and grounds.  
10k  
20kΩ  
S1  
10kΩ  
20kΩ  
S2  
10kΩ  
20kΩ  
S3  
V
REF  
20kΩ  
20kΩ  
S12  
*
GND  
I
OUT  
10kΩ  
R
FEEDBACK  
*
BIT 1 (MSB)  
BIT 2  
BIT 3  
BIT 12 (LSB)  
DIGITAL INPUTS  
UNIPOLAR 2-QUADRANT MULTIPLYING  
*THESE SWITCHES PERMANENTLY ON.  
The most straightforward application of the AD5441 is in the  
2-quadrant multiplying configuration shown in Figure 22. If the  
reference input signal is replaced with a fixed dc voltage reference,  
the DAC output provides a proportional dc voltage output  
according to the transfer equation  
NOTES  
1. SWITCHES SHOWN FOR DIGITAL INPUTS HIGH.  
Figure 21. Simplified DAC Circuit  
The 12 output current steering NMOS FET switches are in  
series with each R-2R resistor.  
V
OUT = −D/4096 × VREF  
To further ensure accuracy across the full temperature range,  
MOS switches that are always on were included in series with  
the feedback resistor and the terminating resistor of the R-2R  
ladder. Figure 21 shows the location of the series switches.  
where:  
D is the decimal data loaded into the DAC register.  
V
REF is the externally applied reference voltage source.  
V
DD  
R2  
C1  
A1  
V
R
DD  
FB  
I
1
OUT  
V
V
REF  
REF  
LD  
AD5441  
R1  
GND  
V
= 0 TO –V  
REF  
OUT  
CLK  
SRI  
AGND  
µCONTROLLER  
NOTES  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 22. Unipolar (2-Quadrant) Operation  
Rev. A | Page 11 of 16  
 
 
 
AD5441  
BIPOLAR 4-QUADRANT MULTIPLYING  
DIGITAL SECTION  
Figure 24 shows a suggested circuit to achieve 4-quadrant  
multiplying operation. The summing amplifier multiplies VOUT1  
by 2 and offsets the output with the reference voltage so that a  
midscale digital input code of 2048 places VOUT2 at 0 V. The negative  
full-scale voltage is VREF when the DAC is loaded with all zeros.  
The positive full-scale output is −(VREF − 1 LSB) when the DAC  
is loaded with all ones. Therefore, the digital coding is offset  
binary. The voltage output transfer equation for various input  
data and reference (or signal) values follows  
LD  
, and CLK, are TTL-  
The digital inputs of the AD5441, SRI,  
compatible. The input voltage levels affect the amount of current  
drawn from the supply; peak supply current occurs as the digital  
input (VIN) passes through the transition region. See Figure 15  
for the supply current vs. logic input voltage graph. Maintaining  
the digital input voltage levels as close as possible to the supplies,  
V
DD and GND, minimizes supply current consumption. The  
digital inputs of the AD5441 were designed with ESD resistance  
incorporated through careful layout and the inclusion of input  
protection circuitry. Figure 23 shows the input protection diodes  
and series resistor; this input structure is duplicated on each  
digital input. High voltage static charges applied to the inputs  
are shunted to the supply and ground rails through forward-  
biased diodes. These protection diodes were designed to clamp  
the inputs to well below dangerous levels during static discharge  
conditions.  
V
OUT2 = (D/2048 − 1) − VREF  
where:  
D is the decimal data loaded into the DAC register.  
V
REF is the externally applied reference voltage source.  
INTERFACE LOGIC INFORMATION  
The AD5441 has been designed for ease of operation. The  
timing diagram in Figure 2 illustrates the input register loading  
sequence. Note that the most significant bit (MSB) is loaded  
first. Once the 12-bit input register is full, the data is transferred  
V
DD  
5k  
LD, CLK, SRI  
LD  
to the DAC register by taking  
momentarily low.  
GND  
Figure 23. Digital Input Protection  
R3  
20k  
V
V
DD  
R5  
20kΩ  
R2  
C1  
R
DD  
FB  
R4  
10kΩ  
I
1
OUT  
V
±10V  
REF  
V
A1  
REF  
LD  
AD5441  
R1  
GND  
A2  
V
=
–V  
REF  
TO +V  
REF  
OUT  
CLK  
SRI  
AGND  
µCONTROLLER  
NOTES  
1. R1 AND R2 ARE USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
ADJUST R1 FOR V = 0V WITH CODE 10000000 LOADED TO DAC.  
OUT  
2. MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS  
R3 AND R4.  
3. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1/A2 IS A HIGH SPEED AMPLIFIER.  
Figure 24. Bipolar (4-Quadrant) Operation  
Rev. A | Page 12 of 16  
 
 
 
AD5441  
OUTLINE DIMENSIONS  
0.35  
0.30  
0.25  
3.00  
BSC SQ  
0.65 BSC  
8
5
4
PIN 1 INDEX  
1.74  
1.64  
1.49  
*
EXPOSED  
PAD  
AREA  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
1
PIN 1  
INDICATOR  
(R 0.2)  
TOP VIEW  
2.48  
2.38  
2.23  
0.80 MAX  
0.55 NOM  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.20 REF  
*
FOR PROPER CONNECTION OF THE EXPOSED PAD PLEASE REFER TO  
THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION  
OF THIS DATA SHEET.  
Figure 25. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-3)  
Dimensions are shown in millimeters  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 26. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions are shown in millimeters  
ORDERING GUIDE  
Model1  
ADꢀ441BCPZ-R2  
ADꢀ441BCPZ-REEL7  
ADꢀ441BRMZ  
INL (LSB)  
±±.ꢀ  
±±.ꢀ  
±±.ꢀ  
±±.ꢀ  
Temperature Range  
−4±°C to +12ꢀ°C  
−4±°C to +12ꢀ°C  
−4±°C to +12ꢀ°C  
−4±°C to +12ꢀ°C  
Package Description  
Package Option  
CP-8-3  
CP-8-3  
RM-8  
RM-8  
Branding  
DBD  
DBD  
DBC  
DBC  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead MSOP  
ADꢀ441BRMZ-REEL7  
8-Lead MSOP  
1 Z = RoHS Compliant Part.  
Rev. A | Page 13 of 16  
 
 
AD5441  
NOTES  
Rev. A | Page 14 of 16  
AD5441  
NOTES  
Rev. A | Page 1ꢀ of 16  
AD5441  
NOTES  
©2008–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06492-0-3/11(A)  
Rev. A | Page 16 of 16  

相关型号:

AD5442ABCPZ-1

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5442ABCPZ-1-RL7

SERIAL INPUT LOADING, 1us SETTLING TIME, 16-BIT DAC, PDSO10, 3 X 3 MM, ROHS COMPLIANT, MO-220WEED, LFCSP-10
ADI

AD5443

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443BRM

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443BRM-REEL7

IC IC,D/A CONVERTER,SINGLE,12-BIT,CMOS,TSSOP,10PIN, Digital to Analog Converter
ADI

AD5443YRM

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRM-REEL

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRM-REEL7

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRMZ

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRMZ-REEL

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRMZ-REEL7

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5444

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI