Z8F042ASH020EC [ZILOG]

Z8 Encore XP-R 4K Series High-Performance 8-Bit Microcontrollers; Z8喝采XP -R 4K系列高性能8位微控制器
Z8F042ASH020EC
型号: Z8F042ASH020EC
厂家: ZILOG, INC.    ZILOG, INC.
描述:

Z8 Encore XP-R 4K Series High-Performance 8-Bit Microcontrollers
Z8喝采XP -R 4K系列高性能8位微控制器

微控制器和处理器 外围集成电路 光电二极管 时钟
文件: 总276页 (文件大小:3422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High-Performance 8-Bit Microcontrollers  
Z8 Encore! XP® 4K Series  
Product Specification  
PS022815-0206  
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126-3432  
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.ZiLOG.com  
This publication is subject to replacement by a later edition. To determine whether  
a later edition exists, or to request copies of publications, contact:  
ZiLOG Worldwide Headquarters  
532 Race Street  
San Jose, CA 95126  
Telephone: 408.558.8500  
Fax: 408.558.8300  
www.ZiLOG.com  
Document Disclaimer  
ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other  
products and/or service names mentioned herein may be trademarks of the companies with which  
they are associated.  
©2005 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,  
applications, or technology described is intended to suggest possible uses and may be superseded.  
ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF  
ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS  
DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY  
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR  
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered  
by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of  
Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose Except with the  
express written approval of ZiLOG, use of information, devices, or technology as critical components  
of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this  
document under any intellectual property rights.  
PS022815-0206  
Z8 Encore! XP® 4K Series  
Product Specification  
iii  
Revision History  
Each instance in the following table reflects a change to this document from its  
previous revision. To see more detail, click the appropriate link in the table.  
Revision History of this Document  
Revision  
Level  
Date  
Description  
November 07  
2004  
Minor corrections made throughout document. Major changes include adding Timer  
caution note in the Timer chapter and Flash controller caution note in the Flash  
Memory chapter. In the Ordering chapter, corrected NVDS size typo. Added three  
new CPU instructions. Added 20-pin SOIC package drawing in Packaging chapter.  
Changed WDT oscillator frequency to 10 KHz in the Oscillator Control chapter.  
Clarified NVDS read/write operations in the NVDS Code Interface section.  
December 08  
2004  
Minor corrections to Low-Power Modes, General Purpose I/O, Analog to 31,39,  
Digital Converter, Comparator, Flash Option Bits, Internal Precision  
Oscillator, and Electrical Characteristics Chapters.  
118,119,1  
20,143,14  
5,146,177,  
202,203  
January  
2005  
09  
Added 8-Pin Development Kit and USB Smart Cable Accessory Kit  
ordering information.  
227  
May 2005 10  
Added clarifying information for using the UART Baud Rate Generator as 99,  
a simplified timer. Removed 2.2V in Table 129. Changed VBO to LVD 129,39,50,  
REF  
in Interrupt Controller. Changed PA5 T1OUT to T1OUT and added  
51,56,58,  
clarification of Ports A-C for 8-pin and 20/28 pin devices in Tables 21, 26 59,61,43,  
and 27 in the GPIO. Changed T  
and T  
typical values in Table  
SMR  
46,203,  
POR  
125, and Endurance minimum value in Table 126 in Electrical  
Characteristics. Removed 2.2V reference in Electrical Characteristics  
and Analog-to-Digital Converter chapters. Added clarifying text when  
writing to the Flash Control Register in Flash Memory chapter. Added  
Lead-Free Packaging order information  
204,206,  
121,123,  
126-140,  
222-228  
June 2005 11  
Inserted missing temperature sensor chapter. Updated Figure1 to include 3, 5, 152,  
Transimpedance Amplifier. Added Transimpedance Amplifer to Feature 223, 227  
Description. Removed reference to VBO enable. Updated Table 124  
format. Changed Temperature Sensor column in ordering information  
pages.  
PS022815-0206  
Z8 Encore! XP® 4K Series  
Product Specification  
iv  
Revision History of this Document  
Description  
Revision  
Level  
Date  
October  
2005  
12  
Added references to optional low-power operational amplifier and  
removed references to transimpedance amplifier. Numerous other small 14-15, 17.  
1-6, 8-12,  
corrections throughout the book.  
19, 21-22,  
24-27, 29-  
31, 32-40,  
44, 46, 48,  
57-59, 62,  
67-69, 72-  
73, 75-76,  
78, 81-89,  
99-100,  
102, 104-  
105, 112-  
125, 129-  
140, 142-  
144, 146-  
151, 172-  
177, 182,  
204-223,  
231, 237-  
244  
November 13  
2005  
Reverted back to version 11, removing changes in version 12. Updated 142-154  
Flash Option Bits chapter.  
December 14  
2005  
Restored version 12 changes and rectified elements to incorporate  
version 11 updates.  
8, 84, 87,  
88, 113,  
124, 126,  
148-161,  
216, 218,  
220, 221  
February 15  
2006  
Updated for 8-pin QFN/MLF-S in Table 2, Figure 2, and Packaging 7, 8, 89  
section. Updated UART features.  
PS022815-0206  
Z8 Encore! XP® 4K Series  
Product Specification  
v
Table of Contents  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Part Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
CPU and Peripheral Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
eZ8 CPU Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
General Purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Flash Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Non-Volatile Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Internal Precision Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
10-Bit Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Low-Power Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Low Battery Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Reset Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Available Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PS022815-0206  
Table of Contents  
Z8 Encore! XP® 4K Series  
Product Specification  
vi  
Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Flash Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reset, STOP Mode Recovery and Low Voltage Detection . . . . . . . . . . . . . . . . 20  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Reset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Voltage Brown-Out Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Watch-Dog Timer Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
External Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
External Reset Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
On-Chip Debugger Initiated Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
STOP Mode Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
STOP Mode Recovery Using Watch-Dog Timer Time-Out . . . . . . . . . . . . . 26  
STOP Mode Recovery Using a GPIO Port Pin Transition . . . . . . . . . . . . . . 26  
STOP Mode Recovery Using the External RESET Pin . . . . . . . . . . . . . . . . 27  
Low Voltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Reset Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
HALT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Peripheral-Level Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
General-Purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
GPIO Port Availability By Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
GPIO Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Direct LED Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Shared Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Shared Debug Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Crystal Oscillator Override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5V Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
PS022815-0206  
Table of Contents  
Z8 Encore! XP® 4K Series  
Product Specification  
vii  
External Clock Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
GPIO Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
GPIO Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Port A–D Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Port A–D Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Port A–D Data Direction Sub-Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Port A–D Alternate Function Sub-Registers . . . . . . . . . . . . . . . . . . . . . . . . 42  
Port A–C Input Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Port A–D Output Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
LED Drive Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
LED Drive Level High Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
LED Drive Level Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Interrupt Vector Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Master Interrupt Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Interrupt Vectors and Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Software Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Interrupt Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Interrupt Request 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Interrupt Request 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Interrupt Request 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
IRQ0 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
IRQ1 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
IRQ2 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Interrupt Edge Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Shared Interrupt Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Interrupt Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Timer Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Reading the Timer Count Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Timer Pin Signal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
PS022815-0206  
Table of Contents  
Z8 Encore! XP® 4K Series  
Product Specification  
viii  
Timer 0–1 High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Timer Reload High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . 76  
Timer 0-1 PWM High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . 77  
Timer 0–1 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Watch-Dog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Watch-Dog Timer Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Watch-Dog Timer Time-Out Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Watch-Dog Timer Reload Unlock Sequence . . . . . . . . . . . . . . . . . . . . . . . . 85  
Watch-Dog Timer Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Watch-Dog Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . 86  
Watch-Dog Timer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Watch-Dog Timer Reload Upper, High and Low Byte Registers . . . . . . . . . 87  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Transmitting Data using the Polled Method . . . . . . . . . . . . . . . . . . . . . . . . 91  
Transmitting Data using the Interrupt-Driven Method . . . . . . . . . . . . . . . . . 92  
Receiving Data using the Polled Method . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Receiving Data using the Interrupt-Driven Method . . . . . . . . . . . . . . . . . . . 94  
Clear To Send (CTS) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
MULTIPROCESSOR (9-bit) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
External Driver Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
UART Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
UART Baud Rate Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
UART Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
UART Transmit Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
UART Receive Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
UART Status 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
UART Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
UART Control 0 and Control 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . 103  
UART Address Compare Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
UART Baud Rate High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . 106  
Infrared Encoder/Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
PS022815-0206  
Table of Contents  
Z8 Encore! XP® 4K Series  
Product Specification  
ix  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Transmitting IrDA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Receiving IrDA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Infrared Encoder/Decoder Control Register Definitions . . . . . . . . . . . . . . 112  
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Automatic Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Single-Shot Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Programmable Trigger Point Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Calibration and Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
ADC Compensation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Input Buffer Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Low-Power Operational Amplifier (LPO) . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
ADC Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
ADC Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
ADC Control/Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
ADC Data High Byte Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
ADC Data Low Bits Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
ADC High Threshold Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
ADC Low Threshold Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Comparator Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Temperature Sensor Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Flash Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
PS022815-0206  
Table of Contents  
Z8 Encore! XP® 4K Series  
Product Specification  
x
Flash Operation Timing Using the Flash Frequency Registers . . . . . . . . . 140  
Flash Code Protection Against External Access . . . . . . . . . . . . . . . . . . . . 140  
Flash Code Protection Against Accidental Program and Erasure . . . . . . . 140  
Byte Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Page Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Mass Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Flash Controller Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Flash Controller Behavior in Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . 143  
Flash Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Flash Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Flash Page Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Flash Sector Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Flash Frequency High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . 147  
Flash Option Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Option Bit Configuration By Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Option Bit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Reading the Flash Information Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Flash Option Bit Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . 150  
Trim Bit Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Trim Bit Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Flash Option Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Flash Program Memory Address 0000H . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Flash Program Memory Address 0001H . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Trim Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Trim Bit Address 0000H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Trim Bit Address 0001H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Trim Bit Address 0002H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Trim Bit Address 0003H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Trim Bit Address 0004H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
ZiLOG Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
ADC Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Watchdog Timer Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Serialization Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Randomized Lot Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Temperature Sensor Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Non-Volatile Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
PS022815-0206  
Table of Contents  
Z8 Encore! XP® 4K Series  
Product Specification  
xi  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
NVDS Code Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Power Failure Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Optimizing NVDS Memory Usage for Execution Speed . . . . . . . . . . . . . . 165  
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
OCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
DEBUG Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
OCD Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
OCD Auto-Baud Detector/Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
OCD Serial Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
OCD Unlock Sequence (8-Pin Devices Only) . . . . . . . . . . . . . . . . . . . . . . 171  
Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Runtime Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
On-Chip Debugger Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
On-Chip Debugger Control Register Definitions . . . . . . . . . . . . . . . . . . . . 177  
OCD Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
OCD Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Oscillator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
System Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Clock Failure Detection and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Oscillator Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Crystal Oscillator Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Oscillator Operation with an External RC Network . . . . . . . . . . . . . . . . . . 187  
Internal Precision Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
PS022815-0206  
Table of Contents  
Z8 Encore! XP® 4K Series  
Product Specification  
xii  
eZ8 CPU Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Assembly Language Programming Introduction . . . . . . . . . . . . . . . . . . . . 191  
Assembly Language Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
eZ8 CPU Instruction Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
eZ8 CPU Instruction Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
eZ8 CPU Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Opcode Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
On-Chip Peripheral AC and DC Electrical Characteristics . . . . . . . . . . . . 219  
General Purpose I/O Port Input Data Sample Timing . . . . . . . . . . . . . . . . 224  
General Purpose I/O Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . 226  
On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
UART Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Customer Feedback Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
PS022815-0206  
Table of Contents  
Z8 Encore! XP® 4K Series  
Product Specification  
xiii  
List of Figures  
Figure 1. Z8 Encore! XP® 4K Series Block Diagram . . . . . . . . . . . . . . . . . . . . . 3  
Figure 2. Z8F04xA, Z8F02xA, and Z8F01xA in 8-Pin SOIC, QFN/MLF-S, or PDIP  
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 3. Z8F04xA, Z8F02xA, and Z8F01xA in 20-Pin SOIC, SSOP or PDIP Pack-  
age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4. Z8F04xA, Z8F02xA, and Z8F01xA in 28-Pin SOIC, SSOP or PDIP Pack-  
age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5. Power-On Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 6. Voltage Brown-Out Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 7. GPIO Port Pin Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 8. Interrupt Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 9. Timer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 10. UART Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 11. UART Asynchronous Data Format without Parity . . . . . . . . . . . . . . 91  
Figure 12. UART Asynchronous Data Format with Parity . . . . . . . . . . . . . . . . . 91  
Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format . . . 95  
Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)  
97  
Figure 15. UART Receiver Interrupt Service Routine Flow . . . . . . . . . . . . . . . . 99  
Figure 16. Infrared Data Communication System Block Diagram . . . . . . . . . 109  
Figure 17. Infrared Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 18. IrDA Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 19. Analog-to-Digital Converter Block Diagram . . . . . . . . . . . . . . . . . . 114  
Figure 20. Comparator Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Figure 21. Flash Memory Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 22. Flash Controller Operation Flow Chart . . . . . . . . . . . . . . . . . . . . . . 139  
Figure 23. On-Chip Debugger Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 24. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface  
(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
PS022815-0206  
List of Figures  
Z8 Encore! XP® 4K Series  
Product Specification  
xiv  
Figure 25. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface  
(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 26. OCD Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 27. Recommended 20 MHz Crystal Oscillator Configuration . . . . . . . . 186  
Figure 28. Connecting the On-Chip Oscillator to an External RC Network . . . 188  
Figure 29. Typical RC Oscillator Frequency as a Function of the External Capaci-  
tance with a 45KOhm Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Figure 30. Opcode Map Cell Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Figure 31. First Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Figure 32. Second Opcode Map after 1FH . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Figure 33. Typical Active Mode IDD Versus System Clock Frequency . . . . . . 216  
Figure 34. Port Input Sample Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Figure 35. GPIO Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Figure 36. On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Figure 37. UART Timing With CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Figure 38. UART Timing Without CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Figure 39. 8-Pin Plastic Dual Inline Package (PDIP) . . . . . . . . . . . . . . . . . . . 230  
Figure 40. 8-Pin Small Outline Integrated Circuit Package (SOIC) . . . . . . . . 231  
Figure 41. 8-Pin Quad Flat No-Lead Package (QFN)/ MLF-S . . . . . . . . . . . . 232  
Figure 42. 20-Pin Plastic Dual Inline Package (PDIP) . . . . . . . . . . . . . . . . . . 233  
Figure 43. 20-Pin Small Outline Integrated Circuit Package (SOIC) . . . . . . . . 234  
Figure 44. 20-Pin Small Shrink Outline Package (SSOP) . . . . . . . . . . . . . . . . 235  
Figure 45. 28-Pin Plastic Dual Inline Package (PDIP) . . . . . . . . . . . . . . . . . . 236  
Figure 46. 28-Pin Small Outline Integrated Circuit Package (SOIC) . . . . . . . . 237  
Figure 47. 28-Pin Small Shrink Outline Package (SSOP) . . . . . . . . . . . . . . . . 238  
PS022815-0206  
List of Figures  
Z8 Encore! XP® 4K Series  
Product Specification  
xv  
List of Tables  
Table 1. Z8 Encore! XP® 4K Series Family Part Selection Guide . . . . . . . . . . . . 2  
Table 2. Z8 Encore! XP® 4K Series Package Options. . . . . . . . . . . . . . . . . . . . . 7  
Table 3. Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4. Pin Characteristics (20- and 28-pin Devices). . . . . . . . . . . . . . . . . . . . 11  
Table 5. Pin Characteristics (8-Pin Devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 6. Z8 Encore! XP®4K Series Series Program Memory Maps . . . . . . . . . 14  
Table 7. Z8 Encore! XP®4K Series Flash Memory Information Area Map . . . . 15  
Table 8. Register File Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 9. Reset and STOP Mode Recovery Characteristics and Latency. . . . . . 21  
Table 10. Reset Sources and Resulting Reset Type . . . . . . . . . . . . . . . . . . . . . 22  
Table 11. STOP Mode Recovery Sources and Resulting Action . . . . . . . . . . . . 26  
Table 12. Reset Status Register (RSTSTAT). . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 13. Power Control Register 0 (PWRCTL0). . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 14. Port Availability by Device and Package Type. . . . . . . . . . . . . . . . . . 32  
Table 15. Port Alternate Function Mapping (Non 8-Pin Parts). . . . . . . . . . . . . . 36  
Table 16. Port Alternate Function Mapping (8-Pin Parts). . . . . . . . . . . . . . . . . . 39  
Table 17. GPIO Port Registers and Sub-Registers . . . . . . . . . . . . . . . . . . . . . . 40  
Table 18. Port A–D GPIO Address Registers (PxADDR). . . . . . . . . . . . . . . . . . 41  
Table 19. Port A–D Control Registers (PxCTL) . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 20. Port A–D Data Direction Sub-Registers (PxDD) . . . . . . . . . . . . . . . . 42  
Table 21. Port A–D Alternate Function Sub-Registers (PxAF). . . . . . . . . . . . . . 43  
Table 22. Port A–D Output Control Sub-Registers (PxOC) . . . . . . . . . . . . . . . . 43  
Table 23. Port A–D High Drive Enable Sub-Registers (PxHDE) . . . . . . . . . . . . 44  
Table 24. Port A–D STOP Mode Recovery Source Enable Sub-Registers (Px-  
SMRE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 25. Port A–D Pull-Up Enable Sub-Registers (PxPUE). . . . . . . . . . . . . . . 45  
Table 26. Port A–D Alternate Function Set 1 Sub-Registers (PxAFS1). . . . . . . 45  
Table 27. Port A–D Alternate Function Set 2 Sub-Registers (PxAFS2). . . . . . . 46  
PS022815-0206  
List of Tables  
Z8 Encore! XP® 4K Series  
Product Specification  
xvi  
Table 28. Port A–C Input Data Registers (PxIN) . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 29. Port A–D Output Data Register (PxOUT). . . . . . . . . . . . . . . . . . . . . . 47  
Table 30. LED Drive Enable (LEDEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 31. LED Drive Level High Register (LEDLVLH) . . . . . . . . . . . . . . . . . . . . 48  
Table 32. LED Drive Level Low Register (LEDLVLL). . . . . . . . . . . . . . . . . . . . . 48  
Table 33. Trap and Interrupt Vectors in Order of Priority . . . . . . . . . . . . . . . . . . 51  
Table 34. Interrupt Request 0 Register (IRQ0) . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 35. Interrupt Request 1 Register (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 36. Interrupt Request 2 Register (IRQ2) . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 37. IRQ0 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 38. IRQ0 Enable High Bit Register (IRQ0ENH) . . . . . . . . . . . . . . . . . . . . 57  
Table 39. IRQ0 Enable Low Bit Register (IRQ0ENL). . . . . . . . . . . . . . . . . . . . . 57  
Table 40. IRQ1 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 41. IRQ1 Enable High Bit Register (IRQ1ENH) . . . . . . . . . . . . . . . . . . . . 58  
Table 42. IRQ1 Enable Low Bit Register (IRQ1ENL). . . . . . . . . . . . . . . . . . . . . 59  
Table 43. IRQ2 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 44. IRQ2 Enable High Bit Register (IRQ2ENH) . . . . . . . . . . . . . . . . . . . . 59  
Table 45. IRQ2 Enable Low Bit Register (IRQ2ENL). . . . . . . . . . . . . . . . . . . . . 60  
Table 46. Interrupt Edge Select Register (IRQES). . . . . . . . . . . . . . . . . . . . . . . 60  
Table 47. Shared Interrupt Select Register (IRQSS) . . . . . . . . . . . . . . . . . . . . . 61  
Table 48. Interrupt Control Register (IRQCTL) . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 49. Timer 0–1 High Byte Register (TxH) . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Table 50. Timer 0–1 Low Byte Register (TxL) . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Table 51. Timer 0–1 Reload High Byte Register (TxRH) . . . . . . . . . . . . . . . . . . 77  
Table 52. Timer 0–1 Reload Low Byte Register (TxRL). . . . . . . . . . . . . . . . . . . 77  
Table 53. Timer 0–1 PWM High Byte Register (TxPWMH) . . . . . . . . . . . . . . . . 77  
Table 54. Timer 0–1 Control Register 0 (TxCTL0). . . . . . . . . . . . . . . . . . . . . . . 78  
Table 55. Timer 0–1 PWM Low Byte Register (TxPWML). . . . . . . . . . . . . . . . . 78  
Table 56. Timer 0–1 Control Register 1 (TxCTL1). . . . . . . . . . . . . . . . . . . . . . . 79  
Table 57. Watch-Dog Timer Approximate Time-Out Delays . . . . . . . . . . . . . . . 84  
PS022815-0206  
List of Tables  
Z8 Encore! XP® 4K Series  
Product Specification  
xvii  
Table 58. Watch-Dog Timer Control Register (WDTCTL) . . . . . . . . . . . . . . . . . 86  
Table 59. Watch-Dog Timer Reload Upper Byte Register (WDTU) . . . . . . . . . . 87  
Table 60. Watch-Dog Timer Reload High Byte Register (WDTH) . . . . . . . . . . . 87  
Table 61. Watch-Dog Timer Reload Low Byte Register (WDTL). . . . . . . . . . . . 88  
Table 62. UART Transmit Data Register (U0TXD) . . . . . . . . . . . . . . . . . . . . . 100  
Table 63. UART Receive Data Register (U0RXD). . . . . . . . . . . . . . . . . . . . . . 101  
Table 64. UART Status 0 Register (U0STAT0) . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 65. UART Status 1 Register (U0STAT1) . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 66. UART Control 0 Register (U0CTL0). . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 67. UART Control 1 Register (U0CTL1). . . . . . . . . . . . . . . . . . . . . . . . . 104  
Table 68. UART Address Compare Register (U0ADDR). . . . . . . . . . . . . . . . . 106  
Table 69. UART Baud Rate High Byte Register (U0BRH). . . . . . . . . . . . . . . . 106  
Table 70. UART Baud Rate Low Byte Register (U0BRL) . . . . . . . . . . . . . . . . 106  
Table 71. UART Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table 72. ADC Control Register 0 (ADCCTL0) . . . . . . . . . . . . . . . . . . . . . . . . 124  
Table 73. ADC Control/Status Register 1 (ADCCTL1). . . . . . . . . . . . . . . . . . . 126  
Table 74. ADC Data High Byte Register (ADCD_H) . . . . . . . . . . . . . . . . . . . . 127  
Table 75. ADC Data Low Bits Register (ADCD_L). . . . . . . . . . . . . . . . . . . . . . 127  
Table 76. ADC High Threshold High Byte (ADCTHH) . . . . . . . . . . . . . . . . . . . 128  
Table 77. ADC Low Threshold High Byte (ADCTLH). . . . . . . . . . . . . . . . . . . . 128  
Table 78. Comparator Control Register (CMP0) . . . . . . . . . . . . . . . . . . . . . . . 131  
Table 79. Z8 Encore! XP“ 4K Series Flash Memory Configurations . . . . . . . . 136  
Table 80. Flash Code Protection Using the Flash Option Bits . . . . . . . . . . . . . 141  
Table 81. Flash Control Register (FCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Table 82. Flash Status Register (FSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Table 83. Flash Page Select Register (FPS) . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Table 84. Flash Sector Protect Register (FPROT). . . . . . . . . . . . . . . . . . . . . . 146  
Table 85. Flash Frequency High Byte Register (FFREQH) . . . . . . . . . . . . . . . 147  
Table 86. Flash Frequency Low Byte Register (FFREQL). . . . . . . . . . . . . . . . 147  
Table 87. Trim Bit Address Register (TRMADR) . . . . . . . . . . . . . . . . . . . . . . . 150  
PS022815-0206  
List of Tables  
Z8 Encore! XP® 4K Series  
Product Specification  
xviii  
Table 88. Trim Bit Data Register (TRMDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Table 89. Flash Option Bits at Program Memory Address 0000H . . . . . . . . . . 151  
Table 90. Flash Options Bits at Program Memory Address 0001H . . . . . . . . . 152  
Table 91. Trim Options Bits at Address 0000H . . . . . . . . . . . . . . . . . . . . . . . . 153  
Table 92. Trim Option Bits at 0001H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Table 93. Trim Option Bits at 0002H (TIPO) . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Table 94. Trim Option Bits at Address 0003H (TLVD) . . . . . . . . . . . . . . . . . . . 154  
Table 95. Trim Option Bits at 0004H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Table 96. ADC Calibration Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Table 97. ADC Calibration Data Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Table 98. Watchdog Calibration High Byte at 007EH (WDTCALH) . . . . . . . . . 158  
Table 99. Watchdog Calibration Low Byte at 007FH (WDTCALL). . . . . . . . . . 158  
Table 100. Serial Number at 001C - 001F (S_NUM) . . . . . . . . . . . . . . . . . . . . 159  
Table 101. Serialization Data Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Table 102. Lot Identification Number (RAND_LOT). . . . . . . . . . . . . . . . . . . . . 159  
Table 103. Randomized Lot ID Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Table 104. Temperature Sensor Calibration High Byte at 003A (TSCALH). . . 162  
Table 105. Temperature Sensor Calibration Low Byte at 003B (TSCALL) . . . 162  
Table 106. Write Status Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Table 107. NVDS Read Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Table 108. OCD Baud-Rate Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Table 109. OCD Control Register (OCDCTL) . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Table 110. OCD Status Register (OCDSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Table 111. Oscillator Configuration and Selection . . . . . . . . . . . . . . . . . . . . . . 181  
Table 112. Oscillator Control Register (OSCCTL) . . . . . . . . . . . . . . . . . . . . . . 183  
Table 113. Recommended Crystal Oscillator Specifications. . . . . . . . . . . . . . 186  
Table 114. Transconductance Values for Low, Medium, and High Gain Operating  
Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Table 115. Assembly Language Syntax Example 1. . . . . . . . . . . . . . . . . . . . . 192  
Table 116. Assembly Language Syntax Example 2. . . . . . . . . . . . . . . . . . . . . 192  
Table 117. Notational Shorthand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
PS022815-0206  
List of Tables  
Z8 Encore! XP® 4K Series  
Product Specification  
xix  
Table 118. Additional Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Table 119. Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 120. Bit Manipulation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 121. Block Transfer Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 122. CPU Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 123. Logical Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 124. Load Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 125. Program Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Table 126. Rotate and Shift Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Table 127. eZ8 CPU Instruction Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Table 128. Opcode Map Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Table 129. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Table 130. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Table 131. Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Table 132. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Table 133. Internal Precision Oscillator Electrical Characteristics . . . . . . . . . . 218  
Table 134. Power-On Reset and Voltage Brown-Out Electrical Characteristics and  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Table 135. Flash Memory Electrical Characteristics and Timing . . . . . . . . . . . 220  
Table 136. Watch-Dog Timer Electrical Characteristics and Timing . . . . . . . . 220  
Table 137. Analog-to-Digital Converter Electrical Characteristics and Timing. 221  
Table 138. Non Volatile Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Table 139. Low Power Operational Amplifer Electrical Characteristics . . . . . . 223  
Table 140. Comparator Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 223  
Table 141. Temperature Sensor Electrical Characteristics . . . . . . . . . . . . . . . 224  
Table 142. GPIO Port Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Table 143. GPIO Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Table 144. On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Table 145. UART Timing With CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Table 146. UART Timing Without CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
PS022815-0206  
List of Tables  
Z8 Encore! XP® 4K Series  
Product Specification  
1
Overview  
The Z8 Encore!® MCU family of products are the first in a line of ZiLOG® microcontrol-  
ler products based upon the 8-bit eZ8 CPU. The Z8 Encore! XP® 4K Series products  
expand upon ZiLOG’s extensive line of 8-bit microcontrollers. The Flash in-circuit pro-  
gramming capability allows for faster development time and program changes in the field.  
The new eZ8 CPU is upward compatible with existing Z8® instructions. The rich periph-  
eral set of the Z8 Encore! XP® 4K Series makes it suitable for a variety of applications  
including motor control, security systems, home appliances, personal electronic devices,  
and sensors.  
Features  
20 MHz eZ8 CPU  
1KB, 2KB or 4KB Flash memory with in-circuit programming capability  
256B, 512B or 1KB register RAM  
16B to 128B non-volatile data storage (NVDS)  
Up to 20 vectored interrupts  
6 to 25 I/O pins depending upon package  
Internal precision oscillator  
External crystal oscillator  
Full-duplex UART  
The UART baud rate generator (BRG) can be configured and used as a basic 16-bit timer  
Infrared Data Association (IrDA)-compliant infrared encoder/decoders, integrated with  
UART  
Two enhanced 16-bit timers with capture, compare, and PWM capability  
Watch-Dog Timer (WDT) with dedicated internal RC oscillator  
On-chip debugger  
Optional 8-channel, 10-bit analog-to-digital converter (ADC)  
Optional On-chip temperature sensor  
On-chip analog comparator  
Optional on-chip low-power operational amplifier (LPO)  
Voltage brown-out protection (VBO)  
PS022815-0206  
Overview  
Z8 Encore! XP® 4K Series  
Product Specification  
2
Programmable low battery detection (LVD) (8-pin devices only)  
Bandgap generated precision voltage references available for the ADC, comparator, VBO,  
and LVD.  
Power-on reset (POR)  
2.7 V to 3.6 V operating voltage  
Up to thirteen 5V-tolerant input pins  
8-, 20- and 28-pin packages  
0° to +70°C and -40° to +105°C for operating temperature ranges  
Part Selection Guide  
Table 1 identifies the basic features and package styles available for each device within the  
Z8 Encore! XP® 4K Series product line.  
®
Table 1. Z8 Encore! XP 4K Series Family Part Selection Guide  
Part  
Number  
Flash  
(KB)  
RAM EEPROM  
Advanced  
I/O Comparator Analog*  
ADC  
Inputs  
(B)  
1024  
1024  
512  
(B)  
128  
128  
64  
Packages  
Z8F042A  
Z8F041A  
Z8F022A  
Z8F021A  
Z8F012A  
Z8F011A  
4
4
2
2
1
1
6–23  
6–25  
6–23  
6–25  
6–23  
6–25  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
4–8  
0
8-, 20- and 28-pins  
8-, 20- and 28-pins  
8-, 20- and 28-pins  
8-, 20- and 28-pins  
8-, 20- and 28-pins  
8-, 20- and 28-pins  
Yes  
No  
4–8  
0
512  
64  
256  
16  
Yes  
No  
4–8  
0
256  
16  
Note: * Advanced Analog includes ADC, temperature sensor, and low-power operational amplifer.  
Block Diagram  
Figure 1 illustrates the block diagram of the architecture of the Z8 Encore! XP® 4K Series  
devices.  
PS022815-0206  
Overview  
Z8 Encore! XP® 4K Series  
Product Specification  
3
System  
Clock  
Oscillator  
Control  
XTAL/RC  
Oscillator  
Internal  
Precision  
Oscillator  
Low Power  
RC Oscillator  
On-Chip  
Debugger  
POR/VBO  
eZ8  
CPU  
& Reset  
Interrupt  
Controller  
WDT  
Controller  
Memory Busses  
Register Bus  
NVDS  
Controller  
Flash  
Controller  
RAM  
Controller  
ADC and  
Timers  
UART  
Comparator  
LPO  
Temperature  
Sensor  
IrDA  
Flash  
Memory  
RAM  
GPIO  
®
Figure 1. Z8 Encore! XP 4K Series Block Diagram  
PS022815-0206  
Overview  
Z8 Encore! XP® 4K Series  
Product Specification  
4
CPU and Peripheral Overview  
eZ8 CPU Features  
The eZ8 CPU, ZiLOG®’s latest 8-bit Central Processing Unit (CPU), meets the continuing  
demand for faster and more code-efficient microcontrollers. The eZ8 CPU executes a  
superset of the original Z8® instruction set. The eZ8 CPU features include:  
Direct register-to-register architecture allows each register to function as an  
accumulator, improving execution time and decreasing the required program memory  
Software stack allows much greater depth in subroutine calls and interrupts than  
hardware stacks  
Compatible with existing Z8® code  
Expanded internal Register File allows access of up to 4KB  
New instructions improve execution efficiency for code developed using higher-level  
programming languages, including C  
Pipelined instruction fetch and execution  
New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC,  
LDCI, LEA, MULT, and SRL  
New instructions support 12-bit linear addressing of the Register File  
Up to 10 MIPS operation  
C-Compiler friendly  
2 to 9 clock cycles per instruction  
For more information regarding the eZ8 CPU, refer to the eZ8 CPU User Manual avail-  
able for download at www.zilog.com.  
General Purpose I/O  
The Z8 Encore! XP® 4K Series features 6 to 25 port pins (Ports A–D) for general purpose  
I/O (GPIO). The number of GPIO pins available is a function of package. Each pin is indi-  
vidually programmable.  
Flash Controller  
The Flash Controller programs and erases Flash memory. The Flash Controller supports  
several protection mechanisms against accidental program and erasure.  
PS022815-0206  
Overview  
Z8 Encore! XP® 4K Series  
Product Specification  
5
Non-Volatile Data Storage  
The non-volatile data storage (NVDS) uses a hybrid hardware/software scheme to imple-  
ment a byte programmable data memory and is capable of over 100,000 write cycles.  
Internal Precision Oscillator  
The internal precision oscillator (IPO) is a trimmable clock source that requires no exter-  
nal components.  
Crystal Oscillator  
The crystal oscillator circuit provides highly accurate clock frequencies with the use of an  
external crystal, ceramic resonator or RC network.  
10-Bit Analog-to-Digital Converter  
The optional analog-to-digital converter (ADC) converts an analog input signal to a 10-bit  
binary number. The ADC accepts inputs from eight different analog input pins in both sin-  
gle-ended and differential modes. The ADC also features a unity gain buffer when high  
input impedance is required.  
Low-Power Operational Amplifier  
The optional low-power operational amplifier (LPO) is a general-purpose amplifier prima-  
rily targeted for current sense applications. The LPO output may be routed internally to the  
ADC or externally to a pin.  
Analog Comparator  
The analog comparator compares the signal at an input pin with either an internal pro-  
grammable voltage reference or a second input pin. The comparator output can be used to  
drive either an output pin or to generate an interrupt.  
Temperature Sensor  
The optional Temperature Sensor produces an analog output proportional to the device  
temperature. This signal can be sent to either the ADC or the analog comparator.  
PS022815-0206  
Overview  
Z8 Encore! XP® 4K Series  
Product Specification  
6
Low Battery Detector  
The low battery detector (LVD) is able to generate an interrupt when the supply voltage  
drops below a user-programmable level. The LVD is available on 8-pin devices only.  
UART  
The UART is full-duplex and capable of handling asynchronous data transfers. The UART  
supports 8- and 9-bit data modes and selectable parity. The UART also supports multi-  
drop address processing in hardware. The UART baud rate generator (BRG) can be config-  
ured and used as a basic 16-bit timer.  
Timers  
Two enhanced 16-bit reloadable timers can be used for timing/counting events or for  
motor control operations. These timers provide a 16-bit programmable reload counter and  
operate in One-Shot, Continuous, Gated, Capture, Capture Restart, Compare, Capture and  
Compare, PWM Single Output and PWM Dual Output modes.  
Interrupt Controller  
The Z8 Encore! XP® 4K Series products support up to 20 interrupts. These interrupts con-  
sist of 8 internal peripheral interrupts and 12 general-purpose I/O pin interrupt sources.  
The interrupts have 3 levels of programmable interrupt priority.  
Reset Controller  
The Z8 Encore! XP® 4K Series products can be reset using the RESET pin, power-on  
reset, Watch-Dog Timer (WDT) time-out, STOP mode exit, or voltage brown-out (VBO)  
warning signal. The RESET pin is bi-directional, meaning it functions as reset source as  
well as a reset indicator.  
On-Chip Debugger  
The Z8 Encore! XP® 4K Series products feature an integrated on-chip debugger (OCD).  
The OCD provides a rich set of debugging capabilities, such as reading and writing regis-  
ters, programming Flash memory, setting breakpoints and executing code. A single-pin  
interface provides communication to the OCD.  
PS022815-0206  
Overview  
Z8 Encore! XP® 4K Series  
Product Specification  
7
Pin Description  
Overview  
The Z8 Encore! XP® 4K Series products are available in a variety of packages styles and  
pin configurations. This chapter describes the signals and available pin configurations for  
each of the package styles. For information regarding the physical package specifications,  
refer to the chapter Packaging on page 230.  
Available Packages  
Table 2 identifies the package styles that are available for each device in the Z8 Encore!  
XP® 4K Series product line.  
®
Table 2. Z8 Encore! XP 4K Series Package Options  
8-pin 8-pin 20-pin 20-pin 20-pin 28-pin 28-pin 28-pin 8-pin QFN/  
Part Number ADC PDIP SOIC PDIP SOIC SSOP PDIP  
SOIC SSOP  
MLF-S  
Z8F042A  
Z8F041A  
Z8F022A  
Z8F021A  
Z8F012A  
Z8F011A  
Yes  
No  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Yes  
No  
Yes  
No  
Pin Configurations  
Figures 2 through Figures 4 illustrate the pin configurations for all of the packages avail-  
able in the Z8 Encore! XP® 4K Series. Refer to Table 3 for a description of the signals.  
The analog input alternate functions (ANAx) are not available on the Z8F041A, Z8F021A,  
and Z8F011A devices. The analog supply pins (AVDD and AVSS) are also not available on  
these parts, and are replaced by PB6 and PB7.  
At reset, all Port A, B and C pins default to an input state. In addition, any alternate func-  
tionality is not enabled, so the pins function as general purpose input ports until pro-  
grammed otherwise. At powerup, the Port D0 pin defaults to the RESET alternate  
function.  
PS022815-0206  
Pin Description  
Z8 Encore! XP® 4K Series  
Product Specification  
8
The pin configurations listed are preliminary and subject to change based on manufactur-  
ing limitations.  
VSS  
VDD  
PA0/T0IN/T0OUT/XIN//DBG  
1
2
3
4
8
7
6
5
PA5/TXD0/T1OUT/ANA0/CINP/AMPOUT  
PA4/RXD0/ANA1/CINN/AMPINN  
PA3/CTS0/ANA2/COUT/AMPINP/T1IN  
PA1/T0OUT/XOUT/ANA3/VREF/CLKIN  
PA2/RESET/DE0/T1OUT  
Figure 2.Z8F04xA, Z8F02xA, and Z8F01xA in 8-Pin SOIC, QFN/MLF-S, or PDIP Package  
PB1/ANA1/AMPINN  
PB2/ANA2/AMPINP  
PB3/CLKIN/ANA3  
VDD  
PB0/ANA0/AMPOUT  
PC3/COUT/LED  
PC2/ANA6/LED  
PC1/ANA5/CINN/LED  
PC0/ANA4/CINP/LED  
DBG  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
2
3
4
PA0/T0IN/T0OUT/XIN  
PA1/T0OUT/XOUT  
VSS  
5
6
7
RESET/PD0  
8
PA7/T1OUT  
PA2/DE0  
9
PA3/CTS0  
PA6/T1IN/T1OUT  
PA5/TXD0  
PA4/RXD0  
10  
Figure 3.Z8F04xA, Z8F02xA, and Z8F01xA in 20-Pin SOIC, SSOP or PDIP Package  
PB2/ANA2/AMPINP  
PB1/ANA1/AMPINN  
PB0/ANA0/AMPOUT  
PC3/COUT/LED  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
PB4/ANA7  
PB5/VREF  
3
PB3/CLKIN/ANA3  
(PB6) AVDD  
PC2/ANA6/LED  
4
PC1/ANA5/CINN/LED  
5
6
PC0/ANA4/CINP/LED  
DBG  
VDD  
PA0/T0IN/T0OUT/XIN  
PA1/T0OUT/XOUT  
VSS  
7
8
RESET/PD0  
PC7/LED  
9
(PB7) AVSS  
PA2/DE0  
10  
11  
12  
13  
14  
PC6/LED  
PA7/T1OUT  
PC5/LED  
PA3/CTS0  
PA4/RXD0  
PC4/LED  
PA5/TXD0  
PA6/T1IN/T1OUT  
Figure 4.Z8F04xA, Z8F02xA, and Z8F01xA in 28-Pin SOIC, SSOP or PDIP Package  
PS022815-0206  
Pin Description  
Z8 Encore! XP® 4K Series  
Product Specification  
9
Signal Descriptions  
Table 3 describes the Z8 Encore! XP® 4K Series signals. Refer to the section Pin Configu-  
rations on page 7 to determine the signals available for the specific package styles.  
Table 3. Signal Descriptions  
Signal Mnemonic  
I/O  
Description  
General-Purpose I/O Ports A–D  
PA[7:0]  
PB[7:0]  
I/O  
I/O  
Port A. These pins are used for general-purpose I/O.  
Port B. These pins are used for general-purpose I/O. PB6 and PB7 are  
available only in those devices without an ADC.  
PC[7:0]  
PD[0]  
I/O  
I/O  
Port C. These pins are used for general-purpose I/O.  
Port D. This pin is used for general-purpose output only.  
Note: PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC,  
they are replaced by AV and AV  
.
DD  
SS  
UART Controllers  
TXD0  
RXD0  
CTS0  
DE  
O
I
Transmit Data. This signal is the transmit output from the UART and IrDA.  
Receive Data. This signal is the receive input for the UART and IrDA.  
Clear To Send. This signal is the flow control input for the UART.  
I
O
Driver Enable. This signal allows automatic control of external RS-485  
drivers. This signal is approximately the inverse of the TXE (Transmit  
Empty) bit in the UART Status 0 register. The DE signal may be used to  
ensure the external RS-485 driver is enabled when data is transmitted by  
the UART.  
Timers  
T0OUT/T1OUT  
T0OUT/T1OUT  
O
O
Timer Output 0–1. These signals are outputs from the timers.  
Timer Complement Output 0–1. These signals are output from the timers  
in PWM Dual Output mode.  
T0IN/T1IN  
I
Timer Input 0–1. These signals are used as the capture, gating and  
counter inputs.  
Comparator  
CINP/CINN  
I
Comparator Inputs. These signals are the positive and negative inputs to  
the comparator.  
COUT  
O
Comparator Output.  
PS022815-0206  
Pin Description  
Z8 Encore! XP® 4K Series  
Product Specification  
10  
Table 3. Signal Descriptions (Continued)  
Signal Mnemonic  
I/O  
Description  
Analog  
ANA[7:0]  
I
Analog Port. These signals are used as inputs to the analog-to-digital  
converter (ADC).  
VREF  
I/O  
Analog-to-digital converter reference voltage input, or buffered output for  
internal reference.  
Low-Power Operational Amplifier (LPO)  
AMPINP/AMPINN  
I
LPO inputs. If enabled, these pins drive the positive and negative amplifier  
inputs respectively.  
AMPOUT  
O
LPO output. If enabled, this pin is driven by the on-chip LPO.  
Oscillators  
XIN  
I
External Crystal Input. This is the input pin to the crystal oscillator. A  
crystal can be connected between it and the XOUT pin to form the  
oscillator. In addition, this pin is used with external RC networks or external  
clock drivers to provide the system clock.  
XOUT  
O
I
External Crystal Output. This pin is the output of the crystal oscillator. A  
crystal can be connected between it and the XIN pin to form the oscillator.  
Clock Input  
CLKIN  
Clock Input Signal. This pin may be used to input a TTL-level signal to be  
used as the system clock.  
LED Drivers  
LED  
O
Direct LED drive capability. All port C pins have the capability to drive an  
LED without any other external components. These pins have  
programmable drive strengths set by the GPIO block.  
On-Chip Debugger  
DBG  
I/O  
Debug. This signal is the control and data input and output to and from the  
On-Chip Debugger.  
The DBG pin is open-drain and requires an external pull-up resistor to  
ensure proper operation.  
Caution:  
Reset  
I/O  
RESET. Generates a Reset when asserted (driven Low). Also serves as a  
reset indicator; the Z8 Encore! XP forces this pin low when in reset. This  
RESET  
®
pin is open-drain and features an enabled internal pull-up resistor.  
Power Supply  
V
I
Digital Power Supply.  
DD  
PS022815-0206  
Pin Description  
Z8 Encore! XP® 4K Series  
Product Specification  
11  
Table 3. Signal Descriptions (Continued)  
Signal Mnemonic  
I/O  
Description  
AV  
I
I
I
Analog Power Supply.  
Digital Ground.  
Analog Ground.  
DD  
V
SS  
AV  
SS  
Note: The AV and AV signals are available only in 28-pin packages with ADC. They are replaced by  
DD  
SS  
PB6 and PB7 on 28-pin packages without ADC.  
Pin Characteristics  
Table 4 provides detailed information about the characteristics for each pin available on  
the Z8 Encore! XP® 4K Series 20- and 28-pin devices. Data in Table 4 is sorted alphabeti-  
cally by the pin symbol mnemonic.  
Table 5 provides detailed information about the characteristics for each pin available on  
the Z8 Encore! XP® 4K Series 8-pin devices,  
All six I/O pins on the 8-pin packages are 5V-tolerant (unless the pull-up devices are  
enabled). The column in Table 4 below describes 5V-tolerance for the 20 and 28-pin pack-  
ages only.  
Note:  
Table 4. Pin Characteristics (20- and 28-pin Devices)  
Active Low  
or  
Internal Pull- Schmitt  
up Trigger Open Drain  
Symbol  
Reset  
Tristate  
5V  
Mnemonic Direction Direction Active High Output or Pull-down Input  
Output  
Tolerance  
AVDD  
AVSS  
DBG  
N/A  
N/A  
I/O  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Yes  
Yes  
N/A  
N/A  
Yes  
N/A  
N/A  
Yes  
Yes  
N/A  
N/A  
NA  
No  
N/A  
N/A  
I
I
Yes  
PA[7:0]  
I/O  
Programmable  
Pull-up  
Yes,  
Programmable  
PA[7:2]  
unless  
pullups  
enabled  
PB[7:0]  
PC[7:0]  
I/O  
I/O  
I
I
N/A  
N/A  
Yes  
Yes  
Programmable  
Pull-up  
Yes  
Yes  
Yes,  
Programmable  
PB[7:6]  
unless  
pullups  
enabled  
Programmable  
Pull-up  
Yes,  
Programmable  
PC[7:3]  
unless  
pullups  
enabled  
PS022815-0206  
Pin Description  
Z8 Encore! XP® 4K Series  
Product Specification  
12  
Table 4. Pin Characteristics (20- and 28-pin Devices)  
Active Low  
or  
Internal Pull- Schmitt  
up Trigger Open Drain  
Symbol  
Reset  
Tristate  
5V  
Mnemonic Direction Direction Active High Output or Pull-down Input  
Output  
Tolerance  
RESET/  
PD0  
I/O  
I/O  
Low (in  
Yes (PD0 programmable  
Yes  
programmable  
for PD0; always  
on for RESET  
Yes,  
(defaultsto Reset mode) only)  
RESET)  
for PD0;  
always on for  
RESET  
unless  
pullups  
enabled  
VDD  
VSS  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PB6 and PB7 are available only in those devices without ADC.  
Note:  
)
Table 5. Pin Characteristics (8-Pin Devices)  
Active Low  
or  
Internal Pull- Schmitt  
Symbol  
Reset  
Tristate  
up  
Trigger  
Input  
Open Drain  
Output  
5V  
Tolerance  
Mnemonic Direction Direction Active High Output or Pull-down  
PA0/DBG  
I/O  
I (but can  
change  
during  
N/A  
Yes  
Programmable  
Pull-up  
Yes  
Yes,  
Yes,  
Programmable unless  
pull-ups  
reset if  
enabled  
key  
sequence  
detected)  
PA1  
I/O  
I/O  
I/O  
I
N/A  
Yes  
Yes  
Yes  
Programmable  
Pull-up  
Yes  
Yes  
Yes  
Yes,  
Yes,  
Programmable unless  
pull-ups  
enabled  
RESET/  
PA2  
I/O  
(defaults  
to  
Low (in  
Reset  
mode)  
Programmable  
for PA2;  
always on for  
RESET  
programmable  
Yes,  
for PA2; always unless  
on for RESET pull-ups  
enabled  
RESET)  
PA[5:3]  
I
N/A  
Programmable  
Pull-up  
Yes,  
Yes,  
Programmable unless  
pull-ups  
enabled  
VDD  
VSS  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PS022815-0206  
Pin Description  
Z8 Encore! XP® 4K Series  
Product Specification  
13  
Address Space  
Overview  
The eZ8 CPU can access three distinct address spaces:  
The Register File contains addresses for the general-purpose registers and the eZ8 CPU,  
peripheral, and general-purpose I/O port control registers.  
The Program Memory contains addresses for all memory locations having executable  
code and/or data.  
The Data Memory contains addresses for all memory locations that contain data only.  
These three address spaces are covered briefly in the following subsections. For more  
detailed information regarding the eZ8 CPU and its address space, refer to the eZ8 CPU  
User Manual available for download at www.zilog.com.  
Register File  
The Register File address space in the Z8 Encore!® MCU is 4KB (4096 bytes). The Regis-  
ter File is composed of two sections: control registers and general-purpose registers. When  
instructions are executed, registers defined as sources are read, and registers defined as  
destinations are written. The architecture of the eZ8 CPU allows all general-purpose regis-  
ters to function as accumulators, address pointers, index registers, stack areas, or scratch  
pad memory.  
The upper 256 bytes of the 4KB Register File address space are reserved for control of the  
eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at  
addresses from F00Hto FFFH. Some of the addresses within the 256B control register sec-  
tion are reserved (unavailable). Reading from a reserved Register File address returns an  
undefined value. Writing to reserved Register File addresses is not recommended and can  
produce unpredictable results.  
The on-chip RAM always begins at address 000Hin the Register File address space. The  
Z8 Encore! XP® 4K Series devices contain 256B to 1KB of on-chip RAM. Reading from  
Register File addresses outside the available RAM addresses (and not within the control  
register address space) returns an undefined value. Writing to these Register File addresses  
produces no effect.  
PS022815-0206  
Address Space  
Z8 Encore! XP® 4K Series  
Product Specification  
14  
Program Memory  
The eZ8 CPU supports 64KB of Program Memory address space. The Z8 Encore! XP®  
4K Series devices contain 1KB to 4KB of on-chip Flash memory in the Program Memory  
address space, depending on the device. Reading from Program Memory addresses out-  
side the available Flash memory addresses returns FFH. Writing to these unimplemented  
Program Memory addresses produces no effect. Table 6 describes the Program Memory  
Maps for the Z8 Encore! XP® 4K Series products.  
®
Table 6. Z8 Encore! XP 4K Series Series Program Memory Maps  
Program Memory Address (Hex)  
Function  
Z8F042A and Z8F041A Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Reserved  
0006–0007  
0008–0037  
0038-0039  
003A-003D  
Oscillator Fail Trap Vectors  
Program Memory  
003E–0FFF  
Z8F022A and Z8F021A Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Reserved  
0006–0007  
0008–0037  
0038-0039  
003A-003D  
Oscillator Fail Trap Vectors  
Program Memory  
003E–07FF  
Z8F012A and Z8F011A Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
* See Table 33 on page 51 for a list of the interrupt vectors.  
PS022815-0206  
Address Space  
Z8 Encore! XP® 4K Series  
Product Specification  
15  
®
Table 6. Z8 Encore! XP 4K Series Series Program Memory Maps (Continued)  
Program Memory Address (Hex)  
0006–0007  
Function  
Illegal Instruction Trap  
Interrupt Vectors*  
Reserved  
0008–0037  
0038-0039  
003A-003D  
Oscillator Fail Trap Vectors  
Program Memory  
003E–03FF  
* See Table 33 on page 51 for a list of the interrupt vectors.  
Data Memory  
The Z8 Encore! XP® 4K Series does not use the eZ8 CPU’s 64KB Data Memory address  
space.  
Flash Information Area  
Table 7 describes the Z8 Encore! XP® 4K Series Flash Information Area. This 128B  
Information Area is accessed by setting bit 7 of the Flash Page Select Register to 1. When  
access is enabled, the Flash Information Area is mapped into the Program Memory and  
overlays the 128 bytes at addresses FE00Hto FF7FH. When the Information Area access is  
enabled, all reads from these Program Memory addresses return the Information Area data  
rather than the Program Memory data. Access to the Flash Information Area is read-only.  
®
Table 7. Z8 Encore! XP 4K Series Flash Memory Information Area Map  
Program Memory Address (Hex) Function  
FE00–FE3F  
FE40–FE53  
ZiLOG Option Bits/Calibration Data  
Part Number  
20-character ASCII alphanumeric code  
Left justified and filled with FFH  
FE54–FE5F  
FE60–FE7F  
FE80–FFFF  
Reserved  
ZiLOG Calibration Data  
Reserved  
PS022815-0206  
Address Space  
Z8 Encore! XP® 4K Series  
Product Specification  
16  
Register Map  
Table 8 provides the address map for the Register File of the Z8 Encore! XP® 4K Series  
devices. Not all devices and package styles in the Z8 Encore! XP® 4K Series support the  
ADC, or all of the GPIO Ports. Consider registers for unimplemented peripherals as  
Reserved.  
Table 8. Register File Address Map  
Address (Hex) Register Description  
General Purpose RAM  
Mnemonic  
Reset (Hex)  
Page #  
Z8F042A/Z8F041A Devices  
000–3FF  
400–EFF  
General-Purpose Register File RAM  
Reserved  
XX  
XX  
Z8F012A/Z8F021A Devices  
000–1FF  
200–EFF  
General-Purpose Register File RAM  
Reserved  
XX  
XX  
Z8F022A/Z8F011A Devices  
000–0FF  
100–EFF  
General-Purpose Register File RAM  
XX  
XX  
Reserved  
Timer 0  
F00  
Timer 0 High Byte  
T0H  
00  
01  
FF  
FF  
00  
00  
00  
00  
76  
76  
77  
77  
77  
78  
78  
79  
F01  
Timer 0 Low Byte  
T0L  
F02  
Timer 0 Reload High Byte  
Timer 0 Reload Low Byte  
Timer 0 PWM High Byte  
Timer 0 PWM Low Byte  
Timer 0 Control 0  
T0RH  
F03  
T0RL  
F04  
T0PWMH  
T0PWML  
T0CTL0  
T0CTL1  
F05  
F06  
F07  
Timer 0 Control 1  
Timer 1  
F08  
Timer 1 High Byte  
T1H  
00  
01  
FF  
FF  
00  
00  
76  
76  
77  
77  
77  
78  
F09  
Timer 1 Low Byte  
T1L  
F0A  
Timer 1 Reload High Byte  
Timer 1 Reload Low Byte  
Timer 1 PWM High Byte  
Timer 1 PWM Low Byte  
T1RH  
T1RL  
F0B  
F0C  
T1PWMH  
T1PWML  
F0D  
XX=Undefined  
PS022815-0206  
Register Map  
Z8 Encore! XP® 4K Series  
Product Specification  
17  
Table 8. Register File Address Map (Continued)  
Address (Hex) Register Description  
Mnemonic  
T1CTL0  
T1CTL1  
Reset (Hex)  
Page #  
78  
F0E  
Timer 1 Control 0  
Timer 1 Control 1  
Reserved  
00  
00  
XX  
F0F  
76  
F10–F6F  
UART  
F40  
F41  
F42  
F43  
F44  
F45  
F46  
F47  
UART Transmit/Receive Data Registers TXD, RXD  
XX  
00  
00  
00  
00  
00  
FF  
FF  
100  
101  
103  
103  
103  
106  
106  
106  
UART Status 0 Register  
U0STAT0  
U0CTL0  
U0CTL1  
U0STAT1  
U0ADDR  
U0BRH  
UART Control 0 Register  
UART Control 1 Register  
UART Status 1 Register  
UART Address Compare Register  
UART Baud Rate High Byte Register  
UART Baud Rate Low Byte Register  
U0BRL  
Analog-to-Digital Converter (ADC)  
F70  
ADC Control 0  
ADCCTL0  
ADCCTL1  
ADCD_H  
ADCD_L  
ADCTHH  
00  
124  
124  
127  
127  
128  
F71  
ADC Control 1  
80  
F72  
ADC Data High Byte  
ADC Data Low Bits  
ADC High Threshold High Byte  
Reserved  
XX  
XX  
FF  
XX  
00  
F73  
F74  
F75  
F76  
ADC Low Threshold High Byte  
Reserved  
ADCTLH  
128  
31  
F77–F7F  
XX  
Low Power Control  
F80  
F81  
Power Control 0  
PWRCTL0  
80  
Reserved  
XX  
LED Controller  
F82  
F83  
F84  
F85  
LED Drive Enable  
LEDEN  
LEDLVLH  
LEDLVLL  
00  
00  
00  
XX  
47  
48  
48  
LED Drive Level High Byte  
LED Drive Level Low Byte  
Reserved  
Oscillator Control  
F86  
Oscillator Control  
Reserved  
OSCCTL  
A0  
XX  
183  
131  
F87–F8F  
Comparator 0  
F90  
Comparator 0 Control  
CMP0  
14  
XX=Undefined  
PS022815-0206  
Register Map  
Z8 Encore! XP® 4K Series  
Product Specification  
18  
Table 8. Register File Address Map (Continued)  
Address (Hex) Register Description  
F91–FBF Reserved  
Interrupt Controller  
Mnemonic  
Reset (Hex)  
Page #  
XX  
FC0  
Interrupt Request 0  
IRQ0  
00  
00  
00  
00  
00  
00  
00  
00  
00  
XX  
00  
00  
00  
55  
57  
57  
56  
58  
59  
56  
59  
60  
FC1  
IRQ0 Enable High Bit  
IRQ0 Enable Low Bit  
Interrupt Request 1  
IRQ1 Enable High Bit  
IRQ1 Enable Low Bit  
Interrupt Request 2  
IRQ2 Enable High Bit  
IRQ2 Enable Low Bit  
Reserved  
IRQ0ENH  
IRQ0ENL  
IRQ1  
FC2  
FC3  
FC4  
IRQ1ENH  
IRQ1ENL  
IRQ2  
FC5  
FC6  
FC7  
IRQ2ENH  
IRQ2ENL  
FC8  
FC9–FCC  
FCD  
FCE  
FCF  
Interrupt Edge Select  
Shared Interrupt Select  
Interrupt Control  
IRQES  
IRQSS  
IRQCTL  
61  
61  
61  
GPIO Port A  
FD0  
Port A Address  
Port A Control  
PAADDR  
PACTL  
PAIN  
00  
00  
XX  
00  
40  
42  
42  
42  
FD1  
FD2  
Port A Input Data  
Port A Output Data  
FD3  
PAOUT  
GPIO Port B  
FD4  
Port B Address  
Port B Control  
PBADDR  
PBCTL  
PBIN  
00  
00  
XX  
00  
40  
42  
42  
42  
FD5  
FD6  
Port B Input Data  
Port B Output Data  
FD7  
PBOUT  
GPIO Port C  
FD8  
Port C Address  
Port C Control  
PCADDR  
PCCTL  
PCIN  
00  
00  
XX  
00  
40  
42  
42  
42  
FD9  
FDA  
Port C Input Data  
Port C Output Data  
FDB  
PCOUT  
GPIO Port D  
FDC  
Port D Address  
Port D Control  
Reserved  
PDADDR  
PDCTL  
00  
00  
XX  
40  
42  
FDD  
FDE  
XX=Undefined  
PS022815-0206  
Register Map  
Z8 Encore! XP® 4K Series  
Product Specification  
19  
Table 8. Register File Address Map (Continued)  
Address (Hex) Register Description  
Mnemonic  
PDOUT  
Reset (Hex)  
Page #  
FDF  
Port D Output Data  
Reserved  
00  
42  
FE0–FEF  
XX  
Watch-Dog Timer (WDT)  
FF0  
Reset Status (Read-only)  
RSTSTAT  
WDTCTL  
WDTU  
WDTH  
WDTL  
X0  
N/A  
00  
27  
86  
87  
87  
88  
Watch-Dog Timer Control (Write-only)  
Watch-Dog Timer Reload Upper Byte  
Watch-Dog Timer Reload High Byte  
Watch-Dog Timer Reload Low Byte  
Reserved  
FF1  
FF2  
04  
FF3  
00  
FF4–FF5  
XX  
Trim Bit Control  
FF6  
FF7  
Trim Bit Address  
Trim Bit Data  
TRMADR  
TRMDR  
00  
00  
150  
151  
Flash Memory Controller  
FF8  
FF8  
FF9  
Flash Control  
FCTL  
FSTAT  
FPS  
00  
00  
00  
00  
00  
00  
144  
145  
146  
146  
147  
147  
Flash Status  
Flash Page Select  
Flash Sector Protect  
FPROT  
FFA  
FFB  
Flash Programming Frequency High Byte FFREQH  
Flash Programming Frequency Low Byte FFREQL  
eZ8 CPU  
FFC  
Flags  
XX  
XX  
XX  
XX  
Refer to the  
eZ8 CPU User  
Manual  
FFD  
Register Pointer  
Stack Pointer High Byte  
Stack Pointer Low Byte  
RP  
FFE  
SPH  
SPL  
FFF  
XX=Undefined  
PS022815-0206  
Register Map  
Z8 Encore! XP® 4K Series  
Product Specification  
20  
Reset, STOP Mode Recovery and Low  
Voltage Detection  
Overview  
The Reset Controller within the Z8 Encore! XP® 4K Series controls Reset and STOP  
Mode Recovery operation and provides indication of low supply voltage conditions. In  
typical operation, the following events cause a Reset:  
Power-on reset (POR)  
Voltage brown-out (VBO)  
Watch-Dog Timer time-out (when configured by the WDT_RES Flash Option Bit to  
initiate a reset)  
External RESET pin assertion (when the alternate RESET function is enabled by the  
GPIO register)  
On-chip debugger initiated Reset (OCDCTL[0] set to 1)  
When the device is in STOP mode, a STOP Mode Recovery is initiated by either of the  
following:  
Watch-Dog Timer time-out  
GPIO Port input pin transition on an enabled STOP Mode Recovery source  
The low voltage detection circuitry on the device (available on the 8-pin product versions  
only) performs the following functions:  
Generates the VBO reset when the supply voltage drops below a minimum safe level  
Generates an interrupt when the supply voltage drops below a user-defined level (8-pin de-  
vice only)  
Reset Types  
The Z8 Encore! XP® 4K Series provides several different types of Reset operation. STOP  
Mode Recovery is considered a form of Reset. Table 9 lists the types of Reset and their  
operating characteristics. The System Reset is longer if the external crystal oscillator is  
enabled by the Flash option bits, allowing additional time for oscillator start-up.  
PS022815-0206  
Reset, STOP Mode Recovery and Low Voltage Detection  
Z8 Encore! XP® 4K Series  
Product Specification  
21  
Table 9. Reset and STOP Mode Recovery Characteristics and Latency  
Reset Characteristics and Latency  
eZ8  
Reset Type  
Control Registers  
CPU Reset Latency (Delay)  
System Reset  
Reset (as applicable)  
Reset 66 Internal Precision Oscillator Cycles  
Reset 5000 Internal Precision Oscillator Cycles  
System Reset with Crystal Reset (as applicable)  
Oscillator Enabled  
STOP Mode Recovery  
Unaffected, except  
WDT_CTL and  
Reset 66 Internal Precision Oscillator Cycles  
+ IPO startup time  
OSC_CTL registers  
STOP Mode Recovery with Unaffected, except  
Crystal Oscillator Enabled WDT_CTL and  
OSC_CTL registers  
Reset 5000 Internal Precision Oscillator Cycles  
During a System Reset or STOP Mode Recovery, the Internal Precision Oscillator requires  
4 µs to start up. Then the Z8 Encore! XP® 4K Series device is held in Reset for 66 cycles  
of the Internal Precision Oscillator. If the crystal oscillator is enabled in the Flash option  
bits, this reset period is increased to 5000 IPO cycles. When a reset occurs because of a  
low voltage condition or power on reset, this delay is measured from the time that the sup-  
ply voltage first exceeds the POR level (discussed later in this chapter). If the external pin  
reset remains asserted at the end of the reset period, the device remains in reset until the  
pin is deasserted.  
At the beginning of Reset, all GPIO pins are configured as inputs with pull-up resistor dis-  
abled, except PD0 (or PA2 on 8-pin devices) which is shared with the reset pin. On reset,  
the Port D0 pin is configured as a bidirectional open-drain reset. The pin is internally  
driven low during port reset, after which the user code may reconfigure this pin as a gen-  
eral purpose output.  
During Reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal  
oscillator and Watch-Dog Timer oscillator continue to run.  
Upon Reset, control registers within the Register File that have a defined Reset value are  
loaded with their reset values. Other control registers (including the Stack Pointer, Regis-  
ter Pointer, and Flags) and general-purpose RAM are undefined following Reset. The eZ8  
CPU fetches the Reset vector at Program Memory addresses 0002Hand 0003Hand loads  
that value into the Program Counter. Program execution begins at the Reset vector  
address.  
Because the control registers are re-initialized by a system reset, the system clock after  
reset is always the IPO. User software must reconfigure the oscillator control block, such  
that the correct system clock source is enabled and selected.  
PS022815-0206  
Reset, STOP Mode Recovery and Low Voltage Detection  
Z8 Encore! XP® 4K Series  
Product Specification  
22  
Reset Sources  
Table 10 lists the possible sources of a system reset.  
Table 10. Reset Sources and Resulting Reset Type  
Operating Mode  
Reset Source  
Special Conditions  
NORMAL or HALT  
modes  
Power-On Reset / Voltage Brown- Reset delay begins after supply voltage  
Out  
exceeds POR level  
None  
Watch-Dog Timer time-out  
when configured for Reset  
RESET pin assertion  
All reset pulses less than three system clocks  
in width are ignored.  
On-Chip Debugger initiated Reset System Reset, except the On-Chip Debugger  
(OCDCTL[0] set to 1) is unaffected by the reset  
STOP mode  
Power-On Reset / Voltage Brown- Reset delay begins after supply voltage  
Out  
exceeds POR level  
RESET pin assertion  
All reset pulses less than the specified analog  
delay are ignored. See Table 134 on page 219  
DBG pin driven Low  
None  
Power-On Reset  
Z8 Encore! XP® 4K Series devices contain an internal power-on reset (POR) circuit. The  
POR circuit monitors the supply voltage and holds the device in the Reset state until the  
supply voltage reaches a safe operating level. After the supply voltage exceeds the POR  
voltage threshold (VPOR), the device is held in the Reset state until the POR Counter has  
timed out. If the crystal oscillator is enabled by the option bits, this timeout is longer.  
After the Z8 Encore! XP® 4K Series device exits the Power-On Reset state, the eZ8 CPU  
fetches the Reset vector. Following Power-On Reset, the PORstatus bit in the Watch-Dog  
Timer Control (WDTCTL) register is set to 1.  
Figure 5 illustrates Power-On Reset operation. Refer to the Electrical Characteristics on  
page 212 for the POR threshold voltage (VPOR).  
PS022815-0206  
Reset, STOP Mode Recovery and Low Voltage Detection  
Z8 Encore! XP® 4K Series  
Product Specification  
23  
VCC = 3.3V  
VPOR  
VVBO  
Program  
Execution  
VCC = 0.0V  
Internal Precision  
Oscillator  
Crystal  
Oscillator  
Oscillator  
Start-up  
Internal RESET  
signal  
POR  
counter delay  
optional XTAL  
counter delay  
Note: Not to Scale  
Figure 5.Power-On Reset Operation  
Voltage Brown-Out Reset  
The devices in the Z8 Encore! XP® 4K Series provide low voltage brown-out (VBO) pro-  
tection. The VBO circuit senses when the supply voltage drops to an unsafe level (below  
the VBO threshold voltage) and forces the device into the Reset state. While the supply  
voltage remains below the Power-On Reset voltage threshold (VPOR), the VBO block  
holds the device in the Reset.  
After the supply voltage again exceeds the Power-On Reset voltage threshold, the device  
progresses through a full System Reset sequence, as described in the Power-On Reset sec-  
tion. Following Power-On Reset, the POR status bit in the Reset Status (RSTSTAT) regis-  
ter is set to 1. Figure 6 illustrates Voltage Brown-Out operation. Refer to the chapter  
Electrical Characteristics on page 212 for the VBO and POR threshold voltages (VVBO  
and VPOR).  
The Voltage Brown-Out circuit can be either enabled or disabled during STOP mode.  
Operation during STOP mode is set by the VBO_AO Flash Option Bit. Refer to the Flash  
Option Bits chapter for information about configuring VBO_AO.  
PS022815-0206  
Reset, STOP Mode Recovery and Low Voltage Detection  
Z8 Encore! XP® 4K Series  
Product Specification  
24  
VCC = 3.3V  
VCC = 3.3V  
VPOR  
VVBO  
Program  
Voltage  
Program  
Execution  
Brownout  
Execution  
System Clock  
Internal RESET  
signal  
POR  
counter delay  
Note: Not to Scale  
Figure 6.Voltage Brown-Out Reset Operation  
The POR level is greater than the VBO level by the specified hysteresis value. This  
ensures that the device undergoes a Power-On Reset after recovering from a VBO condi-  
tion.  
Watch-Dog Timer Reset  
If the device is in NORMAL or STOP mode, the Watch-Dog Timer can initiate a System  
Reset at time-out if the WDT_RES Flash Option Bit is programmed to 1. This is the  
unprogrammed state of the WDT_RES Flash Option Bit. If the bit is programmed to 0, it  
configures the Watch-Dog Timer to cause an interrupt, not a System Reset, at time-out.  
The WDT bit in the Reset Status (RSTSTAT) register is set to signify that the reset was  
initiated by the Watch-Dog Timer.  
External Reset Input  
The RESET pin has a Schmitt-triggered input and an internal pull-up resistor. Once the  
RESET pin is asserted for a minimum of four system clock cycles, the device progresses  
through the System Reset sequence. Because of the possible asynchronicity of the system  
clock and reset signals, the required reset duration may be as short as three clock periods  
PS022815-0206  
Reset, STOP Mode Recovery and Low Voltage Detection  
Z8 Encore! XP® 4K Series  
Product Specification  
25  
and as long as four. A reset pulse three clock cycles in duration might trigger a reset; a  
pulse four cycles in duration always triggers a reset.  
While the RESET input pin is asserted Low, the Z8 Encore! XP® 4K Series devices  
remain in the Reset state. If the RESET pin is held Low beyond the System Reset time-  
out, the device exits the Reset state on the system clock rising edge following RESET pin  
deassertion. Following a System Reset initiated by the external RESET pin, the EXT sta-  
tus bit in the Reset Status (RSTSTAT) register is set to 1.  
External Reset Indicator  
During System Reset or when enabled by the GPIO logic (see See Port A–D Control Reg-  
isters on page 42.), the RESET pin functions as an open-drain (active low) reset mode  
indicator in addition to the input functionality. This reset output feature allows an Z8  
Encore! XP® 4K Series device to reset other components to which it is connected, even if  
that reset is caused by internal sources such as POR, VBO or WDT events.  
After an internal reset event occurs, the internal circuitry begins driving the RESET pin  
Low. The RESET pin is held Low by the internal circuitry until the appropriate delay  
listed in Table 9 has elapsed.  
On-Chip Debugger Initiated Reset  
A Power-On Reset can be initiated using the On-Chip Debugger by setting the RSTbit in  
the OCD Control register. The On-Chip Debugger block is not reset but the rest of the chip  
goes through a normal system reset. The RSTbit automatically clears during the system  
reset. Following the system reset the PORbit in the WDT Control register is set.  
STOP Mode Recovery  
STOP mode is entered by execution of a STOP instruction by the eZ8 CPU. Refer to the  
chapter Low-Power Modes on page 29 for detailed STOP mode information. During  
STOP Mode Recovery, the CPU is held in reset for 66 IPO cycles if the crystal oscillator is  
disabled or 5000 cycles if it is enabled. The SMR delay (see Table 134 on page 219)  
T
SMR, also includes the time required to start up the IPO.  
STOP Mode Recovery does not affect onchip registers other than the Watchdog Timer  
Control register (WDTCTL) and the Oscillator Control register (OSCCTL). After any  
STOP Mode Recovery, the IPO is enabled and selected as the system clock. If another sys-  
tem clock source is required, the STOP Mode Recovery code must reconfigure the oscilla-  
tor control block such that the correct system clock source is enabled and selected.  
The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002Hand 0003H  
and loads that value into the Program Counter. Program execution begins at the Reset vec-  
tor address. Following STOP Mode Recovery, the STOP bit in the Reset Status  
PS022815-0206  
Reset, STOP Mode Recovery and Low Voltage Detection  
Z8 Encore! XP® 4K Series  
Product Specification  
26  
(RSTSTAT) Register is set to 1. Table 11 lists the STOP Mode Recovery sources and  
resulting actions. The text following provides more detailed information about each of the  
STOP Mode Recovery sources.  
Table 11. STOP Mode Recovery Sources and Resulting Action  
Operating Mode  
STOP Mode Recovery Source  
Action  
STOP mode  
Watch-Dog Timer time-out  
when configured for Reset  
STOP Mode Recovery  
Watch-Dog Timer time-out  
when configured for interrupt  
STOP Mode Recovery followed by  
interrupt (if  
interrupts are enabled)  
Data transition on any GPIO Port pin STOP Mode Recovery  
enabled as a STOP Mode Recovery  
source  
Assertion of external RESET Pin  
Debug Pin driven Low  
System Reset  
System Reset  
STOP Mode Recovery Using Watch-Dog Timer Time-Out  
If the Watch-Dog Timer times out during STOP mode, the device undergoes a STOP  
Mode Recovery sequence. In the Reset Status (RSTSTAT) register, the WDT and STOP  
bits are set to 1. If the Watch-Dog Timer is configured to generate an interrupt upon time-  
out and the Z8 Encore! XP® 4K Series device is configured to respond to interrupts, the  
eZ8 CPU services the Watch-Dog Timer interrupt request following the normal STOP  
Mode Recovery sequence.  
STOP Mode Recovery Using a GPIO Port Pin Transition  
Each of the GPIO Port pins may be configured as a STOP Mode Recovery input source.  
On any GPIO pin enabled as a STOP Mode Recovery source, a change in the input pin  
value (from High to Low or from Low to High) initiates STOP Mode Recovery. Note that  
SMR pulses shorter than specified will not trigger a recovery. (See Table 134 on  
page 219). When this happens, the STOPbit in the Reset Status (RSTSTAT) register is set  
to 1.  
In STOP mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input  
Data registers record the Port transition only if the signal stays on the Port pin through  
the end of the STOP Mode Recovery delay. As a result, short pulses on the Port pin can  
initiate STOP Mode Recovery without being written to the Port Input Data register or  
without initiating an interrupt (if enabled for that pin).  
Caution:  
PS022815-0206  
Reset, STOP Mode Recovery and Low Voltage Detection  
Z8 Encore! XP® 4K Series  
Product Specification  
27  
STOP Mode Recovery Using the External RESET Pin  
When the Z8 Encore! XP® 4K Series device is in STOP Mode and the external RESET pin  
is driven Low, a system reset occurs. Because of a glitch filter operating on the RESET  
pin, the Low pulse must be greater than the minimum width specified, or it is ignored. See  
Electrical Characteristics on page 212 for details.  
Low Voltage Detection  
In addition to the Voltage Brown-out Reset (VBO) described above, it is also possible to  
generate an interrupt when the supply voltage drops below a user-selected value. See Trim  
Bit Address 0003H on page 154. for details about the Low Voltage Detection (LVD)  
threshold levels available. The LVD function is available on the 8-pin product versions  
only.  
When the supply voltage drops below the LVD threshold, the LVD bit of the Reset Status  
(RSTSTAT) register is set to one. This bit remains one until the low-voltage condition  
goes away. Reading or writing this bit does not clear it. The LVD circuit can also generate  
an interrupt when so enabled. (See Interrupt Vectors and Priority on page 53.) The LVD bit  
is NOT latched, so enabling the interrupt is the only way to guarantee detection of a tran-  
sient low voltage event.  
The LVD functionality depends on circuitry shared with the VBO block; therefore dis-  
abling the VBO also disables the LVD.  
Reset Register Definitions  
Reset Status Register  
The Reset Status (RSTSTAT) register is a read-only register that indicates the source of  
the most recent Reset event, indicates a STOP Mode Recovery event, and indicates a  
Watch-Dog Timer time-out. Reading this register resets the upper four bits to 0.  
This register shares its address with the Watch-Dog Timer control register, which is write-  
only (Table 12).  
PS022815-0206  
Reset, STOP Mode Recovery and Low Voltage Detection  
Z8 Encore! XP® 4K Series  
Product Specification  
28  
Table 12. Reset Status Register (RSTSTAT)  
BITS  
7
6
5
4
3
2
1
0
POR  
STOP  
WDT  
EXT  
Reserved  
LVD  
FIELD  
RESET  
R/W  
See descriptions below  
0
0
0
0
0
R
R
R
R
R
R
R
R
FF0H  
ADDR  
Reset or STOP Mode Recovery Event  
Power-On Reset  
POR  
STOP  
WDT  
EXT  
1
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
1
0
1
0
0
0
0
0
Reset using RESET pin assertion  
Reset using Watch-Dog Timer time-out  
Reset using the On-Chip Debugger (OCTCTL[1] set to 1)  
Reset from STOP Mode using DBG Pin driven Low  
STOP Mode Recovery using GPIO pin transition  
STOP Mode Recovery using Watch-Dog Timer time-out  
POR—Power-On Reset Indicator  
If this bit is set to 1, a Power-On Reset event occurred. This bit is reset to 0 if a WDT time-  
out or STOP Mode Recovery occurs. This bit is also reset to 0 when the register is read.  
STOP—STOP Mode Recovery Indicator  
If this bit is set to 1, a STOP Mode Recovery occurred. If the STOPand WDTbits are both  
set to 1, the STOP Mode Recovery occurred because of a WDT time-out. If the STOPbit  
is 1 and the WDTbit is 0, the STOP Mode Recovery was not caused by a WDT time-out.  
This bit is reset by a Power-On Reset or a WDT time-out that occurred while not in STOP  
mode. Reading this register also resets this bit.  
WDT—Watch-Dog Timer Time-Out Indicator  
If this bit is set to 1, a WDT time-out occurred. A Power-On Reset resets this pin. A STOP  
Mode Recovery from a change in an input pin also resets this bit. Reading this register  
resets this bit. This read must occur before clearing the WDT interrupt.  
EXT—External Reset Indicator  
If this bit is set to 1, a Reset initiated by the external RESET pin occurred. A Power-On  
Reset or a STOP Mode Recovery from a change in an input pin resets this bit. Reading this  
register resets this bit.  
Reserved—Must be 0.  
LVD—Low Voltage Detection Indicator  
If this bit is set to 1 the current state of the supply voltage is below the low voltage detec-  
tion threshold. This value is not latched but is a real-time indicator of the supply voltage  
level.  
PS022815-0206  
Reset, STOP Mode Recovery and Low Voltage Detection  
Z8 Encore! XP® 4K Series  
Product Specification  
29  
Low-Power Modes  
Overview  
The Z8 Encore! XP® 4K Series products contain power-saving features. The highest level  
of power reduction is provided by the STOP mode. The next lower level of power reduc-  
tion is provided by the HALT mode.  
Further power savings can be implemented by disabling individual peripheral blocks  
while in Active mode (defined as being in neither STOP nor HALT mode).  
STOP Mode  
Executing the eZ8 CPU’s STOP instruction places the device into STOP mode. In STOP  
mode, the operating characteristics are:  
Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT (if  
previously enabled) are disabled, and PA0/PA1 revert to the states programmed by the  
GPIO registers.  
System clock is stopped.  
eZ8 CPU is stopped.  
Program counter (PC) stops incrementing.  
Watch-Dog Timer’s internal RC oscillator continues to operate if enabled by the Oscillator  
Control Register.  
If enabled, the Watch-Dog Timer logic continues to operate.  
If enabled for operation in STOP mode by the associated Flash Option Bit, the Voltage-  
Brown Out protection circuit continues to operate.  
Low-power operational amplifier continues to operate if enabled by the Power Control  
Register to do so.  
All other on-chip peripherals are idle.  
To minimize current in STOP mode, all GPIO pins that are configured as digital inputs  
must be driven to one of the supply rails (VCC or GND). Additionally, any GPIOs config-  
ured as outputs should also be driven to one of the supply rails. The device can be brought  
out of STOP mode using STOP Mode Recovery. For more information about STOP Mode  
Recovery refer to Reset, STOP Mode Recovery and Low Voltage Detection on page 20.  
PS022815-0206  
Low-Power Modes  
Z8 Encore! XP® 4K Series  
Product Specification  
30  
HALT Mode  
Executing the eZ8 CPU’s HALT instruction places the device into HALT mode. In HALT  
mode, the operating characteristics are:  
Primary oscillator is enabled and continues to operate.  
System clock is enabled and continues to operate.  
eZ8 CPU is stopped.  
Program counter (PC) stops incrementing.  
Watch-Dog Timer’s internal RC oscillator continues to operate.  
If enabled, the Watch-Dog Timer continues to operate.  
All other on-chip peripherals continue to operate, if enabled.  
The eZ8 CPU can be brought out of HALT mode by any of the following operations:  
Interrupt  
Watch-Dog Timer time-out (interrupt or reset)  
Power-On reset  
Voltage-Brown out reset  
External RESET pin assertion  
To minimize current in HALT mode, all GPIO pins that are configured as inputs must be  
driven to one of the supply rails (VCC or GND).  
Peripheral-Level Power Control  
In addition to the STOP and Halt modes, it is possible to disable each peripheral on each  
of the Z8 Encore! XP® 4K Series devices. Disabling a given peripheral minimizes its  
power consumption.  
Power Control Register Definitions  
Power Control Register 0  
Each bit of the following registers disables a peripheral block, either by gating its system  
clock input or by removing power from the block.  
The default state of the low-power operational amplifier (LPO) is OFF. To use the LPO,  
clear the LPO bit, turning it ON. Clearing this bit might interfere with normal ADC mea-  
PS022815-0206  
Low-Power Modes  
Z8 Encore! XP® 4K Series  
Product Specification  
31  
surements on ANA0 (the LPO output). This bit enables the amplifier even in STOP mode.  
If the amplifier is not required in STOP mode, disable it. Failure to perform this results in  
STOP mode currents greater than specified.  
This register is only reset during a power-on reset sequence. Other system reset events do  
not affect it.  
Note:  
Table 13. Power Control Register 0 (PWRCTL0)  
BITS  
7
6
5
4
3
2
1
0
LPO  
Reserved  
VBO  
TEMP  
ADC  
COMP  
Reserved  
FIELD  
RESET  
R/W  
1
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F80H  
ADDR  
LPO — Low-Power Operational Amplifier Disable  
0 = LPO is enabled (this applies even in STOP mode).  
1 = LPO is disabled.  
Reserved—Must be 0.  
VBO—Voltage Brown-Out Detector Disable  
This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be  
active.  
0 = VBO Enabled  
1 = VBO Disabled  
TEMP—Temperature Sensor Disable  
0 = Temperature Sensor Enabled  
1 = Temperature Sensor Disabled  
ADC—Analog-to-Digital Converter Disable  
0 = Analog-to-Digital Converter Enabled  
1 = Analog-to-Digital Converter Disabled  
COMP—Comparator Disable  
0 = Comparator is Enabled  
1 = Comparator is Disabled  
Reserved—Must be 0.  
Asserting any power control bit will disable the targeted block, regardless of any enable  
bits contained in the target block’s control registers.  
Note:  
PS022815-0206  
Low-Power Modes  
Z8 Encore! XP® 4K Series  
Product Specification  
32  
General-Purpose I/O  
Overview  
The Z8 Encore! XP® 4K Series products support a maximum of 25 port pins (Ports A–D)  
for general-purpose input/output (GPIO) operations. Each port contains control and data  
registers. The GPIO control registers determine data direction, open-drain, output drive  
current, programmable pull-ups, STOP Mode Recovery functionality, and alternate pin  
functions. Each port pin is individually programmable. In addition, the Port C pins are  
capable of direct LED drive at programmable drive strengths.  
GPIO Port Availability By Device  
Table 14 lists the port pins available with each device and package type.  
Table 14. Port Availability by Device and Package Type  
Devices  
Package 10-Bit ADC Port A Port B Port C Port D Total I/O  
Z8F042ASB, Z8F042APB, Z8F042AQB 8-pin  
Z8F022ASB, Z8F022APB, Z8F022AQB  
Z8F012ASB, Z8F012APB, Z8F012AQB  
Yes  
No  
[5:0]  
[5:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
No  
No  
No  
No  
[0]  
[0]  
[0]  
[0]  
6
Z8F041ASB, Z8F041APB, Z8F041AQB 8-pin  
Z8F021ASB, Z8F021APB, Z8F021AQB  
Z8F011ASB, Z8F011APB, Z8F011AQB  
No  
No  
6
Z8F042APH, Z8F042AHH, Z8F042ASH 20-pin  
Z8F022APH, Z8F022AHH, Z8F022ASH  
Z8F012APH, Z8F012AHH, Z8F012ASH  
Yes  
No  
[3:0]  
[3:0]  
[5:0]  
[7:0]  
[3:0]  
[3:0]  
[7:0]  
[7:0]  
17  
17  
23  
25  
Z8F041APH, Z8F041AHH, Z8F041ASH 20-pin  
Z8F021APH, Z8F021AHH, Z8F021ASH  
Z8F011APH, Z8F011AHH, Z8F011ASH  
Z8F042APJ, Z8F042ASJ, Z8F042AHJ  
Z8F022APJ, Z8F022ASJ, Z8F022AHJ  
Z8F012APJ, Z8F012ASJ, Z8F012AHJ  
28-pin  
Yes  
No  
Z8F041APJ, Z8F041ASJ, Z8F041AHJ  
Z8F021APJ, Z8F021ASJ, Z8F021AHJ  
Z8F011APJ, Z8F011ASJ, Z8F011AHJ  
28-pin  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
33  
Architecture  
Figure 7 illustrates a simplified block diagram of a GPIO port pin. In this figure, the abil-  
ity to accommodate alternate functions and variable port current drive strength is not illus-  
trated.  
Port Input  
Data Register  
Schmitt Trigger  
Q
D
Q
D
System  
Clock  
VDD  
Port Output Control  
Port Output  
Data Register  
DATA  
Bus  
D
Q
Port  
Pin  
System  
Clock  
Port Data Direction  
GND  
Figure 7.GPIO Port Pin Block Diagram  
GPIO Alternate Functions  
Many of the GPIO port pins can be used for general-purpose I/O and access to on-chip  
peripheral functions such as the timers and serial communication devices. The Port A–D  
Alternate Function sub-registers configure these pins for either General-Purpose I/O or  
alternate function operation. When a pin is configured for alternate function, control of the  
port pin direction (input/output) is passed from the Port A–D Data Direction registers to  
the alternate function assigned to this pin. Table 15 on page 36 lists the alternate functions  
possible with each port pin. For those pins with more one alternate function, the alternate  
function is defined through Alternate Function Sets sub-registers AFS1 and AFS2.  
The crystal oscillator functionality is not controlled by the GPIO block. When the crystal  
oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1  
is overridden. In that case, those pins function as input and output for the crystal oscillator.  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
34  
PA0 and PA6 contain two different timer functions, a timer input and a complementary  
timer output. Both of these functions require the same GPIO configuration, the selection  
between the two is based on the timer mode. See Timers on page 62 for more details.  
Direct LED Drive  
The Port C pins provide a current sinked output capable of driving an LED without requir-  
ing an external resistor. The output sinks current at programmable levels of 3 mA, 7 mA,  
13 mA and 20 mA. This mode is enabled through the Alternate Function sub-register  
AFS1 and is programmable through the LED control registers. The LED Drive Enable  
(LEDEN) register turns on the drivers. The LED Drive Level (LEDLVLH and LEDLVLL)  
registers select the sink current.  
For correct function, the LED anode must be connected to VDD and the cathode to the  
GPIO pin.  
Using all Port C pins in LED drive mode with maximum current may result in excessive  
total current. Refer to the Electrical Characteristics on page 212 for the maximum total  
current for the applicable package.  
Shared Reset Pin  
On the 20 and 28-pin devices, the Port D0 pin shares function with a bi-directional reset  
pin. Unlike all other I/O pins, this pin does not default to GPIO function on power-up.  
This pin acts as a bi-directional reset until user software re-configures it. The Port D0 pin  
is output-only when in GPIO mode.  
On the 8-pin product versions, the reset pin is shared with PortA2, but the pin is not lim-  
ited to output-only when in GPIO mode.  
If PA2 on the 8-pin product is reconfigured as an input, take care that no external stim-  
ulus drives the pin low during any reset sequence. Since PA2 returns to its RESET al-  
ternate function during system resets, driving it low will hold the chip in a reset state  
until the pin is released. The same applies to the PDO pin on the 28-pin product.  
Caution:  
Shared Debug Pin  
On the 8-pin version of this device only, the Debug pin shares function with the PortA0  
GPIO pin. This pin performs as a general purpose input pin on power-up, but the debug  
logic monitors this pin during the reset sequence to determine if the unlock sequence  
occurs. If the unlock sequence is present, the debug function is unlocked and the pin no  
longer functions as a GPIO pin. If it is not present, the debug feature is disabled until/  
unless another reset event occurs. For more details, see On-Chip Debugger on page 167  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
35  
Crystal Oscillator Override  
For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When  
the crystal oscillator is enabled (see Oscillator Control Register Definitions on page 183),  
the GPIO settings are overridden and PA0 and PA1 are disabled.  
5V Tolerance  
All six I/O pins on the 8-pin devices are 5V-tolerant, unless the programmable pull-ups are  
enabled. If the pull-ups are enabled and inputs higher than VDD are applied to these parts,  
excessive current flows through those pull-up devices and can damage the chip.  
In the 20- and 28-pin versions of this device, any pin which shares functionality with an  
ADC, crystal or comparator port is not 5V-tolerant, including PA[1:0], PB[5:0] and  
PC[2:0]. All other signal pins are 5V-tolerant, and can safely handle inputs higher than  
Note:  
VDD except when the programmable pull-ups are enabled.  
External Clock Setup  
For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin  
devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator  
Control (OSCCTL)Register (page 183) such that the external oscillator is selected as the  
system clock. For 8-pin devices use PA1 instead of PB3.  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
36  
Table 15. Port Alternate Function Mapping (Non 8-Pin Parts)  
Alternate  
Function Set  
Register AFS1  
Port  
Pin  
Mnemonic  
T0IN/T0OUT*  
Reserved  
T0OUT  
Alternate Function Description  
PA0  
Timer 0 Input/Timer 0 Output Complement N/A  
Port A  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
Timer 0 Output  
Reserved  
DE0  
UART 0 Driver Enable  
Reserved  
CTS0  
UART 0 Clear to Send  
Reserved  
RXD0/IRRX0  
Reserved  
TXD0/IRTX0  
Reserved  
T1IN/T1OUT*  
Reserved  
T1OUT  
UART 0 / IrDA 0 Receive Data  
UART 0 / IrDA 0 Transmit Data  
Timer 1 Input/Timer 1 Output Complement  
Timer 1 Output  
Reserved  
Note: Because there is only a single alternate function for each Port A pin, the Alternate Function  
Set registers are not implemented for Port A. Enabling alternate function selections as described in  
Port A–D Alternate Function Sub-Registers on page 42 automatically enables the associated  
alternate function.  
* Whether PA0/PA6 take on the timer input or timer output complement function depends on the  
timer configuration as described in Timer Pin Signal Operation on page 75.  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
37  
Table 15. Port Alternate Function Mapping (Continued)(Non 8-Pin Parts)  
Alternate  
Function Set  
Register AFS1  
Port  
Pin  
Mnemonic  
Alternate Function Description  
PB0  
Reserved  
AFS1[0]: 0  
AFS1[0]: 1  
AFS1[1]: 0  
AFS1[1]: 1  
AFS1[2]: 0  
AFS1[2]: 1  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[4]: 0  
AFS1[4]: 1  
AFS1[5]: 0  
AFS1[5]: 1  
AFS1[6]: 0  
AFS1[6]: 1  
AFS1[7]: 0  
AFS1[7]: 1  
Port B  
ANA0/AMPOUT ADC Analog Input/LPO Output  
Reserved  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
ANA1/AMPINN  
Reserved  
ANA2/AMPINP  
CLKIN  
ADC Analog Input/LPO Input (N)  
ADC Analog Input/LPO Input (P)  
External Clock Input  
ANA3  
ADC Analog Input  
Reserved  
ANA7  
ADC Analog Input  
Reserved  
VREF*  
ADC Voltage Reference  
Reserved  
Reserved  
Reserved  
Reserved  
Note: Because there are at most two choices of alternate function for any pin of Port B, the Alternate  
Function Set register AFS2 is not used to select the function. Also, alternate function selection as  
described in Port A–D Alternate Function Sub-Registers on page 42 must also be enabled.  
* VREF is available on PB5 in 28-pin products only.  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
38  
Table 15. Port Alternate Function Mapping (Continued)(Non 8-Pin Parts)  
Alternate  
Function Set  
Register AFS1  
Port  
Pin  
Mnemonic  
Alternate Function Description  
PC0  
Reserved  
AFS1[0]: 0  
AFS1[0]: 1  
Port C  
ANA4/CINP/LED ADC or Comparator Input, or LED drive  
Drive  
PC1  
PC2  
Reserved  
AFS1[1]: 0  
AFS1[1]: 1  
ANA5/CINN/ LED ADC or Comparator Input, or LED drive  
Drive  
Reserved  
AFS1[2]: 0  
AFS1[2]: 1  
ANA6/LED/  
VREF*  
ADC Analog Input, LED Drive, or ADC  
Voltage Reference  
PC3  
PC4  
PC5  
PC6  
PC7  
COUT  
LED  
Comparator Output  
LED drive  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[4]: 0  
AFS1[4]: 1  
AFS1[5]: 0  
AFS1[5]: 1  
AFS1[6]: 0  
AFS1[6]: 1  
AFS1[7]: 0  
AFS1[7]: 1  
Reserved  
LED  
LED Drive  
LED Drive  
LED Drive  
LED Drive  
Reserved  
LED  
Reserved  
LED  
Reserved  
LED  
Note: Because there are at most two choices of alternate function for any pin of Port C, the Alternate  
Function Set register AFS2 is not used to select the function. Also, alternate function selection as  
described in Port A–D Alternate Function Sub-Registers on page 42 must also be enabled.  
* VREF is available on PC2 in 20-pin products only.  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
39  
Table 16. Port Alternate Function Mapping (8-Pin Parts)  
Alternate  
Function Select  
Alternate Function Description Register AFS1  
Alternate  
FunctionSelect  
Register AFS2  
Port  
Pin  
Mnemonic  
PA0  
T0IN  
Timer 0 Input  
AFS1[0]: 0  
AFS1[0]: 0  
Port A  
Reserved  
Reserved  
T0OUT  
AFS1[0]: 0  
AFS1[0]: 1  
AFS1[0]: 1  
AFS1[1]: 0  
AFS1[1]: 0  
AFS1[1]: 1  
AFS1[1]: 1  
AFS1[2]: 0  
AFS1[2]: 0  
AFS1[2]: 1  
AFS1[2]: 1  
AFS1[3]: 0  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[3]: 1  
AFS2[0]: 1  
AFS2[0]: 0  
AFS2[0]: 1  
AFS2[1]: 0  
AFS2[1]: 1  
AFS2[1]: 0  
AFS2[1]: 1  
AFS2[2]: 0  
AFS2[2]: 1  
AFS2[2]: 0  
AFS2[2]: 1  
AFS2[3]: 0  
AFS2[3]: 1  
AFS2[3]: 0  
AFS2[3]: 1  
Timer 0 Output Complement  
Timer 0 Output  
PA1  
PA2  
PA3  
T0OUT  
Reserved  
CLKIN  
External Clock Input  
Analog Functions* ADC Analog Input/VREF  
DE0  
UART 0 Driver Enable  
External Reset  
RESET  
T1OUT  
Reserved  
CTS0  
Timer 1 Output  
UART 0 Clear to Send  
Comparator Output  
Timer 1 Input  
COUT  
T1IN  
Analog Functions* ADC Analog Input/LPO Input  
(P)  
PA4  
PA5  
RXD0  
UART 0 Receive Data  
AFS1[4]: 0  
AFS1[4]: 0  
AFS1[4]: 1  
AFS2[4]: 0  
AFS2[4]: 1  
AFS2[4]: 0  
AFS2[4]: 1  
Reserved  
Reserved  
Analog Functions* ADC/Comparator Input (N)/LPO AFS1[4]: 1  
Input (N)  
TXD0  
UART 0 Transmit Data  
AFS1[5]: 0  
AFS1[5]: 0  
AFS2[5]: 0  
AFS2[5]: 1  
T1OUT  
Timer 1 Output Complement  
* Analog Functions include ADC inputs, ADC reference, comparator inputs and LPO ports.  
Note: Also, alternate function selection as described in Port A–D Alternate Function Sub-Registers on page 42  
must be enabled.  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
40  
Table 16. Port Alternate Function Mapping (8-Pin Parts) (Continued)  
Alternate  
Function Select  
Alternate Function Description Register AFS1  
Alternate  
FunctionSelect  
Register AFS2  
Port  
Pin  
Mnemonic  
Reserved  
AFS2[5]: 1  
AFS1[5]: 0  
Port A  
(Cont)  
Analog Functions* ADC/Comparator Input (P) LPO AFS2[5]: 1  
Output  
AFS1[5]: 1  
* Analog Functions include ADC inputs, ADC reference, comparator inputs and LPO ports.  
Note: Also, alternate function selection as described in Port A–D Alternate Function Sub-Registers on page 42  
must be enabled.  
GPIO Interrupts  
Many of the GPIO port pins can be used as interrupt sources. Some port pins can be con-  
figured to generate an interrupt request on either the rising edge or falling edge of the pin  
input signal. Other port pin interrupt sources generate an interrupt when any edge occurs  
(both rising and falling). Refer to the chapter Interrupt Controller on page 50 for more  
information about interrupts using the GPIO pins.  
GPIO Control Register Definitions  
Four registers for each Port provide access to GPIO control, input data, and output data.  
Table 17 lists these Port registers. Use the Port A–D Address and Control registers  
together to provide access to sub-registers for Port configuration and control.  
Table 17. GPIO Port Registers and Sub-Registers  
Port Register Mnemonic  
Port Register Name  
PxADDR  
Port A–D Address Register  
(Selects sub-registers)  
PxCTL  
Port A–D Control Register  
(Provides access to sub-registers)  
PxIN  
Port A–D Input Data Register  
Port A–D Output Data Register  
PxOUT  
Port Sub-Register Mnemonic  
Port Register Name  
Data Direction  
PxDD  
PxAF  
Alternate Function  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
41  
Table 17. GPIO Port Registers and Sub-Registers (Continued)  
Port Register Mnemonic  
PxOC  
Port Register Name  
Output Control (Open-Drain)  
High Drive Enable  
PxHDE  
PxSMRE  
PxPUE  
STOP Mode Recovery Source Enable  
Pull-up Enable  
PxAFS1  
Alternate Function Set 1  
Alternate Function Set 2  
PxAFS2  
Port A–D Address Registers  
The Port A–D Address registers select the GPIO Port functionality accessible through the  
Port A–D Control registers. The Port A–D Address and Control registers combine to pro-  
vide access to all GPIO Port controls (Table 18).  
Table 18. Port A–D GPIO Address Registers (PxADDR)  
BITS  
7
6
5
4
3
2
1
0
PADDR[7:0]  
00H  
FIELD  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FD0H, FD4H, FD8H, FDCH  
ADDR  
PADDR[7:0]—Port Address  
The Port Address selects one of the sub-registers accessible through the Port Control reg-  
ister.  
PADDR[7:0] Port Control sub-register accessible using the Port A–D Control Registers  
00H  
01H  
No function. Provides some protection against accidental Port reconfiguration.  
Data Direction  
02H  
Alternate Function  
03H  
Output Control (Open-Drain)  
High Drive Enable  
04H  
05H  
STOP Mode Recovery Source Enable.  
Pull-up Enable  
06H  
07H  
Alternate Function Set 1  
Alternate Function Set 2  
No function  
08H  
09H–FFH  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
42  
Port A–D Control Registers  
The Port A–D Control registers set the GPIO port operation. The value in the correspond-  
ing Port A–D Address register determines which sub-register is read from or written to by  
a Port A–D Control register transaction (Table 19).  
Table 19. Port A–D Control Registers (PxCTL)  
BITS  
7
6
5
4
3
2
1
0
PCTL  
00H  
FIELD  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FD1H, FD5H, FD9H, FDDH  
ADDR  
PCTL[7:0]—Port Control  
The Port Control register provides access to all sub-registers that configure the GPIO Port  
operation.  
Port A–D Data Direction Sub-Registers  
The Port A–D Data Direction sub-register is accessed through the Port A–D Control regis-  
ter by writing 01H to the Port A–D Address register (Table 20).  
Table 20. Port A–D Data Direction Sub-Registers (PxDD)  
BITS  
7
6
5
4
3
2
1
0
DD7  
DD6  
DD5  
DD4  
DD3  
DD2  
DD1  
DD0  
FIELD  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 01H in Port A–D Address Register, accessible through the Port A–D Control Register  
ADDR  
DD[7:0]—Data Direction  
These bits control the direction of the associated port pin. Port Alternate Function opera-  
tion overrides the Data Direction register setting.  
0 = Output. Data in the Port A–D Output Data register is driven onto the port pin.  
1 = Input. The port pin is sampled and the value written into the Port A–D Input Data Reg-  
ister. The output driver is tristated.  
Port A–D Alternate Function Sub-Registers  
The Port A–D Alternate Function sub-register (Table 21) is accessed through the Port A–  
D Control register by writing 02Hto the Port A–D Address register. The Port A–D Alter-  
nate Function sub-registers enable the alternate function selection on pins. If disabled, pins  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
43  
functions as GPIO. If enabled, select one of four alternate functions using alternate func-  
tion set subregisters 1 and 2 as described in the Port A–D Alternate Function Set 1 Sub-  
Registers on page 45 and Port A–D Alternate Function Set 2 Sub-Registers on page 46.  
Refer to the GPIO Alternate Functions on page 33 to determine the alternate function asso-  
ciated with each port pin.  
Caution:  
Do not enable alternate functions for GPIO port pins for which there is no  
associated alternate function. Failure to follow this guideline can result in  
unpredictable operation.  
Table 21. Port A–D Alternate Function Sub-Registers (PxAF)  
BITS  
7
6
5
4
3
2
1
0
AF7  
AF6  
AF5  
AF4  
AF3  
AF2  
AF1  
AF0  
FIELD  
RESET  
R/W  
00H (Ports A–C); 01H (Port D); 04H (Port A of 8-pin device)  
R/W  
If 02H in Port A–D Address Register, accessible through the Port A–D Control Register  
ADDR  
AF[7:0]—Port Alternate Function enabled  
0 = The port pin is in normal mode and the DDxbit in the Port A–D Data Direction sub-  
register determines the direction of the pin.  
1 = The alternate function selected through Alternate Function Set sub-registers is  
enabled. Port pin operation is controlled by the alternate function.  
Port A–D Output Control Sub-Registers  
The Port A–D Output Control sub-register (Table 22) is accessed through the Port A–D  
Control register by writing 03Hto the Port A–D Address register. Setting the bits in the  
Port A–D Output Control sub-registers to 1 configures the specified port pins for open-  
drain operation. These sub-registers affect the pins directly and, as a result, alternate func-  
tions are also affected.  
Table 22. Port A–D Output Control Sub-Registers (PxOC)  
BITS  
7
6
5
4
3
2
1
0
POC7  
POC6  
POC5  
POC4  
POC3  
POC2  
POC1  
POC0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 03H in Port A–D Address Register, accessible through the Port A–D Control Register  
ADDR  
POC[7:0]—Port Output Control  
These bits function independently of the alternate function bit and always disable the  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
44  
drains if set to 1.  
0 = The source current is enabled for any output mode (unless overridden by the alternate  
function). (Push-pull output)  
1 = The source current for the associated pin is disabled (open-drain mode).  
Port A–D High Drive Enable Sub-Registers  
The Port A–D High Drive Enable sub-register (Table 23) is accessed through the Port  
A–D Control register by writing 04Hto the Port A–D Address register. Setting the bits in  
the Port A–D High Drive Enable sub-registers to 1 configures the specified port pins for  
high current output drive operation. The Port A–D High Drive Enable sub-register affects  
the pins directly and, as a result, alternate functions are also affected.  
Table 23. Port A–D High Drive Enable Sub-Registers (PxHDE)  
BITS  
7
6
5
4
3
2
1
0
PHDE7  
PHDE6  
PHDE5  
PHDE4  
PHDE3  
PHDE2  
PHDE1  
PHDE0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 04H in Port A–D Address Register, accessible through the Port A–D Control Register  
ADDR  
PHDE[7:0]—Port High Drive Enabled  
0 = The Port pin is configured for standard output current drive.  
1 = The Port pin is configured for high output current drive.  
Port A–D STOP Mode Recovery Source Enable Sub-Registers  
The Port A–D STOP Mode Recovery Source Enable sub-register (Table 24) is accessed  
through the Port A–D Control register by writing 05Hto the Port A–D Address register.  
Setting the bits in the Port A–D STOP Mode Recovery Source Enable sub-registers to 1  
configures the specified Port pins as a STOP Mode Recovery source. During STOP Mode,  
any logic transition on a Port pin enabled as a STOP Mode Recovery source initiates  
STOP Mode Recovery.  
Table 24. Port A–D STOP Mode Recovery Source Enable Sub-Registers (PxSMRE)  
BITS  
7
6
5
4
3
2
1
0
PSMRE7 PSMRE6 PSMRE5 PSMRE4 PSMRE3 PSMRE2 PSMRE1 PSMRE0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 05H in Port A–D Address Register, accessible through the Port A–D Control Register  
ADDR  
PSMRE[7:0]—Port STOP Mode Recovery Source Enabled  
0 = The Port pin is not configured as a STOP Mode Recovery source. Transitions on this  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
45  
pin during STOP mode do not initiate STOP Mode Recovery.  
1 = The Port pin is configured as a STOP Mode Recovery source. Any logic transition on  
this pin during STOP mode initiates STOP Mode Recovery.  
Port A–D Pull-up Enable Sub-Registers  
The Port A–D Pull-up Enable sub-register (Table 25) is accessed through the Port A–D  
Control register by writing 06Hto the Port A–D Address register. Setting the bits in the  
Port A–D Pull-up Enable sub-registers enables a weak internal resistive pull-up on the  
specified Port pins.  
Table 25. Port A–D Pull-Up Enable Sub-Registers (PxPUE)  
BITS  
7
6
5
4
3
2
1
0
PPUE7  
PPUE6  
PPUE5  
PPUE4  
PPUE3  
PPUE2  
PPUE1  
PPUE0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 06H in Port AD Address Register, accessible through the Port AD Control Register  
ADDR  
PPUE[7:0]—Port Pull-up Enabled  
0 = The weak pull-up on the Port pin is disabled.  
1 = The weak pull-up on the Port pin is enabled.  
Port A–D Alternate Function Set 1 Sub-Registers  
The Port A–D Alternate Function Set1 sub-register (Table 26) is accessed through the Port  
A–D Control register by writing 07Hto the Port A–D Address register. The Alternate  
Function Set 1 sub-registers selects the alternate function available at a port pin. Alternate  
Functions selected by setting or clearing bits of this register are defined in GPIO Alternate  
Functions on page 33.  
Alternate function selection on port pins must also be enabled as decribed in Port A–D  
Note:  
Alternate Function Sub-Registers on page 42.  
Table 26. Port A–D Alternate Function Set 1 Sub-Registers (PxAFS1)  
BITS  
7
6
5
4
3
2
1
0
PAFS17  
PAFS16  
PAFS15  
PAFS14  
PAFS13  
PAFS12  
PAFS11  
PAFS10  
FIELD  
RESET  
R/W  
00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)  
R/W R/W R/W R/W R/W R/W  
R/W  
R/W  
If 07H in Port A–D Address Register, accessible through the Port A–D Control Register  
ADDR  
PAFS1[7:0]—Port Alternate Function Set 1  
0 = Port Alternate Function selected as defined in Tables 15 and 16 in the GPIO Alternate  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
46  
Functions section.  
1 = Port Alternate Function selected as defined in Tables 15 and 16 in the GPIO Alternate  
Functions section.  
Port A–D Alternate Function Set 2 Sub-Registers  
The Port A–D Alternate Function Set 2 sub-register (Table 27) is accessed through the  
Port A–D Control register by writing 08Hto the Port A–D Address register. The Alternate  
Function Set 2 sub-registers selects the alternate function available at a port pin. Alternate  
Functions selected by setting or clearing bits of this register is defined in Table 16 in the  
section GPIO Alternate Functions on page 33.  
Alternate function selection on port pins must also be enabled as decribed in Port A–D  
Note:  
Alternate Function Sub-Registers on page 42.  
Table 27. Port A–D Alternate Function Set 2 Sub-Registers (PxAFS2)  
BITS  
7
6
5
4
3
2
1
0
PAFS27  
PAFS26  
PAFS25  
PAFS24  
PAFS23  
PAFS22  
PAFS21  
PAFS20  
FIELD  
RESET  
R/W  
00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)  
R/W R/W R/W R/W R/W R/W  
R/W  
R/W  
If 08H in Port A–D Address Register, accessible through the Port A–D Control Register  
ADDR  
PAFS2[7:0]—Port Alternate Function Set 2  
0 = Port Alternate Function selected as defined in Table 16 GPIO Alternate Functions sec-  
tion.  
1 = Port Alternate Function selected as defined in Table 16 GPIO Alternate Functions sec-  
tion.  
Port A–C Input Data Registers  
Reading from the Port A–C Input Data registers (Table 28) returns the sampled values  
from the corresponding port pins. The Port A–C Input Data registers are read-only. The  
value returned for any unused ports is 0. Unused ports include those missing on the 8- and  
28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.  
Table 28. Port A–C Input Data Registers (PxIN)  
BITS  
7
PIN7  
X
6
PIN6  
X
5
PIN5  
X
4
PIN4  
X
3
PIN3  
X
2
PIN2  
X
1
PIN1  
X
0
PIN0  
X
FIELD  
RESET  
R/W  
R
R
R
R
R
R
R
R
FD2H, FD6H, FDAH  
ADDR  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
47  
PIN[7:0]—Port Input Data  
Sampled data from the corresponding port pin input.  
0 = Input data is logical 0 (Low).  
1 = Input data is logical 1 (High).  
Port A–D Output Data Register  
The Port A–D Output Data register (Table 29) controls the output data to the pins.  
Table 29. Port A–D Output Data Register (PxOUT)  
BITS  
7
6
5
4
3
2
1
0
POUT7  
POUT6  
POUT5  
POUT4  
POUT3  
POUT2  
POUT1  
POUT0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FD3H, FD7H, FDBH, FDFH  
ADDR  
POUT[7:0]—Port Output Data  
These bits contain the data to be driven to the port pins. The values are only driven if the  
corresponding pin is configured as an output and the pin is not configured for alternate  
function operation.  
0 = Drive a logical 0 (Low).  
1= Drive a logical 1 (High). High value is not driven if the drain has been disabled by set-  
ting the corresponding Port Output Control register bit to 1.  
LED Drive Enable Register  
The LED Drive Enable register (Table 30) activates the controlled current drive. The Port  
C pin must first be enabled by setting the Alternate Function register to select the LED  
function.  
.
Table 30. LED Drive Enable (LEDEN)  
BITS  
7
6
5
4
3
2
1
0
LEDEN[7:0]  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F82H  
ADDR  
LEDEN[7:0]—LED Drive Enable  
These bits determine which Port C pins are connected to an internal current sink.  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
48  
0 = Tristate the Port C pin.  
1= Enable controlled current sink on the Port C pin.  
LED Drive Level High Register  
The LED Drive Level registers contain two control bits for each Port C pin (Table 31).  
These two bits select between four programmable drive levels. Each pin is individually  
programmable.  
Table 31. LED Drive Level High Register (LEDLVLH)  
BITS  
7
6
5
4
3
2
1
0
LEDLVLH[7:0]  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F83H  
ADDR  
LEDLVLH[7:0]—LED Level High Bit  
{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each  
Port C pin.  
00 = 3 mA  
01= 7 mA  
10= 13 mA  
11= 20 mA  
LED Drive Level Low Register  
The LED Drive Level registers contain two control bits for each Port C pin (Table 32).  
These two bits select between four programmable drive levels. Each pin is individually  
programmable.  
Table 32. LED Drive Level Low Register (LEDLVLL)  
BITS  
7
6
5
4
3
2
1
0
LEDLVLL[7:0]  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F84H  
ADDR  
LEDLVLH[7:0]—LED Level High Bit  
{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each  
Port C pin.  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
49  
00 = 3 mA  
01 = 7 mA  
10 = 13 mA  
11 = 20 mA  
PS022815-0206  
General-Purpose I/O  
Z8 Encore! XP® 4K Series  
Product Specification  
50  
Interrupt Controller  
Overview  
The interrupt controller on the Z8 Encore! XP® 4K Series products prioritizes the interrupt  
requests from the on-chip peripherals and the GPIO port pins. The features of the interrupt  
controller include the following:  
20 unique interrupt vectors:  
12 GPIO port pin interrupt sources (two are shared)  
10 on-chip peripheral interrupt sources (two are shared)  
Flexible GPIO interrupts  
Eight selectable rising and falling edge GPIO interrupts  
Four dual-edge interrupts  
Three levels of individually programmable interrupt priority  
Watch-Dog Timer and LVD can be configured to generate an interrupt  
Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly  
manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt  
service routine is involved with the exchange of data, status information, or control infor-  
mation between the CPU and the interrupting peripheral. When the service routine is com-  
pleted, the CPU returns to the operation from which it was interrupted.  
The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts,  
the interrupt controller has no effect on operation. Refer to the eZ8 CPU User Manual for  
more information regarding interrupt servicing by the eZ8 CPU. The eZ8 CPU User Man-  
ual is available for download at www.zilog.com.  
Interrupt Vector Listing  
Table 33 lists all of the interrupts available in order of priority. The interrupt vector is  
stored with the most significant byte (MSB) at the even Program Memory address and the  
least significant byte (LSB) at the following odd Program Memory address.  
Some port interrupts are not available on the 8- and 20-pin packages. The ADC interrupt is  
unavailable on devices not containing an ADC.  
Note:  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
51  
Table 33. Trap and Interrupt Vectors in Order of Priority  
Program Memory  
Priority Vector Address  
Highest 0002H  
0004H  
Interrupt or Trap Source  
Reset (not an interrupt)  
Watch-Dog Timer (see Watch-Dog Timer chapter)  
003AH  
Primary Oscillator Fail Trap (not an interrupt)  
003CH  
Watchdog Oscillator Fail Trap (not an interrupt)  
0006H  
Illegal Instruction Trap (not an interrupt)  
0008H  
Reserved  
000AH  
Timer 1  
000CH  
Timer 0  
000EH  
UART 0 receiver  
UART 0 transmitter  
Reserved  
0010H  
0012H  
0014H  
Reserved  
0016H  
ADC  
0018H  
Port A7, selectable rising or falling input edge or LVD (see the chapter Reset,  
STOP Mode Recovery and Low Voltage Detection on page 20)  
001AH  
001CH  
001EH  
0020H  
0022H  
0024H  
0026H  
0028H  
002AH  
002CH  
002EH  
0030H  
0032H  
0034H  
Port A6, selectable rising or falling input edge or Comparator Output  
Port A5, selectable rising or falling input edge  
Port A4, selectable rising or falling input edge  
Port A3 or Port D3, selectable rising or falling input edge  
Port A2 or Port D2, selectable rising or falling input edge  
Port A1, selectable rising or falling input edge  
Port A0, selectable rising or falling input edge  
Reserved  
Reserved  
Reserved  
Reserved  
Port C3, both input edges  
Port C2, both input edges  
Port C1, both input edges  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
52  
Table 33. Trap and Interrupt Vectors in Order of Priority (Continued)  
Program Memory  
Priority Vector Address  
Lowest 0036H  
0038H  
Interrupt or Trap Source  
Port C0, both input edges  
Reserved  
Architecture  
Figure 8 illustrates the interrupt controller block diagram.  
High  
Port Interrupts  
Priority  
Vector  
Priority  
Mux  
IRQ Request  
Medium  
Priority  
Internal Interrupts  
Low  
Priority  
Figure 8.Interrupt Controller Block Diagram  
Operation  
Master Interrupt Enable  
The master interrupt enable bit (IRQE) in the Interrupt Control register globally enables  
and disables interrupts.  
Interrupts are globally enabled by any of the following actions:  
Execution of an EI (Enable Interrupt) instruction  
Execution of an IRET (Return from Interrupt) instruction  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
53  
Writing a 1 to the IRQEbit in the Interrupt Control register  
Interrupts are globally disabled by any of the following actions:  
Execution of a DI (Disable Interrupt) instruction  
eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller  
Writing a 0 to the IRQEbit in the Interrupt Control register  
Reset  
Execution of a Trap instruction  
Illegal Instruction Trap  
Primary Oscillator Fail Trap  
Watch-Dog Oscillator Fail Trap  
Interrupt Vectors and Priority  
The interrupt controller supports three levels of interrupt priority. Level 3 is the highest  
priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all of  
the interrupts are enabled with identical interrupt priority (all as Level 2 interrupts, for  
example), the interrupt priority is assigned from highest to lowest as specified in Table 33  
on page 51. Level 3 interrupts are always assigned higher priority than Level 2 interrupts  
which, in turn, always are assigned higher priority than Level 1 interrupts. Within each  
interrupt priority level (Level 1, Level 2, or Level 3), priority is assigned as specified in  
Table 33, above. Reset, Watch-Dog Timer interrupt (if enabled), Primary Oscillator Fail  
Trap, Watchdog Oscillator Fail Trap, and Illegal Instruction Trap always have highest  
(level 3) priority.  
Interrupt Assertion  
Interrupt sources assert their interrupt requests for only a single system clock period (sin-  
gle pulse). When the interrupt request is acknowledged by the eZ8 CPU, the correspond-  
ing bit in the Interrupt Request register is cleared until the next interrupt occurs. Writing a  
0 to the corresponding bit in the Interrupt Request register likewise clears the interrupt  
request.  
The following coding style that clears bits in the Interrupt Request registers is NOT rec-  
ommended. All incoming interrupts received between execution of the first LDX com-  
mand and the final LDX command are lost.  
Caution:  
Poor coding style that can result in lost interrupt requests:  
LDX r0, IRQ0  
AND r0, MASK  
LDX IRQ0, r0  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
54  
To avoid missing interrupts, use the following coding style to clear bits in the  
Interrupt Request 0 register:  
Caution:  
Good coding style that avoids lost interrupt requests:  
ANDX IRQ0, MASK  
Software Interrupt Assertion  
Program code can generate interrupts directly. Writing a 1 to the correct bit in the Interrupt  
Request register triggers an interrupt (assuming that interrupt is enabled). When the inter-  
rupt request is acknowledged by the eZ8 CPU, the bit in the Interrupt Request register is  
automatically cleared to 0.  
The following coding style used to generate software interrupts by setting bits in the In-  
terrupt Request registers is NOT recommended. All incoming interrupts received be-  
tween execution of the first LDX command and the final LDX command are lost.  
Caution:  
Poor coding style that can result in lost interrupt requests:  
LDX r0, IRQ0  
OR r0, MASK  
LDX IRQ0, r0  
To avoid missing interrupts, use the following coding style to set bits in the Interrupt Re-  
quest registers:  
Caution:  
Good coding style that avoids lost interrupt requests:  
ORX IRQ0, MASK  
Interrupt Control Register Definitions  
For all interrupts other than the Watch-Dog Timer interrupt, the Primary Oscillator Fail  
Trap, and the Watchdog Oscillator Fail Trap, the interrupt control registers enable individ-  
ual interrupts, set interrupt priorities, and indicate interrupt requests.  
Interrupt Request 0 Register  
The Interrupt Request 0 (IRQ0) register (Table 34) stores the interrupt requests for both  
vectored and polled interrupts. When a request is presented to the interrupt controller, the  
corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vec-  
tored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
55  
interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt  
Request 0 register to determine if any interrupt requests are pending.  
Table 34. Interrupt Request 0 Register (IRQ0)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
T1I  
T0I  
U0RXI  
U0TXI  
Reserved Reserved  
ADCI  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC0H  
ADDR  
Reserved—Must be 0.  
T1I—Timer 1 Interrupt Request  
0 = No interrupt request is pending for Timer 1.  
1 = An interrupt request from Timer 1 is awaiting service.  
T0I—Timer 0 Interrupt Request  
0 = No interrupt request is pending for Timer 0.  
1 = An interrupt request from Timer 0 is awaiting service.  
U0RXI—UART 0 Receiver Interrupt Request  
0 = No interrupt request is pending for the UART 0 receiver.  
1 = An interrupt request from the UART 0 receiver is awaiting service.  
U0TXI—UART 0 Transmitter Interrupt Request  
0 = No interrupt request is pending for the UART 0 transmitter.  
1 = An interrupt request from the UART 0 transmitter is awaiting service.  
ADCI—ADC Interrupt Request  
0 = No interrupt request is pending for the Analog-to-Digital Converter.  
1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.  
Interrupt Request 1 Register  
The Interrupt Request 1 (IRQ1) register (Table 35) stores interrupt requests for both vec-  
tored and polled interrupts. When a request is presented to the interrupt controller, the cor-  
responding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored  
interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts  
are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1  
register to determine if any interrupt requests are pending.  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
56  
Table 35. Interrupt Request 1 Register (IRQ1)  
BITS  
7
6
5
4
3
2
1
0
PA7VI  
PA6CI  
PA5I  
PA4I  
PA3I  
PA2I  
PA1I  
PA0I  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC3H  
ADDR  
PA7VI—Port A7 or LVD Interrupt Request  
0 = No interrupt request is pending for GPIO Port A or LVD.  
1 = An interrupt request from GPIO Port A or LVD.  
PA6CI—Port A6 or Comparator Interrupt Request  
0 = No interrupt request is pending for GPIO Port A or Comparator.  
1 = An interrupt request from GPIO Port A or Comparator.  
PAxI—Port A Pin x Interrupt Request  
0 = No interrupt request is pending for GPIO Port A pin x.  
1 = An interrupt request from GPIO Port A pin x is awaiting service.  
where x indicates the specific GPIO Port pin number (0–5).  
Interrupt Request 2 Register  
The Interrupt Request 2 (IRQ2) register (Table 36) stores interrupt requests for both vec-  
tored and polled interrupts. When a request is presented to the interrupt controller, the cor-  
responding bit in the IRQ2 register becomes 1. If interrupts are globally enabled (vectored  
interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts  
are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 2  
register to determine if any interrupt requests are pending.  
Table 36. Interrupt Request 2 Register (IRQ2)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
PC3I  
PC2I  
PC1I  
PC0I  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC6H  
ADDR  
Reserved—Must be 0.  
PCxI—Port C Pin x Interrupt Request  
0 = No interrupt request is pending for GPIO Port C pin x.  
1 = An interrupt request from GPIO Port C pin x is awaiting service.  
where x indicates the specific GPIO Port C pin number (0–3).  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
57  
IRQ0 Enable High and Low Bit Registers  
Table 37 describes the priority control for IRQ0. The IRQ0 Enable High and Low Bit reg-  
isters (Tables 38 and 39) form a priority encoded enabling for interrupts in the Interrupt  
Request 0 register.  
Table 37. IRQ0 Enable and Priority Encoding  
IRQ0ENH[x] IRQ0ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Disabled  
Level 1  
Level 2  
Level 3  
Medium  
High  
where x indicates the register bits from 0–7.  
Table 38. IRQ0 Enable High Bit Register (IRQ0ENH)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
T1ENH  
T0ENH  
U0RENH U0TENH Reserved Reserved ADCENH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC1H  
ADDR  
Reserved—Must be 0.  
T1ENH—Timer 1 Interrupt Request Enable High Bit  
T0ENH—Timer 0 Interrupt Request Enable High Bit  
U0RENH—UART 0 Receive Interrupt Request Enable High Bit  
U0TENH—UART 0 Transmit Interrupt Request Enable High Bit  
ADCENH—ADC Interrupt Request Enable High Bit  
Table 39. IRQ0 Enable Low Bit Register (IRQ0ENL)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
T1ENL  
T0ENL  
U0RENL U0TENL Reserved Reserved ADCENL  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R/W  
R
R
R/W  
FC2H  
ADDR  
Reserved—Must be 0.  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
58  
T1ENL—Timer 1 Interrupt Request Enable Low Bit  
T0ENL—Timer 0 Interrupt Request Enable Low Bit  
U0RENL—UART 0 Receive Interrupt Request Enable Low Bit  
U0TENL—UART 0 Transmit Interrupt Request Enable Low Bit  
ADCENL—ADC Interrupt Request Enable Low Bit  
IRQ1 Enable High and Low Bit Registers  
Table 40 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit reg-  
isters (Tables 41 and 42) form a priority encoded enabling for interrupts in the Interrupt  
Request 1 register.  
Table 40. IRQ1 Enable and Priority Encoding  
IRQ1ENH[x] IRQ1ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Disabled  
Level 1  
Level 2  
Level 3  
Medium  
High  
where x indicates the register bits from 0–7.  
Table 41. IRQ1 Enable High Bit Register (IRQ1ENH)  
BITS  
7
6
5
4
3
2
1
0
PA7VENH PA6CENH PA5ENH PA4ENH PA3ENH PA2ENH PA1ENH PA0ENH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC4H  
ADDR  
PA7VENH—Port A Bit[7] or LVD Interrupt Request Enable High Bit  
PA6CENH—Port A Bit[7] or Comparator Interrupt Request Enable High Bit  
PAxENH—Port A Bit[x] Interrupt Request Enable High Bit  
Refer to the Shared Interrupt Select (IRQSS) register for selection of either the LVD or the  
comparator as the interrupt source.  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
59  
Table 42. IRQ1 Enable Low Bit Register (IRQ1ENL)  
BITS  
7
6
5
4
3
2
1
0
PA7VENL PA6CENL PA5ENL  
PA4ENL  
PA3ENL  
PA2ENL  
PA1ENL  
PA0ENL  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC5H  
ADDR  
PA7VENL—Port A Bit[7] or LVD Interrupt Request Enable Low Bit  
PA6CENL—Port A Bit[6] or Comparator Interrupt Request Enable Low Bit  
PAxENL—Port A Bit[x] Interrupt Request Enable Low Bit  
IRQ2 Enable High and Low Bit Registers  
Table 43 describes the priority control for IRQ2. The IRQ2 Enable High and Low Bit reg-  
isters (Tables 44 and 45) form a priority encoded enabling for interrupts in the Interrupt  
Request 2 register.  
Table 43. IRQ2 Enable and Priority Encoding  
IRQ2ENH[x] IRQ2ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Disabled  
Level 1  
Level 2  
Level 3  
Medium  
High  
where x indicates the register bits from 0–7.  
Table 44. IRQ2 Enable High Bit Register (IRQ2ENH)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
C3ENH  
C2ENH  
C1ENH  
C0ENH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC7H  
ADDR  
Reserved—Must be 0.  
C3ENH—Port C3 Interrupt Request Enable High Bit  
C2ENH—Port C2 Interrupt Request Enable High Bit  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
60  
C1ENH—Port C1 Interrupt Request Enable High Bit  
C0ENH—Port C0 Interrupt Request Enable High Bit  
Table 45. IRQ2 Enable Low Bit Register (IRQ2ENL)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
C3ENL  
0
C2ENL  
0
C1ENL  
0
C0ENL  
0
FIELD  
RESET  
R/W  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC8H  
ADDR  
Reserved—Must be 0.  
C3ENL—Port C3 Interrupt Request Enable Low Bit  
C2ENL—Port C2 Interrupt Request Enable Low Bit  
C1ENL—Port C1 Interrupt Request Enable Low Bit  
C0ENL—Port C0 Interrupt Request Enable Low Bit  
Interrupt Edge Select Register  
The Interrupt Edge Select (IRQES) register (Table 46) determines whether an interrupt is  
generated for the rising edge or falling edge on the selected GPIO Port A or Port D input  
pin.  
Table 46. Interrupt Edge Select Register (IRQES)  
BITS  
7
6
5
4
3
2
1
0
IES7  
IES6  
IES5  
IES4  
IES3  
IES2  
IES1  
IES0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FCDH  
ADDR  
IESx—Interrupt Edge Select x  
0 = An interrupt request is generated on the falling edge of the PAx input or PDx.  
1 = An interrupt request is generated on the rising edge of the PAx input PDx.  
where x indicates the specific GPIO Port pin number (0 through 7).  
Shared Interrupt Select Register  
The Shared Interrupt Select (IRQSS) register (Table 47) determines the source of the  
PADxS interrupts. The Shared Interrupt Select register selects between Port A and alter-  
nate sources for the individual interrupts.  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
61  
Because these shared interrupts are edge-triggered, it is possible to generate an interrupt  
just by switching from one shared source to another. For this reason, an interrupt must be  
disabled before switching between sources.  
Table 47. Shared Interrupt Select Register (IRQSS)  
BITS  
7
6
5
4
3
2
1
0
PA7VS  
PA6CS  
Reserved  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FCEH  
ADDR  
PA7VS—PA7/LVD Selection  
0 = PA7 is used for the interrupt for PA7VS interrupt request.  
1 = The LVD is used for the interrupt for PA7VS interrupt request.  
PA6CS—PA6/Comparator Selection  
0 = PA6 is used for the interrupt for PA6CS interrupt request.  
1 = The Comparator is used for the interrupt for PA6CS interrupt request.  
Reserved—Must be 0.  
Interrupt Control Register  
The Interrupt Control (IRQCTL) register (Table 48) contains the master enable bit for all  
interrupts.  
Table 48. Interrupt Control Register (IRQCTL)  
BITS  
7
6
5
4
3
2
1
0
IRQE  
Reserved  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R
R
R
R
R
R
R
FCFH  
ADDR  
IRQE—Interrupt Request Enable  
This bit is set to 1 by executing an EI (Enable Interrupts) or IRET (Interrupt Return)  
instruction, or by a direct register write of a 1 to this bit. It is reset to 0 by executing a DI  
instruction, eZ8 CPU acknowledgement of an interrupt request, Reset or by a direct regis-  
ter write of a 0 to this bit.  
0 = Interrupts are disabled.  
1 = Interrupts are enabled.  
Reserved—Must be 0.  
PS022815-0206  
Interrupt Controller  
Z8 Encore! XP® 4K Series  
Product Specification  
62  
Timers  
Overview  
These Z8 Encore! XP® 4K Series products contain two 16-bit reloadable timers that can  
be used for timing, event counting, or generation of pulse-width modulated (PWM) sig-  
nals. The timers’ features include:  
16-bit reload counter  
Programmable prescaler with prescale values from 1 to 128  
PWM output generation  
Capture and compare capability  
External input pin for timer input, clock gating, or capture signal. External input pin signal  
frequency is limited to a maximum of one-fourth the system clock frequency.  
Timer output pin  
Timer interrupt  
In addition to the timers described in this chapter, the Baud Rate Generator of the UART  
(if unused) may also provide basic timing functionality. Refer to chapter UART on  
page 89 for information about using the Baud Rate Generator as an additional timer.  
Architecture  
Figure 9 illustrates the architecture of the timers.  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
63  
Timer Block  
Timer  
Control  
Data  
Bus  
Block  
Control  
Timer  
Interrupt  
16-Bit  
Reload Register  
Interrupt,  
PWM,  
and  
Timer Output  
Control  
Timer  
Output  
System  
Clock  
Timer  
Output  
16-Bit Counter  
with Prescaler  
Timer  
Input  
Complement  
Gate  
Input  
16-Bit  
PWM/Compare  
Capture  
Input  
Figure 9.Timer Block Diagram  
Operation  
The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value  
0001Hinto the Timer Reload High and Low Byte registers and setting the prescale value  
to 1. Maximum time-out delay is set by loading the value 0000Hinto the Timer Reload  
High and Low Byte registers and setting the prescale value to 128. If the Timer reaches  
FFFFH, the timer rolls over to 0000H and continues counting.  
Timer Operating Modes  
The timers can be configured to operate in the following modes:  
ONE-SHOT Mode  
In ONE-SHOT mode, the timer counts up to the 16-bit Reload value stored in the Timer  
Reload High and Low Byte registers. The timer input is the system clock. Upon reaching  
the Reload value, the timer generates an interrupt and the count value in the Timer High  
and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops  
counting.  
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state  
for one system clock cycle (from Low to High or from High to Low) upon timer Reload. If  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
64  
it is appropriate to have the Timer Output make a state change at a One-Shot time-out  
(rather than a single cycle pulse), first set the TPOL bit in the Timer Control Register to  
the start value before enabling ONE-SHOT mode. After starting the timer, set TPOLto the  
opposite bit value.  
The steps for configuring a timer for ONE-SHOT mode and initiating the count are as fol-  
lows:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for ONE-SHOT mode.  
Set the prescale value.  
Set the initial output level (High or Low) if using the Timer Output alternate  
function.  
2. Write to the Timer High and Low Byte registers to set the starting count value.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control register to enable the timer and initiate counting.  
In ONE-SHOT mode, the system clock always provides the timer input. The timer period  
is given by the following equation:  
(Reload Value Start Value) × Prescale  
One-Shot Mode Time-Out Period (s) = ------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
CONTINUOUS Mode  
In CONTINUOUS mode, the timer counts up to the 16-bit Reload value stored in the  
Timer Reload High and Low Byte registers. The timer input is the system clock. Upon  
reaching the Reload value, the timer generates an interrupt, the count value in the Timer  
High and Low Byte registers is reset to 0001Hand counting resumes. Also, if the Timer  
Output alternate function is enabled, the Timer Output pin changes state (from Low to  
High or from High to Low) at timer Reload.  
The steps for configuring a timer for CONTINUOUS mode and initiating the count are as  
follows:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for CONTINUOUS mode.  
Set the prescale value.  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
65  
If using the Timer Output alternate function, set the initial output level (High or  
Low).  
2. Write to the Timer High and Low Byte registers to set the starting count value (usually  
0001H). This action only affects the first pass in CONTINUOUS mode. After the first  
timer Reload in CONTINUOUS mode, counting always begins at the reset value of  
0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. Enable the timer interrupt (if appropriate) and set the timer interrupt priority by  
writing to the relevant interrupt registers.  
5. Configure the associated GPIO port pin (if using the Timer Output function) for the  
Timer Output alternate function.  
6. Write to the Timer Control register to enable the timer and initiate counting.  
In CONTINUOUS mode, the system clock always provides the timer input. The timer  
period is given by the following equation:  
Reload Value × Prescale  
Continuous Mode Time-Out Period (s) = ---------------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001His loaded into the Timer High and Low Byte  
registers, use the ONE-SHOT mode equation to determine the first time-out period.  
COUNTER Mode  
In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer  
input is taken from the GPIO Port pin Timer Input alternate function. The TPOL bit in the  
Timer Control Register selects whether the count occurs on the rising edge or the falling  
edge of the Timer Input signal. In COUNTER mode, the prescaler is disabled.  
The input frequency of the Timer Input signal must not exceed one-fourth the system  
clock frequency. Further, the high or low state of the input signal pulse must be no less  
than twice the system clock period. A shorter pulse may not be captured.  
Caution:  
Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers,  
the timer generates an interrupt, the count value in the Timer High and Low Byte registers  
is reset to 0001Hand counting resumes. Also, if the Timer Output alternate function is  
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at  
timer Reload.  
The steps for configuring a timer for COUNTER mode and initiating the count are as fol-  
lows:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for COUNTER mode  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
66  
Select either the rising edge or falling edge of the Timer Input signal for the count.  
This selection also sets the initial logic level (High or Low) for the Timer Output  
alternate function. However, the Timer Output function is not required to be  
enabled.  
2. Write to the Timer High and Low Byte registers to set the starting count value. This  
only affects the first pass in COUNTER mode. After the first timer Reload in  
COUNTER mode, counting always begins at the reset value of 0001H. In COUNTER  
mode the Timer High and Low Byte registers must be written with the value 0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
7. Write to the Timer Control register to enable the timer.  
In COUNTER mode, the number of Timer Input transitions since the timer start is given  
by the following equation:  
Counter Mode Timer Input Transitions = Current Count Value Start Value  
COMPARATOR COUNTER Mode  
In COMPARATOR COUNTER mode, the timer counts input transitions from the analog  
comparator output. The TPOLbit in the Timer Control Register selects whether the count  
occurs on the rising edge or the falling edge of the comparator output signal. In COMPAR-  
ATOR COUNTER mode, the prescaler is disabled.  
The frequency of the comparator output signal must not exceed one-fourth the system  
clock frequency. Further, the high or low state of the comparator output signal pulse  
must be no less than twice the system clock period. A shorter pulse may not be captured.  
Caution:  
After reaching the Reload value stored in the Timer Reload High and Low Byte registers,  
the timer generates an interrupt, the count value in the Timer High and Low Byte registers  
is reset to 0001Hand counting resumes. Also, if the Timer Output alternate function is  
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at  
timer Reload.  
The steps for configuring a timer for COMPARATOR COUNTER mode and initiating the  
count are as follows:  
1. Write to the Timer Control register to:  
Disable the timer  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
67  
Configure the timer for COMPARATOR COUNTER mode  
Select either the rising edge or falling edge of the comparator output signal for the  
count. This also sets the initial logic level (High or Low) for the Timer Output  
alternate function. However, the Timer Output function is not required to be  
enabled.  
2. Write to the Timer High and Low Byte registers to set the starting count value. This  
action only affects the first pass in COMPARATOR COUNTER mode. After the first  
timer Reload in COMPARATOR COUNTER mode, counting always begins at the  
reset value of 0001H. Generally, in COMPARATOR COUNTER mode the Timer  
High and Low Byte registers must be written with the value 0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control register to enable the timer.  
In COMPARATOR COUNTER mode, the number of comparator output transitions since  
the timer start is given by the following equation:  
Comparator Output Transitions = Current Count Value Start Value  
PWM SINGLE OUTPUT Mode  
In PWM SINGLE OUTPUT mode, the timer outputs a Pulse-Width Modulator (PWM)  
output signal through a GPIO Port pin. The timer input is the system clock. The timer first  
counts up to the 16-bit PWM match value stored in the Timer PWM High and Low Byte  
registers. When the timer count value matches the PWM value, the Timer Output toggles.  
The timer continues counting until it reaches the Reload value stored in the Timer Reload  
High and Low Byte registers. Upon reaching the Reload value, the timer generates an  
interrupt, the count value in the Timer High and Low Byte registers is reset to 0001Hand  
counting resumes.  
If the TPOLbit in the Timer Control register is set to 1, the Timer Output signal begins as  
a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The  
Timer Output signal returns to a High (1) after the timer reaches the Reload value and is  
reset to 0001H.  
If the TPOLbit in the Timer Control register is set to 0, the Timer Output signal begins as  
a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The  
Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is  
reset to 0001H.  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
68  
The steps for configuring a timer for PWM SINGLE OUTPUT mode and initiating the  
PWM operation are as follows:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for PWM SINGLE OUTPUT mode.  
Set the prescale value.  
Set the initial logic level (High or Low) and PWM High/Low transition for the  
Timer Output alternate function.  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H). This only affects the first pass in PWM mode. After the first timer  
reset in PWM mode, counting always begins at the reset value of 0001H.  
3. Write to the PWM High and Low Byte registers to set the PWM value.  
4. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM  
period). The Reload value must be greater than the PWM value.  
5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
6. Configure the associated GPIO port pin for the Timer Output alternate function.  
7. Write to the Timer Control register to enable the timer and initiate counting.  
The PWM period is represented by the following equation:  
Reload Value × Prescale  
PWM Period (s) = ---------------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001His loaded into the Timer High and Low Byte  
registers, use the ONE-SHOT mode equation to determine the first PWM time-out period.  
If TPOLis set to 0, the ratio of the PWM output High time to the total period is repre-  
sented by:  
Reload Value PWM Value  
-----------------------------------------------------------------------  
PWM Output High Time Ratio (%) =  
× 100  
Reload Value  
If TPOLis set to 1, the ratio of the PWM output High time to the total period is repre-  
sented by:  
PWM Value  
Reload Value  
---------------------------------  
PWM Output High Time Ratio (%) =  
× 100  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
69  
PWM DUAL OUTPUT Mode  
In PWM DUAL OUTPUT mode, the timer outputs a Pulse-Width Modulated (PWM) out-  
put signal pair (basic PWM signal and its complement) through two GPIO Port pins. The  
timer input is the system clock. The timer first counts up to the 16-bit PWM match value  
stored in the Timer PWM High and Low Byte registers. When the timer count value  
matches the PWM value, the Timer Output toggles. The timer continues counting until it  
reaches the Reload value stored in the Timer Reload High and Low Byte registers. Upon  
reaching the Reload value, the timer generates an interrupt, the count value in the Timer  
High and Low Byte registers is reset to 0001Hand counting resumes.  
If the TPOLbit in the Timer Control register is set to 1, the Timer Output signal begins as  
a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The  
Timer Output signal returns to a High (1) after the timer reaches the Reload value and is  
reset to 0001H.  
If the TPOLbit in the Timer Control register is set to 0, the Timer Output signal begins as  
a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The  
Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is  
reset to 0001H.  
The timer also generates a second PWM output signal Timer Output Complement. The  
Timer Output Complement is the complement of the Timer Output PWM signal. A pro-  
grammable deadband delay can be configured to time delay (0 to 128 system clock cycles)  
PWM output transitions on these two pins from a low to a high (inactive to active). This  
ensures a time gap between the deassertion of one PWM output to the assertion of its com-  
plement.  
The steps for configuring a timer for PWM DUAL OUTPUT mode and initiating the  
PWM operation are as follows:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for PWM DUAL OUTPUT mode by writing the TMODE bits  
in the TxCTL1 register and theTMODEHI bit in TxCTL0 register.  
Set the prescale value.  
Set the initial logic level (High or Low) and PWM High/Low transition for the  
Timer Output alternate function.  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H). This only affects the first pass in PWM mode. After the first timer  
reset in PWM mode, counting always begins at the reset value of 0001H.  
3. Write to the PWM High and Low Byte registers to set the PWM value.  
4. Write to the PWM Control register to set the PWM dead band delay value. The  
deadband delay must be less than the duration of the positive phase of the PWM signal  
(as defined by the PWM high and low byte registers). It must also be less than the  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
70  
duration of the negative phase of the PWM signal (as defined by the difference  
between the PWM registers and the Timer Reload registers).  
5. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM  
period). The Reload value must be greater than the PWM value.  
6. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
7. Configure the associated GPIO port pin for the Timer Output and Timer Output  
Complement alternate functions. The Timer Output Complement function is shared  
with the Timer Input function for both timers. Setting the timer mode to Dual PWM  
automatically switches the function from Timer In to Timer Out Complement.  
8. Write to the Timer Control register to enable the timer and initiate counting.  
The PWM period is represented by the following equation:  
Reload Value × Prescale  
PWM Period (s) = ---------------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001His loaded into the Timer High and Low Byte  
registers, the ONE-SHOT mode equation determines the first PWM time-out period.  
If TPOLis set to 0, the ratio of the PWM output High time to the total period is repre-  
sented by:  
Reload Value PWM Value  
-----------------------------------------------------------------------  
PWM Output High Time Ratio (%) =  
× 100  
Reload Value  
If TPOLis set to 1, the ratio of the PWM output High time to the total period is repre-  
sented by:  
PWM Value  
Reload Value  
---------------------------------  
PWM Output High Time Ratio (%) =  
× 100  
CAPTURE Mode  
In CAPTURE mode, the current timer count value is recorded when the appropriate exter-  
nal Timer Input transition occurs. The Capture count value is written to the Timer PWM  
High and Low Byte Registers. The timer input is the system clock. The TPOL bit in the  
Timer Control register determines if the Capture occurs on a rising edge or a falling edge  
of the Timer Input signal. When the Capture event occurs, an interrupt is generated and the  
timer continues counting. The INPCAP bit in TxCTL0 register is set to indicate the timer  
interrupt is because of an input capture event.  
The timer continues counting up to the 16-bit Reload value stored in the Timer Reload  
High and Low Byte registers. Upon reaching the Reload value, the timer generates an  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
71  
interrupt and continues counting. The INPCAP bit in TxCTL0 register clears indicating  
the timer interrupt is not because of an input capture event.  
The steps for configuring a timer for CAPTURE mode and initiating the count are as fol-  
lows:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for CAPTURE mode.  
Set the prescale value.  
Set the Capture edge (rising or falling) for the Timer Input.  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H).  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. Clear the Timer PWM High and Low Byte registers to 0000H. Clearing these  
registers allows user software to determine if interrupts were generated by either a  
capture event or a reload. If the PWM High and Low Byte registers still contain  
0000Hafter the interrupt, the interrupt was generated by a Reload.  
5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input capture and reload events. If appropriate, configure the timer interrupt to be  
generated only at the input capture event or the reload event by setting TICONFIG  
field of the TxCTL0 register.  
6. Configure the associated GPIO port pin for the Timer Input alternate function.  
7. Write to the Timer Control register to enable the timer and initiate counting.  
In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated  
using the following equation:  
(Capture Value Start Value) × Prescale  
Capture Elapsed Time (s) = ----------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
CAPTURE RESTART Mode  
In CAPTURE RESTART mode, the current timer count value is recorded when the accept-  
able external Timer Input transition occurs. The Capture count value is written to the  
Timer PWM High and Low Byte Registers. The timer input is the system clock. The  
TPOLbit in the Timer Control register determines if the Capture occurs on a rising edge or  
a falling edge of the Timer Input signal. When the Capture event occurs, an interrupt is  
generated and the count value in the Timer High and Low Byte registers is reset to 0001H  
and counting resumes. The INPCAP bit in TxCTL0 register is set to indicate the timer  
interrupt is because of an input capture event.  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
72  
If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the  
Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer  
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to  
0001Hand counting resumes. The INPCAP bit in TxCTL0 register is cleared to indicate  
the timer interrupt is not caused by an input capture event.  
The steps for configuring a timer for CAPTURE RESTART mode and initiating the count  
are as follows:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for CAPTURE RESTART mode by writing the TMODE bits  
in the TxCTL1 register and the TMODEHIbit in TxCTL0 register.  
Set the prescale value.  
Set the Capture edge (rising or falling) for the Timer Input.  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H).  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows user  
software to determine if interrupts were generated by either a capture event or a  
reload. If the PWM High and Low Byte registers still contain 0000Hafter the  
interrupt, the interrupt was generated by a Reload.  
5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input capture and reload events. If appropriate, configure the timer interrupt to be  
generated only at the input capture event or the reload event by setting TICONFIG  
field of the TxCTL0 register.  
6. Configure the associated GPIO port pin for the Timer Input alternate function.  
7. Write to the Timer Control register to enable the timer and initiate counting.  
In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated  
using the following equation:  
(Capture Value Start Value) × Prescale  
Capture Elapsed Time (s) = ----------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
COMPARE Mode  
In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in  
the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon  
reaching the Compare value, the timer generates an interrupt and counting continues (the  
timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled,  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
73  
the Timer Output pin changes state (from Low to High or from High to Low) upon Com-  
pare.  
If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.  
The steps for configuring a timer for COMPARE mode and initiating the count are as fol-  
lows:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for COMPARE mode.  
Set the prescale value.  
Set the initial logic level (High or Low) for the Timer Output alternate function, if  
appropriate.  
2. Write to the Timer High and Low Byte registers to set the starting count value.  
3. Write to the Timer Reload High and Low Byte registers to set the Compare value.  
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control register to enable the timer and initiate counting.  
In Compare mode, the system clock always provides the timer input. The Compare time  
can be calculated by the following equation:  
(Compare Value Start Value) × Prescale  
Compare Mode Time (s) = ------------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
GATED Mode  
In GATED mode, the timer counts only when the Timer Input signal is in its active state  
(asserted), as determined by the TPOLbit in the Timer Control register. When the Timer  
Input signal is asserted, counting begins. A timer interrupt is generated when the Timer  
Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal  
deassertion generated the interrupt, read the associated GPIO input value and compare to  
the value stored in the TPOLbit.  
The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low  
Byte registers. The timer input is the system clock. When reaching the Reload value, the  
timer generates an interrupt, the count value in the Timer High and Low Byte registers is  
reset to 0001Hand counting resumes (assuming the Timer Input signal remains asserted).  
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state  
(from Low to High or from High to Low) at timer reset.  
The steps for configuring a timer for GATED mode and initiating the count are as follows:  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
74  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for GATED mode.  
Set the prescale value.  
2. Write to the Timer High and Low Byte registers to set the starting count value. Writing  
these registers only affects the first pass in GATED mode. After the first timer reset in  
GATED mode, counting always begins at the reset value of 0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input deassertion and reload events. If appropriate, configure the timer interrupt to be  
generated only at the input deassertion event or the reload event by setting TICONFIG  
field of the TxCTL0 register.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. Write to the Timer Control register to enable the timer.  
7. Assert the Timer Input signal to initiate the counting.  
CAPTURE/COMPARE Mode  
In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer  
Input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL  
bit in the Timer Control Register. The timer input is the system clock.  
Every subsequent acceptable transition (after the first) of the Timer Input signal captures  
the current count value. The Capture value is written to the Timer PWM High and Low  
Byte Registers. When the Capture event occurs, an interrupt is generated, the count value  
in the Timer High and Low Byte registers is reset to 0001H, and counting resumes. The  
INPCAPbit in TxCTL0 register is set to indicate the timer interrupt is caused by an input  
capture event.  
If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the  
Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer  
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to  
0001Hand counting resumes. The INPCAPbit in TxCTL0 register is cleared to indicate  
the timer interrupt is not because of an input capture event.  
The steps for configuring a timer for CAPTURE/COMPARE mode and initiating the  
count are as follows:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for CAPTURE/COMPARE mode.  
Set the prescale value.  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
75  
Set the Capture edge (rising or falling) for the Timer Input.  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H).  
3. Write to the Timer Reload High and Low Byte registers to set the Compare value.  
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers.By default, the timer interrupt are generated for both  
input capture and reload events. If appropriate, configure the timer interrupt to be  
generated only at the input capture event or the reload event by setting TICONFIG  
field of the TxCTL0 register.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. Write to the Timer Control register to enable the timer.  
7. Counting begins on the first appropriate transition of the Timer Input signal. No  
interrupt is generated by this first edge.  
In CAPTURE/COMPARE mode, the elapsed time from timer start to Capture event can be  
calculated using the following equation:  
(Capture Value Start Value) × Prescale  
Capture Elapsed Time (s) = ---------------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
Reading the Timer Count Values  
The current count value in the timers can be read while counting (enabled). This capability  
has no effect on timer operation. When the timer is enabled and the Timer High Byte reg-  
ister is read, the contents of the Timer Low Byte register are placed in a holding register. A  
subsequent read from the Timer Low Byte register returns the value in the holding register.  
This operation allows accurate reads of the full 16-bit timer count value while enabled.  
When the timers are not enabled, a read from the Timer Low Byte register returns the  
actual value in the counter.  
Timer Pin Signal Operation  
Timer Output is a GPIO Port pin alternate function. The Timer Output is toggled every  
time the counter is reloaded.  
The Timer Input can be used as a selectable counting source. It shares the same pin as the  
complementary timer output. When selected by the GPIO Alternate Function Registers,  
this pin functions as a timer input in all modes except for the DUAL PWM OUTPUT  
mode. For this mode, there is no timer input available.  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
76  
Timer Control Register Definitions  
Timer 0–1 High and Low Byte Registers  
The Timer 0–1 High and Low Byte (TxH and TxL) registers (Tables 49 and 39) contain  
the current 16-bit timer count value. When the timer is enabled, a read from TxH causes  
the value in TxL to be stored in a temporary holding register. A read from TxL always  
returns this temporary register when the timers are enabled. When the timer is disabled,  
reads from TxL read the register directly.  
Writing to the Timer High and Low Byte registers while the timer is enabled is not recom-  
mended. There are no temporary holding registers available for write operations, so simul-  
taneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are  
written during counting, the 8-bit written value is placed in the counter (High or Low  
Byte) at the next clock edge. The counter continues counting from the new value.  
Table 49. Timer 0–1 High Byte Register (TxH)  
BITS  
7
6
5
4
3
2
1
0
TH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F00H, F08H  
Table 50. Timer 0–1 Low Byte Register (TxL)  
ADDR  
BITS  
7
6
5
4
3
2
1
0
TL  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F01H, F09H  
ADDR  
TH and TL—Timer High and Low Bytes  
These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value.  
Timer Reload High and Low Byte Registers  
The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers (Tables 51 and 41)  
store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload  
High Byte register are stored in a temporary holding register. When a write to the Timer  
Reload Low Byte register occurs, the temporary holding register value is written to the  
Timer High Byte register. This operation allows simultaneous updates of the 16-bit Timer  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
77  
Reload value.  
In COMPARE mode, the Timer Reload High and Low Byte registers store the 16-bit  
Compare value.  
Table 51. Timer 0–1 Reload High Byte Register (TxRH)  
BITS  
7
6
5
4
3
2
1
0
TRH  
FIELD  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F02H, F0AH  
Table 52. Timer 0–1 Reload Low Byte Register (TxRL)  
ADDR  
BITS  
7
6
5
4
3
2
1
0
TRL  
FIELD  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F03H, F0BH  
ADDR  
TRH and TRL—Timer Reload Register High and Low  
These two bytes form the 16-bit Reload value, {TRH[7:0], TRL[7:0]}. This value sets the  
maximum count value which initiates a timer reload to 0001H. In Compare mode, these  
two bytes form the 16-bit Compare value.  
Timer 0-1 PWM High and Low Byte Registers  
The Timer 0-1 PWM High and Low Byte (TxPWMH and TxPWML) registers (Tables 53  
and Table 54) control Pulse-Width Modulator (PWM) operations. These registers also  
store the Capture values for the CAPTURE and CAPTURE/COMPARE modes.  
Table 53. Timer 0–1 PWM High Byte Register (TxPWMH)  
BITS  
7
6
5
4
3
2
1
0
PWMH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F04H, F0CH  
ADDR  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
78  
Table 54. Timer 0–1 PWM Low Byte Register (TxPWML)  
BITS  
7
6
5
4
3
2
1
0
PWML  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F05H, F0DH  
ADDR  
PWMH and PWML—Pulse-Width Modulator High and Low Bytes  
These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the  
current 16-bit timer count. When a match occurs, the PWM output changes state. The  
PWM output value is set by the TPOLbit in the Timer Control Register (TxCTL1) regis-  
ter.  
The TxPWMH and TxPWML registers also store the 16-bit captured timer value when  
operating in Capture or Capture/Compare modes.  
Timer 0–1 Control Registers  
Time 0–1 Control Register 0  
The Timer Control Register 0 (TxCTL0) and Timer Control Register 1 (TxCTL1) deter-  
mine the timer operating mode. It also includes a programmable PWM deadband delay,  
two bits to configure timer interrupt definition, and a status bit to identify if the most  
recent timer interrupt is caused by an input capture event.  
Table 55. Timer 0–1 Control Register 0 (TxCTL0)  
BITS  
7
6
5
4
3
2
1
0
TMODEHI  
TICONFIG  
Reserved  
PWMD  
INPCAP  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
F06H, F0EH  
ADDR  
TMODEHI—Timer Mode High Bit  
This bit along with the TMODE field in TxCTL1 register determines the operating mode  
of the timer. This is the most significant bit of the Timer mode selection value. See the  
TxCTL1 register description for details of the full timer mode decoding.  
TICONFIG—Timer Interrupt Configuration  
This field configures timer interrupt definition.  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
79  
0x = Timer Interrupt occurs on all defined Reload, Compare and Input Events  
10 = Timer Interrupt only on defined Input Capture/Deassertion Events  
11 = Timer Interrupt only on defined Reload/Compare Events  
Reserved—Must be 0.  
PWMD—PWM Delay value  
This field is a programmable delay to control the number of system clock cycles delay  
before the Timer Output and the Timer Output Complement are forced to their active state.  
000 = No delay  
001 = 2 cycles delay  
010 = 4 cycles delay  
011 = 8 cycles delay  
100 = 16 cycles delay  
101 = 32 cycles delay  
110 = 64 cycles delay  
111 = 128 cycles delay  
INPCAP—Input Capture Event  
This bit indicates if the most recent timer interrupt is caused by a Timer Input Capture  
Event.  
0 = Previous timer interrupt is not a result of Timer Input Capture Event  
1 = Previous timer interrupt is a result of Timer Input Capture Event  
Timer 0–1 Control Register 1  
The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler  
value, and determine the timer operating mode.  
Table 56. Timer 0–1 Control Register 1 (TxCTL1)  
BITS  
7
6
5
4
3
2
1
0
TEN  
TPOL  
PRES  
TMODE  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F07H, F0FH  
ADDR  
TEN—Timer Enable  
0 = Timer is disabled.  
1 = Timer enabled to count.  
TPOL—Timer Input/Output Polarity  
Operation of this bit is a function of the current operating mode of the timer.  
ONE-SHOT mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
80  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
CONTINUOUS mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
COUNTER mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
PWM SINGLE OUTPUT mode  
0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the  
Timer Output is forced High (1) upon PWM count match and forced Low (0) upon  
Reload.  
1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the  
Timer Output is forced Low (0) upon PWM count match and forced High (1) upon  
Reload.  
CAPTURE mode  
0 = Count is captured on the rising edge of the Timer Input signal.  
1 = Count is captured on the falling edge of the Timer Input signal.  
COMPARE mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
GATED mode  
0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated  
on the falling edge of the Timer Input.  
1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated  
on the rising edge of the Timer Input.  
CAPTURE/COMPARE mode  
0 = Counting is started on the first rising edge of the Timer Input signal. The current  
count is captured on subsequent rising edges of the Timer Input signal.  
1 = Counting is started on the first falling edge of the Timer Input signal. The current  
count is captured on subsequent falling edges of the Timer Input signal.  
PWM DUAL OUTPUT mode  
0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1)  
when the timer is disabled. When enabled, the Timer Output is forced High (1) upon  
PWM count match and forced Low (0) upon Reload. When enabled, the Timer Output  
Complement is forced Low (0) upon PWM count match and forced High (1) upon  
Reload. The PWMD field in TxCTL0 register is a programmable delay to control the  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
81  
number of cycles time delay before the Timer Output and the Timer Output  
Complement is forced to High (1).  
1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0)  
when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon  
PWM count match and forced High (1) upon Reload.When enabled, the Timer Output  
Complement is forced High (1) upon PWM count match and forced Low (0) upon  
Reload. The PWMD field in TxCTL0 register is a programmable delay to control the  
number of cycles time delay before the Timer Output and the Timer Output  
Complement is forced to Low (0).  
CAPTURE RESTART mode  
0 = Count is captured on the rising edge of the Timer Input signal.  
1 = Count is captured on the falling edge of the Timer Input signal.  
COMPARATOR COUNTER mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload. Also:  
0 = Count is captured on the rising edge of the comparator output.  
1 = Count is captured on the falling edge of the comparator output.  
When the Timer Output alternate function TxOUT on a GPIO port pin is enabled, Tx-  
OUT will change to whatever state the TPOL bit is in.The timer does not need to be en-  
abled for that to happen. Also, the Port data direction sub register is not needed to be set  
to output on TxOUT. Changing the TPOL bit with the timer enabled and running does  
not immediately change the TxOUT.  
Caution:  
PRES—Prescale value.  
The timer input clock is divided by 2PRES, where PRES can be set from 0 to 7. The pres-  
caler is reset each time the Timer is disabled. This reset ensures proper clock division each  
time the Timer is restarted.  
000 = Divide by 1  
001 = Divide by 2  
010 = Divide by 4  
011 = Divide by 8  
100 = Divide by 16  
101 = Divide by 32  
110 = Divide by 64  
111 = Divide by 128  
TMODE—Timer mode  
This field along with the TMODEHI bit in TxCTL0 register determines the operating  
mode of the timer. TMODEHI is the most significant bit of the Timer mode selection  
value.  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
82  
0000 = ONE-SHOT mode  
0001 = CONTINUOUS mode  
0010 = COUNTER mode  
0011 = PWM SINGLE OUTPUT mode  
0100 = CAPTURE mode  
0101 = COMPARE mode  
0110 = GATED mode  
0111 = CAPTURE/COMPARE mode  
1000 = PWM DUAL OUTPUT mode  
1001 = CAPTURE RESTART mode  
1010 = COMPARATOR COUNTER mode  
PS022815-0206  
Timers  
Z8 Encore! XP® 4K Series  
Product Specification  
83  
Watch-Dog Timer  
Overview  
The Watch-Dog Timer (WDT) protects against corrupt or unreliable software, power  
faults, and other system-level problems which may place the Z8 Encore! XP® 4K Series  
devices into unsuitable operating states. The Watch-Dog Timer includes the following fea-  
tures:  
On-chip RC oscillator  
A selectable time-out response: reset or interrupt  
24-bit programmable time-out value  
Operation  
The Watch-Dog Timer (WDT) is a one-shot timer that resets or interrupts the Z8 Encore!  
XP® 4K Series devices when the WDT reaches its terminal count. The Watch-Dog Timer  
uses a dedicated on-chip RC oscillator as its clock source. The Watch-Dog Timer operates  
in only two modes: ON and OFF. Once enabled, it always counts and must be refreshed to  
prevent a time-out. Perform an enable by executing the WDT instruction or by setting the  
WDT_AO Flash Option Bit. The WDT_AO bit forces the Watch-Dog Timer to operate  
immediately upon reset, even if a WDT instruction has not been executed.  
The Watch-Dog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in  
the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is  
described by the following equation:  
WDT Reload Value  
WDT Time-out Period (ms) = -------------------------------------------------  
10  
where the WDT reload value is the decimal value of the 24-bit value given by  
{WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watch-Dog Timer RC oscillator  
frequency is 10KHz. The Watch-Dog Timer cannot be refreshed after it reaches 000002H.  
The WDT Reload Value must not be set to values below 000004H. Table 57 provides  
information about approximate time-out delays for the minimum and maximum WDT  
reload values.  
PS022815-0206  
Watch-Dog Timer  
Z8 Encore! XP® 4K Series  
Product Specification  
84  
Table 57. Watch-Dog Timer Approximate Time-Out Delays  
Approximate Time-Out Delay  
(with 10KHz typical WDT oscillator frequency)  
WDT Reload Value  
(Hex)  
WDT Reload Value  
(Decimal)  
Typical  
400 μs  
Description  
000004  
FFFFFF  
4
Minimum time-out delay  
Maximum time-out delay  
16,777,215  
28 minutes  
Watch-Dog Timer Refresh  
When first enabled, the Watch-Dog Timer is loaded with the value in the Watch-Dog  
Timer Reload registers. The Watch-Dog Timer counts down to 000000Hunless a WDT  
instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the  
downcounter to be reloaded with the WDT Reload value stored in the Watch-Dog Timer  
Reload registers. Counting resumes following the reload operation.  
When the Z8 Encore! XP® 4K Series devices are operating in DEBUG Mode (using the  
on-chip debugger), the Watch-Dog Timer is continuously refreshed to prevent any Watch-  
Dog Timer time-outs.  
Watch-Dog Timer Time-Out Response  
The Watch-Dog Timer times out when the counter reaches 000000H. A time-out of the  
Watch-Dog Timer generates either an interrupt or a system reset. The WDT_RES Flash  
Option Bit determines the time-out response of the Watch-Dog Timer. Refer to the chapter  
Flash Option Bits on page 148 for information regarding programming of the WDT_RES  
Flash Option Bit.  
WDT Interrupt in Normal Operation  
If configured to generate an interrupt when a time-out occurs, the Watch-Dog Timer issues  
an interrupt request to the interrupt controller and sets the WDTstatus bit in the Reset Sta-  
tus (RSTSTAT) register (see page 27). If interrupts are enabled, the eZ8 CPU responds to  
the interrupt request by fetching the Watch-Dog Timer interrupt vector and executing code  
from the vector address. After time-out and interrupt generation, the Watch-Dog Timer  
counter rolls over to its maximum value of FFFFFHand continues counting. The Watch-  
Dog Timer counter is not automatically returned to its Reload Value.  
The Reset Status (RSTSTAT) Register must be read before clearing the WDT interrupt.  
This read clears the WDT timeout flag and prevents further WDT interrupts from immedi-  
ately occurring.  
PS022815-0206  
Watch-Dog Timer  
Z8 Encore! XP® 4K Series  
Product Specification  
85  
WDT Interrupt in STOP Mode  
If configured to generate an interrupt when a time-out occurs and the Z8 Encore! XP® 4K  
Series devices are in STOP mode, the Watch-Dog Timer automatically initiates a STOP  
Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP  
bit in the Reset Status (RSTSTAT) register are set to 1 following a WDT time-out in STOP  
mode. Refer to the chapter Reset, STOP Mode Recovery and Low Voltage Detection on  
page 20 for more information about STOP Mode Recovery.  
If interrupts are enabled, following completion of the STOP Mode Recovery the eZ8 CPU  
responds to the interrupt request by fetching the Watch-Dog Timer interrupt vector and  
executing code from the vector address.  
WDT Reset in NORMAL Operation  
If configured to generate a Reset when a time-out occurs, the Watch-Dog Timer forces the  
device into the System Reset state. The WDT status bit in the Reset Status (RSTSTAT)  
register is set to 1. Refer to the chapter Reset, STOP Mode Recovery and Low Voltage  
Detection on page 20 for more information about system reset.  
WDT Reset in STOP Mode  
If configured to generate a Reset when a time-out occurs and the device is in STOP mode,  
the Watch-Dog Timer initiates a STOP Mode Recovery. Both the WDT status bit and the  
STOPbit in the Reset Status (RSTSTAT) register are set to 1 following WDT time-out in  
STOP mode. Refer to the chapter Reset, STOP Mode Recovery and Low Voltage Detec-  
tion on page 20 for more information.  
Watch-Dog Timer Reload Unlock Sequence  
Writing the unlock sequence to the Watch-Dog Timer (WDTCTL) Control register address  
unlocks the three Watch-Dog Timer Reload Byte registers (WDTU, WDTH, and WDTL)  
to allow changes to the time-out period. These write operations to the WDTCTL register  
address produce no effect on the bits in the WDTCTL register. The locking mechanism  
prevents spurious writes to the Reload registers. The following sequence is required to  
unlock the Watch-Dog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for  
write access.  
1. Write 55H to the Watch-Dog Timer Control register (WDTCTL).  
2. Write AAH to the Watch-Dog Timer Control register (WDTCTL).  
3. Write the Watch-Dog Timer Reload Upper Byte register (WDTU).  
4. Write the Watch-Dog Timer Reload High Byte register (WDTH).  
5. Write the Watch-Dog Timer Reload Low Byte register (WDTL).  
PS022815-0206  
Watch-Dog Timer  
Z8 Encore! XP® 4K Series  
Product Specification  
86  
All three Watch-Dog Timer Reload registers must be written in the order just listed. There  
must be no other register writes between each of these operations. If a register write  
occurs, the lock state machine resets and no further writes can occur unless the sequence is  
restarted. The value in the Watch-Dog Timer Reload registers is loaded into the counter  
when the Watch-Dog Timer is first enabled and every time a WDT instruction is executed.  
Watch-Dog Timer Calibration  
Due to its extremely low operating current, the Watch-Dog Timer oscillator is somewhat  
inaccurate. This variation can be corrected using the calibration data stored in the Flash  
Information Page (see Tables 98 and 99 on page 158). Loading these values into the  
Watch-Dog Timer Reload Registers will result in a one-second timeout at room tempera-  
ture and 3.3V supply voltage.  
Timeouts other than one second may be obtained by scaling the calibration values up or  
down as required. Note that the Watch-Dog Timer accuracy will still degrade as tempera-  
ture and supply voltage vary. See Table 136, Watch-Dog Timer Electrical Characteristics  
and Timing on page 220 for details.  
Watch-Dog Timer Control Register Definitions  
Watch-Dog Timer Control Register  
The Watch-Dog Timer Control (WDTCTL) register is a write-only control register. Writ-  
ing the 55H, AAHunlock sequence to the WDTCTL register address unlocks the three  
Watch-Dog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes  
to the time-out period. These write operations to the WDTCTL register address produce  
no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious  
writes to the Reload registers.  
This register address is shared with the read-only Reset Status Register.  
Table 58. Watch-Dog Timer Control Register (WDTCTL)  
BITS  
7
6
5
4
3
2
1
0
WDTUNLK  
FIELD  
RESET  
R/W  
X
X
X
X
X
X
X
X
W
W
W
W
W
W
W
W
FF0H  
ADDR  
PS022815-0206  
Watch-Dog Timer  
Z8 Encore! XP® 4K Series  
Product Specification  
87  
WDTUNLK—Watch-Dog Timer Unlock  
The user software must write the correct unlocking sequence to this register before it is  
allowed to modify the contents of the watch-dog timer reload registers.  
Watch-Dog Timer Reload Upper, High and Low Byte Registers  
The Watch-Dog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) reg-  
isters (Tables 59 through 61) form the 24-bit reload value that is loaded into the Watch-  
Dog Timer when a WDT instruction executes. The 24-bit reload value is {WDTU[7:0],  
WDTH[7:0], WDTL[7:0]}. Writing to these registers sets the appropriate Reload Value.  
Reading from these registers returns the current Watch-Dog Timer count value.  
The 24-bit WDT Reload Value must not be set to a value less than 000004H.  
Caution:  
Table 59. Watch-Dog Timer Reload Upper Byte Register (WDTU)  
BITS  
7
6
5
4
3
2
1
0
WDTU  
FFH  
FIELD  
RESET  
R/W  
R/W*  
FF1H  
ADDR  
R/W* - Read returns the current WDT count value. Write sets the appropriate Reload Value.  
WDTU—WDT Reload Upper Byte  
Most significant byte (MSB), Bits[23:16], of the 24-bit WDT reload value.  
Table 60. Watch-Dog Timer Reload High Byte Register (WDTH)  
BITS  
7
6
5
4
3
2
1
0
WDTH  
FFH  
FIELD  
RESET  
R/W  
R/W*  
FF2H  
ADDR  
R/W* - Read returns the current WDT count value. Write sets the appropriate Reload Value.  
WDTH—WDT Reload High Byte  
Middle byte, Bits[15:8], of the 24-bit WDT reload value.  
PS022815-0206  
Watch-Dog Timer  
Z8 Encore! XP® 4K Series  
Product Specification  
88  
Table 61. Watch-Dog Timer Reload Low Byte Register (WDTL)  
BITS  
7
6
5
4
3
2
1
0
WDTL  
FFH  
FIELD  
RESET  
R/W  
R/W*  
FF3H  
ADDR  
R/W* - Read returns the current WDT count value. Write sets the appropriate Reload Value.  
WDTL—WDT Reload Low  
Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.  
PS022815-0206  
Watch-Dog Timer  
Z8 Encore! XP® 4K Series  
Product Specification  
89  
UART  
Overview  
The universal asynchronous receiver/transmitter (UART) is a full-duplex communication  
channel capable of handling asynchronous data transfers. The UART uses a single 8-bit  
data mode with selectable parity. Features of the UART include:  
8-bit asynchronous data transfer  
Selectable even- and odd-parity generation and checking  
Option of one or two STOP bits  
Separate transmit and receive interrupts  
Framing, parity, overrun and break detection  
Separate transmit and receive enables  
16-bit baud rate generator (BRG)  
Selectable MULTIPROCESSOR (9-bit) mode with three configurable interrupt schemes  
Baud rate generator (BRG) can be configured and used as a basic 16-bit timer  
Driver enable (DE) output for external bus transceivers  
Architecture  
The UART consists of three primary functional blocks: transmitter, receiver, and baud rate  
generator. The UART’s transmitter and receiver function independently, but employ the  
same baud rate and data format. Figure 10 illustrates the UART architecture.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
90  
Parity Checker  
Receive Shifter  
Receiver Control  
with Address Compare  
RXD  
Receive Data  
Register  
Control Registers  
System Bus  
Transmit Data  
Register  
Status Register  
Baud Rate  
Generator  
Transmit Shift  
Register  
TXD  
Transmitter Control  
Parity Generator  
CTS  
DE  
Figure 10.UART Block Diagram  
Operation  
Data Format  
The UART always transmits and receives data in an 8-bit data format, least-significant bit  
first. An even or odd parity bit can be added to the data stream. Each character begins with  
an active Low START bit and ends with either 1 or 2 active High STOP bits. Figures 11  
and 12 illustrates the asynchronous data format employed by the UART without parity  
and with parity, respectively.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
91  
Data Field  
Stop Bit(s)  
msb  
Idle State  
of Line  
lsb  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
1
2
Figure 11.UART Asynchronous Data Format without Parity  
Data Field  
Stop Bit(s)  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Parity  
1
2
Figure 12.UART Asynchronous Data Format with Parity  
Transmitting Data using the Polled Method  
Follow these steps to transmit data using the polled method of operation:  
1. Write to the UART Baud Rate High and Low Byte registers to set the required baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO Port pins for  
alternate function operation.  
3. Write to the UART Control 1 register, if MULTIPROCESSOR mode is appropriate, to  
enable MULTIPROCESSOR (9-bit) mode functions.  
4. Set the Multiprocessor Mode Select (MPEN) bit to enable MULTIPROCESSOR mode.  
5. Write to the UART Control 0 register to:  
Set the transmit enable bit (TEN) to enable the UART for data transmission  
Set the parity enable bit (PEN), if parity is appropriate and MULTIPROCESSOR  
mode is not enabled, and select either even or odd parity (PSEL).  
Set or clear the CTSE bit to enable or disable control from the remote receiver  
using the CTS pin.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
92  
6. Check the TDREbit in the UART Status 0 register to determine if the Transmit Data  
register is empty (indicated by a 1). If empty, continue to Step 6. If the Transmit Data  
register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit  
Data register becomes available to receive new data.  
7. Write the UART Control 1 register to select the outgoing address bit.  
8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if  
sending a data byte.  
9. Write the data byte to the UART Transmit Data register. The transmitter automatically  
transfers the data to the Transmit Shift register and transmits the data.  
10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate  
and MULTIPROCESSOR mode is enabled,.  
11. To transmit additional bytes, return to Step 5.  
Transmitting Data using the Interrupt-Driven Method  
The UART Transmitter interrupt indicates the availability of the Transmit Data register to  
accept new data for transmission. Follow these steps to configure the UART for interrupt-  
driven data transmission:  
1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO Port pins for  
alternate function operation.  
3. Execute a DI instruction to disable interrupts.  
4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and  
set the acceptable priority.  
5. Write to the UART Control 1 register to enable MULTIPROCESSOR (9-bit) mode  
functions, if MULTIPROCESSOR mode is appropriate.  
6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR  
mode.  
7. Write to the UART Control 0 register to:  
Set the transmit enable bit (TEN) to enable the UART for data transmission  
Enable parity, if appropriate and if MULTIPROCESSOR mode is not enabled, and  
select either even or odd parity.  
Set or clear CTSEto enable or disable control from the remote receiver using the  
CTS pin.  
8. Execute an EI instruction to enable interrupts.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
93  
The UART is now configured for interrupt-driven data transmission. Because the UART  
Transmit Data register is empty, an interrupt is generated immediately. When the UART  
Transmit interrupt is detected, the associated interrupt service routine (ISR) performs the  
following:  
1. Write the UART Control 1 register to select the multiprocessor bit for the byte to be  
transmitted:  
Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if  
sending a data byte.  
2. Write the data byte to the UART Transmit Data register. The transmitter automatically  
transfers the data to the Transmit Shift register and transmits the data.  
3. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.  
4. Execute the IRET instruction to return from the interrupt-service routine and wait for  
the Transmit Data register to again become empty.  
Receiving Data using the Polled Method  
Follow these steps to configure the UART for polled data reception:  
5. Write to the UART Baud Rate High and Low Byte registers to set an acceptable baud  
rate for the incoming data stream.  
6. Enable the UART pin functions by configuring the associated GPIO Port pins for  
alternate function operation.  
7. Write to the UART Control 1 register to enable MULTIPROCESSOR mode functions,  
if appropriate.  
8. Write to the UART Control 0 register to:  
Set the receive enable bit (REN) to enable the UART for data reception  
Enable parity, if appropriate and if Multiprocessor mode is not enabled, and select  
either even or odd parity.  
9. Check the RDA bit in the UART Status 0 register to determine if the Receive Data  
register contains a valid data byte (indicated by a 1). If RDAis set to 1 to indicate  
available data, continue to Step 5. If the Receive Data register is empty (indicated by a  
0), continue to monitor the RDA bit awaiting reception of the valid data.  
10. Read data from the UART Receive Data register. If operating in MULTIPROCESSOR  
(9-bit) mode, further actions may be required depending on the MULTIPROCESSOR  
mode bits MPMD[1:0].  
11. Return to Step 4 to receive additional data.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
94  
Receiving Data using the Interrupt-Driven Method  
The UART Receiver interrupt indicates the availability of new data (as well as error condi-  
tions). Follow these steps to configure the UART receiver for interrupt-driven operation:  
1. Write to the UART Baud Rate High and Low Byte registers to set the acceptable baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO Port pins for  
alternate function operation.  
3. Execute a DI instruction to disable interrupts.  
4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set  
the acceptable priority.  
5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.  
6. Write to the UART Control 1 Register to enable Multiprocessor (9-bit) mode  
functions, if appropriate.  
Set the Multiprocessor Mode Select (MPEN) to Enable MULTIPROCESSOR  
mode.  
Set the Multiprocessor Mode Bits, MPMD[1:0],to select the acceptable address  
matching scheme.  
Configure the UART to interrupt on received data and errors or errors only  
(interrupt on errors only is unlikely to be useful for Z8 Encore!® devices without a  
DMA block)  
7. Write the device address to the Address Compare Register (automatic  
MULTIPROCESSOR modes only).  
8. Write to the UART Control 0 register to:  
Set the receive enable bit (REN) to enable the UART for data reception  
Enable parity, if appropriate and if multiprocessor mode is not enabled, and select  
either even or odd parity.  
9. Execute an EI instruction to enable interrupts.  
The UART is now configured for interrupt-driven data reception. When the UART  
Receiver interrupt is detected, the associated interrupt service routine (ISR) performs the  
following:  
1. Checks the UART Status 0 register to determine the source of the interrupt - error,  
break, or received data.  
2. Reads the data from the UART Receive Data register if the interrupt was because of  
data available. If operating in MULTIPROCESSOR (9-bit) mode, further actions may  
be required depending on the MULTIPROCESSOR mode bits MPMD[1:0].  
3. Clears the UART Receiver interrupt in the applicable Interrupt Request register.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
95  
4. Executes the IRET instruction to return from the interrupt-service routine and await  
more data.  
Clear To Send (CTS) Operation  
The CTS pin, if enabled by the CTSE bit of the UART Control 0 register, performs flow  
control on the outgoing transmit datastream. The Clear To Send (CTS) input pin is sam-  
pled one system clock before beginning any new character transmission. To delay trans-  
mission of the next data character, an external receiver must deassert CTS at least one  
system clock cycle before a new data transmission begins. For multiple character trans-  
missions, this action is typically performed during Stop Bit transmission. If CTS deasserts  
in the middle of a character transmission, the current character is sent completely.  
MULTIPROCESSOR (9-bit) Mode  
The UART has a MULTIPROCESSOR (9-bit) mode that uses an extra (9th) bit for selec-  
tive communication when a number of processors share a common UART bus. In MULTI-  
PROCESSOR mode (also referred to as 9-Bit mode), the multiprocessor bit (MP) is  
transmitted immediately following the 8-bits of data and immediately preceding the Stop  
bit(s) as illustrated in Figure 13. The character format is:  
Data Field  
Stop Bit(s)  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
MP  
1
2
Figure 13.UART Asynchronous MULTIPROCESSOR Mode Data Format  
In MULTIPROCESSOR (9-bit) mode, the Parity bit location (9th bit) becomes the Multi-  
processor control bit. The UART Control 1 and Status 1 registers provide MULTIPRO-  
CESSOR (9-bit) mode control and status information. If an automatic address matching  
scheme is enabled, the UART Address Compare register holds the network address of the  
device.  
MULTIPROCESSOR (9-bit) Mode Receive Interrupts  
When MULTIPROCESSOR mode is enabled, the UART only processes frames addressed  
to it. The determination of whether a frame of data is addressed to the UART can be made  
in hardware, software or some combination of the two, depending on the multiprocessor  
configuration bits. In general, the address compare feature reduces the load on the CPU,  
because it does not require access to the UART when it receives data directed to other  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
96  
devices on the multi-node network. The following three MULTIPROCESSOR modes are  
available in hardware:  
Interrupt on all address bytes  
Interrupt on matched address bytes and correctly framed data bytes  
Interrupt only on correctly framed data bytes  
These modes are selected with MPMD[1:0]in the UART Control 1 Register. For all mul-  
tiprocessor modes, bit MPENof the UART Control 1 Register must be set to 1.  
The first scheme is enabled by writing 01bto MPMD[1:0]. In this mode, all incoming  
address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt  
service routine must manually check the address byte that caused triggered the interrupt. If  
it matches the UART address, the software clears MPMD[0]. Each new incoming byte  
interrupts the CPU. The software is responsible for determining the end of the frame. It  
checks for the end-of-frame by reading the MPRXbit of the UART Status 1 Register for  
each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame  
is different from the UART’s address, MPMD[0] must be set to 1 causing the UART inter-  
rupts to go inactive until the next address byte. If the new frame’s address matches the  
UART’s, the data in the new frame is processed as well.  
The second scheme requires the following: set MPMD[1:0] to 10B and write the UART’s  
address into the UART Address Compare Register. This mode introduces additional hard-  
ware control, interrupting only on frames that match the UART’s address. When an  
incoming address byte does not match the UART’s address, it is ignored. All successive  
data bytes in this frame are also ignored. When a matching address byte occurs, an inter-  
rupt is issued and further interrupts now occur on each succesive data byte. When the first  
data byte in the frame is read, the NEWFRMbit of the UART Status 1 Register is asserted.  
All successive data bytes have NEWFRM=0. When the next address byte occurs, the hard-  
ware compares it to the UART’s address. If there is a match, the interrupts continues and  
the NEWFRMbit is set for the first byte of the new frame. If there is no match, the UART  
ignores all incoming bytes until the next address match.  
The third scheme is enabled by setting MPMD[1:0] to 11band by writing the UART’s  
address into the UART Address Compare Register. This mode is identical to the second  
scheme, except that there are no interrupts on address bytes. The first data byte of each  
frame remains accompanied by a NEWFRMassertion.  
External Driver Enable  
The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This fea-  
ture reduces the software overhead associated with using a GPIO pin to control the trans-  
ceiver when communicating on a multi-transceiver bus, such as RS-485.  
Driver Enable is an active High signal that envelopes the entire transmitted data frame  
including parity and Stop bits as illustrated in Figure 14. The Driver Enable signal asserts  
when a byte is written to the UART Transmit Data register. The Driver Enable signal  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
97  
asserts at least one UART bit period and no greater than two UART bit periods before the  
Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver  
Enable signal deasserts one system clock period after the final Stop bit is transmitted. This  
one system clock delay allows both time for data to clear the transceiver before disabling  
it, as well as the ability to determine if another character follows the current character. In  
the event of back to back characters (new data must be written to the Transmit Data Regis-  
ter before the previous character is completely transmitted) the DE signal is not deasserted  
between characters. The Depol bit in the UART Control Register 1 sets the polarity of the  
Driver Enable signal.  
1
DE  
0
Data Field  
Stop Bit  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Parity  
1
Figure 14.UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)  
The Driver Enable to Start bit setup time is calculated as follows:  
1
2
-------------------------------------  
-------------------------------------  
DE to Start Bit Setup Time (s) ≤  
Baud Rate (Hz)  
Baud Rate (Hz)  
UART Interrupts  
The UART features separate interrupts for the transmitter and the receiver. In addition,  
when the UART primary functionality is disabled, the Baud Rate Generator can also func-  
tion as a basic timer with interrupt capability.  
Transmitter Interrupts  
The transmitter generates a single interrupt when the Transmit Data Register Empty bit  
(TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for trans-  
mission. The TDRE interrupt occurs after the Transmit shift register has shifted the first  
bit of data out. The Transmit Data register can now be written with the next character to  
send. This action provides 7 bit periods of latency to load the Transmit Data register  
before the Transmit shift register completes shifting the current character. Writing to the  
UART Transmit Data register clears the TDRE bit to 0.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
98  
Receiver Interrupts  
The receiver generates an interrupt when any of the following occurs:  
A data byte is received and is available in the UART Receive Data register. This interrupt  
can be disabled independently of the other receiver interrupt sources. The received data in-  
terrupt occurs after the receive character has been received and placed in the Receive Data  
register. To avoid an overrun error, software must respond to this received data available  
condition before the next character is completely received.  
Note:  
In MULTIPROCESSOR mode (MPEN= 1), the receive data interrupts are dependent on  
the multiprocessor configuration and the most recent address byte.  
A break is received  
An overrun is detected  
A data framing error is detected  
UART Overrun Errors  
When an overrun error condition occurs the UART prevents overwriting of the valid data  
currently in the Receive Data register. The Break Detect and Overrun status bits are not  
displayed until after the valid data has been read.  
After the valid data has been read, the UART Status 0 register is updated to indicate the  
overrun condition (and Break Detect, if applicable). The RDAbit is set to 1 to indicate that  
the Receive Data register contains a data byte. However, because the overrun error  
occurred, this byte may not contain valid data and must be ignored. The BRKD bit indi-  
cates if the overrun was caused by a break condition on the line. After reading the status  
byte indicating an overrun error, the Receive Data register must be read again to clear the  
error bits is the UART Status 0 register. Updates to the Receive Data register occur only  
when the next data word is received.  
UART Data and Error Handling Procedure  
Figure 15 illustrates the recommended procedure for use in UART receiver interrupt ser-  
vice routines.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
99  
Receiver  
Ready  
Receiver  
Interrupt  
Read Status  
No  
Errors?  
Yes  
Read Data which  
clears RDA bit and  
resets error bits  
Read Data  
Discard Data  
Figure 15.UART Receiver Interrupt Service Routine Flow  
Baud Rate Generator Interrupts  
If the baud rate generator (BRG) interrupt enable is set, the UART Receiver interrupt  
asserts when the UART Baud Rate Generator reloads. This condition allows the Baud  
Rate Generator to function as an additional counter if the UART functionality is not  
employed.  
UART Baud Rate Generator  
The UART Baud Rate Generator creates a lower frequency baud rate clock for data trans-  
mission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate  
High and Low Byte registers combine to create a 16-bit baud rate divisor value  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
100  
(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data  
rate is calculated using the following equation:  
System Clock Frequency (Hz)  
UART Data Rate (bits/s) = ----------------------------------------------------------------------------------------------  
16 × UART Baud Rate Divisor Value  
When the UART is disabled, the Baud Rate Generator functions as a basic 16-bit timer  
with interrupt on time-out. To configure the Baud Rate Generator as a timer with interrupt  
on time-out, complete the following procedure:  
1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register  
to 0.  
2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte  
registers.  
3. Enable the Baud Rate Generator timer function and associated interrupt by setting the  
BIRQbit in the UART Control 1 register to 1.  
When configured as a general purpose timer, the interrupt interval is calculated using the  
following equation:  
Interrupt Interval (s) = System Clock Period (s) ×BRG[15:0]  
]
UART Control Register Definitions  
The UART control registers support the UART and the associated Infrared Encoder/  
Decoders. For more information about the infrared operation, refer to the Infrared  
Encoder/Decoder chapter on page 109.  
UART Transmit Data Register  
Data bytes written to the UART Transmit Data (UxTXD) register (Table 62) are shifted  
out on the TXDxpin. The Write-only UART Transmit Data register shares a Register File  
address with the read-only UART Receive Data register.  
Table 62. UART Transmit Data Register (U0TXD)  
BITS  
7
6
5
4
3
2
1
0
TXD  
FIELD  
RESET  
R/W  
X
X
X
X
X
X
X
X
W
W
W
W
W
W
W
W
F40H  
ADDR  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
101  
TXD—Transmit Data  
UART transmitter data byte to be shifted out through the TXDx pin.  
UART Receive Data Register  
Data bytes received through the RXDx pin are stored in the UART Receive Data  
(UxRXD) register (Table 63). The read-only UART Receive Data register shares a Regis-  
ter File address with the Write-only UART Transmit Data register.  
Table 63. UART Receive Data Register (U0RXD)  
BITS  
7
6
5
4
3
2
1
0
RXD  
FIELD  
RESET  
R/W  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
F40H  
ADDR  
RXD—Receive Data  
UART receiver data byte from the RXDx pin  
UART Status 0 Register  
The UART Status 0 (UxSTAT0) and Status 1(UxSTAT1) registers (Tables 64 and 65) iden-  
tify the current UART operating configuration and status.  
Table 64. UART Status 0 Register (U0STAT0)  
BITS  
7
6
5
4
3
2
1
0
RDA  
PE  
OE  
FE  
BRKD  
TDRE  
TXE  
CTS  
FIELD  
RESET  
R/W  
0
0
0
0
0
1
1
X
R
R
R
R
R
R
R
R
F41H  
ADDR  
RDA—Receive Data Available  
This bit indicates that the UART Receive Data register has received data. Reading the  
UART Receive Data register clears this bit.  
0 = The UART Receive Data register is empty.  
1 = There is a byte in the UART Receive Data register.  
PE—Parity Error  
This bit indicates that a parity error has occurred. Reading the UART Receive Data regis-  
ter clears this bit.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
102  
0 = No parity error has occurred.  
1 = A parity error has occurred.  
OE—Overrun Error  
This bit indicates that an overrun error has occurred. An overrun occurs when new data is  
received and the UART Receive Data register has not been read. If the RDA bit is reset to  
0, reading the UART Receive Data register clears this bit.  
0 = No overrun error occurred.  
1 = An overrun error occurred.  
FE—Framing Error  
This bit indicates that a framing error (no Stop bit following data reception) was detected.  
Reading the UART Receive Data register clears this bit.  
0 = No framing error occurred.  
1 = A framing error occurred.  
BRKD—Break Detect  
This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop  
bit(s) are all 0s this bit is set to 1. Reading the UART Receive Data register clears this bit.  
0 = No break occurred.  
1 = A break occurred.  
TDRE—Transmitter Data Register Empty  
This bit indicates that the UART Transmit Data register is empty and ready for additional  
data. Writing to the UART Transmit Data register resets this bit.  
0 = Do not write to the UART Transmit Data register.  
1 = The UART Transmit Data register is ready to receive an additional byte to be transmit-  
ted.  
TXE—Transmitter Empty  
This bit indicates that the transmit shift register is empty and character transmission is fin-  
ished.  
0 = Data is currently transmitting.  
1 = Transmission is complete.  
CTS—CTS signal  
When this bit is read it returns the level of the CTS signal. This signal is active Low.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
103  
UART Status 1 Register  
This register contains multiprocessor control and status bits.  
Table 65. UART Status 1 Register (U0STAT1)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
NEWFRM  
MPRX  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R
R
R
R
R/W  
R/W  
R
R
F44H  
ADDR  
Reserved—Must be 0.  
NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive  
Data register resets this bit to 0.  
0 = The current byte is not the first data byte of a new frame.  
1 = The current byte is the first data byte of a new frame.  
MPRX—Multiprocessor Receive  
Returns the value of the most recent multiprocessor bit received. Reading from the UART  
Receive Data register resets this bit to 0.  
UART Control 0 and Control 1 Registers  
The UART Control 0 (UxCTL0) and Control 1 (UxCTL1) registers (Tables 66 and 67)  
configure the properties of the UART’s transmit and receive operations. The UART Con-  
trol registers must not be written while the UART is enabled.  
Table 66. UART Control 0 Register (U0CTL0)  
BITS  
7
6
5
4
3
2
1
0
TEN  
REN  
CTSE  
PEN  
PSEL  
SBRK  
STOP  
LBEN  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F42H  
ADDR  
TEN—Transmit Enable  
This bit enables or disables the transmitter. The enable is also controlled by the CTS signal  
and the CTSEbit. If the CTS signal is low and the CTSEbit is 1, the transmitter is  
enabled.  
0 = Transmitter disabled.  
1 = Transmitter enabled.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
104  
REN—Receive Enable  
This bit enables or disables the receiver.  
0 = Receiver disabled.  
1 = Receiver enabled.  
CTSE—CTS Enable  
0 = The CTS signal has no effect on the transmitter.  
1 = The UART recognizes the CTS signal as an enable control from the transmitter.  
PEN—Parity Enable  
This bit enables or disables parity. Even or odd is determined by the PSELbit.  
0 = Parity is disabled.  
1 = The transmitter sends data with an additional parity bit and the receiver receives an  
additional parity bit.  
PSEL—Parity Select  
0 = Even parity is transmitted and expected on all received data.  
1 = Odd parity is transmitted and expected on all received data.  
SBRK—Send Break  
This bit pauses or breaks data transmission. Sending a break interrupts any transmission in  
progress, so ensure that the transmitter has finished sending data before setting this bit.  
0 = No break is sent.  
1 = Forces a break condition by setting the output of the transmitter to zero.  
STOP—Stop Bit Select  
0 = The transmitter sends one stop bit.  
1 = The transmitter sends two stop bits.  
LBEN—Loop Back Enable  
0 = Normal operation.  
1 = All transmitted data is looped back to the receiver.  
Table 67. UART Control 1 Register (U0CTL1)  
BITS  
7
6
5
4
3
2
1
0
MPMD[1]  
MPEN  
MPMD[0]  
MPBT  
DEPOL BRGCTL  
RDAIRQ  
IREN  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F43H  
ADDR  
MPMD[1:0]—MULTIPROCESSOR Mode  
If MULTIPROCESSOR (9-bit) mode is enabled,  
00 = The UART generates an interrupt request on all received bytes (data and address).  
01 = The UART generates an interrupt request only on received address bytes.  
10 = The UART generates an interrupt request when a received address byte matches the  
value stored in the Address Compare Register and on all successive data bytes until an  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
105  
address mismatch occurs.  
11 = The UART generates an interrupt request on all received data bytes for which the  
most recent address byte matched the value in the Address Compare Register.  
MPEN—MULTIPROCESSOR (9-bit) Enable  
This bit is used to enable MULTIPROCESSOR (9-bit) mode.  
0 = Disable MULTIPROCESSOR (9-bit) mode.  
1 = Enable MULTIPROCESSOR (9-bit) mode.  
MPBT—Multiprocessor Bit Transmit  
This bit is applicable only when MULTIPROCESSOR (9-bit) mode is enabled. The 9th bit  
is used by the receiving device to determine if the data byte contains address or data infor-  
mation.  
0 = Send a 0 in the multiprocessor bit location of the data stream (data byte).  
1 = Send a 1 in the multiprocessor bit location of the data stream (address byte).  
DEPOL—Driver Enable Polarity  
0 = DE signal is Active High.  
1 = DE signal is Active Low.  
BRGCTL—Baud Rate Control  
This bit causes an alternate UART behavior depending on the value of the REN bit in the  
UART Control 0 Register.  
When the UART receiver is not enabled (REN=0), this bit determines whether the Baud  
Rate Generator issues interrupts.  
0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value  
1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0.  
Reads from the Baud Rate High and Low Byte registers return the current BRG count  
value.  
When the UART receiver is enabled (REN=1), this bit allows reads from the Baud Rate  
Registers to return the BRG count value instead of the Reload Value.  
0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value.  
1 = Reads from the Baud Rate High and Low Byte registers return the current BRG count  
value. Unlike the Timers, there is no mechanism to latch the Low Byte when the High  
Byte is read.  
RDAIRQ—Receive Data Interrupt Enable  
0 = Received data and receiver errors generates an interrupt request to the Interrupt Con-  
troller.  
1 = Received data does not generate an interrupt request to the Interrupt Controller. Only  
receiver errors generate an interrupt request.  
IREN—Infrared Encoder/Decoder Enable  
0 = Infrared Encoder/Decoder is disabled. UART operates normally.  
1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data through  
the Infrared Encoder/Decoder.  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
106  
UART Address Compare Register  
The UART Address Compare (UxADDR) register stores the multi-node network address  
of the UART (see Table 68). When the MPMD[1] bit of UART Control Register 0 is set,  
all incoming address bytes are compared to the value stored in the Address Compare reg-  
ister. Receive interrupts and RDA assertions only occur in the event of a match.  
Table 68. UART Address Compare Register (U0ADDR)  
BITS  
7
6
5
4
3
2
1
0
COMP_ADDR  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F45H  
ADDR  
COMP_ADDR—Compare Address  
This 8-bit value is compared to incoming address bytes.  
UART Baud Rate High and Low Byte Registers  
The UART Baud Rate High (UxBRH) and Low Byte (UxBRL) registers (Tables 69 and  
70) combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data trans-  
mission rate (baud rate) of the UART.  
Table 69. UART Baud Rate High Byte Register (U0BRH)  
BITS  
7
6
5
4
3
2
1
0
BRH  
FIELD  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F46H  
ADDR  
Table 70. UART Baud Rate Low Byte Register (U0BRL)  
BITS  
7
6
5
4
3
2
1
0
BRL  
FIELD  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F47H  
ADDR  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
107  
The UART data rate is calculated using the following equation:  
System Clock Frequency (Hz)  
UART Baud Rate (bits/s) = ----------------------------------------------------------------------------------------------  
16 × UART Baud Rate Divisor Value  
For a given UART data rate, calculate the integer baud rate divisor value using the follow-  
ing equation:  
System Clock Frequency (Hz)  
16 × UART Data Rate (bits/s)  
---------------------------------------------------------------------------  
UART Baud Rate Divisor Value (BRG) = Round  
The baud rate error relative to the acceptable baud rate is calculated using the following  
equation:  
Actual Data Rate Desired Data Rate  
------------------------------------------------------------------------------------------------  
UART Baud Rate Error (%) = 100 ×  
Desired Data Rate  
For reliable communication, the UART baud rate error must never exceed 5 percent.  
Table 71 provides information about data rate errors for popular baud rates and commonly  
used crystal oscillator frequencies.  
Table 71. UART Baud Rates  
10.0 MHz System Clock  
Acceptable BRG Divisor Actual Rate Error  
5.5296 MHz System Clock  
Acceptable BRG Divisor Actual Rate Error  
Rate (KHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
N/A  
1
(KHz)  
(%)  
Rate (KHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
N/A  
N/A  
1
(KHz)  
(%)  
N/A  
N/A  
N/A  
N/A  
625.0  
208.33  
125.0  
56.8  
0.00  
-16.67  
8.51  
-1.36  
1.73  
0.16  
0.16  
0.16  
-0.03  
-0.03  
-0.03  
0.2  
N/A  
N/A  
3
345.6  
115.2  
57.6  
38.4  
19.2  
9.60  
4.80  
2.40  
1.20  
0.60  
0.30  
38.24  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
5
3
11  
6
38.4  
16  
39.1  
38.4  
9
19.2  
33  
18.9  
19.2  
18  
9.60  
65  
9.62  
9.60  
36  
4.80  
130  
260  
521  
1042  
2083  
4.81  
4.80  
72  
2.40  
2.40  
2.40  
144  
288  
576  
1152  
1.20  
1.20  
1.20  
0.60  
0.60  
0.60  
0.30  
0.30  
0.30  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
108  
Table 71. UART Baud Rates (Continued)  
3.579545 MHz System Clock  
1.8432 MHz System Clock  
Acceptable BRG Divisor Actual Rate Error  
Acceptable BRG Divisor Actual Rate Error  
Rate (KHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(KHz)  
(%)  
Rate (KHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(KHz)  
(%)  
N/A  
N/A  
1
N/A  
N/A  
N/A  
N/A  
N/A  
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
223.72  
111.9  
55.9  
37.3  
18.6  
9.73  
4.76  
2.41  
1.20  
0.60  
0.30  
-10.51  
-2.90  
-2.90  
-2.90  
-2.90  
1.32  
N/A  
N/A  
2
115.2  
57.6  
38.4  
19.2  
9.60  
4.80  
2.40  
1.20  
0.60  
0.30  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
4
2
38.4  
6
38.4  
3
19.2  
12  
23  
47  
93  
186  
373  
746  
19.2  
6
9.60  
9.60  
12  
24  
48  
96  
192  
384  
4.80  
-0.83  
0.23  
4.80  
2.40  
2.40  
1.20  
0.23  
1.20  
0.60  
-0.04  
-0.04  
0.60  
0.30  
0.30  
PS022815-0206  
UART  
Z8 Encore! XP® 4K Series  
Product Specification  
109  
Infrared Encoder/Decoder  
Overview  
The Z8 Encore! XP® 4K Series products contain a fully-functional, high-performance  
UART to Infrared Encoder/Decoder (Endec). The Infrared Endec is integrated with an on-  
chip UART to allow easy communication between the Z8 Encore! and IrDA Physical  
Layer Specification, Version 1.3-compliant infrared transceivers. Infrared communication  
provides secure, reliable, low-cost, point-to-point communication between PCs, PDAs,  
cell phones, printers and other infrared enabled devices.  
Architecture  
Figure 16 illustrates the architecture of the Infrared Endec.  
System  
Clock  
Infrared  
Transceiver  
RxD  
RXD  
TXD  
RXD  
TXD  
Infrared  
TxD  
Encoder/Decoder  
(Endec)  
UART  
Baud Rate  
Clock  
Interrupt  
I/O  
Data  
Signal Address  
Figure 16.Infrared Data Communication System Block Diagram  
Operation  
When the Infrared Endec is enabled, the transmit data from the associated on-chip UART  
is encoded as digital signals in accordance with the IrDA standard and output to the infra-  
red transceiver through the TXD pin. Likewise, data received from the infrared transceiver  
PS022815-0206  
Infrared Encoder/Decoder  
Z8 Encore! XP® 4K Series  
Product Specification  
110  
is passed to the Infrared Endec through the RXD pin, decoded by the Infrared Endec, and  
passed to the UART. Communication is half-duplex, which means simultaneous data  
transmission and reception is not allowed.  
The baud rate is set by the UART’s Baud Rate Generator and supports IrDA standard baud  
rates from 9600 baud to 115.2 Kbaud. Higher baud rates are possible, but do not meet  
IrDA specifications. The UART must be enabled to use the Infrared Endec. The Infrared  
Endec data rate is calculated using the following equation:  
:
System Clock Frequency (Hz)  
Infrared Data Rate (bits/s) = ----------------------------------------------------------------------------------------------  
16 × UART Baud Rate Divisor Value  
Transmitting IrDA Data  
The data to be transmitted using the infrared transceiver is first sent to the UART. The  
UART’s transmit signal (TXD) and baud rate clock are used by the IrDA to generate the  
modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared  
data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains  
low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first out-  
puts a 7 clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse is  
output to complete the full 16 clock data period. Figure 17 illustrates IrDA data transmis-  
sion. When the Infrared Endec is enabled, the UART’s TXD signal is internal to the Z8  
Encore! XP® 4K Series products while the IR_TXD signal is output through the TXD pin.  
16 clock  
period  
Baud Rate  
Clock  
UART’s  
TXD  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
3 clock  
pulse  
IR_TXD  
7-clock  
delay  
Figure 17.Infrared Data Transmission  
PS022815-0206  
Infrared Encoder/Decoder  
Z8 Encore! XP® 4K Series  
Product Specification  
111  
Receiving IrDA Data  
Data received from the infrared transceiver using the IR_RXD signal through the RXD pin  
is decoded by the Infrared Endec and passed to the UART. The UART’s baud rate clock is  
used by the Infrared Endec to generate the demodulated signal (RXD) that drives the  
UART. Each UART/Infrared data bit is 16-clocks wide. Figure 18 illustrates data recep-  
tion. When the Infrared Endec is enabled, the UART’s RXD signal is internal to the Z8  
Encore! XP® 4K Series products while the IR_RXD signal is received through the RXD  
pin.  
16 clock  
period  
Baud Rate  
Clock  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
IR_RXD  
min. 1.4μs  
pulse  
UART’s  
RXD  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
8 clock  
delay  
16 clock  
period  
16 clock  
period  
16 clock  
period  
16 clock  
period  
Figure 18.IrDA Data Reception  
Infrared Data Reception  
The system clock frequency must be at least 1.0 MHz to ensure proper reception of the  
Caution:  
1.4 μs minimum width pulses allowed by the IrDA standard.  
Endec Receiver Synchronization  
The IrDA receiver uses a local baud rate clock counter (0 to 15 clock periods) to generate  
an input stream for the UART and to create a sampling window for detection of incoming  
pulses. The generated UART input (UART RXD) is delayed by 8 baud rate clock periods  
with respect to the incoming IrDA data stream. When a falling edge in the input data  
stream is detected, the Endec counter is reset. When the count reaches a value of 8, the  
UART RXD value is updated to reflect the value of the decoded data. When the count  
reaches 12 baud clock periods, the sampling window for the next incoming pulse opens.  
The window remains open until the count again reaches 8 (in other words, 24 baud clock  
periods since the previous pulse was detected), giving the Endec a sampling window of  
PS022815-0206  
Infrared Encoder/Decoder  
Z8 Encore! XP® 4K Series  
Product Specification  
112  
minus four baud rate clocks to plus eight baud rate clocks around the expected time of an  
incoming pulse. If an incoming pulse is detected inside this window this process is  
repeated. If the incoming data is a logical 1 (no pulse), the Endec returns to the initial state  
and waits for the next falling edge. As each falling edge is detected, the Endec clock  
counter is reset, resynchronizing the Endec to the incoming signal, allowing the Endec to  
tolerate jitter and baud rate errors in the incoming datastream. Resynchronizing the Endec  
does not alter the operation of the UART, which ultimately receives the data. The UART is  
only synchronized to the incoming data stream when a Start bit is received.  
Infrared Encoder/Decoder Control Register Definitions  
All Infrared Endec configuration and status information is set by the UART control regis-  
ters as defined beginning on page 89.  
To prevent spurious signals during IrDA data transmission, set the IREN bit in the  
UART Control 1 register to 1 to enable the Infrared Encoder/Decoder before enabling  
the GPIO Port alternate function for the corresponding pin.  
Caution:  
PS022815-0206  
Infrared Encoder/Decoder  
Z8 Encore! XP® 4K Series  
Product Specification  
113  
Analog-to-Digital Converter  
Overview  
The analog-to-digital converter (ADC) converts an analog input signal to its digital repre-  
sentation. The features of this sigma-delta ADC include:  
11-bit resolution in DIFFERENTIAL mode  
10-bit resolution in SINGLE-ENDED mode  
Eight single-ended analog input sources are multiplexed with general-purpose I/O ports  
9th analog input obtained from temperature sensor peripheral  
11 pairs of differential inputs also multiplexed with general-purpose I/O ports  
Low-power operational amplifier (LPO)  
Interrupt on conversion complete  
Interrupt on sample value greater than programmable high threshold  
Interrupt on sample value smaller than programmable low threshold  
Bandgap generated internal voltage reference with two selectable levels  
Manual in-circuit calibration is possible employing user code (offset calibration)  
Factory calibrated for in-circuit error compensation  
Architecture  
Figure 19 illustrates the major functional blocks of the ADC. An analog multiplexer net-  
work selects the ADC input from the available analog pins, ANA0 through ANA7.  
The input stage of the ADC allows both differential gain and buffering. The following  
input options are available:  
Unbuffered input (SINGLE-ENDED and DIFFERENTIAL modes)  
Buffered input with unity gain (SINGLE-ENDED and DIFFERENTIAL modes)  
LPO output with full pin access to the feedback path  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
114  
2
Internal Voltage  
Vrefsel  
VREF pin  
Reference Generator  
Analog Input  
Multiplexer  
VREFEXT  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
Ref Input  
13  
ADC  
Data  
13 bit  
Sigma-Delta  
Buffer Amplifier  
4
ADC  
ANAIN  
Analog In -  
Analog In +  
-
Analog Input  
Multiplexer  
+
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
ADC  
IRQ  
BUFFMODE  
Amplifier tristates  
when disabled  
-
+
Temp  
Sensor  
Low-Power Operational  
Amplifier  
Figure 19.Analog-to-Digital Converter Block Diagram  
Operation  
Data Format  
In both SINGLE-ENDED and DIFFERENTIAL modes, the effective output of the ADC is  
an 11- bit, signed, two’s complement digital value. In DIFFERENTIAL mode, the ADC  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
115  
can output values across the entire 11-bit range, from -1024 to +1023. In SINGLE-  
ENDED mode, the output generally ranges from 0 to +1023, but offset errors can cause  
small negative values.  
The ADC registers actually return 13 bits of data, but the two LSBs are intended for com-  
pensation use only. When the software compensation routine is performed on the 13 bit  
raw ADC value, two bits of resolution are lost because of a rounding error. As a result, the  
final value is an 11- bit number.  
Automatic Powerdown  
If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles,  
portions of the ADC are automatically powered down. From this powerdown state, the  
ADC requires 40 system clock cycles to power up. The ADC powers up when a conver-  
sion is requested by the ADC Control register.  
Single-Shot Conversion  
When configured for single-shot conversion, the ADC performs a single analog-to-digital  
conversion on the selected analog input channel. After completion of the conversion, the  
ADC shuts down. The steps for setting up the ADC and initiating a single-shot conversion  
are as follows:  
1. Enable the desired analog inputs by configuring the general-purpose I/O pins for  
alternate analog function. This configuration disables the digital input and output  
drivers.  
2. Write the ADC High Threshold Register and ADC Low Threshold Register if the  
alarm function is required.  
3. Write the ADC Control/Status Register 1 to configure the ADC  
Write to BUFMODE[2:0]to select SINGLE-ENDED or DIFFERENTIAL mode,  
as well as unbuffered or buffered mode.  
If the alarm function is required, set ALMHENand/or ALMLEN.  
Write the REFSELHbit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELLbit is.  
contained in the ADC Control Register 0.  
4. Write to the ADC Control Register 0 to configure the ADC and begin the conversion.  
The bit fields in the ADC Control register can be written simultaneously (the ADC  
can be configured and enabled with the same write instruction):  
Write to the ANAIN[3:0]field to select from the available analog input sources  
(different input pins available depending on the device)  
Clear CONTto 0 to select a single-shot conversion.  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
116  
If the internal voltage reference must be output to a pin, set the REFEXTbit to 1.  
The internal voltage reference must be enabled in this case.  
Write the REFSELLbit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELHbit is  
contained in the ADC Control/Status Register 1.  
Set CENto 1 to start the conversion.  
5. CENremains 1 while the conversion is in progress. A single-shot conversion requires  
5129 system clock cycles to complete. If a single-shot conversion is requested from an  
ADC powered-down state, the ADC uses 40 additional clock cycles to power up  
before beginning the 5129 cycle conversion.  
6. When the conversion is complete, the ADC control logic performs the following  
operations:  
13-bit two’s-complement result written to {ADCD_H[7:0], ADCD_L[7:3]}.  
CENresets to 0 to indicate the conversion is complete.  
If the High and Low alarms are disabled, an interrupt request is sent to the  
Interrupt Controller denoting conversion complete.  
If the High alarm is enabled and the ADC value is higher than the alarm threshold,  
an interrupt is generated.  
If the Low alarm is enabled and the ADC value is lower than the alarm threshold,  
an interrupt is generated.  
7. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically  
powered-down.  
Continuous Conversion  
When configured for continuous conversion, the ADC continuously performs an analog-  
to-digital conversion on the selected analog input. Each new data value over-writes the  
previous value stored in the ADC Data registers. An interrupt is generated after each con-  
version.  
In CONTINUOUS mode, ADC updates are limited by the input signal bandwidth of the  
ADC and the latency of the ADC and its digital filter. Step changes at the input are not  
immediately detected at the next output from the ADC. The response of the ADC (in all  
modes) is limited by the input signal bandwidth and the latency.  
Caution:  
Follow these steps for setting up the ADC and initiating continuous conversion:  
1. Enable the desired analog input by configuring the general-purpose I/O pins for  
alternate function. This action disables the digital input and output driver.  
2. Write the ADC High Threshold Register and ADC Low Threshold Register if the  
alarm function is required.  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
117  
3. Write the ADC Control/Status Register 1 to configure the ADC  
Write to BUFMODE[2:0] to select SINGLE-ENDED or DIFFERENTIAL mode, as  
well as unbuffered or buffered mode.  
If the alarm function is required, set ALMHENand/or ALMLEN.  
Write the REFSELHbit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELLbit is  
contained in the ADC Control Register 0.  
4. Write to the ADC Control Register 0 to configure the ADC for continuous conversion.  
The bit fields in the ADC Control register may be written simultaneously:  
Write to the ANAIN[3:0]field to select from the available analog input sources  
(different input pins available depending on the device)  
Set CONTto 1 to select continuous conversion.  
If the internal VREF must be output to a pin, set the REFEXTbit to 1. The internal  
voltage reference must be enabled in this case.  
Write the REFSELLbit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELHbit is  
contained in ADC Control/Status Register 1.  
Set CENto 1 to start the conversions.  
5. When the first conversion in continuous operation is complete (after 5129 system  
clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic  
performs the following operations:  
CENresets to 0 to indicate the first conversion is complete. CENremains 0 for all  
subsequent conversions in continuous operation.  
An interrupt request is sent to the Interrupt Controller to indicate the conversion is  
complete.  
6. The ADC writes a new data result every 256 system clock cycles. For each completed  
conversion, the ADC control logic performs the following operations:  
Writes the 13-bit two’s complement result to {ADCD_H[7:0], ADCD_L[7:3]}.  
If the high and low alarms are disabled, sends an interrupt request to the Interrupt  
Controller denoting conversion complete.  
If the high alarm is enabled and the ADC value is higher than the alarm threshold,  
generates an interrupt.  
If the low alarm is enabled and the ADC value is lower than the alarm threshold,  
generates an interrupt.  
7. To disable continuous conversion, clear the CONTbit in the ADC Control Register  
to 0.  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
118  
Programmable Trigger Point Alarm  
The ADC contains two programmable trigger values, defined in the ADC High Threshold  
(ADCTHH) Register (Table 76 on page 128) and the ADC Low Threshold (ADCTLH)  
Register (Table 77 on page 128). Each of these values is 8 bits and is NOT a two’s com-  
plement number. The alarm is intended for single-ended operation and so the alarm values  
reflect positive numbers only. Both thresholds have independent control and status bits.  
When the ADC is enabled and the ADC value exceeds the high threshold, an ADC inter-  
rupt is asserted and the high threshold status bit is set. When enabled and the ADC value is  
less than the low threshold, an ADC interrupt is asserted and the low threshold status bit is  
set.  
Because the alarm value is positive it is compared to the most significant 8 data bits of the  
ADC value, excluding the sign bit. The ADC alarm bits are compared to  
{ADCD_H[6:0],ADCD_L[7]}. Alternatively, the alarm value is compared to the ADC  
value shifted left by one bit. Negative ADC values never trigger the high alarm and always  
trigger the low alarm. Because the ADC output is software compensated for offset, nega-  
tive (pre-compensated) values can occur in SINGLE-ENDED mode.  
The alarm is primarily intended for use in CONTINUOUS mode so that the CPU can  
determine threshold crossings without servicing interrupts for all ADC samples. If used in  
SINGLE-SHOT mode, the ADC will only interrupt the CPU if the single sample triggers  
an alarm.  
The alarm status bits are updated on each conversion, regardless of the alarm enable bit  
values. The alarm enable bits only determine whether or not an interrupt is generated.  
Interrupts  
The ADC is able to interrupt the CPU under three conditions:  
When a conversion has been completed  
When the 8 Most Significant Bits of a sample exceed the programmable high threshold  
ADCTHH[7:0]  
When the 8 Most Significant Bits of a sample is less than the programmable low threshold  
ADCTLH[7:0]  
The conversion interrupt occurs when the ADC is enabled and both alarms are disabled.  
When either or both alarms are enabled, the conversion interrupt is disabled and only the  
alarm interrupts may occur.  
When the ADC is disabled, none of the three sources can cause an interrupt to be asserted;  
however, an interrupt pending when the ADC is disabled is not cleared.  
The three interrupt events share a common CPU interrupt. The interrupt service routine  
must query the ADC Control/Status (ADCCTL1) Register to determine the cause of an  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
119  
ADC interrupt. The register bits denoting ADC alarm status can only be set by hardware  
and are cleared by writing a 1.  
Calibration and Compensation  
The Z8 Encore! XP® 4K Series ADC is factory calibrated for offset error and gain error,  
with the compensation data stored in Flash memory. Alternatively, users can perform their  
own calibration, storing the values into Flash themselves. Thirdly, the user code can per-  
form a manual offset calibration during DIFFERENTIAL mode operation.  
Factory Calibration  
Devices that have been factory calibrated contain 30 bytes of calibration data in the Flash  
option bit space. This data consists of 3 bytes for each input mode, one for offset and two  
for gain correction. See ZiLOG Calibration Data on page 155 for a list of input modes for  
which calibration data exists.  
User Calibration  
If the user has precision references available, its own external calibration can be per-  
formed using any input modes. This calibration data will take into account buffer offset  
and non-linearity, so it is recommended that this calibration be performed separately for  
each of the ADC input modes planned for use.  
Manual Offset Calibration  
When uncalibrated, the ADC has significant offset (see Table 138, Analog-to-Digital Con-  
verter Electrical Characteristics and Timing, on page 221 for details). Subsequently, man-  
ual offset calibration capability is built into the block. When the ADC Control Register 0  
sets the input mode (ANAIN[2:0]) to MANUAL OFFSET CALIBRATION mode, the  
differential inputs to the ADC are shorted together by an internal switch. Reading the  
ADC value at this point produces 0 in an ideal system. The value actually read is the ADC  
offset. This value can be stored in non-volatile memory (Non-Volatile Data Storage on  
page 163) and accessed by user code to compensate for the input offset error.  
There is no provision for manual gain calibration.  
Software Compensation Procedure Using Factory Calibration Data  
Overview. The value read from the ADC high and low byte registers is uncompen-  
sated. The user mode software must apply gain and offset correction to this uncom-  
pensated value for maximum accuracy. The following formula yields the compensated  
value:  
ADCcomp = (ADCuncomp - OFFCAL) + ((ADCuncomp - OFFCAL)*GAINCAL)/216  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
120  
where GAINCAL is the gain calibration value, OFFCAL is the offset calibration value  
and ADCuncomp is the uncompensated value read from the ADC. All values are in  
two’s complement format.  
The offset compensation is performed first, followed by the gain compensation. One  
bit of resolution is lost because of rounding on both the offset and gain computations.  
As a result the ADC registers read back 13 bits: 1 sign bit, two calibration bits lost to  
rounding and 10 data bits.  
Note:  
Also note that in the second term, the multiplication should be performed before the  
division by 216. Otherwise, the the second term will incorrectly evaluate to zero.  
Although the ADC can be used without the gain and offset compensation, it does exhibit  
non-unity gain. Designing the ADC with sub-unity gain reduces noise across the ADC  
range but requires the ADC results to be scaled by a factor of 8/7.  
Caution:  
ADC Compensation Details  
High efficiency assembly code that performs this compensation is available for download  
on www.zilog.com. The following is a bit-specific description of the ADC compensation  
process used by this code.  
The following data bit definitions are used:  
0-9, a-f = bit indices in hexadecimal  
s = sign bit  
v = overflow bit  
- = unused  
Input Data:  
MSB  
LSB  
s b a 9 8 7 6 5  
4 3 2 1 0 - - v (ADC)  
ADC Output Word; if v = 1,  
the data is invalid  
s 6 5 4 3 2 1 0  
Offset Correction Byte  
s s s s s 7 6 5  
4 3 2 1 0 0 0 0 (Offset) Offset Byte shifted to align  
with ADC data  
s e d c b a 9 8  
7 6 5 4 3 2 1 0 (Gain)  
Gain Correction Word  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
121  
Compensation Steps:  
1. Correct for Offset  
ADC MSB  
ADC LSB  
Offset LSB  
#1 LSB  
-
Offset MSB  
=
#1 MSB  
2. Take absolute value of the offset corrected ADC value if negative – the gain correction  
factor is computed assuming positive numbers, with sign restoration afterward.  
#2 MSB  
Also take absolute value of the gain correction word if negative.  
AGain MSB AGain LSB  
#2 LSB  
3. Multiply by Gain Correction Word. If in DIFFERENTIAL mode, there are two gain  
correction values: one for positive ADC values, another for negative ADC values.  
Based on the sign of #2, use the appropriate Gain Correction Word.  
#2 MSB  
AGain MSB  
#3  
#2 LSB  
AGain LSB  
#3  
*
=
#3  
#3  
4. Round the result and discard the least significant two bytes (this is equivalent to  
dividing by 216).  
#3  
#3  
#3  
#3  
-
0x00  
0x00  
0x80  
0x00  
=
#4 MSB  
#4 LSB  
5. Determine sign of the gain correction factor using the sign bits from step #2. If the  
offset corrected ADC value AND the gain correction word have the same sign, then  
the factor is positive and is left unchanged. If they have differing signs, then the factor  
is negative and should be multiplied by -1.  
#5 MSB  
#5 LSB  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
122  
6. Add the gain correction factor to the original offset corrected value.  
#5 MSB  
#1 MSB  
#6 MSB  
#5 LSB  
#1 LSB  
#6 LSB  
+
=
7. Shift the result to the right, using the sign bit determined in step #1 above. This will  
allow for the detection of computational overflow.  
S->  
#6 MSB  
#6 LSB  
Output Data  
The following is the output format of the corrected ADC value.  
MSB  
LSB  
s v b a 9 8 7 6  
5 4 3 2 1 0 - -  
The overflow bit in the corrected output indicates that the computed value was greater  
than the maximum logical value (+1023) or less than the minimum logical value (-1024).  
Unlike the hardware overflow bit, this is not a simple binary flag. For a normal sample  
(non-overflow), the sign and the overflow bit will match. If the sign bit and overflow bit  
do not match, a computational overflow has occurred.  
Input Buffer Stage  
Many applications require the measurement of an input voltage source with a high output  
impedance. This ADC provides a buffered input for such situations. The drawback of the  
buffered input is a limitation of the input range. When using unity gain buffered mode, the  
input signal must be prevented from coming too close to either VSS or VDD. See  
Table 138, Analog-to-Digital Converter Electrical Characteristics and Timing, on  
page 221 for details.  
This condition applies only to the input voltage level (with respect to ground) of each dif-  
ferential input signal. The actual differential input voltage magnitude may be less than 300  
mV.  
The input range of the unbuffered ADC swings from VSS to VDD. Input signals smaller  
than 300 mV must use the unbuffered input mode. If these signals do not contain low out-  
put impedances, they might require off-chip buffering.  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
123  
Signals outside the allowable input range can be used without instability or device dam-  
age. Any ADC readings made outside the input range are subject to greater inaccuracy  
than specified.  
Low-Power Operational Amplifier (LPO)  
The LPO is a general-purpose operational amplifier. Each of the three ports of the ampli-  
fier is accessible from the package pins. The LPO contains only one pin configuration:  
ANA0 is the output/feedback node, ANA1 is the inverting input and ANA2 is the non-  
inverting input.  
To use the LPO, it must be enabled in the Power Control Register 0 (PWRCTL0). The  
default state of the LPO is OFF. To use the LPO, the LPO bit must be cleared, turning it  
ON (Power Control Register 0 (PWRCTL0) on page 31). When making normal ADC  
measurements on ANA0 (measurements not involving the LPO output), the LPO bit must  
be OFF. Turning the LPO bit ON interferes with normal ADC measurements. Finally, this  
bit enables the amplifier even in STOP mode. If the amplifier is not required in STOP  
mode, disable it. Failing to perform this results in STOP mode currents greater than speci-  
fied.  
As with other ADC measurements, any pins used for analog purposes must be configured  
as such in the GPIO registers (see Port A–D Alternate Function Sub-Registers on  
page 42).  
LPO output measurements are made on ANA0, as selected by the ANAIN[3:0]bits of  
ADC Control Register 0. It is also possible to make single-ended measurements on ANA1  
and ANA2 while the amplifier is enabled, which is often useful for determining offset con-  
ditions. Differential measurements between ANA0 and ANA2 may be useful for noise  
cancellation purposes.  
If the LPO output is routed to the ADC, then the BUFFMODE[2:0] bits of ADC Control/Sta-  
tus Register 1 must also be configured for unity-gain buffered operation. Using the LPO in  
an unbuffered mode is not recommended.  
When either input is overdriven, the amplifier output saturates at the positive or negative  
supply voltage. No instability results.  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
124  
ADC Control Register Definitions  
ADC Control Register 0  
The ADC Control Register 0 (ADCCTL0) selects the analog input channel and initiates  
the analog-to-digital conversion. It also selects the voltage reference configuration.  
Table 72. ADC Control Register 0 (ADCCTL0)  
7
6
5
4
CONT  
0
3
2
1
0
BITS  
CEN  
0
REFSELL REFOUT  
ANAIN[3:0]  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F70H  
ADDR  
CEN—Conversion Enable  
0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears  
this bit to 0 when a conversion is complete.  
1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already  
in progress, the conversion restarts. This bit remains 1 until the conversion is complete.  
REFSELL—Voltage Reference Level Select Low Bit; in conjunction with the High bit  
(REFSELH) in ADC Control/Status Register 1, this determines the level of the internal  
voltage reference; the following details the effects of {REFSELH, REFSELL}; note that  
this reference is independent of the Comparator reference  
00= Internal Reference Disabled, reference comes from external pin  
01= Internal Reference set to 1.0 V  
10= Internal Reference set to 2.0 V (default)  
11= Reserved  
REFOUT - Internal Reference Output Enable  
0 = Reference buffer is disabled; Vref pin is available for GPIO or analog functions  
1 = The internal ADC reference is buffered and driven out to the Vref pin  
When the ADC is used with an external reference ({REFSELH,REFSELL}=00), the  
REFOUT bit must be set to 0.  
Warning:  
CONT  
0 = Single-shot conversion. ADC data is output once at completion of the 5129 system  
clock cycles (measurements of the internal temperature sensor take twice as long)  
1 = Continuous conversion. ADC data updated every 256 system clock cycles after an ini-  
tial 5129 clock conversion (measurements of the internal temperature sensor take twice as  
long)  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
125  
ANAIN[3:0]—Analog Input Select  
These bits select the analog input for conversion. Not all Port pins in this list are available  
in all packages for the Z8 Encore! XP® 4K Series. Refer to the chapter Pin Description on  
page 7 for information regarding the Port pins available with each package style. Do not  
enable unavailable analog inputs. Usage of these bits changes depending on the buffer  
mode selected in ADC Control/Status Register 1.  
For the reserved values, all input switches are disabled to avoid leakage or other undesir-  
able operation. ADC samples taken with reserved bit settings are undefined.  
SINGLE-ENDED:  
0000 = ANA0 (transimpedance amp output when enabled)  
0001 = ANA1 (transimpedance amp inverting input)  
0010 = ANA2 (transimpedance amp non-inverting input)  
0011 = ANA3  
0100 = ANA4  
0101 = ANA5  
0110 = ANA6  
0111 = ANA7  
1000 = Reserved  
1001 = Reserved  
1010 = Reserved  
1011 = Reserved  
1100 = Hold transimpedance input nodes (ANA1 and ANA2) to ground.  
1101 = Reserved  
1110 = Temperature Sensor.  
1111 = Reserved.  
DIFFERENTIAL (non-inverting input and inverting input respectively):  
0000 = ANA0 and ANA1  
0001 = ANA2 and ANA3  
0010 = ANA4 and ANA5  
0011 = ANA1 and ANA0  
0100 = ANA3 and ANA2  
0101 = ANA5 and ANA4  
0110 = ANA6 and ANA5  
0111 = ANA0 and ANA2  
1000 = ANA0 and ANA3  
1001 = ANA0 and ANA4  
1010 = ANA0 and ANA5  
1011 = Reserved  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Manual Offset Calibration Mode  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
126  
ADC Control/Status Register 1  
The ADC Control/Status Register 1 (ADCCTL1) configures the input buffer stage,  
enables the threshold interrupts and contains the status of both threshold triggers. It is also  
used to select the voltage reference configuration.  
Table 73. ADC Control/Status Register 1 (ADCCTL1)  
7
6
5
4
3
2
1
0
BITS  
REFSELH ALMHST ALMLST ALMHEN ALMLEN  
BUFMODE[2:0]  
FIELD  
RESET  
R/W  
1
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F71H  
ADDR  
REFSELH—Voltage Reference Level Select High Bit; in conjunction with the Low bit  
(REFSELL) in ADC Control Register 0, this determines the level of the internal voltage  
reference; the following details the effects of {REFSELH, REFSELL}; this reference is  
independent of the Comparator reference  
00= Internal Reference Disabled, reference comes from external pin  
01= Internal Reference set to 1.0 V  
10= Internal Reference set to 2.0 V (default)  
11= Reserved  
ALMHST—Alarm High Status; this bit can only be set by hardware and must be written  
with a 1 to clear  
0= No alarm occurred.  
1= A high threshold alarm occurred.  
ALMLST—Alarm Low Status; this bit can only be set by hardware and must be written  
with a 1 to clear  
0= No alarm occurred.  
1= A low threshold alarm occurred.  
ALMHEN—Alarm High Enable  
0= Alarm interrupt for high threshold is disabled. The alarm status bit remains set when  
the alarm threshold is passed.  
1= High threshold alarm interrupt is enabled.  
ALMLEN—Alarm Low Enable  
0= Alarm interrupt for low threshold is disabled. The alarm status bit remains set when the  
alarm threshold is passed.  
1= Low threshold alarm interrupt is enabled.  
BUFMODE[2:0] - Input Buffer Mode Select  
000 = Single-ended, unbuffered input  
001 = Single-ended, buffered input with unity gain  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
127  
010 = Reserved  
011 = Reserved  
100 = Differential, unbuffered input  
101 = Differential, buffered input with unity gain  
110 = Reserved  
111 = Reserved  
ADC Data High Byte Register  
The ADC Data High Byte (ADCD_H) register contains the upper eight bits of the ADC  
output. The output is an 13-bit two’s complement value. During a single-shot conversion,  
this value is invalid. Access to the ADC Data High Byte register is read-only. Reading the  
ADC Data High Byte register latches data in the ADC Low Bits register.  
Table 74. ADC Data High Byte Register (ADCD_H)  
7
6
5
4
3
2
1
0
BITS  
ADCDH  
F72H  
FIELD  
RESET  
R/W  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
ADDR  
ADCDH—ADC Data High Byte  
This byte contains the upper eight bits of the ADC output. These bits are not valid during a  
single-shot conversion. During a continuous conversion, the most recent conversion out-  
put is held in this register. These bits are undefined after a Reset.  
ADC Data Low Bits Register  
The ADC Data Low Byte (ADCD_L) register contains the lower bits of the ADC output  
as well as an overflow status bit. The output is a 13-bit two’s complement value. During a  
single-shot conversion, this value is invalid. Access to the ADC Data Low Byte register is  
read-only. Reading the ADC Data High Byte register latches data in the ADC Low Bits  
register.  
Table 75. ADC Data Low Bits Register (ADCD_L)  
7
6
5
4
3
2
1
0
OVF  
X
BITS  
ADCDL  
Reserved  
FIELD  
RESET  
R/W  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
R
F73H  
ADDR  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
128  
ADCDL—ADC Data Low Bits  
These bits are the least significant five bits of the 13-bits of the ADC output. These bits are  
undefined after a Reset.  
Reserved—Must be undefined.  
OVF—Overflow Status  
0= A hardware overflow did not occur in the ADC for the current sample.  
1= A hardware overflow did occur in the ADC for the current sample, therefore the cur-  
rent sample is invalid.  
ADC High Threshold Register  
The ADC High Threshold (ADCTHH) register is used to set the trigger point above which  
an ADC sample causes a CPU interrupt.  
Table 76. ADC High Threshold High Byte (ADCTHH)  
7
6
5
4
3
2
1
0
BITS  
ADCTHH  
FF  
FIELD  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F74H  
ADDR  
ADCTHH—ADC High Threshold  
These bits are compared to the most significant 8 bits of the single-ended ADC value. If  
the ADC value exceeds this, an interrupt is asserted. The alarm function is not available in  
DIFFERENTIAL mode.  
ADC Low Threshold Register  
The ADC Low Threshold (ADCTLH) register is used to set the trigger point below which  
an ADC sample causes a CPU interrupt.  
Table 77. ADC Low Threshold High Byte (ADCTLH)  
7
6
5
4
3
2
1
0
BITS  
ADCTLH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F76H  
ADDR  
ADCTLH—ADC Low Threshold  
These bits are compared to the most significant 8 bits of the single-ended ADC value. If  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
129  
the ADC value drops below this value an interrupt is asserted. The alarm function is not  
available in DIFFERENTIAL mode.  
PS022815-0206  
Analog-to-Digital Converter  
Z8 Encore! XP® 4K Series  
Product Specification  
130  
Comparator  
Overview  
The Z8 Encore! XP® 4K Series devices feature a general purpose comparator that com-  
pares two analog input signals. These analog signals may be external stimulus from a pin  
(CINP and/or CINN) or internally generated signals. Both a programmable voltage refer-  
ence and the temperature sensor output voltage are available internally. The output is  
available as an interrupt source or can be routed to an external pin.  
CINP Pin  
Temperature  
Sensor  
To  
COUT  
Pin  
INPSEL  
INNSEL  
+
-
REFLVL  
Comparator  
Internal  
Reference  
ToInterrupt  
Controller  
CINN Pin  
Figure 20.Comparator Block Diagram  
Operation  
When the positive comparator input exceeds the negative input by more than the specified  
hysteresis, the output is a logic HIGH. When the negative input exceeds the positive by  
more than the hysteresis, the output is a logic LOW. Otherwise, the comparator output  
retains its present value. Refer to Table 140, Comparator Electrical Characteristics, on  
page 223 for details.  
PS022815-0206  
Comparator  
Z8 Encore! XP® 4K Series  
Product Specification  
131  
The comparator may be powered down to reduce supply current. See the Power Control  
Register 0 on page 30 for details.  
Because of the propagation delay of the comparator, it is not recommended to enable or  
reconfigure the comparator without first disabling interrupts and waiting for the com-  
parator output to settle. Doing so can result in spurious interrupts. The following exam-  
ple shows how to safely enable the comparator:  
Caution:  
di  
ld cmp0, r0 ; load some new configutation  
nop  
nop  
; wait for output to settle  
clr irq0 ; clear any spurious interrupts pending  
ei  
Comparator Control Register Definitions  
Comparator Control Register  
The Comparator Control Register (CMP0) configures the comparator inputs and sets the  
value of the internal voltage reference.  
Table 78. Comparator Control Register (CMP0)  
BITS  
7
6
5
4
3
2
1
0
INPSEL  
INNSEL  
REFLVL  
Reserved (20-/28-pin)  
REFLVL (8-pin)  
FIELD  
RESET  
R/W  
0
0
0
1
0
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F90H  
ADDR  
INPSEL—Signal Select for Positive Input  
0 = GPIO pin used as positive comparator input  
1 = temperature sensor used as positive comparator input  
INNSEL—Signal Select for Negative Input  
0 = internal reference disabled, GPIO pin used as negative comparator input  
1 = internal reference enabled as negative comparator input  
REFLVL—Internal Reference Voltage Level (this reference is independent of the ADC  
voltage reference). Note that the 8-pin devices contain two additional LSBs for increased  
resolution.  
For 20-/28-pin devices:  
PS022815-0206  
Comparator  
Z8 Encore! XP® 4K Series  
Product Specification  
132  
0000 = 0.0 V  
0001 = 0.2 V  
0010 = 0.4 V  
0011 = 0.6 V  
0100 = 0.8 V  
0101 = 1.0 V (Default)  
0110 = 1.2 V  
0111 = 1.4 V  
1000 = 1.6 V  
1001 = 1.8 V  
1010–1111 = Reserved  
For 8-pin devices:  
000000 = 0.00V  
000001 = 0.05V  
000010 = 0.10V  
000011 = 0.15V  
000100 = 0.20V  
000101 = 0.25V  
000110 = 0.30V  
000111 = 0.35V  
001000 = 0.40V  
001001 = 0.45V  
001010 = 0.50V  
001011 = 0.55V  
001100 = 0.60V  
001101 = 0.65V  
001110 = 0.70V  
001111 = 0.75V  
010000 = 0.80V  
010001 = 0.85V  
010010 = 0.90V  
010011 = 0.95V  
010100 = 1.00V (Default)  
010101 = 1.05V  
010110 = 1.10V  
010111 = 1.15V  
011000 = 1.20V  
011001 = 1.25V  
011010 = 1.30V  
011011 = 1.35V  
011100 = 1.40V  
011101 = 1.45V  
011110 = 1.50V  
PS022815-0206  
Comparator  
Z8 Encore! XP® 4K Series  
Product Specification  
133  
011111 = 1.55V  
100000 = 1.60V  
100001 = 1.65V  
100010 = 1.70V  
100011 = 1.75V  
100100 = 1.80V  
PS022815-0206  
Comparator  
Z8 Encore! XP® 4K Series  
Product Specification  
134  
Temperature Sensor  
Overview  
The on-chip Temperature Sensor allows the user the ability to measure temperature on the  
die with either the on-board ADC or on-board comparator. This block is factory calibrated  
for in-circuit software correction. Uncalibrated accuracy is significantly worse, therefore  
the temperature sensor is not recommended for uncalibrated use.  
Temperature Sensor Operation  
The on-chip temperature sensor is a PTAT (proportional to absolute temperature) topology.  
A pair of Flash option bytes contain the calibration data. The temperature sensor can be  
disabled by a bit in the Power Control Register 0 (page 30) to reduce power consumption.  
The temperature sensor can be directly read by the ADC to determine the absolute value of  
its output. The temperature sensor output is also available as an input to the comparator for  
threshold type measurement determination. The accuracy of the sensor when used with the  
comparator is substantially less than when measured by the ADC.  
If the temperature sensor is routed to the ADC, the ADC must be configured in unity-gain  
buffered mode (See Input Buffer Stage on page 122.) The value read back from the ADC  
is a signed number, although it is always positive.  
The sensor is factory-trimmed through the ADC using the external 2.0V reference. Unless  
the sensor is re-trimmed for use with a different reference, it is most accurate when used  
with the external 2.0V reference.  
Because this sensor is an on-chip sensor it is recommended that the user account for the  
difference between ambient and die temperature when inferring ambient temperature con-  
ditions.  
During normal operation, the die undergoes heating that will cause a mismatch between  
the ambient temperature and that measured by the sensor. For best results, the XP device  
should be placed into STOP mode for sufficient time such that the die and ambient tem-  
peratures converge (this time will be dependent on the thermal design of the system). The  
temperature sensor measurement should then be made immediately after recovery from  
STOP mode.  
The following equation defines the transfer function between the temperature sensor out-  
put voltage and the die temperature. This is needed for comparator threshold measure-  
ments.  
V = 0.01 * T + 0.65 (where T is the temperature in C; V is the sensor output in Volts)  
PS022815-0206  
Temperature Sensor  
Z8 Encore! XP® 4K Series  
Product Specification  
135  
Assuming a compensated ADC measurement, the following equation defines the relation-  
ship between the ADC reading and the die temperature:  
T = (25/128)*(ADC - TSCAL) + 30 (where T is the temperature in C; ADC is the 10 bit  
compensated ADC value; and TSCAL is the temperature sensor calibration value)  
See Temperature Sensor Calibration Data on page 162 for the location of TSCAL.  
Calibration  
The temperature sensor undergoes calibration during the manufacturing process and is  
maximally accurate at 30°C. Accuracy decreases as measured temperatures move further  
from the calibration point.  
PS022815-0206  
Temperature Sensor  
Z8 Encore! XP® 4K Series  
Product Specification  
136  
Flash Memory  
Overview  
The products in the Z8 Encore! XP® 4K Series features either 4KB (4096), 2KB (2048  
bytes), or 1KB (1024) of non-volatile Flash memory with read/write/erase capability. The  
Flash Memory can be programmed and erased in-circuit by user code or through the On-  
Chip Debugger.  
The Flash memory array is arranged in pages with 512 bytes per page. The 512-byte page  
is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64  
bytes.  
For program/data protection, the Flash memory is also divided into sectors. In the Z8  
Encore! XP® 4K Series, these sectors are 512 bytes in size; each sector maps to a page.  
Page and sector sizes are not equal for other members of the Z8 Encore!® family.  
The first 2 bytes of the Flash Program memory are used as Flash Option Bits. Refer to the  
chapter Flash Option Bits on page 148 for more information about their operation.  
Table 79 describes the Flash memory configuration for each device in the Z8 Encore! XP®  
4K Series. Figure 21 illustrates the Flash memory arrangement.  
®
Table 79. Z8 Encore! XP 4K Series Flash Memory Configurations  
Flash Size  
KB (Bytes)  
Flash  
Pages  
Program Memory  
Addresses  
Flash Sector  
Size (bytes)  
Part Number  
Z8F04xA  
4 (4096)  
2 (2048)  
1 (1024)  
8
4
2
0000H–0FFFH  
0000H–07FFH  
0000H–03FFH  
512  
512  
512  
Z8F02xA  
Z8F01xA  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
137  
4KB Flash  
Program Memory  
2KB Flash  
Program Memory  
Addresses (hex)  
Addresses (hex)  
0FFF  
07FF  
Sector 3  
Sector 7  
Sector 6  
0600  
05FF  
0E00  
0DFF  
Sector 2  
Sector 1  
Sector 0  
0400  
03FF  
4 Pages/Sectors  
0C00  
0BFF  
0200  
01FF  
Sector 5  
Sector 4  
Sector 3  
Sector 2  
0A00  
09FF  
0000  
0800  
07FF  
8 Pages/Sectors  
512 Bytes each  
1KB Flash  
Program Memory  
Addresses (hex)  
03FF  
0600  
05FF  
Sector 1  
0200  
01FF  
0400  
03FF  
2 Pages/Sectors  
Sector 0  
Sector 1  
Sector 0  
0000  
0200  
01FF  
0000  
Figure 21.Flash Memory Arrangement  
Flash Information Area  
The Flash information area is separate from program memory and is mapped to the  
address range FE00Hto FFFFH. This area is readable but cannot be erased or overwritten.  
Factory trim values for the analog peripherals are stored here. Factory calibration data for  
the ADC is also stored here.  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
138  
Operation  
The Flash Controller programs and erases Flash memory. The Flash Controller provides  
the proper Flash controls and timing for Byte Programming, Page Erase, and Mass Erase  
of Flash memory.  
The Flash Controller contains several protection mechanisms to prevent accidental pro-  
gramming or erasure. These mechanism operate on the page, sector and full-memory lev-  
els.  
The Flow Chart in Figure 22 illustrates basic Flash Controller operation. The following  
subsections provide details about the various operations (Lock, Unlock, Byte Program-  
ming, Page Protect, Page Unprotect, Page Select, Page Erase, and Mass Erase) listed in  
Figure 22.  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
139  
Reset  
Lock State 0  
Write Page  
Select Register  
Write FCTL  
No  
73H  
Yes  
Lock State 1  
Write FCTL  
Writes to Page Select  
Register in Lock State 1  
result in a return to  
Lock State 0  
No  
8CH  
Yes  
Write Page  
Select Register  
No  
Page Select  
values match?  
Yes  
Yes  
Page in  
Protected Sector?  
Byte Program  
Write FCTL  
No  
Page  
Yes  
Unlocked  
95H  
No  
Page Erase  
Program/Erase  
Enabled  
Figure 22.Flash Controller Operation Flow Chart  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
140  
Flash Operation Timing Using the Flash Frequency Registers  
Before performing either a program or erase operation on Flash memory, the user must  
first configure the Flash Frequency High and Low Byte registers. The Flash Frequency  
registers allow programming and erasing of the Flash with system clock frequencies rang-  
ing from 32 KHz (32768 Hz) through 20 MHz.  
The Flash Frequency High and Low Byte registers combine to form a 16-bit value,  
FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash  
Frequency value must contain the system clock frequency (in KHz). This value is calcu-  
lated using the following equation:  
.
System Clock Frequency (Hz)  
FFREQ[15:0] = ---------------------------------------------------------------------------  
1000  
Flash programming and erasure are not supported for system clock frequencies below  
32 KHz (32768 Hz) or above 20 MHz. The Flash Frequency High and Low Byte regis-  
ters must be loaded with the correct value to ensure operation of the Z8 Encore! XP®  
4K Series devices.  
Caution:  
Flash Code Protection Against External Access  
The user code contained within the Flash memory can be protected against external access  
by the on-chip debugger. Programming the FRPFlash Option Bit prevents reading of the  
user code with the On-Chip Debugger. Refer to the chapter Flash Option Bits on page 148  
and the chapter On-Chip Debugger on page 167 for more information.  
Flash Code Protection Against Accidental Program and Erasure  
The Z8 Encore! XP® 4K Series provides several levels of protection against accidental  
program and erasure of the Flash memory contents. This protection is provided by a com-  
bination of the Flash Option bits, the register locking mechanism, the page select redun-  
dancy and the sector level protection control of the Flash Controller.  
Flash Code Protection Using the Flash Option Bits  
The FRPand FWPFlash Option Bits combine to provide three levels of Flash Program  
Memory protection as listed in Table 80. Refer to the chapter Flash Option Bits on  
page 148 for more information.  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
141  
.
Table 80. Flash Code Protection Using the Flash Option Bits  
FWP Flash Code Protection Description  
0
Programming and erasing disabled for all of Flash Program  
Memory. In user code programming, Page Erase, and Mass Erase  
are all disabled. Mass Erase is available through the On-Chip  
Debugger.  
1
Programming, Page Erase, and Mass Erase are enabled for all of  
Flash Program Memory.  
Flash Code Protection Using the Flash Controller  
At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash  
memory. To program or erase the Flash memory, first write the Page Select Register with  
the target page. Unlock the Flash Controller by making two consecutive writes to the  
Flash Control register with the values 73Hand 8CH, sequentially. The Page Select Register  
must be rewritten with the target page. If the two Page Select writes do not match, the con-  
troller reverts to a locked state. If the two writes match, the selected page becomes active.  
See Figure 22 for details.  
After unlocking a specific page, the user can enable either Page Program or Erase. Writing  
the value 95Hcauses a Page Erase only if the active page resides in a sector that is not pro-  
tected. Any other value written to the Flash Control register locks the Flash Controller.  
Mass Erase is not allowed in the user code but only in through the Debug Port.  
After unlocking a specific page, the user can also write to any byte on that page. After a  
byte is written, the page remains unlocked, allowing for subsequent writes to other bytes  
on the same page. Further writes to the Flash Control Register cause the active page to  
revert to a locked state.  
Sector Based Flash Protection  
The final protection mechanism is implemented on a per-sector basis. The Flash memories  
of Z8 Encore!® devices are divided into at most 8 sectors. A sector is 1/8 of the total size  
of the Flash memory, unless this value is smaller than the page size, in which case the sec-  
tor and page sizes are equal. On the Z8 Encore! XP® 4K Series devices, the sector size is  
512 bytes, equal to the page size.  
The Sector Protect Register controls the protection state of each Flash sector. This register  
is shared with the Page Select Register. It is accessed by writing 73H followed by 5EH to  
the Flash controller. The next write to the Flash Control Register targets the Sector Protect  
Register.  
The Sector Protect Register is initialized to 0 on reset, putting each sector into an unpro-  
tected state. When a bit in the Sector Protect Register is written to 1, the corresponding  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
142  
sector can no longer be written or erased. After a bit of the Sector Protect Register has  
been set, it can not be cleared except by powering down the device.  
Byte Programming  
The Flash Memory is enabled for byte programming after unlocking the Flash Controller  
and successfully enabling either Mass Erase or Page Erase. When the Flash Controller is  
unlocked and Mass Erase is successfully completed, all Program Memory locations are  
available for byte programming. In contrast, when the Flash Controller is unlocked and  
Page Erase is successfully completed, only the locations of the selected page are available  
for byte programming. An erased Flash byte contains all 1’s (FFH). The programming  
operation can only be used to change bits from 1 to 0. To change a Flash bit (or multiple  
bits) from 0 to 1 requires execution of either the Page Erase or Mass Erase commands.  
Byte Programming can be accomplished using the On-Chip Debugger's Write Memory  
command or eZ8 CPU execution of the LDC or LDCI instructions. Refer to the eZ8 CPU  
User Manual (available for download at www.zilog.com)for a description of the LDC and  
LDCI instructions. While the Flash Controller programs the Flash memory, the eZ8 CPU  
idles but the system clock and on-chip peripherals continue to operate. To exit program-  
ming mode and lock the Flash, write any value to the Flash Control register, except the  
Mass Erase or Page Erase commands.  
The byte at each address of the Flash memory cannot be programmed (any bits written  
to 0) more than twice before an erase cycle occurs. Doing so may result in corrupted data  
at the target byte.  
Caution:  
Page Erase  
The Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash  
memory sets all bytes in that page to the value FFH. The Flash Page Select register identi-  
fies the page to be erased. Only a page residing in an unprotected sector can be erased.  
With the Flash Controller unlocked and the active page set, writing the value 95hto the  
Flash Control register initiates the Page Erase operation. While the Flash Controller exe-  
cutes the Page Erase operation, the eZ8 CPU idles but the system clock and on-chip  
peripherals continue to operate. The eZ8 CPU resumes operation after the Page Erase  
operation completes. If the Page Erase operation is performed using the On-Chip Debug-  
ger, poll the Flash Status register to determine when the Page Erase operation is complete.  
When the Page Erase is complete, the Flash Controller returns to its locked state.  
Mass Erase  
The Flash memory can also be Mass Erased using the Flash Controller, but only by using  
the On-Chip Debugger. Mass Erasing the Flash memory sets all bytes to the value FFH.  
With the Flash Controller unlocked and the Mass Erase successfully enabled, writing the  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
143  
value 63Hto the Flash Control register initiates the Mass Erase operation. While the Flash  
Controller executes the Mass Erase operation, the eZ8 CPU idles but the system clock and  
on-chip peripherals continue to operate. Using the On-Chip Debugger, poll the Flash Sta-  
tus register to determine when the Mass Erase operation is complete. When the Mass  
Erase is complete, the Flash Controller returns to its locked state.  
Flash Controller Bypass  
The Flash Controller can be bypassed and the control signals for the Flash memory  
brought out to the GPIO pins. Bypassing the Flash Controller allows faster Row Program-  
ming algorithms by controlling the Flash programming signals directly.  
Row programming is recommended for gang programming applications and large volume  
customers who do not require in-circuit initial programming of the Flash memory. Page  
Erase operations are also supported when the Flash Controller is bypassed.  
Please refer to the document entitled Third-Party Flash Programming Support for Z8  
Encore!® for more information about bypassing the Flash Controller. This document is  
available for download at www.zilog.com.  
Flash Controller Behavior in Debug Mode  
The following changes in behavior of the Flash Controller occur when the Flash Control-  
ler is accessed using the On-Chip Debugger:  
The Flash Write Protect option bit is ignored.  
The Flash Sector Protect register is ignored for programming and erase operations.  
Programming operations are not limited to the page selected in the Page Select  
register.  
Bits in the Flash Sector Protect register can be written to one or zero.  
The second write of the Page Select register to unlock the Flash Controller is not  
necessary.  
The Page Select register can be written when the Flash Controller is unlocked.  
The Mass Erase command is enabled through the Flash Control register.  
For security reasons, the flash controller allows only a single page to be opened for  
write/erase. When writing multiple flash pages, the flash controller must go through the  
unlock sequence again to select another page.  
Caution:  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
144  
Flash Control Register Definitions  
Flash Control Register  
The Flash Controller must be unlocked using the Flash Control (FCTL) register before  
programming or erasing the Flash memory. Writing the sequence 73H8CH, sequentially,  
to the Flash Control register unlocks the Flash Controller. When the Flash Controller is  
unlocked, the Flash memory can be enabled for Mass Erase or Page Erase by writing the  
appropriate enable command to the FCTL. Page Erase applies only to the active page  
selected in Flash Page Select register. Mass Erase is enabled only through the On-Chip  
Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to  
its locked state. The Write-only Flash Control Register shares its Register File address  
with the read-only Flash Status Register  
.
Table 81. Flash Control Register (FCTL)  
BITS  
7
6
5
4
3
2
1
0
FCMD  
FF8H  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
ADDR  
FCMD—Flash Command  
73H = First unlock command.  
8CH = Second unlock command.  
95H = Page Erase command (must be third command in sequence to initiate Page Erase).  
63H = Mass Erase command (must be third command in sequence to initiate Mass Erase).  
5EH = Enable Flash Sector Protect Register Access  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
145  
Flash Status Register  
The Flash Status (FSTAT) register indicates the current state of the Flash Controller. This  
register can be read at any time. The read-only Flash Status Register shares its Register  
File address with the Write-only Flash Control Register.  
Table 82. Flash Status Register (FSTAT)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
FSTAT  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
FF8H  
ADDR  
Reserved—Must be 0.  
FSTAT—Flash Controller Status  
000000 = Flash Controller locked.  
000001 = First unlock command received (73H written).  
000010 = Second unlock command received (8CH written).  
000011 = Flash Controller unlocked.  
000100 = Sector protect register selected.  
001xxx = Program operation in progress.  
010xxx = Page erase operation in progress.  
100xxx = Mass erase operation in progress  
Flash Page Select Register  
The Flash Page Select (FPS) register shares address space with the Flash Sector Protect  
Register. Unless the Flash controller is unlocked and written with 5EH, writes to this  
address target the Flash Page Select Register.  
The register is used to select one of the 8 available Flash memory pages to be programmed  
or erased. Each Flash Page contains 512 bytes of Flash memory. During a Page Erase  
operation, all Flash memory having addresses with the most significant 7-bits given by  
FPS[6:0] are chosen for program/erase operation.  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
146  
Table 83. Flash Page Select Register (FPS)  
BITS  
7
6
5
4
3
2
1
0
INFO_EN  
PAGE  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF9H  
ADDR  
INFO_EN—Information Area Enable  
0 = Information Area us not selected  
1 = Information Area is selected. The Information Area is mapped into the Program Mem-  
ory address space at addresses FE00Hthrough FFFFH.  
PAGE—Page Select  
This 7-bit field identifies the Flash memory page for Page Erase and page unlocking.  
Program Memory Address[15:9] = PAGE[6:0]. For the Z8F04xx devices, the upper 4 bits  
must be zero. For Z8F02xx devices, the upper 5 bits must always be 0. For the Z8F01xx  
devices, the upper 6 bits must always be 0.  
Flash Sector Protect Register  
The Flash Sector Protect (FPROT) register is shared with the Flash Page Select Register.  
When the Flash Control Register is written with 73H followed by 5EH, the next write to  
this address targets the Flash Sector Protect Register. In all other cases, it targets the Flash  
Page Select Register.  
This register selects one of the 8 available Flash memory sectors to be protected. The reset  
state of each Sector Protect bit is an unprotected state. After a sector is protected by setting  
its corresponding register bit, it cannot be unprotected (the register bit cannot be cleared)  
without powering down the device.  
Table 84. Flash Sector Protect Register (FPROT)  
BITS  
7
6
5
4
3
2
1
0
SPROT7 SPROT6 SPROT5 SPROT4 SPROT3 SPROT2 SPROT1 SPROT0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF9H  
ADDR  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
147  
SPROT7-SPROT0—Sector Protection  
Each bit corresponds to a 512 byte Flash sector. For the Z8F04xx devices all bits are used.  
For the Z8F02xx devices, the upper 4 bits are unused. For the Z8F01xx devices, the upper  
6 bits are unused.  
Flash Frequency High and Low Byte Registers  
The Flash Frequency High (FFREQH) and Low Byte (FFREQL) registers combine to  
form a 16-bit value, FFREQ, to control timing for Flash program and erase operations.  
The 16-bit binary Flash Frequency value must contain the system clock frequency (in  
KHz) and is calculated using the following equation:.  
System Clock Frequency  
FFREQ[15:0] = {FFREQH[7:0],FFREQL[7:0]} = ---------------------------------------------------------------  
1000  
The Flash Frequency High and Low Byte registers must be loaded with the correct value  
to ensure proper operation of the device. Also, Flash programming and erasure is not  
supported for system clock frequencies below 20 KHz or above 20 MHz.  
Caution:  
Table 85. Flash Frequency High Byte Register (FFREQH)  
BITS  
7
6
5
4
3
2
1
0
FFREQH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FFAH  
ADDR  
FFREQH—Flash Frequency High Byte  
High byte of the 16-bit Flash Frequency value.  
Table 86. Flash Frequency Low Byte Register (FFREQL)  
BITS  
7
6
5
4
3
2
1
0
FFREQL  
0
FIELD  
RESET  
R/W  
R/W  
FFBH  
ADDR  
FFREQL—Flash Frequency Low Byte  
Low byte of the 16-bit Flash Frequency value.  
PS022815-0206  
Flash Memory  
Z8 Encore! XP® 4K Series  
Product Specification  
148  
Flash Option Bits  
Overview  
Programmable Flash option bits allow user configuration of certain aspects of Z8 Encore!  
XP® 4K Series operation. The feature configuration data is stored in the Flash program  
memory and loaded into holding registers during Reset. The features available for control  
through the Flash Option Bits are:  
Watch-dog timer time-out response selection–interrupt or system reset  
Watch-dog timer Always on (enabled at Reset)  
The ability to prevent unwanted read access to user code in Program Memory  
The ability to prevent accidental programming and erasure of all or a portion of the user  
code in Program Memory  
Voltage brown-out configuration-always enabled or disabled during STOP mode to re-  
duce STOP mode power consumption  
Oscillator mode selection-for high, medium, and low power crystal oscillators, or external  
RC oscillator  
Factory trimming information for the internal precision oscillator and low voltage detec-  
tion  
Factory calibration values for ADC, temperature sensor, and Watch-dog timer compensa-  
tion  
Factory serialization and randomized lot identifier (optional)  
Operation  
Option Bit Configuration By Reset  
Each time the Flash Option Bits are programmed or erased, the device must be Reset for  
the change to take effect. During any reset operation (System Reset, Power On Reset, or  
STOP Mode Recovery), the Flash Option Bits are automatically read from the Flash Pro-  
gram Memory and written to Option Configuration registers. The Option Configuration  
registers control operation of the devices within the Z8 Encore! XP® 4K Series. Option Bit  
control is established before the device exits Reset and the eZ8 CPU begins code execu-  
tion. The Option Configuration registers are not part of the Register File and are not acces-  
sible for read or write access.  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
149  
Option Bit Types  
User Option Bits  
The user option bits are contained in the first two bytes of program memory. User access  
to these bits has been provided because these locations contain application-specific device  
configurations. The information contained here is lost when page 0 of the program mem-  
ory is erased.  
Trim Option Bits  
The trim option bits are contained in the information page of the Flash memory. These bits  
are factory programmed values required to optimize the operation of onboard analog cir-  
cuitry and cannot be permanently altered by the user. Program memory may be erased  
without endangering these values. It is possible to alter working values of these bits by  
accessing the Trim Bit Address and Data Registers, but these working values are lost after  
a power loss or any other reset event.  
There are 32 bytes of trim data. To modify one of these values the user code must first  
write a value between 00Hand 1FHinto the Trim Bit Address Register. The next write to  
the Trim Bit Data register changes the working value of the target trim data byte.  
Reading the trim data requires the user code to write a value between 00Hand 1FHinto the  
Trim Bit Address Register. The next read from the Trim Bit Data register returns the work-  
ing value of the target trim data byte.  
The trim address range is from information address 20-3F only. The remainder of the  
information page is not accessible through the trim bit address and data registers.  
Note:  
Calibration Option Bits  
The calibration option bits are also contained in the information page. These bits are fac-  
tory programmed values intended for use in software correcting the device’s analog per-  
formance. To read these values, the user code must employ the LDC instruction to access  
the information area of the address space as defined in See Flash Information Area on  
page 15.  
Serialization Bits  
As an optional feature, ZiLOG is able to provide factory-programmed serialization. For  
serialized products, the individual devices will be programmed with unique serial num-  
bers. These serial numbers are binary values, four bytes in length. The numbers increase in  
size with each device, but gaps in the serial sequence may exist.  
These serial numbers are stored in the flash information page (see Reading the Flash Infor-  
mation Page on page 150 and Serialization Data on page 159 for more details) and are  
unaffected by mass erasure of the device's flash memory.  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
150  
Randomized Lot Identification Bits  
As an optional feature, ZiLOG is able to provide a factory-programmed random lot identi-  
fier. With this feature, all devices in a given production lot will be programmed with the  
same random number. This random number is uniquely regenerated for each successive  
production lot and is not likely to be repeated.  
The randomized lot identifier is a 32 byte binary value, stored in the flash information  
page (see Reading the Flash Information Page on page 150 and Randomized Lot Identifier  
on page 159 for more details) and is unaffected by mass erasure of the device's flash mem-  
ory.  
Reading the Flash Information Page  
The following code example shows how to read data from the flash information area.  
; get value at info address 60 (FE60h)  
ldx FPS, #%80 ; enable access to flash info page  
ld R0, #%FE  
ld R1, #%60  
ldc R2, @RR0 ; R2 now contains the calibration value  
Flash Option Bit Control Register Definitions  
Trim Bit Address Register  
The Trim Bit Address (TRMADR) register contains the target address for an access to the  
trim option bits.  
Table 87. Trim Bit Address Register (TRMADR)  
BITS  
7
6
5
4
3
2
1
0
TRMADR - Trim Bit Address (00H to 1FH)  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF6H  
ADDR  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
151  
Trim Bit Data Register  
The Trim Bid Data (TRMDR) register contains the read or write data for access to the trim  
option bits.  
Table 88. Trim Bit Data Register (TRMDR)  
BITS  
7
6
5
4
3
2
1
0
TRMDR - Trim Bit Data  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF7H  
ADDR  
Flash Option Bit Address Space  
The first two bytes of Flash program memory at addresses 0000Hand 0001Hare reserved  
for the user-programmable Flash option bits.  
Flash Program Memory Address 0000H  
Table 89. Flash Option Bits at Program Memory Address 0000H  
BITS  
7
6
5
4
3
2
1
0
WDT_RES WDT_AO  
OSC_SEL[1:0]  
VBO_AO  
FRP  
Reserved  
FWP  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Program Memory 0000H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
WDT_RES—Watch-Dog Timer Reset  
0 = Watch-Dog Timer time-out generates an interrupt request. Interrupts must be globally  
enabled for the eZ8 CPU to acknowledge the interrupt request.  
1 = Watch-Dog Timer time-out causes a system reset. This setting is the default for unpro-  
grammed (erased) Flash.  
WDT_AO—Watch-Dog Timer Always On  
0 = Watch-Dog Timer is automatically enabled upon application of system power. Watch-  
Dog Timer can not be disabled.  
1 = Watch-Dog Timer is enabled upon execution of the WDT instruction. Once enabled,  
the Watch-Dog Timer can only be disabled by a Reset or STOP Mode Recovery. This set-  
ting is the default for unprogrammed (erased) Flash.  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
152  
OSC_SEL[1:0]—Oscillator Mode Selection  
00 = On-chip oscillator configured for use with external RC networks (<4MHz).  
01 = Minimum power for use with very low frequency crystals (32KHz to 1.0MHz).  
10 = Medium power for use with medium frequency crystals or ceramic resonators  
(0.5MHz to 5.0MHz).  
11 = Maximum power for use with high frequency crystals (5.0MHz to 20.0MHz). This  
setting is the default for unprogrammed (erased) Flash.  
VBO_AO—Voltage Brown-Out Protection Always On  
0 = Voltage Brown-Out Protection is disabled in STOP mode to reduce total power con-  
sumption.  
1 = Voltage Brown-Out Protection is always enabled including during STOP mode. This  
setting is the default for unprogrammed (erased) Flash.  
FRP—Flash Read Protect  
0 = User program code is inaccessible. Limited control features are available through the  
On-Chip Debugger.  
1 = User program code is accessible. All On-Chip Debugger commands are enabled. This  
setting is the default for unprogrammed (erased) Flash.  
Reserved—Must be 1.  
FWP—Flash Write Protect  
This Option Bit provides Flash Program Memory protection:  
0 = Programming and erasure disabled for all of Flash Program Memory. Programming,  
Page Erase, and Mass Erase through User Code is disabled. Mass Erase is available using  
the On-Chip Debugger.  
1 = Programming, Page Erase, and Mass Erase are enabled for all of Flash program mem-  
ory.  
Flash Program Memory Address 0001H  
Table 90. Flash Options Bits at Program Memory Address 0001H  
BITS  
7
6
5
4
3
2
1
0
Reserved  
XTLDIS  
Reserved  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Program Memory 0001H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Reserved—Must be 1.  
XTLDIS—State of Crystal Oscillator at Reset:  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
153  
This bit only enables the crystal oscillator. Its selection as system clock must be done man-  
ually.  
Note:  
0 = Crystal oscillator is enabled during reset, resulting in longer reset timing  
1 = Crystal oscillator is disabled during reset, resulting in shorter reset timing  
Trim Bit Address Space  
Trim Bit Address 0000H  
Table 91. Trim Options Bits at Address 0000H  
BITS  
7
6
5
4
3
2
1
0
Reserved  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 0020H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Reserved— Altering this register may result in incorrect device operation.  
Trim Bit Address 0001H  
Table 92. Trim Option Bits at 0001H  
BITS  
7
6
5
4
3
2
1
0
Reserved  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 0021H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Reserved— Altering this register may result in incorrect device operation.  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
154  
Trim Bit Address 0002H  
Table 93. Trim Option Bits at 0002H (TIPO)  
BITS  
7
6
5
4
3
2
1
0
IPO_TRIM  
FIELD  
RESET  
R/W  
U
R/W  
Information Page Memory 0022H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
IPO_TRIM—Internal Precision Oscillator Trim Byte  
Contains trimming bits for Internal Precision Oscillator.  
Trim Bit Address 0003H  
The LVD is available on 8-pin devices only.  
Note:  
Table 94. Trim Option Bits at Address 0003H (TLVD)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
LVD_TRIM  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 0023H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Reserved—Must be 1.  
LVD_TRIM—Low Voltage Detect Trim  
This trimming affects the low voltage detection threshold. Each LSB represents a  
50mV change in the threshold level. Alternatively, the low voltage threshold may  
be computed from the options bit value by the following equation:  
LVD_LVL = 3.2V - LVD_TRIM * 0.05V  
LVD Threshold (V)  
LVD_TRIM Minimum Typical Maximum Description  
00000  
00001  
TBD  
TBD  
3.20  
3.15  
TBD  
TBD  
Maximum LVD threshold  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
155  
LVD Threshold (V)  
LVD_TRIM Minimum Typical Maximum Description  
00010  
00011  
TBD  
TBD  
TBD  
3.10  
3.05  
TBD  
TBD  
TBD  
00100  
to  
3.00  
to  
01010  
2.79  
Default on Reset and to be programmed into Flash  
before customer delivery to ensure 2.7V operation.  
01010  
to  
TBD  
2.70  
to  
TBD  
11111  
1.65  
Minimum LVD threshold  
Trim Bit Address 0004H  
Table 95. Trim Option Bits at 0004H  
BITS  
7
6
5
4
3
2
1
0
Reserved  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 0024H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Reserved— Altering this register may result in incorrect device operation.  
ZiLOG Calibration Data  
ADC Calibration Data  
Table 96. ADC Calibration Bits  
BITS  
7
6
5
4
3
2
1
0
ADC_CAL  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 0060H–007DH  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
156  
ADC_CAL—Analog to Digital Converter Calibration Values  
Contains factory calibrated values for ADC gain and offset compensation. Each of the ten  
supported modes has one byte of offset calibration and two bytes of gain calibration.  
These values are read by user software to compensate ADC measurements as detailed in  
Software Compensation Procedure Using Factory Calibration Data on page 119. The loca-  
tion of each calibration byte is provided in Table 97.  
Table 97. ADC Calibration Data Location  
Info Page  
Address  
Memory  
Address  
Compensation  
Usage  
ADC Mode  
Reference Type  
Internal 2.0V  
Internal 2.0V  
Internal 2.0V  
Internal 1.0V  
Internal 1.0V  
Internal 1.0V  
External 2.0V  
External 2.0V  
External 2.0V  
Internal 2.0V  
Internal 2.0V  
Internal 2.0V  
External 2.0V  
External 2.0V  
External 2.0V  
Internal 2.0V  
60  
08  
09  
63  
0A  
0B  
66  
0C  
0D  
69  
0E  
0F  
6C  
10  
11  
6F  
FE60  
FE08  
FE09  
FE63  
FE0A  
FE0B  
FE66  
FE0C  
FE0D  
FE69  
FE0E  
FE0F  
FE6C  
FE10  
FE11  
FE6F  
Offset  
Single-Ended Unbuffered  
Gain High Byte Single-Ended Unbuffered  
Gain Low Byte Single-Ended Unbuffered  
Offset  
Single-Ended Unbuffered  
Gain High Byte Single-Ended Unbuffered  
Gain Low Byte Single-Ended Unbuffered  
Offset  
Single-Ended Unbuffered  
Gain High Byte Single-Ended Unbuffered  
Gain Low Byte Single-Ended Unbuffered  
Offset  
Single Ended 1x Buffered  
Gain High Byte Single Ended 1x Buffered  
Gain Low Byte Single Ended 1x Buffered  
Offset  
Single Ended 1x Buffered  
Gain High Byte Single Ended 1x Buffered  
Gain Low Byte Single Ended 1x Buffered  
Offset  
Differential Unbuffered  
Differential Unbuffered  
Positive Gain  
High Byte  
12  
13  
30  
FE12  
FE13  
FE30  
Internal 2.0V  
Internal 2.0V  
Internal 2.0V  
Positive Gain  
Low Byte  
Differential Unbuffered  
Differential Unbuffered  
Negative Gain  
High Byte  
Negative Gain  
Low Byte  
31  
72  
FE31  
FE72  
Differential Unbuffered  
Differential Unbuffered  
Internal 2.0V  
Internal 1.0V  
Offset  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
157  
Table 97. ADC Calibration Data Location (Continued)  
Info Page  
Address  
Memory  
Address  
Compensation  
Usage  
ADC Mode  
Reference Type  
Positive Gain  
High Byte  
14  
15  
32  
FE14  
FE15  
FE32  
Differential Unbuffered  
Internal 1.0V  
Positive Gain  
Low Byte  
Differential Unbuffered  
Differential Unbuffered  
Internal 1.0V  
Internal 1.0V  
Negative Gain  
High Byte  
Negative Gain  
Low Byte  
33  
75  
16  
17  
FE33  
FE75  
FE16  
FE17  
Differential Unbuffered  
Differential Unbuffered  
Differential Unbuffered  
Differential Unbuffered  
Internal 1.0V  
External 2.0V  
External 2.0V  
External 2.0V  
Offset  
Positive Gain  
High Byte  
Positive Gain  
Low Byte  
34  
35  
FE34  
FE35  
Negative Gain  
High Byte  
Differential Unbuffered  
Differential Unbuffered  
External 2.0V  
External 2.0V  
Negative Gain  
Low Byte  
78  
18  
FE78  
FE18  
Offset  
Differential 1x Buffered  
Differential 1x Buffered  
Internal 2.0V  
Internal 2.0V  
Positive Gain  
High Byte  
19  
36  
37  
FE19  
FE36  
FE37  
Positive Gain  
Low Byte  
Differential 1x Buffered  
Differential 1x Buffered  
Differential 1x Buffered  
Internal 2.0V  
Internal 2.0V  
Internal 2.0V  
Negative Gain  
High Byte  
Negative Gain  
Low Byte  
7B  
1A  
FE7B  
FE1A  
Offset  
Differential 1x Buffered  
Differential 1x Buffered  
External 2.0V  
External 2.0V  
Positive Gain  
High Byte  
1B  
FE1B  
Positive Gain  
Low Byte  
Differential 1x Buffered  
External 2.0V  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
158  
Table 97. ADC Calibration Data Location (Continued)  
Info Page  
Address  
Memory  
Address  
Compensation  
Usage  
ADC Mode  
Reference Type  
38  
FE38  
Negative Gain  
High Byte  
Differential 1x Buffered  
External 2.0V  
39  
FE39  
Negative Gain  
Low Byte  
Differential 1x Buffered  
External 2.0V  
Watchdog Timer Calibration Data  
Table 98. Watchdog Calibration High Byte at 007EH (WDTCALH)  
BITS  
7
6
5
4
3
2
1
0
WDTCALH  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 007EH  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
WDTCALH—Watchdog Timer Calibration High Byte  
The WDTCALH and WDTCALL bytes, when loaded into the watchdog timer reload reg-  
isters result in a one second timeout at room temperature and 3.3V supply voltage. To use  
the Watch-Dog Timer calibration, user code must load WDTU with 0x00, WDTH with  
WDTCALH and WDTL with WDTCALL.  
Table 99. Watchdog Calibration Low Byte at 007FH (WDTCALL)  
BITS  
7
6
5
4
3
2
1
0
WDTCALL  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 007FH  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
WDTCALL—Watchdog Timer Calibration Low Byte  
The WDTCALH and WDTCALL bytes, when loaded into the watchdog timer reload reg-  
isters result in a one second timeout at room temperature and 3.3V supply voltage. To use  
the watchdog timer calibration, user code must load WDTU with 0x00, WDTH with  
WDTCALH and WDTL with WDTCALL.  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
159  
Serialization Data  
Table 100. Serial Number at 001C - 001F (S_NUM)  
BITS  
7
6
5
4
3
2
1
0
S_NUM  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 001C-001F  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
S_NUM— Serial Number Byte  
The serial number is a unique four-byte binary value.  
Table 101. Serialization Data Locations  
Info Page  
Address  
Memory  
Address  
Usage  
1C  
1D  
1E  
1F  
FE1C  
FE1D  
FE1E  
FE1F  
Serial Number Byte 3 (most significant)  
Serial Number Byte 2  
Serial Number Byte 1  
Serial Number Byte 0 (least significant)  
Randomized Lot Identifier  
Table 102. Lot Identification Number (RAND_LOT)  
BITS  
7
6
5
4
3
2
1
0
RAND_LOT  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Interspersed throughout Information Page Memory  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
RAND_LOT— Randomized Lot ID  
The randomized lot ID is a 32-byte binary value that changes for each production lot.  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
160  
Table 103. Randomized Lot ID Locations  
Info Page  
Address  
Memory  
Address  
Usage  
3C  
3D  
3E  
3F  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
61  
62  
64  
65  
67  
68  
6A  
6B  
6D  
6E  
70  
71  
73  
74  
76  
77  
FE3C  
FE3D  
FE3E  
FE3F  
FE58  
FE59  
FE5A  
FE5B  
FE5C  
FE5D  
FE5E  
FE5F  
FE61  
FE62  
FE64  
FE65  
FE67  
FE68  
FE6A  
FE6B  
FE6D  
FE6E  
FE70  
FE71  
FE73  
FE74  
FE76  
FE77  
Randomized Lot ID Byte 31 (most significant)  
Randomized Lot ID Byte 30  
Randomized Lot ID Byte 29  
Randomized Lot ID Byte 28  
Randomized Lot ID Byte 27  
Randomized Lot ID Byte 26  
Randomized Lot ID Byte 25  
Randomized Lot ID Byte 24  
Randomized Lot ID Byte 23  
Randomized Lot ID Byte 22  
Randomized Lot ID Byte 21  
Randomized Lot ID Byte 20  
Randomized Lot ID Byte 19  
Randomized Lot ID Byte 18  
Randomized Lot ID Byte 17  
Randomized Lot ID Byte 16  
Randomized Lot ID Byte 15  
Randomized Lot ID Byte 14  
Randomized Lot ID Byte 13  
Randomized Lot ID Byte 12  
Randomized Lot ID Byte 11  
Randomized Lot ID Byte 10  
Randomized Lot ID Byte 9  
Randomized Lot ID Byte 8  
Randomized Lot ID Byte 7  
Randomized Lot ID Byte 6  
Randomized Lot ID Byte 5  
Randomized Lot ID Byte 4  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
161  
Table 103. Randomized Lot ID Locations (Continued)  
Memory  
Info Page  
Address  
Address  
Usage  
79  
7A  
7C  
7D  
FE79  
Randomized Lot ID Byte 3  
Randomized Lot ID Byte 2  
Randomized Lot ID Byte 1  
Randomized Lot ID Byte 0 (least significant)  
FE7A  
FE7C  
FE7D  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
162  
Temperature Sensor Calibration Data  
Table 104. Temperature Sensor Calibration High Byte at 003A (TSCALH)  
BITS  
7
6
5
4
3
2
1
0
TSCALH  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 003A  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
TSCALH – Temperature Sensor Calibration High Byte  
The TSCALH and TSCALL bytes combine to form the temperature sensor offset calibra-  
tion value. For usage details, see Temperature Sensor Operation on page 134.  
Table 105. Temperature Sensor Calibration Low Byte at 003B (TSCALL)  
BITS  
7
6
5
4
3
2
1
0
TSCALL  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 003B  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
TSCALL – Temperature Sensor Calibration Low Byte  
The TSCALH and TSCALL bytes combine to form the temperature sensor offset calibra-  
tion value. For usage details, see Temperature Sensor Operation on page 134.  
PS022815-0206  
Flash Option Bits  
Z8 Encore! XP® 4K Series  
Product Specification  
163  
Non-Volatile Data Storage  
Overview  
The Z8 Encore! XP® 4K Series devices contain a non-volatile data storage (NVDS) ele-  
ment of up to 128 bytes. This memory can perform over 100,000 write cycles.  
Operation  
The NVDS is implemented by special purpose ZiLOG software stored in areas of program  
memory not accessible to the user. These special-purpose routines use the Flash memory  
to store the data. The routines incorporate a dynamic addressing scheme to maximize the  
write/erase endurance of the Flash.  
Different members of the Z8 Encore! XP® 4K Series feature multiple NVDS array sizes.  
See Z8 Encore! XP® 4K Series Family Part Selection Guide on page 2 for details.  
Note:  
NVDS Code Interface  
Two routines are required to access the NVDS: a write routine and a read routine. Both of  
these routines are accessed with a CALL instruction to a pre-defined address outside of the  
user-accessible program memory. Both the NVDS address and data are single-byte values.  
Because these routines disturb the working register set, user code must ensure that any  
required working register values are preserved by pushing them onto the stack or by  
changing the working register pointer just prior to NVDS execution.  
During both read and write accesses to the NVDS, interrupt service is NOT disabled. Any  
interrupts that occur during the NVDS execution must take care not to disturb the working  
register and existing stack contents or else the array may become corrupted. Disabling  
interrupts before executing NVDS operations is recommended.  
Use of the NVDS requires 15 bytes of available stack space. Also, the contents of the  
working register set are overwritten.  
For correct NVDS operation, the Flash Frequency Registers must be programmed based  
on the system clock frequency (See Flash Operation Timing Using the Flash Frequency  
Registers on page 140).  
PS022815-0206  
Non-Volatile Data Storage  
Z8 Encore! XP® 4K Series  
Product Specification  
164  
Byte Write  
To write a byte to the NVDS array, the user code must first push the address, then the data  
byte onto the stack. The user code issues a CALLinstruction to the address of the byte-  
write routine (0x10B3). At the return from the sub-routine, the write status byte resides in  
working register R0. The bit fields of this status byte are defined in Table 106. The con-  
tents of the status byte are undefined for write operations to illegal addresses. Also, user  
code should pop the address and data bytes off the stack.  
The write routine uses 13 bytes of stack space in addition to the two bytes of address and  
data pushed by the user. Sufficient memory must be available for this stack usage.  
Because of the flash memory architecture, NVDS writes exhibit a non-uniform execution  
time. In general, a write takes 251μs (assuming a 20MHz system clock). Every 400 to 500  
writes, however, a maintenance operation is necessary. In this rare occurrence, the write  
takes up to 61ms to complete. Slower system clock speeds result in proportionally higher  
execution times.  
NVDS byte writes to invalid addresses (those exceeding the NVDS array size) have no  
effect. Illegal write operations have a 2μs execution time.  
Table 106. Write Status Byte  
BITS  
7
6
5
4
3
2
1
0
Reserved  
RCPY  
PF  
AWE  
DWE  
FIELD  
0
0
0
0
0
0
0
0
DEFAULT  
VALUE  
Reserved—Must be 0.  
RCPY—Recopy Subroutine Executed  
A recopy subroutine was executed. These operations take significantly longer than a  
normal write operation.  
PF—Power Failure Indicator  
A power failure or system reset occurred during the most recent attempted write to the  
NVDS array.  
AW—Address Write Error  
An address byte failure occurred during the most recent attempted write to the NVDS  
array.  
DWE—Data Write Error  
A data byte failure occurred during the most recent attempted write to the NVDS  
array.  
PS022815-0206  
Non-Volatile Data Storage  
Z8 Encore! XP® 4K Series  
Product Specification  
165  
Byte Read  
To read a byte from the NVDS array, user code must first push the address onto the stack.  
User code issues a CALLinstruction to the address of the byte-read routine (0x1000). At  
the return from the sub-routine, the read byte resides in working register R0, and the read  
status byte resides in working register R1. The contents of the status byte are undefined for  
read operations to illegal addresses. Also, the user code should pop the address byte off the  
stack.  
The read routine uses 9 bytes of stack space in addition to the one byte of address pushed  
by the user. Sufficient memory must be available for this stack usage.  
Because of the Flash memory architecture, NVDS reads exhibit a non-uniform execution  
time. A read operation takes between 44 μs and 489 μs (assuming a 20 MHz system  
clock). Slower system clock speeds result in proportionally higher execution times.  
NVDS byte reads from invalid addresses (those exceeding the NVDS array size) return  
0xff. Illegal read operations have a 2 μs execution time.  
The status byte returned by the NVDS read routine is zero for successful read, as deter-  
mined by a CRC check. If the status byte is non-zero, there was a corrupted value in the  
NVDS array at the location being read. In this case, the value returned in R0 is the byte  
most recently written to the array that does not have a CRC error.  
Power Failure Protection  
The NVDS routines employ error checking mechanisms to ensure a power failure endan-  
gers only the most recently written byte. Bytes previously written to the array are not per-  
turbed.  
A system reset (such as a pin reset or watchdog timer reset) that occurs during a write  
operation also perturbs the byte currently being written. All other bytes in the array are  
unperturbed.  
Optimizing NVDS Memory Usage for Execution Speed  
As Table 107 shows, the NVDS read time varies drastically, this discrepancy being a  
trade-off for minimizing the frequency of writes that require post-write page erases. The  
NVDS read time of address N is a function of the number of writes to addresses other than  
N since the most recent write to address N, as well as the number of writes since the most  
recent page erase. Neglecting effects caused by page erases and results caused by the ini-  
tial condition in which the NVDS is blank, a rule of thumb is that every write since the  
most recent page erase causes read times of unwritten addresses to increase by 1 μs, up to  
a maximum of (511-NVDS_SIZE) μs.  
PS022815-0206  
Non-Volatile Data Storage  
Z8 Encore! XP® 4K Series  
Product Specification  
166  
Table 107. NVDS Read Time  
Minimum  
Latency  
Maximum  
Latency  
Operation  
Read (16 byte array)  
Read (64 byte array)  
Read (128 byte array)  
Write (16 byte array)  
Write (64 byte array)  
Write (128 byte array)  
Illegal Read  
875  
9961  
876  
883  
4973  
4971  
4984  
43  
8952  
7609  
5009  
5013  
5023  
43  
Illegal Write  
31  
31  
If NVDS read performance is critical to your software architecture, there are some things  
you can do to optimize your code for speed, listed in order from most helpful to least help-  
ful:  
Periodically refresh all addresses that are used. The optimal use of NVDS in terms of speed  
is to rotate the writes evenly among all addresses planned to use, bringing all reads closer  
to the minimum read time. Because the minimum read time is much less than the write  
time, however, actual speed benefits are not always realized.  
Use as few unique addresses as possible: this helps to optimize the impact of refreshing as  
well as minimize the requirement for it.  
PS022815-0206  
Non-Volatile Data Storage  
Z8 Encore! XP® 4K Series  
Product Specification  
167  
On-Chip Debugger  
Overview  
The Z8 Encore! XP® devices contain an integrated On-Chip Debugger (OCD) that pro-  
vides advanced debugging features including:  
Reading and writing of the register file  
Reading and writing of program and data memory  
Setting of breakpoints and watchpoints  
Executing eZ8 CPU instructions  
Debug pin sharing with general-purpose input-output function to maximize pins available  
to the user (8-pin product only)  
Architecture  
The on-chip debugger consists of four primary functional blocks: transmitter, receiver,  
auto-baud detector/generator, and debug controller. Figure 23 illustrates the architecture of  
the on-chip debugger  
System Clock  
Auto-Baud  
Detector/Generator  
Transmitter  
Receiver  
Debug Controller  
DBG Pin  
Figure 23.On-Chip Debugger Block Diagram  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
168  
Operation  
OCD Interface  
The on-chip debugger uses the DBG pin for communication with an external host. This  
one-pin interface is a bi-directional, open-drain interface that transmits and receives data.  
Data transmission is half-duplex, in that transmit and receive cannot occur simultaneously.  
The serial data on the DBG pin is sent using the standard asynchronous data format  
defined in RS-232. This pin creates an interface from the Z8 Encore! XP® 4K Series prod-  
ucts to the serial port of a host PC using minimal external hardware.Two different methods  
for connecting the DBG pin to an RS-232 interface are depicted in Figures 24 and 25 . The  
recommended method is the buffered implementation depicted in Figure 25. The DBG pin  
must always be connected to VDD through an external pull-up resistor.  
Caution:  
For operation of the on-chip debugger, all power pins (VDD and AVDD)  
must be supplied with power, and all ground pins (VSS and AVSS) must be  
properly grounded.  
The DBGpin is open-drain and must always be connected to VDD through  
an external pull-up resistor to insure proper operation.  
VDD  
RS-232  
Transceiver  
10KOhm  
DBG Pin  
Schottky  
Diode  
RS-232 TX  
RS-232 RX  
Figure 24.Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface (1)  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
169  
VDD  
RS-232  
Transceiver  
10KOhm  
DBG Pin  
Open-Drain  
Buffer  
RS-232 TX  
RS-232 RX  
Figure 25.Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface (2)  
DEBUG Mode  
The operating characteristics of the devices in DEBUG mode are:  
The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to execute  
specific instructions  
The system clock operates unless in STOP mode  
All enabled on-chip peripherals operate unless in STOP mode  
Automatically exits HALT mode  
Constantly refreshes the Watch-Dog Timer, if enabled  
Entering DEBUG Mode  
The device enters DEBUG mode after the eZ8 CPU executes a BRK (Breakpoint) instruc-  
tion.  
If the DBG pin is held Low during the most recent clock cycle of system reset, the part  
enters DEBUG mode upon exiting system reset. (20-/28-pin products only.)  
If the PA2/RESET pin is held Low while a 32-bit key sequence is issued to the PA0/DBG  
pin, the DBG feature is unlocked. After releasing PA2/RESET, it will be pulled high. At  
this point, the PA0/DBG pin may be used to autobaud and cause the device to enter DE-  
BUG mude. See OCD Unlock Sequence (8-Pin Devices Only) on page 171.  
Exiting DEBUG Mode  
The device exits DEBUG mode following any of these operations:  
Clearing the DBGMODE bit in the OCD Control Register to 0.  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
170  
Power-on reset  
Voltage Brown-Out reset  
Watch-Dog Timer reset  
Asserting the RESET pin Low to initiate a Reset.  
Driving the DBG pin Low while the device is in STOP mode initiates a System Reset.  
OCD Data Format  
The OCD interface uses the asynchronous data format defined for RS-232. Each character  
is transmitted as 1 Start bit, 8 data bits (least-significant bit first), and 1.5 Stop bits as  
shown in Figure 26.  
START  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
STOP  
Figure 26.OCD Data Format  
OCD Auto-Baud Detector/Generator  
To run over a range of baud rates (data bits per second) with various system clock frequen-  
cies, the On-Chip Debugger contains an Auto-Baud Detector/Generator. After a reset, the  
OCD is idle until it receives data. The OCD requires that the first character sent from the  
host is the character 80H. The character 80Hhas eight continuous bits Low (one Start bit  
plus 7 data bits), framed between High bits. The Auto-Baud Detector measures this period  
and sets the OCD Baud Rate Generator accordingly.  
The Auto-Baud Detector/Generator is clocked by the system clock. The minimum baud  
rate is the system clock frequency divided by 512. For optimal operation with asynchro-  
nous datastreams, the maximum recommended baud rate is the system clock frequency  
divided by 8. The maximum possible baud rate for asynchronous datastreams is the sys-  
tem clock frequency divided by 4, but this theoretical maximum is possible only for low  
noise designs with clean signals. Table 108 lists minimum and recommended maximum  
baud rates for sample crystal frequencies.  
Table 108. OCD Baud-Rate Limits  
Recommended  
Recommended  
System Clock Frequency Maximum Baud Standard PC Baud Minimum Baud  
(MHz)  
Rate (Kbps)  
Rate (bps)  
Rate (Kbps)  
20.0  
2500.0  
1,843,200  
39  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
171  
Table 108. OCD Baud-Rate Limits  
Recommended  
Recommended  
System Clock Frequency Maximum Baud Standard PC Baud Minimum Baud  
(MHz)  
1.0  
Rate (Kbps)  
125.0  
Rate (bps)  
115,200  
2400  
Rate (Kbps)  
1.95  
0.032768 (32KHz)  
4.096  
0.064  
If the OCD receives a Serial Break (nine or more continuous bits Low) the Auto-Baud  
Detector/Generator resets. Reconfigure the Auto-Baud Detector/Generator by sending  
80H.  
OCD Serial Errors  
The On-Chip Debugger can detect any of the following error conditions on the DBG pin:  
Serial Break (a minimum of nine continuous bits Low)  
Framing Error (received Stopbit is Low)  
Transmit Collision (OCD and host simultaneous transmission detected by the OCD)  
When the OCD detects one of these errors, it aborts any command currently in progress,  
transmits a four character long Serial Break back to the host, and resets the Auto-Baud  
Detector/Generator. A Framing Error or Transmit Collision may be caused by the host  
sending a Serial Break to the OCD. Because of the open-drain nature of the interface,  
returning a Serial Break break back to the host only extends the length of the Serial Break  
if the host releases the Serial Break early.  
The host transmits a Serial Break on the DBGpin when first connecting to the Z8 Encore!  
XP® 4K Series devices or when recovering from an error. A Serial Break from the host  
resets the Auto-Baud Generator/Detector but does not reset the OCD Control register. A  
Serial Break leaves the device in DEBUG mode if that is the current mode. The OCD is  
held in Reset until the end of the Serial Break when the DBG pin returns High. Because of  
the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if  
the OCD is transmitting a character.  
OCD Unlock Sequence (8-Pin Devices Only)  
Because of pin-sharing on the 8-pin device, an unlock sequence must be performed to  
access the DBG pin. If this squence is not completed during a system reset, then the PA0/  
DBG pin functions only as a GPIO pin.  
The following sequence unlocks the DBG pin:  
1. Hold PA2/RESET Low.  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
172  
2. Wait 5ms for the internal reset sequence to complete.  
3. Send the following bytes serially to the debug pin:  
DBG80H (autobaud)  
DBGEBH  
DBG5AH  
DBG70H  
DBGCDH (32-bit unlock key)  
4. Release PA2/RESET. The PA0/DBG pin is now identical in function to that of the  
DBG pin on the 20-/28-pin device. To enter DEBUG mode, re-autobaud and write  
80H to the OCD control register. (See On-Chip Debugger Commands on page 172.)  
Breakpoints  
Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the  
eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are  
enabled, the OCD enters DEBUG mode and idles the eZ8 CPU. If Breakpoints are not  
enabled, the OCD ignores the BRK signal and the BRKinstruction operates as an NOP  
instruction.  
Breakpoints in Flash Memory  
The BRKinstruction is opcode 00H, which corresponds to the fully programmed state of a  
byte in Flash memory. To implement a Breakpoint, write 00Hto the required break  
address, overwriting the current instruction. To remove a Breakpoint, the corresponding  
page of Flash memory must be erased and reprogrammed with the original data.  
Runtime Counter  
The On-Chip Debugger contains a 16-bit Runtime Counter. It counts system clock cycles  
between Breakpoints. The counter starts counting when the On-Chip Debugger leaves  
DEBUG mode and stops counting when it enters DEBUG mode again or when it reaches  
the maximum count of FFFFH.  
On-Chip Debugger Commands  
The host communicates to the on-chip debugger by sending OCD commands using the  
DBG interface. During normal operation, only a subset of the OCD commands are avail-  
able. In DEBUG mode, all OCD commands become available unless the user code and  
control registers are protected by programming the Flash Read Protect Option bit (FRP).  
The Flash Read Protect Option bit prevents the code in memory from being read out of the  
Z8 Encore! XP® 4K Series products. When this option is enabled, several of the OCD  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
173  
commands are disabled. Table 109 on page 177 is a summary of the On-chip debugger  
commands. Each OCD command is described in further detail in the bulleted list follow-  
ing this table. Table 109 also indicates those commands that operate when the device is not  
in DEBUG mode (normal operation) and those commands that are disabled by program-  
ming the Flash Read Protect Option bit.  
Command Enabled when NOT  
Disabled by  
Debug Command  
Byte  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
in DEBUG mode?  
Flash Read Protect Option Bit  
Read OCD Revision  
Reserved  
Yes  
Read OCD Status Register  
Read Runtime Counter  
Write OCD Control Register  
Read OCD Control Register  
Write Program Counter  
Read Program Counter  
Write Register  
Yes  
Yes  
Yes  
Cannot clear DBGMODE bit  
Disabled  
Disabled  
Only writes of the Flash Memory Control  
registers are allowed. Additionally, only  
the Mass Erase command is allowed to  
be written to the Flash Control register.  
Read Register  
09H  
0AH  
Disabled  
Disabled  
Disabled  
Yes  
Write Program Memory  
Read Program Memory  
Write Data Memory  
Read Data Memory  
Read Program Memory CRC  
Reserved  
0BH  
0CH  
0DH  
0EH  
0FH  
Step Instruction  
10H  
Disabled  
Disabled  
Disabled  
Stuff Instruction  
11H  
Execute Instruction  
Reserved  
12H  
13H–FFH  
In the following bulleted list of OCD Commands, data and commands sent from the host  
to the On-Chip Debugger are identified by ’DBGCommand/Data’. Data sent from the  
On-Chip Debugger back to the host is identified by ’DBGData’  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
174  
Read OCD Revision (00H)—The Read OCD Revision command determines the ver-  
sion of the On-Chip Debugger. If OCD commands are added, removed, or changed, this  
revision number changes.  
DBG 00H  
DBG OCDRev[15:8] (Major revision number)  
DBG OCDRev[7:0] (Minor revision number)  
Read OCD Status Register (02H)—The Read OCD Status Register command reads the  
OCDSTAT register.  
DBG 02H  
DBG OCDSTAT[7:0]  
Read Runtime Counter (03H)—The Runtime Counter counts system clock cycles in  
between Breakpoints. The 16-bit Runtime Counter counts up from 0000Hand stops at the  
maximum count of FFFFH. The Runtime Counter is overwritten during the Write Memo-  
ry, Read Memory, Write Register, Read Register, Read Memory CRC, Step Instruction,  
Stuff Instruction, and Execute Instruction commands.  
DBG 03H  
DBG RuntimeCounter[15:8]  
DBG RuntimeCounter[7:0]  
Write OCD Control Register (04H)—The Write OCD Control Register command  
writes the data that follows to the OCDCTL register. When the Flash Read Protect Option  
Bit is enabled, the DBGMODE bit (OCDCTL[7]) can only be set to 1, it cannot be cleared  
to 0 and the only method of returning the device to normal operating mode is to reset the  
device.  
DBG 04H  
DBG OCDCTL[7:0]  
Read OCD Control Register (05H)—The Read OCD Control Register command reads  
the value of the OCDCTL register.  
DBG 05H  
DBG OCDCTL[7:0]  
Write Program Counter (06H)—The Write Program Counter command writes the data  
that follows to the eZ8 CPU’s Program Counter (PC). If the device is not in DEBUG mode  
or if the Flash Read Protect Option bit is enabled, the Program Counter (PC) values are  
discarded.  
DBG 06H  
DBG ProgramCounter[15:8]  
DBG ProgramCounter[7:0]  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
175  
Read Program Counter (07H)—The Read Program Counter command reads the value  
in the eZ8 CPU’s Program Counter (PC). If the device is not in DEBUG mode or if the  
Flash Read Protect Option bit is enabled, this command returns FFFFH.  
DBG 07H  
DBG ProgramCounter[15:8]  
DBG ProgramCounter[7:0]  
Write Register (08H)—The Write Register command writes data to the Register File.  
Data can be written 1–256 bytes at a time (256 bytes can be written by setting size to 0). If  
the device is not in DEBUG mode, the address and data values are discarded. If the Flash  
Read Protect Option bit is enabled, only writes to the Flash Control Registers are allowed  
and all other register write data values are discarded.  
DBG 08H  
DBG {4’h0,Register Address[11:8]}  
DBG Register Address[7:0]  
DBG Size[7:0]  
DBG 1-256 data bytes  
Read Register (09H)—The Read Register command reads data from the Register File.  
Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the  
device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this com-  
mand returns FFHfor all the data values.  
DBG 09H  
DBG {4’h0,Register Address[11:8]  
DBG Register Address[7:0]  
DBG Size[7:0]  
DBG 1-256 data bytes  
Write Program Memory (0AH)—The Write Program Memory command writes data  
to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data  
can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0).  
The on-chip Flash Controller must be written to and unlocked for the programming oper-  
ation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device  
is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is dis-  
carded.  
DBG 0AH  
DBG Program Memory Address[15:8]  
DBG Program Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Read Program Memory (0BH)—The Read Program Memory command reads data  
from Program Memory. This command is equivalent to the LDC and LDCI instructions.  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
176  
Data can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If  
the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this  
command returns FFHfor the data.  
DBG 0BH  
DBG Program Memory Address[15:8]  
DBG Program Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Write Data Memory (0CH)—The Write Data Memory command writes data to Data  
Memory. This command is equivalent to the LDE and LDEI instructions. Data can be writ-  
ten 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device  
is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is dis-  
carded.  
DBG 0CH  
DBG Data Memory Address[15:8]  
DBG Data Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Read Data Memory (0DH)—The Read Data Memory command reads from Data Mem-  
ory. This command is equivalent to the LDE and LDEI instructions. Data can be read 1 to  
65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in  
DEBUG mode, this command returns FFHfor the data.  
DBG 0DH  
DBG Data Memory Address[15:8]  
DBG Data Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Read Program Memory CRC (0EH)—The Read Program Memory CRC command  
computes and returns the Cyclic Redundancy Check (CRC) of Program Memory using the  
16-bit CRC-CCITT polynomial. If the device is not in DEBUG mode, this command re-  
turns FFFFHfor the CRC value. Unlike most other OCD Read commands, there is a delay  
from issuing of the command until the OCD returns the data. The OCD reads the Program  
Memory, calculates the CRC value, and returns the result. The delay is a function of the  
Program Memory size and is approximately equal to the system clock period multiplied  
by the number of bytes in the Program Memory.  
DBG 0EH  
DBG CRC[15:8]  
DBG CRC[7:0]  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
177  
Step Instruction (10H)—The Step Instruction command steps one assembly instruction  
at the current Program Counter (PC) location. If the device is not in DEBUG mode or the  
Flash Read Protect Option bit is enabled, the OCD ignores this command.  
DBG 10H  
Stuff Instruction (11H)—The Stuff Instruction command steps one assembly instruction  
and allows specification of the first byte of the instruction. The remaining 0-4 bytes of the  
instruction are read from Program Memory. This command is useful for stepping over in-  
structions where the first byte of the instruction has been overwritten by a Breakpoint. If  
the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, the  
OCD ignores this command.  
DBG 11H  
DBG opcode[7:0]  
Execute Instruction (12H)—The Execute Instruction command allows sending an en-  
tire instruction to be executed to the eZ8 CPU. This command can also step over Break-  
points. The number of bytes to send for the instruction depends on the opcode. If the device  
is not in DEBUG mode or the Flash Read Protect Option bit is enabled, this command  
reads and discards one byte.  
DBG 12H  
DBG 1-5 byte opcode  
On-Chip Debugger Control Register Definitions  
OCD Control Register  
The OCD Control register controls the state of the On-Chip Debugger. This register is  
used to enter or exit DEBUG mode and to enable the BRKinstruction. It can also reset the  
Z8 Encore! XP® 4K Series device.  
A reset and stop function can be achieved by writing 81Hto this register. A reset and go  
function can be achieved by writing 41Hto this register. If the device is in DEBUG mode,  
a run function can be implemented by writing 40H to this register.  
.
Table 109. OCD Control Register (OCDCTL)  
BITS  
7
6
5
4
3
2
1
0
DBGMODE BRKEN DBGACK  
Reserved  
RST  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R
R
R
R
R/W  
DBGMODE—Debug Mode  
The device enters DEBUG mode when this bit is 1. When in DEBUG mode, the eZ8 CPU  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
178  
stops fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is  
automatically set when a BRK instruction is decoded and Breakpoints are enabled. If the  
Flash Read Protect Option Bit is enabled, this bit can only be cleared by resetting the  
device. It cannot be written to 0.  
0 = The Z8 Encore! XP® 4K Series device is operating in NORMAL mode.  
1 = The Z8 Encore! XP® 4K Series device is in DEBUG mode.  
BRKEN—Breakpoint Enable  
This bit controls the behavior of the BRKinstruction (opcode 00H). By default, Break-  
points are disabled and the BRKinstruction behaves similar to an NOP instruction. If this  
bit is 1, when a BRKinstruction is decoded, the DBGMODEbit of the OCDCTL register is  
automatically set to 1.  
0 = Breakpoints are disabled.  
1 = Breakpoints are enabled.  
DBGACK—Debug Acknowledge  
This bit enables the debug acknowledge feature. If this bit is set to 1, the OCD sends a  
Debug Acknowledge character (FFH) to the host when a Breakpoint occurs.  
0 = Debug Acknowledge is disabled.  
1 = Debug Acknowledge is enabled.  
Reserved—Must be 0.  
RST—Reset  
Setting this bit to 1 resets the Z8F04xA family device. The device goes through a normal  
Power-On Reset sequence with the exception that the On-Chip Debugger is not reset. This  
bit is automatically cleared to 0 at the end of reset.  
0 = No effect.  
1 = Reset the Flash Read Protect Option Bit device.  
OCD Status Register  
The OCD Status register reports status information about the current state of the debugger  
and the system.  
Table 110. OCD Status Register (OCDSTAT)  
BITS  
7
6
5
4
3
2
1
0
DBG  
HALT  
FRPENB  
Reserved  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
DBG—Debug Status  
0 = NORMAL mode  
1 = DEBUG mode  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
179  
HALT—HALT Mode  
0 = Not in HALT mode  
1 = In HALT mode  
FRPENB—Flash Read Protect Option Bit Enable  
0 = FRP bit enabled, that allows disabling of many OCD commands  
1 = FRP bit has no effect  
Reserved—Must be 0.  
PS022815-0206  
On-Chip Debugger  
Z8 Encore! XP® 4K Series  
Product Specification  
180  
Oscillator Control  
Overview  
The Z8 Encore! XP® 4K Series devices uses five possible clocking schemes, each user-  
selectable:  
Internal precision trimmed RC oscillator (IPO)  
On-chip oscillator using off-chip crystal or resonator  
On-chip oscillator using external RC network  
External clock drive  
On-chip low precision Watch-Dog Timer oscillator  
In addition, Z8 Encore! XP® 4K Series devices contain clock failure detection and recov-  
ery circuitry, allowing continued operation despite a failure of the system clock oscillator.  
Operation  
This chapter discusses the logic used to select the system clock and handle primary oscil-  
lator failures. A description of the specific operation of each oscillator is outlined else-  
where in this document. The detailed description of the Watch-Dog Timer Oscillator starts  
on page 83, the Internal Precision Oscillator description begins on page 190, and the chap-  
ter outlining the Crystal Oscillator begins on page 185 of this document.  
System Clock Selection  
The oscillator control block selects from the available clocks. Table 111 details each clock  
source and its usage.  
PS022815-0206  
Oscillator Control  
Z8 Encore! XP® 4K Series  
Product Specification  
181  
Table 111. Oscillator Configuration and Selection  
Clock Source  
Characteristics  
Required Setup  
Internal Precision  
RC Oscillator  
• 32.8 KHz or 5.53 MHz  
• High accuracy when trimmed  
• No external components required  
• Unlock and write Oscillator Control  
Register (OSCCTL) to enable and  
select oscillator at either 5.53 MHz or  
32.8 KHz  
External Crystal/  
Resonator  
• 32 KHz to 20 MHz  
• Very high accuracy (dependent on  
crystal or resonator used)  
• Configure Flash option bits for correct  
external oscillator mode  
• Unlock and write OSCCTL to enable  
crystal oscillator, wait for it to stabilize  
and select as system clock (if the  
XTLDIS option bit has been de-  
asserted, no waiting is required)  
• Requires external components  
External RC  
Oscillator  
• 32 KHz to 4 MHz  
• Accuracy dependent on external  
components  
• Configure Flash option bits for correct  
external oscillator mode  
• Unlock and write OSCCTL to enable  
crystal oscillator and select as system  
clock  
External Clock  
Drive  
• 0 to 20 MHz  
• Accuracy dependent on external clock  
source  
• Write GPIO registers to configure PB3  
pin for external clock function  
• Unlock and write OSCCTL to select  
external system clock  
• Apply external clock signal to GPIO  
Internal Watchdog  
Timer Oscillator  
• 10 KHz nominal  
• Enable WDT if not enabled and wait  
• Low accuracy; no external components until WDT Oscillator is operating.  
required  
• Low power consumption  
• Unlock and write Oscillator Control  
Register (OSCCTL) to enable and  
select oscillator  
Unintentional accesses to the oscillator control register can actually stop the chip by  
switching to a non-functioning oscillator. To prevent this condition, the oscillator con-  
trol block employs a register unlocking/locking scheme.  
Caution:  
OSC Control Register Unlocking/Locking  
To write the oscillator control register, unlock it by making two writes to the OSCCTL  
register with the values E7Hfollowed by 18H. A third write to the OSCCTL register  
changes the value of the actual register and returns the register to a locked state. Any other  
sequence of oscillator control register writes has no effect. The values written to unlock  
the register must be ordered correctly, but are not necessarily consecutive. It is possible to  
write to or read from other registers within the unlocking/locking operation.  
PS022815-0206  
Oscillator Control  
Z8 Encore! XP® 4K Series  
Product Specification  
182  
When selecting a new clock source, the system clock oscillator failure detection circuitry  
and the Watch-Dog Timer oscillator failure circuitry must be disabled. If SOFEN and  
WOFEN are not disabled prior to a clock switch-over, it is possible to generate an inter-  
rupt for a failure of either oscillator. The Failure detection circuitry can be enabled any-  
time after a successful write of OSCSEL in the OSCCTL register.  
The internal precision oscillator is enabled by default. If the user code changes to a differ-  
ent oscillator, it may be appropriate to disable the IPO for power savings. Disabling the  
IPO does not occur automatically.  
Clock Failure Detection and Recovery  
System Clock Oscillator Failure  
The Z8F04xA family devices can generate non-maskable interrupt-like events when the  
primary oscillator fails. To maintain system function in this situation, the clock failure  
recovery circuitry automatically forces the Watch-Dog Timer oscillator to drive the system  
clock. The Watch-Dog Timer oscillator must be enabled to allow the recovery. Although  
this oscillator runs at a much slower speed than the original system clock, the CPU contin-  
ues to operate, allowing execution of a clock failure vector and software routines that  
either remedy the oscillator failure or issue a failure alert. This automatic switch-over is  
not available if the Watch-Dog Timer is selected as the system clock oscillator. It is also  
unavailable if the Watch-Dog Timer oscillator is disabled, though it is not necessary to  
enable the Watch-Dog Timer reset function outlined in the Watch-Dog Timer chapter of  
this document on page 83.  
The primary oscillator failure detection circuitry asserts if the system clock frequency  
drops below 1KHz ±50%. If an external signal is selected as the system oscillator, it is  
possible that a very slow but non-failing clock can generate a failure condition. Under  
these conditions, do not enable the clock failure circuitry (SOFEN must be deasserted in  
the OSCCTL register).  
Watch-Dog Timer Failure  
In the event of a Watch-Dog Timer oscillator failure, a similar non-maskable interrupt-like  
event is issued. This event does not trigger an attendant clock switch-over, but alerts the  
CPU of the failure. After a Watch-Dog Timer failure, it is no longer possible to detect a  
primary oscillator failure. The failure detection circuitry does not function if the Watch-  
Dog Timer is used as the system clock oscillator or if the Watch-Dog Timer oscillator has  
been disabled. For either of these cases, it is necessary to disable the detection circuitry by  
deasserting the WDFEN bit of the OSCCTL register.  
The Watch-Dog Timer oscillator failure detection circuit counts system clocks while look-  
ing for a Watch-Dog Timer clock. The logic counts 8004 system clock cycles before deter-  
mining that a failure has occurred. The system clock rate determines the speed at which  
PS022815-0206  
Oscillator Control  
Z8 Encore! XP® 4K Series  
Product Specification  
183  
the Watch-Dog Timer failure can be detected. A very slow system clock results in very  
slow detection times.  
It is possible to disable the clock failure detection circuitry as well as all functioning  
clock sources. In this case, the Z8 Encore! XP® 4K Series device ceases functioning and  
can only be recovered by Power-On-Reset.  
Caution:  
Oscillator Control Register Definitions  
Oscillator Control Register  
The Oscillator Control Register (OSCCTL) enables/disables the various oscillator circuits,  
enables/disables the failure detection/recovery circuitry and selects the primary oscillator,  
which becomes the system clock.  
The Oscillator Control Register must be unlocked before writing. Writing the two step  
sequence E7Hfollowed by 18Hto the Oscillator Control Register unlocks it. The register  
is locked at successful completion of a register write to the OSCCTL.  
Table 112. Oscillator Control Register (OSCCTL)  
BITS  
7
6
5
4
3
2
1
0
INTEN  
XTLEN  
WDTEN  
SOFEN  
WDFEN  
SCKSEL  
FIELD  
RESET  
R/W  
1
0
1
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F86H  
ADDR  
INTEN—Internal Precision Oscillator Enable  
1 = Internal precision oscillator is enabled  
0 = Internal precision oscillator is disabled  
XTLEN—Crystal Oscillator Enable; this setting overrides the GPIO register control for  
PA0 and PA1  
1 = Crystal oscillator is enabled  
0 = Crystal oscillator is disabled  
WDTEN—Watchdog Timer Oscillator Enable  
1 = Watch-Dog Timer oscillator is enabled  
0 = Watch-Dog Timer oscillator is disabled  
SOFEN—System Clock Oscillator Failure Detection Enable  
1 = Failure detection and recovery of system clock oscillator is enabled  
0 = Failure detection and recovery of system clock oscillator is disabled  
PS022815-0206  
Oscillator Control  
Z8 Encore! XP® 4K Series  
Product Specification  
184  
WDFEN—Watchdog Timer Oscillator Failure Detection Enable  
1 = Failure detection of Watch-Dog Timer oscillator is enabled  
0 = Failure detection of Watch-Dog Timer oscillator is disabled  
SCKSEL—System Clock Oscillator Select  
000 = Internal precision oscillator functions as system clock at 5.53 MHz  
001 = Internal precision oscillator functions as system clock at 32 KHz  
010 = Crystal oscillator or external RC oscillator functions as system clock  
011 = Watch-Dog Timer oscillator functions as system  
100 = External clock signal on PB3 functions as system clock  
101 = Reserved  
110 = Reserved  
111 = Reserved  
PS022815-0206  
Oscillator Control  
Z8 Encore! XP® 4K Series  
Product Specification  
185  
Crystal Oscillator  
Overview  
The products in the Z8 Encore! XP® 4K Series contain an on-chip crystal oscillator for use  
with external crystals with 32 KHz to 20 MHz frequencies. In addition, the oscillator sup-  
ports external RC networks with oscillation frequencies up to 4 MHz or ceramic resona-  
tors with frequencies up to 8MHz. The on-chip crystal oscillator can be used to generate  
the primary system clock for the internal eZ8 CPU and the majority of the on-chip periph-  
erals. Alternatively, the XIN input pin can also accept a CMOS-level clock input signal (32  
KHz–20 MHz). If an external clock generator is used, the XOUT pin must be left uncon-  
nected. The Z8 Encore! XP® 4K Series products do not contain an internal clock divider.  
The frequency of the signal on the XIN input pin determines the frequency of the system  
clock.  
Although the XIN pin can be used as an input for an external clock generator, the CLKIN  
pin is better suited for such use (See System Clock Selection on page 180.)  
Note:  
Operating Modes  
The Z8 Encore! XP® 4K Series products support four oscillator modes:  
Minimum power for use with very low frequency crystals (32 KHz–1 MHz)  
Medium power for use with medium frequency crystals or ceramic resonators  
(0.5 MHz to 8 MHz)  
Maximum power for use with high frequency crystals (8 MHz to 20 MHz)  
On-chip oscillator configured for use with external RC networks (<4 MHz)  
The oscillator mode is selected using user-programmable Flash Option Bits. Please refer  
to the chapter Flash Option Bits on page 148 for information.  
Crystal Oscillator Operation  
The Flash Option bit XTLDIS controls whether the crystal oscillator is enabled during  
reset. The crystal may later be disabled after reset if a new oscillator has been selected as  
the system clock. If the crystal is manually enabled after reset through the OSCCTL regis-  
ter, the user code must wait at least 1000 crystal oscillator cycles for the crystal to stabi-  
lize. After this, the crystal oscillator may be selected as the system clock.  
PS022815-0206  
Crystal Oscillator  
Z8 Encore! XP® 4K Series  
Product Specification  
186  
The stabilization time will vary depending on the crystal or resonator used, as well as on  
the feedback network. See Table 114 for transconductance values to compute oscillator  
stabilization times.  
Note:  
Figure 27 illustrates a recommended configuration for connection with an external funda-  
mental-mode, parallel-resonant crystal operating at 20 MHz. Recommended 20 MHz crys-  
tal specifications are provided in Table 113. Resistor R1 is optional and limits total power  
dissipation by the crystal. Printed circuit board layout must add no more than 4 pF of stray  
capacitance to either the XIN or XOUT pins. If oscillation does not occur, reduce the values  
of capacitors C1 and C2 to decrease loading.  
On-Chip Oscillator  
XIN  
XOUT  
Crystal  
C1 = 15pF  
C2 = 15pF  
Figure 27.Recommended 20 MHz Crystal Oscillator Configuration  
Table 113. Recommended Crystal Oscillator Specifications  
Parameter  
Frequency  
Resonance  
Mode  
Value  
20  
Units  
Comments  
MHz  
Parallel  
Fundamental  
60  
Series Resistance (R )  
W
Maximum  
S
PS022815-0206  
Crystal Oscillator  
Z8 Encore! XP® 4K Series  
Product Specification  
187  
Table 113. Recommended Crystal Oscillator Specifications  
Parameter  
Load Capacitance (C )  
Value  
Units  
pF  
Comments  
Maximum  
Maximum  
Maximum  
30  
7
L
Shunt Capacitance (C )  
pF  
0
Drive Level  
1
mW  
Table 114. Transconductance Values for Low, Medium, and High Gain Operating Modes  
Transconductance (mA/V)  
Use this range for  
Mode  
Crystal Frequence Range  
Function  
calculations  
Low Gain  
(see Note)  
32 KHz - 1 MHz  
Low Power/Frequency  
Applications  
0.02  
0.84  
1.1  
0.04  
0.09  
3.1  
Medium Gain 0.5 MHz - 10 MHz  
(see Note)  
Medium Power/Frequency  
Applications  
1.7  
2.3  
High Gain  
(see Note)  
8 MHz - 20 MHz  
High Power/Frequency  
Applications  
4.2  
Note: * Printed circuit board layout should not add more than 4 pF of stray capacitance to either XIN or XOUT pins. if  
no Oscillation occurs, reduce the values of the capacitors C1 and C2 to decrease the loading.  
Oscillator Operation with an External RC Network  
Figure 28 illustrates a recommended configuration for connection with an external resis-  
tor-capacitor (RC) network.  
PS022815-0206  
Crystal Oscillator  
Z8 Encore! XP® 4K Series  
Product Specification  
188  
VDD  
R
C
XIN  
Figure 28.Connecting the On-Chip Oscillator to an External RC Network  
An external resistance value of 45 KΩ is recommended for oscillator operation with an  
external RC network. The minimum resistance value to ensure operation is 40 KΩ. The  
typical oscillator frequency can be estimated from the values of the resistor (R in KΩ) and  
capacitor (C in pF) elements using the following equation:  
1×106  
Oscillator Frequency (kHz) = ---------------------------------------------------------  
(0.4 × R × C) + (4 × C)  
Figure 29 illustrates the typical (3.3 V and 250C) oscillator frequency as a function of the  
capacitor (C in pF) employed in the RC network assuming a 45 KΩ external resistor. For  
very small values of C, the parasitic capacitance of the oscillator XIN pin and the printed  
circuit board should be included in the estimation of the oscillator frequency.  
It is possible to operate the RC oscillator using only the parasitic capacitance of the pack-  
age and printed circuit board. To minimize sensitivity to external parasitics, external  
capacitance values in excess of 20 pF are recommended.  
PS022815-0206  
Crystal Oscillator  
Z8 Encore! XP® 4K Series  
Product Specification  
189  
4000  
3750  
3500  
3250  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
500  
250  
0
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500  
C (pF)  
Figure 29.Typical RC Oscillator Frequency as a Function of the External Capacitance with a  
45KOhm Resistor  
Caution:  
When using the external RC oscillator mode, the oscillator can stop oscil-  
lating if the power supply drops below 2.7V, but before the power supply  
drops to the voltage brown-out threshold. The oscillator resumes oscilla-  
tion when the supply voltage exceeds 2.7V.  
PS022815-0206  
Crystal Oscillator  
Z8 Encore! XP® 4K Series  
Product Specification  
190  
Internal Precision Oscillator  
Overview  
The internal precision oscillator (IPO) is designed for use without external components.  
The user can either manually trim the oscillator for a non-standard frequency or use the  
automatic factory-trimmed version to achieve a 5.53 MHz frequency. IPO features  
include:  
On-chip RC oscillator that does not require external components  
Output frequency of either 5.53 MHz or 32.8 KHz (contains both a fast and a slow mode)  
Trimmed through Flash option bits with user override  
Elimination of crystals or ceramic resonators in applications where very high timing accu-  
racy is not required.  
Operation  
An 8-bit trimming register, incorporated into the design, compensates for absolute varia-  
tion of oscillator frequency. Once trimmed the oscillator frequency is stable and does not  
require subsequent calibration. Trimming is performed during manufacturing and is not  
necessary for the user to repeat unless a frequency other than 5.53 MHz (fast mode) or  
32.8 KHz (slow mode) is required. This trimming is done at +30ºC and a supply voltage of  
3.3 V, so accuracy of this operating point will be optimal.  
If not used, the IPO can be disabled by the Oscillator Control Register (page 183).  
By default, the oscillator frequency is set by the factory trim value stored in the write-pro-  
tected flash information page. However, the user code can override these trim values as  
described in Trim Bit Address Space on page 153.  
Select one of two frequencies for the oscillator: 5.53 MHz and 32.8 KHz, using the OSC-  
SEL bits in the Oscillator Control on page 180.  
PS022815-0206  
Internal Precision Oscillator  
Z8 Encore! XP® 4K Series  
Product Specification  
191  
eZ8 CPU Instruction Set  
Assembly Language Programming Introduction  
The eZ8 CPU assembly language provides a means for writing an application program  
without concern for actual memory addresses or machine instruction formats. A program  
written in assembly language is called a source program. Assembly language allows the  
use of symbolic addresses to identify memory locations. It also allows mnemonic codes  
(opcodes and operands) to represent the instructions themselves. The opcodes identify the  
instruction while the operands represent memory locations, registers, or immediate data  
values.  
Each assembly language program consists of a series of symbolic commands called state-  
ments. Each statement can contain labels, operations, operands and comments.  
Labels can be assigned to a particular instruction step in a source program. The label iden-  
tifies that step in the program as an entry point for use by other instructions.  
The assembly language also includes assembler directives that supplement the machine  
instruction. The assembler directives, or pseudo-ops, are not translated into a machine  
instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the  
assembly process.  
The source program is processed (assembled) by the assembler to obtain a machine lan-  
guage program called the object code. The object code is executed by the eZ8 CPU. An  
example segment of an assembly language program is detailed in the following example.  
Assembly Language Source Program Example  
JP START  
START:  
; Everything after the semicolon is a comment.  
; A label called “START”. The first instruction (JP START) in this  
; example causes program execution to jump to the point within the  
; program where the STARTlabel occurs.  
LD R4, R7  
; A Load (LD) instruction with two operands. The first operand,  
; Working Register R4, is the destination. The second operand,  
; Working Register R7, is the source. The contents of R7 is  
; written into R4.  
LD 234H, #%01 ; Another Load (LD) instruction with two operands.  
; The first operand, Extended Mode Register Address 234H,  
; identifies the destination. The second operand, Immediate Data  
; value 01H, is the source. The value 01His written into the  
; Register at address 234H.  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
192  
Assembly Language Syntax  
For proper instruction execution, eZ8 CPU assembly language syntax requires that the  
operands be written as ‘destination, source’. After assembly, the object code usually has  
the operands in the order ’source, destination’, but ordering is opcode-dependent. The fol-  
lowing instruction examples illustrate the format of some basic assembly instructions and  
the resulting object code produced by the assembler. This binary format must be followed  
by users that prefer manual program coding or intend to implement their own assembler.  
Example 1: If the contents of Registers 43H and 08H are added and the result is stored in  
43H, the assembly syntax and resulting object code is:  
Table 115. Assembly Language Syntax Example 1  
ADD  
04  
43H,  
08  
08H  
43  
(ADD dst, src)  
(OPC src, dst)  
Assembly Language Code  
Object Code  
Example 2: In general, when an instruction format requires an 8-bit register address, that  
address can specify any register location in the range 0–255 or, using Escaped Mode  
Addressing, a Working Register R0–R15. If the contents of Register 43H and Working  
Register R8 are added and the result is stored in 43H, the assembly syntax and resulting  
object code is:  
Table 116. Assembly Language Syntax Example 2  
ADD  
04  
43H,  
E8  
R8  
43  
(ADD dst, src)  
(OPC src, dst)  
Assembly Language Code  
Object Code  
See the device-specific Product Specification to determine the exact register file range  
available. The register file size varies, depending on the device type.  
eZ8 CPU Instruction Notation  
In the eZ8 CPU Instruction Summary and Description sections, the operands, condition  
codes, status flags, and address modes are represented by a notational shorthand that is  
described in Table 117.  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
193  
.
Table 117. Notational Shorthand  
Notation Description  
Operand Range  
b
Bit  
b
b represents a value from 0 to 7 (000B to 111B).  
cc  
Condition Code  
See Condition Codes overview in the eZ8 CPU  
User Manual.  
DA  
ER  
Direct Address  
Addrs  
Reg  
Addrs. represents a number in the range of  
0000H to FFFFH  
Extended Addressing Register  
Reg. represents a number in the range of 000H to  
FFFH  
IM  
Ir  
Immediate Data  
#Data  
@Rn  
Data is a number between 00H to FFH  
n = 0 –15  
Indirect Working Register  
Indirect Register  
IR  
@Reg  
Reg. represents a number in the range of 00H to  
FFH  
Irr  
Indirect Working Register Pair  
Indirect Register Pair  
@RRp  
@Reg  
p = 0, 2, 4, 6, 8, 10, 12, or 14  
IRR  
Reg. represents an even number in the range  
00H to FEH  
p
Polarity  
p
Polarity is a single bit binary value of either 0B or  
1B.  
r
Working Register  
Register  
Rn  
n = 0 – 15  
R
Reg  
Reg. represents a number in the range of 00H to  
FFH  
RA  
Relative Address  
X
X represents an index in the range of +127 to –  
128 which is an offset relative to the address of  
the next instruction  
rr  
Working Register Pair  
Register Pair  
RRp  
Reg  
p = 0, 2, 4, 6, 8, 10, 12, or 14  
RR  
Reg. represents an even number in the range of  
00H to FEH  
Vector  
X
Vector Address  
Indexed  
Vector  
#Index  
Vector represents a number in the range of 00H  
to FFH  
The register or register pair to be indexed is offset  
by the signed Index value (#Index) in a +127 to  
-128 range.  
Table 118 contains additional symbols that are used throughout the Instruction Summary  
and Instruction Set Description sections.  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
194  
Table 118. Additional Symbols  
Symbol  
Definition  
dst  
src  
@
Destination Operand  
Source Operand  
Indirect Address Prefix  
Stack Pointer  
SP  
PC  
FLAGS  
RP  
#
Program Counter  
Flags Register  
Register Pointer  
Immediate Operand Prefix  
Binary Number Suffix  
B
%
Hexadecimal Number  
Prefix  
H
Hexadecimal Number  
Suffix  
Assignment of a value is indicated by an arrow. For example,  
dst dst + src  
indicates the source data is added to the destination data and the result is stored in the des-  
tination location.  
eZ8 CPU Instruction Classes  
eZ8 CPU instructions can be divided functionally into the following groups:  
Arithmetic  
Bit Manipulation  
Block Transfer  
CPU Control  
Load  
Logical  
Program Control  
Rotate and Shift  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
195  
Tables 119 through 126 contain the instructions belonging to each group and the number  
of operands required for each instruction. Some instructions appear in more than one table  
as these instruction can be considered as a subset of more than one category. Within these  
tables, the source operand is identified as ’src’, the destination operand is ’dst’ and a con-  
dition code is ’cc’.  
Table 119. Arithmetic Instructions  
Mnemonic  
ADC  
Operands  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst  
Instruction  
Add with Carry  
ADCX  
ADD  
Add with Carry using Extended Addressing  
Add  
ADDX  
CP  
Add using Extended Addressing  
Compare  
CPC  
Compare with Carry  
CPCX  
CPX  
Compare with Carry using Extended Addressing  
Compare using Extended Addressing  
Decimal Adjust  
DA  
DEC  
dst  
Decrement  
DECW  
INC  
dst  
Decrement Word  
dst  
Increment  
INCW  
MULT  
SBC  
dst  
Increment Word  
dst  
Multiply  
dst, src  
dst, src  
dst, src  
dst, src  
Subtract with Carry  
SBCX  
SUB  
Subtract with Carry using Extended Addressing  
Subtract  
SUBX  
Subtract using Extended Addressing  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
196  
Table 120. Bit Manipulation Instructions  
Mnemonic  
BCLR  
BIT  
Operands  
Instruction  
bit, dst  
p, bit, dst  
bit, dst  
dst  
Bit Clear  
Bit Set or Clear  
Bit Set  
BSET  
BSWAP  
CCF  
Bit Swap  
Complement Carry Flag  
Reset Carry Flag  
Set Carry Flag  
Test Complement Under Mask  
RCF  
SCF  
TCM  
dst, src  
dst, src  
dst, src  
dst, src  
TCMX  
TM  
Test Complement Under Mask using Extended Addressing  
Test Under Mask  
TMX  
Test Under Mask using Extended Addressing  
Table 121. Block Transfer Instructions  
Instruction  
Mnemonic Operands  
LDCI  
LDEI  
dst, src  
dst, src  
Load Constant to/from Program Memory and Auto-Increment Addresses  
Load External Data to/from Data Memory and Auto-Increment Addresses  
Table 122. CPU Control Instructions  
Mnemonic  
ATM  
CCF  
DI  
Operands  
Instruction  
src  
Atomic Execution  
Complement Carry Flag  
Disable Interrupts  
Enable Interrupts  
Halt Mode  
EI  
HALT  
NOP  
RCF  
SCF  
SRP  
No Operation  
Reset Carry Flag  
Set Carry Flag  
Set Register Pointer  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
197  
Table 122. CPU Control Instructions  
Mnemonic  
STOP  
Operands  
Instruction  
STOP Mode  
WDT  
Watch-Dog Timer Refresh  
Table 123. Load Instructions  
Mnemonic Operands Instruction  
CLR  
LD  
dst  
Clear  
dst, src  
dst, src  
dst, src  
Load  
LDC  
LDCI  
Load Constant to/from Program Memory  
Load Constant to/from Program Memory and Auto-Increment  
Addresses  
LDE  
dst, src  
dst, src  
Load External Data to/from Data Memory  
LDEI  
Load External Data to/from Data Memory and Auto-Increment  
Addresses  
LDWX  
LDX  
dst, src  
dst, src  
Load Word using Extended Addressing  
Load using Extended Addressing  
LEA  
dst, X(src) Load Effective Address  
POP  
dst  
dst  
src  
src  
Pop  
POPX  
PUSH  
PUSHX  
Pop using Extended Addressing  
Push  
Push using Extended Addressing  
Table 124. Logical Instructions  
Mnemonic Operands Instruction  
AND  
ANDX  
COM  
OR  
dst, src  
dst, src  
dst  
Logical AND  
Logical AND using Extended Addressing  
Complement  
dst, src  
dst, src  
Logical OR  
ORX  
Logical OR using Extended Addressing  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
198  
Table 124. Logical Instructions  
Mnemonic Operands Instruction  
XOR  
dst, src  
dst, src  
Logical Exclusive OR  
Logical Exclusive OR using Extended Addressing  
XORX  
Table 125. Program Control Instructions  
Mnemonic  
Operands  
Instruction  
BRK  
BTJ  
On-Chip Debugger Break  
p, bit, src, DA Bit Test and Jump  
BTJNZ  
BTJZ  
CALL  
DJNZ  
IRET  
JP  
bit, src, DA  
bit, src, DA  
dst  
Bit Test and Jump if Non-Zero  
Bit Test and Jump if Zero  
Call Procedure  
dst, src, RA Decrement and Jump Non-Zero  
Interrupt Return  
Jump  
dst  
dst  
DA  
DA  
JP cc  
JR  
Jump Conditional  
Jump Relative  
Jump Relative Conditional  
Return  
JR cc  
RET  
TRAP  
vector  
Software Trap  
Table 126. Rotate and Shift Instructions  
Mnemonic  
Operands  
dst  
Instruction  
BSWAP  
RL  
Bit Swap  
dst  
Rotate Left  
RLC  
RR  
dst  
Rotate Left through Carry  
Rotate Right  
dst  
RRC  
SRA  
dst  
Rotate Right through Carry  
Shift Right Arithmetic  
dst  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
199  
Table 126. Rotate and Shift Instructions  
Mnemonic  
SRL  
Operands  
dst  
Instruction  
Shift Right Logical  
Swap Nibbles  
SWAP  
dst  
eZ8 CPU Instruction Summary  
Table 127 summarizes the eZ8 CPU instructions. The table identifies the addressing  
modes employed by the instruction, the effect upon the Flags register, the number of CPU  
clock cycles required for the instruction fetch, and the number of CPU clock cycles  
required for the instruction execution.  
.
Table 127. eZ8 CPU Instruction Summary  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
H Cycles Cycles  
Symbolic Operation  
dst  
r
src  
r
C
Z
S
V
D
ADC dst, src  
dst dst + src + C  
12  
13  
14  
15  
16  
17  
18  
19  
02  
03  
04  
05  
06  
07  
08  
09  
*
*
*
*
0
*
2
2
3
3
3
3
4
4
2
2
3
3
3
3
4
4
3
4
3
4
3
4
3
3
3
4
3
4
3
4
3
3
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
r
R
IR  
ER  
ER  
r
ADCX dst, src  
ADD dst, src  
dst dst + src + C  
dst dst + src  
*
*
*
*
*
*
*
*
0
0
*
*
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
ADDX dst, src  
Flags Notation:  
dst dst + src  
*
*
*
*
0
*
* = Value is a function of the result of the operation.  
– = Unaffected  
0 = Reset to 0  
1 = Set to 1  
X = Undefined  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
200  
Table 127. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
H Cycles Cycles  
Symbolic Operation  
dst  
r
src  
r
C
Z
S
V
D
AND dst, src  
dst dst AND src  
52  
53  
54  
55  
56  
57  
58  
59  
2F  
*
*
0
2
2
3
3
3
3
4
4
1
3
4
3
4
3
4
3
3
2
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
ANDX dst, src  
ATM  
dst dst AND src  
*
*
0
Block all interrupt and  
DMA requests during  
execution of the next 3  
instructions  
BCLR bit, dst  
BIT p, bit, dst  
BRK  
dst[bit] 0  
r
r
E2  
E2  
00  
E2  
D5  
F6  
F7  
F6  
F7  
F6  
F7  
D4  
D6  
X
*
*
*
*
0
0
0
0
2
2
1
2
2
3
3
3
3
3
3
2
3
2
2
1
2
2
3
4
3
4
3
4
6
3
dst[bit] p  
Debugger Break  
dst[bit] 1  
*
*
BSET bit, dst  
BSWAP dst  
r
dst[7:0] dst[0:7]  
R
*
*
BTJ p, bit, src, dst if src[bit] = p  
PC PC + X  
r
Ir  
r
BTJNZ bit, src, dst if src[bit] = 1  
PC PC + X  
Ir  
r
BTJZ bit, src, dst if src[bit] = 0  
PC PC + X  
Ir  
CALL dst  
SP SP -2  
@SP PC  
PC dst  
IRR  
DA  
CCF  
C ~C  
EF  
B0  
B1  
*
–-  
1
2
2
2
2
3
CLR dst  
dst 00H  
R
IR  
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
201  
Table 127. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
H Cycles Cycles  
Symbolic Operation  
dst  
R
src  
C
Z
S
V
D
COM dst  
dst ~dst  
60  
61  
*
*
0
2
2
2
2
3
3
3
3
3
3
4
4
4
4
5
5
4
4
2
2
2
2
2
2
1
2
2
3
3
4
3
4
3
4
3
4
3
4
3
4
3
3
3
3
2
3
2
3
5
6
2
3
IR  
r
CP dst, src  
dst - src  
r
A2  
*
*
*
*
r
Ir  
A3  
R
R
A4  
R
IR  
IM  
IM  
r
A5  
R
A6  
IR  
r
A7  
CPC dst, src  
dst - src - C  
1F A2  
1F A3  
1F A4  
1F A5  
1F A6  
1F A7  
1F A8  
1F A9  
A8  
*
*
*
*
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
ER  
IM  
R
IR  
ER  
ER  
ER  
ER  
R
CPCX dst, src  
CPX dst, src  
DA dst  
dst - src - C  
dst - src  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A9  
dst DA(dst)  
dst dst - 1  
dst dst - 1  
IRQCTL[7] 0  
40  
*
X
*
IR  
R
41  
DEC dst  
30  
IR  
RR  
IRR  
31  
DECW dst  
80  
*
81  
DI  
8F  
DJNZ dst, RA  
dst dst – 1  
if dst 0  
r
0A-FA  
PC PC + X  
EI  
IRQCTL[7] 1  
9F  
1
2
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
202  
Table 127. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
H Cycles Cycles  
Symbolic Operation  
Halt Mode  
dst  
src  
C
Z
*
S
*
V
D
HALT  
7F  
20  
1
2
2
1
2
2
1
2
2
3
2
5
6
5
INC dst  
dst dst + 1  
R
IR  
21  
r
0E-FE  
A0  
INCW dst  
IRET  
dst dst + 1  
RR  
IRR  
*
*
*
*
*
*
*
*
*
A1  
FLAGS @SP  
SP SP + 1  
PC @SP  
BF  
SP SP + 2  
IRQCTL[7] 1  
JP dst  
PC dst  
DA  
IRR  
DA  
8D  
C4  
3
2
3
2
3
2
JP cc, dst  
if cc is true  
0D-FD  
PC dst  
JR dst  
PC PC + X  
DA  
DA  
8B  
2
2
2
2
JR cc, dst  
if cc is true  
0B-FB  
PC PC + X  
LD dst, rc  
dst src  
r
r
IM  
X(r)  
r
0C-FC  
C7  
D7  
E3  
2
3
3
2
3
3
3
3
2
3
2
3
4
3
2
4
2
3
3
3
X(r)  
r
Ir  
R
R
E4  
R
IR  
IM  
IM  
r
E5  
R
E6  
IR  
Ir  
E7  
F3  
IR  
R
F5  
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
203  
Table 127. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
H Cycles Cycles  
Symbolic Operation  
dst  
r
src  
Irr  
Irr  
r
C
Z
S
V
D
LDC dst, src  
dst src  
C2  
C5  
D2  
C3  
D3  
2
2
2
2
2
5
9
5
9
9
Ir  
Irr  
Ir  
LDCI dst, src  
dst src  
r r + 1  
rr rr + 1  
Irr  
Ir  
Irr  
LDE dst, src  
LDEI dst, src  
dst src  
r
Irr  
r
82  
92  
83  
93  
2
2
2
2
5
5
9
9
Irr  
Ir  
dst src  
r r + 1  
rr rr + 1  
Irr  
Ir  
Irr  
LDWX dst, src  
LDX dst, src  
dst src  
dst src  
ER  
r
ER  
ER  
ER  
IRR  
IRR  
X(rr)  
r
1FE8  
84  
85  
86  
87  
88  
89  
94  
95  
96  
97  
E8  
E9  
98  
99  
F4  
5
3
3
3
3
3
3
3
3
3
3
4
4
3
3
2
4
2
3
4
5
4
4
2
3
4
5
2
2
3
5
8
Ir  
R
IR  
r
X(rr)  
ER  
ER  
IRR  
IRR  
ER  
ER  
r
r
Ir  
R
IR  
ER  
IM  
LEA dst, X(src)  
MULT dst  
dst src + X  
X(r)  
X(rr)  
rr  
dst[15:0] ←  
dst[15:8] * dst[7:0]  
RR  
NOP  
No operation  
0F  
1
2
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
204  
Table 127. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
H Cycles Cycles  
Symbolic Operation  
dst  
r
src  
r
C
Z
S
V
D
OR dst, src  
dst dst OR src  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
D8  
*
*
0
2
2
3
3
3
3
4
4
2
2
3
3
4
3
4
3
4
3
3
2
3
2
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
R
ORX dst, src  
POP dst  
dst dst OR src  
*
*
0
dst @SP  
SP SP + 1  
IR  
ER  
POPX dst  
PUSH src  
dst @SP  
SP SP + 1  
SP SP – 1  
@SP src  
R
70  
71  
2
2
3
2
3
2
IR  
IM  
IF70  
PUSHX src  
SP SP – 1  
@SP src  
ER  
C8  
3
2
RCF  
RET  
C 0  
CF  
AF  
0
1
1
2
4
PC @SP  
SP SP + 2  
RL dst  
R
90  
91  
*
*
*
*
2
2
2
3
C
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
RLC dst  
R
10  
11  
*
*
*
*
2
2
2
3
C
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
205  
Table 127. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
H Cycles Cycles  
Symbolic Operation  
dst  
R
src  
C
Z
S
V
D
RR dst  
E0  
E1  
*
*
*
*
2
2
2
3
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
IR  
RRC dst  
R
C0  
C1  
*
*
*
*
*
*
*
*
1
*
2
2
2
3
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
IR  
SBC dst, src  
dst dst – src - C  
r
r
r
32  
33  
34  
35  
36  
37  
38  
39  
DF  
D0  
D1  
2
2
3
3
3
3
4
4
1
2
2
3
4
3
4
3
4
3
3
2
2
3
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
SBCX dst, src  
dst dst – src - C  
C 1  
*
*
*
*
1
*
SCF  
1
*
*
*
0
SRA dst  
R
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
C
IR  
SRL dst  
R
1F C0  
1F C1  
*
*
0
*
3
3
2
3
0
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
SRP src  
STOP  
RP src  
IM  
01  
6F  
22  
23  
24  
25  
26  
27  
*
*
*
*
1
*
2
1
2
2
3
3
3
3
2
2
3
4
3
4
3
4
STOP Mode  
dst dst – src  
SUB dst, src  
r
r
r
Ir  
R
R
R
IR  
R
IR  
IM  
IM  
Flags Notation:  
PS022815-0206  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
206  
Table 127. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
H Cycles Cycles  
Symbolic Operation  
dst  
ER  
ER  
R
src  
ER  
IM  
C
Z
S
V
D
SUBX dst, src  
dst dst – src  
28  
29  
F0  
F1  
62  
63  
64  
65  
66  
67  
68  
69  
72  
73  
74  
75  
76  
77  
78  
79  
F2  
*
*
*
*
1
*
4
4
2
2
2
2
3
3
3
3
4
4
2
2
3
3
3
3
4
4
2
3
3
2
3
3
4
3
4
3
4
3
3
3
4
3
4
3
4
3
3
6
SWAP dst  
dst[7:4] dst[3:0]  
X
*
*
*
*
X
0
IR  
r
TCM dst, src  
(NOT dst) AND src  
r
Ir  
r
R
R
R
IR  
R
IM  
IM  
ER  
IM  
r
IR  
ER  
ER  
r
*
*
*
*
0
0
TCMX dst, src  
(NOT dst) AND src  
TM dst, src  
dst AND src  
r
Ir  
R
R
R
IR  
R
IM  
IM  
ER  
IM  
Vector  
IR  
ER  
ER  
TMX dst, src  
TRAP Vector  
dst AND src  
*
*
0
SP SP – 2  
@SP PC  
SP SP – 1  
@SP FLAGS  
PC @Vector  
WDT  
5F  
1
2
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
207  
Table 127. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
H Cycles Cycles  
Symbolic Operation  
dst  
r
src  
r
C
Z
S
V
D
XOR dst, src  
dst dst XOR src  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
*
*
0
2
2
3
3
3
3
4
4
3
4
3
4
3
4
3
3
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
XORX dst, src  
Flags Notation:  
dst dst XOR src  
*
*
0
* = Value is a function of the result of the operation.  
– = Unaffected  
0 = Reset to 0  
1 = Set to 1  
X = Undefined  
PS022815-0206  
eZ8 CPU Instruction Set  
Z8 Encore! XP® 4K Series  
Product Specification  
208  
Opcode Maps  
A description of the opcode map data and the abbreviations are provided in Figure 30.  
Figures 31 and Figure 32 provide information about each of the eZ8 CPU instructions.  
Table 128 lists Opcode Map abbreviations.  
Opcode  
Lower Nibble  
Fetch Cycles  
Instruction Cycles  
4
3.3  
CP  
Opcode  
Upper Nibble  
A
R2,R1  
First Operand  
After Assembly  
Second Operand  
After Assembly  
Figure 30.Opcode Map Cell Description  
PS022815-0206  
Opcode Maps  
Z8 Encore! XP® 4K Series  
Product Specification  
209  
Table 128. Opcode Map Abbreviations  
Abbreviation  
Description  
Abbreviation  
Description  
b
Bit position  
IRR  
Indirect Register Pair  
Polarity (0 or 1)  
cc  
X
Condition code  
p
r
8-bit signed index or  
displacement  
4-bit Working Register  
DA  
ER  
Destination address  
R
8-bit register  
Extended Addressing register r1, R1, Ir1, Irr1, IR1,  
rr1, RR1, IRR1, ER1  
Destination address  
IM  
Immediate data value  
r2, R2, Ir2, Irr2, IR2,  
rr2, RR2, IRR2, ER2  
Source address  
Ir  
Indirect Working Register  
Indirect register  
RA  
rr  
Relative  
IR  
Irr  
Working Register Pair  
Register Pair  
Indirect Working Register Pair RR  
PS022815-0206  
Opcode Maps  
Z8 Encore! XP® 4K Series  
Product Specification  
210  
Lower Nibble (Hex)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
1.1  
2.2  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4  
4.3  
4.3  
2.3  
2.2  
JR  
cc,X  
2.2  
LD  
r1,IM  
3.2  
JP  
cc,DA  
1.2  
INC  
r1  
1.2  
NOP  
BRK SRP ADD ADD ADD ADD ADD ADD ADDX ADDX DJNZ  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
IM  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
r1,X  
2.2  
RLC  
R1  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
See 2nd  
Opcode  
Map  
RLC ADC ADC ADC ADC ADC ADC ADCX ADCX  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
INC  
R1  
2.3  
INC  
IR1  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1, 2  
SUB SUB SUB SUB SUB SUB SUBX SUBX  
r1,r2  
ATM  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
DEC DEC SBC SBC SBC SBC SBC SBC SBCX SBCX  
R1  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
DA  
R1  
2.3  
DA  
IR1  
2.3  
OR  
r1,r2  
2.4  
OR  
r1,Ir2  
3.3  
OR  
R2,R1  
3.4  
OR  
IR2,R1  
3.3  
OR  
R1,IM  
3.4  
4.3  
4.3  
OR  
ORX ORX  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1.2  
WDT  
POP POP AND AND AND AND AND AND ANDX ANDX  
R1  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1.2  
STOP  
COM COM TCM TCM TCM TCM TCM TCM TCMX TCMX  
R1  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
TM  
r1,Ir2  
3.3  
TM  
R2,R1  
3.4  
TM  
IR2,R1  
3.3  
TM  
R1,IM  
3.4  
4.3  
4.3  
1.2  
HALT  
PUSH PUSH TM  
R2  
TM  
TMX TMX  
IR2  
r1,r2  
IR1,IM ER2,ER1 IM,ER1  
2.5  
2.6  
2.5  
2.9  
3.2  
3.3  
LDX  
3.4  
LDX  
3.5  
3.4  
3.4  
1.2  
DI  
DECW DECW LDE LDEI LDX  
RR1  
LDX  
LDX  
LDX  
IRR1  
r1,Irr2  
Ir1,Irr2 r1,ER2 Ir1,ER2 IRR2,R1 IRR2,IR1 r1,rr2,X rr1,r2,X  
2.2  
RL  
R1  
2.3  
RL  
IR1  
2.5  
2.9  
3.2  
3.3  
LDX  
3.4  
LDX  
3.5  
3.3  
3.5  
1.2  
EI  
LDE LDEI LDX  
r2,Irr1  
LDX  
LEA  
LEA  
Ir2,Irr1 r2,ER1 Ir2,ER1 R2,IRR1 IR2,IRR1 r1,r2,X rr1,rr2,X  
2.5  
2.6  
2.3  
CP  
r1,r2  
2.4  
CP  
r1,Ir2  
3.3  
CP  
R2,R1  
3.4  
CP  
IR2,R1  
3.3  
CP  
R1,IM  
3.4  
4.3  
4.3  
1.4  
RET  
INCW INCW  
RR1  
CP  
CPX  
CPX  
IRR1  
IR1,IM ER2,ER1 IM,ER1  
2.2  
CLR  
R1  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1.5  
IRET  
CLR XOR XOR XOR XOR XOR XOR XORX XORX  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
3.4 3.2  
LD PUSHX  
2.2  
2.3  
2.5  
2.9  
2.3  
JP  
IRR1  
2.9  
LDC  
Ir1,Irr2  
1.2  
RCF  
RRC RRC LDC LDCI  
R1  
IR1  
r1,Irr2  
Ir1,Irr2  
r1,r2,X  
ER2  
2.2  
2.3  
2.5  
2.9  
2.6  
2.2  
3.3  
3.4  
LD  
r2,r1,X  
3.2  
POPX  
ER1  
1.2  
SCF  
SRA SRA  
R1  
LDC LDCI CALL BSWAP CALL  
r2,Irr1  
IR1  
Ir2,Irr1  
IRR1  
R1  
DA  
2.2  
RR  
R1  
2.3  
RR  
IR1  
2.2  
BIT  
p,b,r1  
2.3  
LD  
r1,Ir2  
3.2  
LD  
R2,R1  
3.3  
LD  
IR2,R1  
3.2  
LD  
R1,IM  
3.3  
4.2  
4.2  
1.2  
CCF  
LD  
LDX  
LDX  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.6  
2.3  
LD  
Ir1,r2  
2.8  
MULT  
RR1  
3.3  
LD  
3.3  
BTJ  
3.4  
BTJ  
SWAP SWAP TRAP  
R1  
IR1  
Vector  
R2,IR1 p,b,r1,X p,b,Ir1,X  
Figure 31.First Opcode Map  
PS022815-0206  
Opcode Maps  
Z8 Encore! XP® 4K Series  
Product Specification  
211  
Lower Nibble (Hex)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
3, 2  
PUSH  
IM  
3.3  
3.4  
4.3  
4.4  
4.3  
4.4  
5.3  
5.3  
CPC CPC CPC CPC CPC CPC CPCX CPCX  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
3.2  
SRL  
R1  
3.3  
SRL  
IR1  
5, 4  
LDWX  
ER2,ER1  
Figure 32.Second Opcode Map after 1FH  
PS022815-0206  
Opcode Maps  
Z8 Encore! XP® 4K Series  
Product Specification  
212  
Electrical Characteristics  
The data in this chapter is pre-qualification and pre-characterization and is subject to  
change. Additional electrical characteristics may be found in the individual chapters.  
Absolute Maximum Ratings  
Stresses greater than those listed in Table 129 may cause permanent damage to the device.  
These ratings are stress ratings only. Operation of the device at any condition outside those  
indicated in the operational sections of these specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
For improved reliability, tie unused inputs to one of the supply voltages (VDD or VSS).  
Table 129. Absolute Maximum Ratings  
Parameter  
Minimum Maximum  
Units  
°C  
°C  
V
Notes  
Ambient temperature under bias  
Storage temperature  
-40  
-65  
-0.3  
-0.3  
-5  
+105  
+150  
+5.5  
+3.6  
+5  
Voltage on any pin with respect to V  
1
SS  
Voltage on V pin with respect to V  
V
DD  
SS  
Maximum current on input and/or inactive output pin  
Maximum output current from active output pin  
µA  
mA  
-25  
+25  
8-pin Packages Maximum Ratings at 0°C to 70°C  
Total power dissipation  
220  
60  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
20-pin Packages Maximum Ratings at 0°C to 70°C  
Total power dissipation  
430  
120  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
28-pin Packages Maximum Ratings at 0°C to 70°C  
Total power dissipation  
450  
125  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
Operating temperature is specified in DC Characteristics  
1. This voltage applies to all pins except the following: V , AV , pins supporting analog input (Port B[5:0], Port  
DD  
DD  
C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1). On the 8-pin packages, this applies to all pins  
but V  
.
DD  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
213  
DC Characteristics  
Table 130 lists the DC characteristics of the Z8 Encore! XP® 4K Series products. All volt-  
ages are referenced to VSS, the primary system ground.  
Table 130. DC Characteristics  
TA = -40°C to +105°C  
(unless otherwise specified)  
Symbol Parameter  
Minimum Typical  
Maximum Units Conditions  
V
V
V
Supply Voltage  
2.7  
-0.3  
2.0  
3.6  
0.3*V  
5.5  
V
V
V
DD  
IL1  
IH1  
Low Level Input Voltage  
High Level Input Voltage  
DD  
For all input pins without analog  
or oscillator function. For all  
signal pins on the 8-pin devices.  
Programmable pull-ups must  
also be disabled.  
V
High Level Input Voltage  
2.0  
V
+0.3  
V
For those pins with analog or  
oscillator function (20-/28-pin  
devices only), or when  
programmable pull-ups are  
enabled.  
IH2  
DD  
V
V
V
V
Low Level Output  
Voltage  
0.4  
V
V
V
V
I
= 2mA; V = 3.0V  
OL1  
OH1  
OL2  
OH2  
OL DD  
High Output Drive disabled.  
I = -2mA; V = 3.0V  
OH  
High Level Output  
Voltage  
2.4  
0.6  
DD  
High Output Drive disabled.  
Low Level Output  
Voltage  
I
OL  
= 20mA; V = 3.3V  
DD  
High Output Drive enabled.  
I = -20mA; V = 3.3V  
OH  
High Level Output  
Voltage  
2.4  
DD  
High Output Drive enabled.  
I
I
I
Input Leakage Current  
Input Leakage Current  
Controlled Current Drive  
+0.002  
+5  
+5  
µA  
µA  
IH  
+0.007  
IL  
1.8  
2.8  
7.8  
12  
3
7
4.5  
10.5  
19.5  
30  
mA {AFS2,AFS1} = {0,0}  
mA {AFS2,AFS1} = {0,1}  
mA {AFS2,AFS1} = {1,0}  
mA {AFS2,AFS1} = {1,1}  
pF TBD  
LED  
13  
20  
2
C
C
GPIO Port Pad  
Capacitance  
8.0  
PAD  
XIN  
2
XIN Pad Capacitance  
8.0  
pF TBD  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
214  
Table 130. DC Characteristics (Continued)  
TA = -40°C to +105°C  
(unless otherwise specified)  
Symbol Parameter  
Minimum Typical  
Maximum Units Conditions  
2
C
XOUT Pad Capacitance  
Weak Pull-up Current  
9.5  
pF TBD  
µA V = 3.0 - 3.6V  
XOUT  
I
30  
100  
350  
PU  
DD  
V
RAM Data Retention  
Voltage  
TBD  
V
Voltage at which RAM will retain  
static values; no reading or  
writing is allowed.  
RAM  
1
2
This condition excludes all pins that have on-chip pull-ups, when driven Low.  
These values are provided for design guidance only and are not tested in production.  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
215  
Table 131. Power Consumption  
VDD = 2.7V to 3.6V  
TA = 0°C to +70°C  
Symbol  
Parameter  
Minimum Typical1 Maximum Units Conditions  
I
Stop  
Supply Current in STOP  
Mode  
1
µA No peripherals enabled. All pins  
driven to V or V  
DD  
DD  
.
SS  
DD  
I
Halt  
Supply Current in HALT  
Mode (with all  
4
µA 32 kHz  
peripherals disabled)  
520  
1.9  
3.3  
4.2  
4.9  
6.5  
1
µA 5.5 MHz  
mA 20 MHz  
mA 32 kHz  
mA 5.5 MHz  
mA 10 MHz  
mA 20 MHz  
µA  
I
Supply Current in  
ACTIVE Mode  
DD  
I
I
WDT  
XTAL  
Watchdog Timer Supply  
Current  
DD  
DD  
Crystal Oscillator Supply  
Current  
40  
µA 32 kHz  
µA 4 MHz  
µA 20 MHz  
mA  
230  
760  
1.5  
I
I
IPO  
Internal Precision  
Oscillator Supply Current  
DD  
DD  
VBO  
Voltage Brown-Out and  
Low-Voltage Detect  
Supply Current  
50  
µA For 20-/28-pin devices (VBO  
only); See Note 2  
For 8-pin devices; See Note 2  
mA 32 kHz  
I
ADC  
Analog to Digital  
Converter Supply  
Current (with External  
Reference)  
2.8  
3.0  
3.2  
3.5  
0
DD  
mA 5.5 MHz  
mA 10 MHz  
mA 20 MHz  
I
I
I
ADCRef ADC Internal Reference  
Supply Current  
µA See Note 2  
DD  
DD  
DD  
CMP  
Comparator supply  
Current  
100  
2
µA See Note 2  
LPO  
Low-Power Operational  
Amplifier Supply Current  
µA Driving a high-impedance load  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
216  
Table 131. Power Consumption (Continued)  
VDD = 2.7V to 3.6V  
TA = 0°C to +70°C  
Symbol  
Parameter  
Minimum Typical1 Maximum Units Conditions  
I
TS  
Temperature Sensor  
Supply Current  
60  
µA See Note 2.  
DD  
DD  
I
BG  
Band Gap Supply  
Current  
310  
µA For 20-/28-pin devices  
For 8-pin devices  
1
2
Typical conditions are defined as Vdd = 3.3V and +30°C.  
For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply current.  
This bandgap current is only added once, regardless of how many peripherals are using it.  
Figure 33 illustrates illustrates the typical current consumption while operating with all  
peripherals disabled, at 30ºC, versus the system clock frequency.  
Typical Supply Current - Active Mode  
10  
8
6
VDD = 3.60V / 30C  
VDD = 3.30V / 30C  
VDD = 2.70V / 30C  
4
2
0
0
5
10  
15  
20  
Freq (MHz)  
Figure 33. Typical Active Mode I Versus System Clock Frequency  
DD  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
217  
AC Characteristics  
The section provides information about the AC characteristics and timing. All AC timing  
information assumes a standard load of 50pF on all outputs.  
Table 132. AC Characteristics  
VDD = 2.7 to 3.6V  
TA = -40°C to +105°C  
(unless otherwise  
stated)  
Symbol  
Parameter  
Minimum Maximum Units Conditions  
F
System Clock Frequency  
20.0  
20.0  
MHz Read-only from Flash memory  
SYSCLK  
0.032768  
MHz Program or erasure of the  
Flash memory  
F
Crystal Oscillator Frequency  
20.0  
MHz System clock frequencies  
below the crystal oscillator  
minimum require an external  
clock driver.  
XTAL  
T
T
T
T
T
System Clock Period  
50  
20  
20  
30  
30  
3
ns  
ns  
ns  
ns  
ns  
T
T
T
T
T
= 1/F  
sysclk  
XIN  
CLK  
CLK  
CLK  
CLK  
CLK  
System Clock High Time  
System Clock Low Time  
System Clock Rise Time  
System Clock Fall Time  
= 50ns  
= 50ns  
= 50ns  
= 50ns  
XINH  
XINL  
XINR  
XINF  
3
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
218  
Table 133. Internal Precision Oscillator Electrical Characteristics  
VDD = 2.7 to 3.6V  
TA = -40°C to +105°C  
(unless otherwise stated)  
Symbol  
Parameter  
Minimum Typical Maximum Units Conditions  
F
F
F
T
Internal Precision Oscillator  
Frequency (High Speed)  
5.53  
5.53  
32.7  
0.7  
V
= 3.3V  
DD  
IPO  
T = 30°C  
A
Internal Precision Oscillator  
Frequency (High Speed)  
5.31  
30.7  
5.75  
33.3  
MHz  
KHz  
µs  
IPO  
Internal Precision Oscillator  
Frequency (Low Speed)  
IPO  
Internal Precision Oscillator  
Startup Time  
IPOST  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
219  
On-Chip Peripheral AC and DC Electrical Characteristics  
Table 134. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing  
TA = -40°C to +105°C  
Symbol Parameter  
Minimum Typical1  
Maximum  
Units Conditions  
V
Power-On Reset Voltage  
Threshold  
2.20  
2.45  
2.40  
50  
2.70  
V
V
= V  
POR  
DD  
POR  
V
Voltage Brown-Out  
Reset Voltage Threshold  
2.15  
2.65  
V
V
= V  
VBO  
DD  
VBO  
V
to V  
hysteresis  
VBO  
75  
mV  
V
POR  
Starting V voltage to  
V
SS  
DD  
ensure valid Power-On  
Reset.  
T
T
Power-On Reset Analog  
Delay  
50  
µs  
µs  
V
> V  
; T  
Digital  
ANA  
DD  
POR POR  
Reset delay follows T  
ANA  
Power-On Reset Digital  
Delay  
16  
66 Internal Precision  
Oscillator cycles + IPO  
startup time (T  
POR  
)
IPOST  
T
T
Power-On Reset Digital  
Delay  
1
ms  
µs  
5000 Internal Precision  
Oscillator cycles  
POR  
STOP Mode Recovery  
with crystal oscillator  
disabled  
16  
66 Internal Precision  
Oscillator cycles  
SMR  
T
STOP Mode Recovery  
with crystal oscillator  
enabled  
1
ms  
5000 Internal Precision  
Oscillator cycles  
SMR  
T
T
Voltage Brown-Out  
Pulse Rejection Period  
V
< V  
to generate a  
10  
µs  
VBO  
DD  
VBO  
Reset.  
Time for V to transition  
0.10  
100  
ms  
RAMP  
DD  
from V to V  
to  
SS  
POR  
ensure valid Reset  
T
Stop-Mode Recovery pin  
pulse rejection period  
20  
ns  
For any SMR pin or for the  
Reset pin when it is asserted  
in STOP mode.  
SMP  
1 Data in the typical column is from characterization at 3.3V and 30°C. These values are provided for  
design guidance only and are not tested in production.  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
220  
Table 135. Flash Memory Electrical Characteristics and Timing  
VDD = 2.7 to 3.6V  
TA = -40°C to +105°C  
(unless otherwise stated)  
Parameter  
Minimum Typical  
Maximum  
Units Notes  
Flash Byte Read Time  
Flash Byte Program Time  
Flash Page Erase Time  
Flash Mass Erase Time  
100  
20  
40  
ns  
µs  
10  
ms  
ms  
200  
Writes to Single Address  
Before Next Erase  
2
Flash Row Program Time  
8
ms  
Cumulative program time for  
single row cannot exceed limit  
before next erase. This  
parameter is only an issue  
when bypassing the Flash  
Controller.  
Data Retention  
Endurance  
100  
years 25°C  
10,000  
cycles Program / erase cycles  
Table 136. Watch-Dog Timer Electrical Characteristics and Timing  
VDD = 2.7 - 3.6V  
TA = -40°C to +105°C  
(unless otherwise stated)  
Symbol  
Parameter  
Minimum Typical  
Maximum  
Units Conditions  
F
T
WDT Oscillator Frequency  
WDT Calibrated Timeout  
5
10  
15  
KHz  
WDT  
100  
ms  
ms  
ms  
V
= 3.3V; T =  
WDTCAL  
DD A  
30°C  
V = 2.7V to 3.6V  
DD  
100  
100  
T = 0°C to 70°C  
A
V
= 2.7V to 3.6V  
DD  
T = -40°C to +105°C  
A
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
221  
Table 137. Non Volatile Data Storage  
VDD = 2.7 - 3.6V  
TA = -40°C to +105°C  
Parameter  
Minimum Typical  
Maximum  
Units Notes  
NVDS Byte Read Time  
NVDS Byte Program Time  
Data Retention  
34  
0.171  
100  
519  
39.7  
µs  
With system clock at 20MHz  
With system clock at 20MHz  
ms  
years 25°C  
Endurance  
160,000  
cycles Cumulative write cycles for  
entire memory  
Table 138. Analog-to-Digital Converter Electrical Characteristics and Timing  
VDD = 3.0 to 3.6V  
TA = 0°C to +70°C  
Symbol  
Parameter  
Minimum Typical  
Maximum  
Units Conditions  
Resolution  
10  
bits  
3
Differential Nonlinearity  
(DNL)  
-1.0  
1.0  
LSB External V  
= 2.0V;  
= 2.0V;  
REF  
R 3.0KΩ  
S
3
Integral Nonlinearity (INL)  
-3.0  
3.0  
LSB External V  
REF  
R 3.0KΩ  
S
3
3
Offset Error with  
Calibration  
+1  
+3  
LSB  
LSB  
V
Absolute Accuracy with  
Calibration  
V
Internal Reference Voltage  
1.0  
2.0  
1.1  
2.2  
1.2  
2.4  
REFSEL=01  
REFSEL=10  
REF  
R
Reference Buffer Ouput  
Impedance  
850  
Ω
When the internal  
reference is buffered  
and driven out to the  
VREF pin (REFOUT =  
1)  
REFOUT  
1
Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling  
time.  
2
Devices are factory calibrated at V  
= 3.3V and T = +30°C, so the ADC is maximally accurate under  
A
DD  
these conditions.  
3
LSBs are defined assuming 10-bit resolution.  
The input impedance is inversely proportional to the system clock frequency.  
4
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
222  
Table 138. Analog-to-Digital Converter Electrical Characteristics and Timing  
VDD = 3.0 to 3.6V  
TA = 0°C to +70°C  
Symbol  
Parameter  
Minimum Typical  
Maximum  
Units Conditions  
Single-Shot Conversion  
Time  
5129  
System All measurements but  
clock temperature sensor  
cycles  
10258  
256  
Temperature sensor  
measurement  
Continuous Conversion  
Time  
System All measurements but  
clock temperature sensor  
cycles  
512  
10  
Temperature sensor  
measurement  
Signal Input Bandwidth  
kHz As defined by -3dB  
point  
R
Analog Source Impedance  
10  
kΩ  
kΩ  
kΩ  
In unbuffered mode  
In buffered modes  
In unbuffered mode at  
S
500  
Zin  
Vin  
Input Impedance  
TBD  
150  
4
20MHz  
10  
0
TBD  
MΩ In buffered modes  
Input Voltage Range  
V
V
V
Unbuffered Mode  
DD  
0.3  
V
-1.1  
Buffered Modes  
DD  
Note: these values  
define the range over  
which the ADC  
performs within spec;  
exceeding these values  
does not cause  
damage or instability;  
see DC Characteristics  
on page 213 for  
absolute pin voltage  
limits  
1
Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling  
time.  
2
Devices are factory calibrated at V  
= 3.3V and T = +30°C, so the ADC is maximally accurate under  
A
DD  
these conditions.  
3
LSBs are defined assuming 10-bit resolution.  
The input impedance is inversely proportional to the system clock frequency.  
4
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
223  
Table 139. Low Power Operational Amplifer Electrical Characteristics  
VDD = 2.7 to 3.6V  
TA = -40°C to +105°C  
Symbol  
Av  
Parameter  
Minimum Typical  
Maximum  
Units Conditions  
Open loop voltage gain  
Gain/Bandwidth product  
Phase Margin  
80  
500  
53  
dB  
GBW  
PM  
kHz  
deg Assuming 13pF pin  
capacitance  
V
V
Input Offset Voltage  
–4  
4
mV  
osLPO  
osLPO  
Input Offset Voltage  
(Temperature Drift)  
1
10  
μV/C Over the range of  
-10°C to +40°C  
Table 140. Comparator Electrical Characteristics  
VDD = 2.7 to 3.6V  
TA = -40°C to +105°C  
Symbol  
Parameter  
Minimum Typical  
Maximum  
Units Conditions  
V
V
Input DC Offset  
5
+5  
+3  
100  
4
mV  
OS  
Programmable Internal  
Reference Voltage  
%
%
20-/28-pin devices  
CREF  
8-pin devices  
T
Propagation Delay  
Input Hysteresis  
ns  
mV  
V
PROP  
V
V
HYS  
IN  
Input Voltage Range  
V
V
-1  
DD  
SS  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
224  
Table 141. Temperature Sensor Electrical Characteristics  
VDD = 2.7 to 3.6V  
Minimum Typical Maximum  
+1.5  
Symbol  
Parameter  
Units Conditions  
T
Temperature Error  
°C  
°C  
°C  
°C  
Over the range +20°C  
to +30°C (as  
measured by ADC)  
AERR  
Over the range +0°C  
to +70°C (as  
measured by ADC)  
+7  
Over the range -40°C  
to +105°C (as  
measured by ADC)  
T
Temperature Error  
Wakeup Time  
TBD  
100  
Over the range -40°C  
to +105°C (as  
measured by  
AERR  
comparator)  
t
80  
us  
Time required for  
Temperature Sensor  
to stabilize after  
enabling  
WAKE  
General Purpose I/O Port Input Data Sample Timing  
Figure 34 illustrates timing of the GPIO Port input sampling. The input value on a GPIO  
Port pin is sampled on the rising edge of the system clock. The Port value is available to  
the eZ8 CPU on the second rising clock edge following the change of the Port value.  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
225  
TCLK  
System  
Clock  
Port Value  
Changes to 0  
Port Pin  
Input Value  
Port Input Data  
Register Latch  
0 Latched  
Into Port Input  
Data Register  
Port Input Data Register  
Value 0 Read  
by eZ8  
Port Input Data  
Read on Data Bus  
Figure 34. Port Input Sample Timing  
Table 142. GPIO Port Input Timing  
Delay (ns)  
Parameter Abbreviation  
Minimum Maximum  
T
T
T
Port Input Transition to XIN Rise Setup Time  
(Not pictured)  
5
S_PORT  
H_PORT  
SMR  
XIN Rise to Port Input Transition Hold Time  
(Not pictured)  
0
GPIO Port Pin Pulse Width to ensure STOP Mode  
Recovery  
1μs  
(for GPIO Port Pins enabled as SMR sources)  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
226  
General Purpose I/O Port Output Timing  
Figure 35 and Table 143 provide timing information for GPIO Port pins.  
TCLK  
XIN  
T1  
T2  
Port Output  
Figure 35. GPIO Port Output Timing  
Table 143. GPIO Port Output Timing  
Delay (ns)  
Parameter  
Abbreviation  
Minimum Maximum  
GPIO Port pins  
T
T
XIN Rise to Port Output Valid Delay  
XIN Rise to Port Output Hold Time  
2
15  
1
2
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
227  
On-Chip Debugger Timing  
Figure 36 and Table 144 provide timing information for the DBG pin. The DBG pin tim-  
ing specifications assume a 4ns maximum rise and fall time.  
TCLK  
XIN  
T1  
T2  
T4  
DBG  
(Output)  
Output Data  
T3  
DBG  
(Input)  
Input Data  
Figure 36. On-Chip Debugger Timing  
Table 144. On-Chip Debugger Timing  
Delay (ns)  
Parameter  
DBG  
Abbreviation  
Minimum  
Maximum  
T
T
T
T
XIN Rise to DBG Valid Delay  
2
5
5
15  
1
2
3
4
XIN Rise to DBG Output Hold Time  
DBG to XIN Rise Input Setup Time  
DBG to XIN Rise Input Hold Time  
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
228  
UART Timing  
Figure 37 and Table 145 provide timing information for UART pins for the case where  
CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the transmit  
data register has been loaded with data prior to CTS assertion.  
CTS  
(Input)  
T3  
DE  
(Output)  
T1  
TXD  
bit 7 parity  
stop  
start  
bit 0  
bit 1  
(Output)  
T2  
end of  
stop bit(s)  
Figure 37. UART Timing With CTS  
Table 145. UART Timing With CTS  
Delay (ns)  
Parameter  
UART  
Abbreviation  
Minimum  
Maximum  
T
CTS Fall to DE output delay  
2 * XIN  
period  
2 * XIN period  
+ 1 bit time  
1
T
T
DE assertion to TXD falling edge (start bit) delay ± 5  
End of Stop Bit(s) to DE deassertion delay ± 5  
2
3
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
229  
Figure 38 and Table 146 provide timing information for UART pins for the case where  
CTS is not used for flow control. DE asserts after the transmit data register has been writ-  
ten. DE remains asserted for multiple characters as long as the transmit data register is  
written with the next character before the current character has completed.  
T2  
DE  
(Output)  
TXD  
(Output)  
start  
bit0  
bit 1  
bit 7 parity  
stop  
T1  
end of  
stop bit(s)  
Figure 38. UART Timing Without CTS  
Table 146. UART Timing Without CTS  
Delay (ns)  
Parameter  
UART  
Abbreviation  
Minimum  
Maximum  
T
DE assertion to TXD falling edge (start bit) delay 1 * XIN  
period  
1 bit time  
1
T
End of Stop Bit(s) to DE deassertion delay (Tx  
data register is empty)  
± 5  
2
PS022815-0206  
Electrical Characteristics  
Z8 Encore! XP® 4K Series  
Product Specification  
230  
Packaging  
Figure 39 illustrates the 8-pin Plastic Dual Inline Package (PDIP) available for the Z8  
Encore! XP® 4K Series devices.  
8
5
E1  
1
4
E
D
B1  
Q1  
A2  
A1  
CONTROLLING DIMENSIONS  
: MM.  
L
C
eA  
S
e
B
Figure 39.8-Pin Plastic Dual Inline Package (PDIP)  
PS022815-0206  
Packaging  
Z8 Encore! XP® 4K Series  
Product Specification  
231  
Figure 40 illustrates the 8-pin Small Outline Integrated Circuit package (SOIC) available  
for the Z8 Encore! XP® 4K Series devices.  
Figure 40. 8-Pin Small Outline Integrated Circuit Package (SOIC)  
PS022815-0206  
Packaging  
Z8 Encore! XP® 4K Series  
Product Specification  
232  
Figure 41 illustrates the 8-pin Quad Flat No-Lead package (QFN)/MLF-S available for the  
Z8 Encore! XP 4K Series devices. This package has a footprint identical to that of the 8-  
pin SOIC, but with a lower profile.  
Figure 41.8-Pin Quad Flat No-Lead Package (QFN)/ MLF-S  
PS022815-0206  
Packaging  
Z8 Encore! XP® 4K Series  
Product Specification  
233  
Figure 42 illustrates the 20-pin Plastic Dual Inline Package (PDIP) available for the Z8  
Encore! XP® 4K Series devices.  
Figure 42.20-Pin Plastic Dual Inline Package (PDIP)  
PS022815-0206  
Packaging  
Z8 Encore! XP® 4K Series  
Product Specification  
234  
Figure 43 illustrates the 20-pin Small Outline Integrated Circuit Package (SOIC) available  
for the Z8 Encore! XP® 4K Series devices.  
Figure 43.20-Pin Small Outline Integrated Circuit Package (SOIC)  
PS022815-0206  
Packaging  
Z8 Encore! XP® 4K Series  
Product Specification  
235  
Figure 44 illustrates the 20-pin Small Shrink Outline Package (SSOP) available for the Z8  
Encore! XP® 4K Series devices.  
Figure 44.20-Pin Small Shrink Outline Package (SSOP)  
PS022815-0206  
Packaging  
Z8 Encore! XP® 4K Series  
Product Specification  
236  
Figure 45 illustrates the 28-pin Plastic Dual Inline Package (PDIP) available for the Z8  
Encore! XP® 4K Series devices.  
Figure 45.28-Pin Plastic Dual Inline Package (PDIP)  
PS022815-0206  
Packaging  
Z8 Encore! XP® 4K Series  
Product Specification  
237  
Figure 46 illustrates the 28-pin Small Outline Integrated Circuit package (SOIC) available  
in the Z8 Encore! XP® 4K Series devices.  
Figure 46.28-Pin Small Outline Integrated Circuit Package (SOIC)  
PS022815-0206  
Packaging  
Z8 Encore! XP® 4K Series  
Product Specification  
238  
Figure 47 illustrates the 28-pin Small Shrink Outline Package (SSOP) available for the Z8  
Encore! XP® 4K Series devices.  
D
C
28  
15  
MILLIMETER  
NOM  
INCH  
NOM  
0.073  
0.005  
0.068  
SYMBOL  
MIN  
1.73  
0.05  
1.68  
0.25  
0.09  
MAX  
1.99  
0.21  
1.78  
0.38  
0.20  
MIN  
MAX  
0.078  
0.008  
0.070  
0.015  
0.008  
A
1.86  
0.068  
0.002  
0.066  
0.010  
0.004  
A1  
A2  
B
0.13  
H
E
1.73  
C
0.006  
1
14  
D
E
e
10.07  
5.20  
10.20  
5.30  
10.33  
5.38  
0.397  
0.205  
0.402  
0.407  
0.212  
DETAIL A  
0.209  
0.65 TYP  
0.0256 TYP  
H
L
7.65  
0.63  
7.80  
0.75  
7.90  
0.95  
0.301  
0.025  
0.307  
0.030  
0.311  
0.037  
A2  
A
B
e
SEATING PLANE  
CONTROLLING DIMENSIONS: MM  
LEADS ARE COPLANAR WITHIN .004 INCHES.  
L
0 - 8  
Figure 47.28-Pin Small Shrink Outline Package (SSOP)  
PS022815-0206  
Packaging  
Z8 Encore! XP® 4K Series  
Product Specification  
239  
Ordering Information  
®
Z8 Encore! XP with 4KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0° to 70°C  
Z8F042APB020SC  
Z8F042AQB020SC  
Z8F042ASB020SC  
Z8F042ASH020SC  
Z8F042AHH020SC  
Z8F042APH020SC  
Z8F042ASJ020SC  
Z8F042AHJ020SC  
Z8F042APJ020SC  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
7
7
7
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1 PDIP 8-pin package  
1 QFN 8-pin package  
1 SOIC 8-pin package  
1 SOIC 20-pin package  
1 SSOP 20-pin package  
1 PDIP 20-pin package  
1 SOIC 28-pin package  
1 SSOP 28-pin package  
1 PDIP 28-pin package  
6
1
1
1
1
1
1
1
1
6
17  
17  
17  
23  
23  
23  
Extended Temperature: -40° to 105°C  
Z8F042APB020EC  
Z8F042AQB020EC  
Z8F042ASB020EC  
Z8F042ASH020EC  
Z8F042AHH020EC  
Z8F042APH020EC  
Z8F042ASJ020EC  
Z8F042AHJ020EC  
Z8F042APJ020EC  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
7
7
7
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 PDIP 8-pin package  
1 QFN 8-pin package  
1 SOIC 8-pin package  
1 SOIC 20-pin package  
1 SSOP 20-pin package  
1 PDIP 20-pin package  
1 SOIC 28-pin package  
1 SSOP 28-pin package  
1 PDIP 28-pin package  
6
6
17  
17  
17  
23  
23  
23  
Replace C with G for Lead-Free Packaging  
PS022815-0206  
Ordering Information  
Z8 Encore! XP® 4K Series  
Product Specification  
240  
®
Z8 Encore! XP with 4KB Flash  
Standard Temperature: 0° to 70°C  
Z8F041APB020SC  
Z8F041AQB020SC  
Z8F041ASB020SC  
Z8F041ASH020SC  
Z8F041AHH020SC  
Z8F041APH020SC  
Z8F041ASJ020SC  
Z8F041AHJ020SC  
Z8F041APJ020SC  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0 PDIP 8-pin package  
0 QFN 8-pin package  
0 SOIC 8-pin package  
0 SOIC 20-pin package  
0 SSOP 20-pin package  
0 PDIP 20-pin package  
0 SOIC 28-pin package  
0 SSOP 28-pin package  
0 PDIP 28-pin package  
6
1
1
1
1
1
1
1
1
6
17  
17  
17  
25  
25  
25  
Extended Temperature: -40° to 105°C  
Z8F041APB020EC  
Z8F041AQB020EC  
Z8F041ASB020EC  
Z8F041ASH020EC  
Z8F041AHH020EC  
Z8F041APH020EC  
Z8F041ASJ020EC  
Z8F041AHJ020EC  
Z8F041APJ020EC  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
128B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0 PDIP 8-pin package  
0 PDIP 8-pin package  
0 SOIC 8-pin package  
0 SOIC 20-pin package  
0 SSOP 20-pin package  
0 PDIP 20-pin package  
0 SOIC 28-pin package  
0 SSOP 28-pin package  
0 PDIP 28-pin package  
6
6
17  
17  
17  
25  
25  
25  
Replace C with G for Lead-Free Packaging  
PS022815-0206  
Ordering Information  
Z8 Encore! XP® 4K Series  
Product Specification  
241  
®
Z8 Encore! XP with 2KB Flash, 10-Bit analog-to-Digital Converter  
Standard Temperature: 0° to 70°C  
Z8F022APB020SC  
Z8F022AQB020SC  
Z8F022ASB020SC  
Z8F022ASH020SC  
Z8F022AHH020SC  
Z8F022APH020SC  
Z8F022ASJ020SC  
Z8F022AHJ020SC  
Z8F022APJ020SC  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
7
7
7
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1 PDIP 8-pin package  
1 QFN 8-pin package  
1 SOIC 8-pin package  
1 SOIC 20-pin package  
1 SSOP 20-pin package  
1 PDIP 20-pin package  
1 SOIC 28-pin package  
1 SSOP 28-pin package  
1 PDIP 28-pin package  
6
1
1
1
1
1
1
1
1
6
17  
17  
17  
23  
23  
23  
Extended Temperature: -40° to 105°C  
Z8F022APB020EC  
Z8F022AQB020EC  
Z8F022ASB020EC  
Z8F022ASH020EC  
Z8F022AHH020EC  
Z8F022APH020EC  
Z8F022ASJ020EC  
Z8F022AHJ020EC  
Z8F022APJ020EC  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
7
7
7
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 PDIP 8-pin package  
1 QFN 8-pin package  
1 SOIC 8-pin package  
1 SOIC 20-pin package  
1 SSOP 20-pin package  
1 PDIP 20-pin package  
1 SOIC 28-pin package  
1 SSOP 28-pin package  
1 PDIP 28-pin package  
6
6
17  
17  
17  
23  
23  
23  
Replace C with G for Lead-Free Packaging  
PS022815-0206  
Ordering Information  
Z8 Encore! XP® 4K Series  
Product Specification  
242  
®
Z8 Encore! XP with 2KB Flash  
Standard Temperature: 0° to 70°C  
Z8F021APB020SC  
Z8F021AQB020SC  
Z8F021ASB020SC  
Z8F021ASH020SC  
Z8F021AHH020SC  
Z8F021APH020SC  
Z8F021ASJ020SC  
Z8F021AHJ020SC  
Z8F021APJ020SC  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0 PDIP 8-pin package  
0 QFN 8-pin package  
0 SOIC 8-pin package  
0 SOIC 20-pin package  
0 SSOP 20-pin package  
0 PDIP 20-pin package  
0 SOIC 28-pin package  
0 SSOP 28-pin package  
0 PDIP 28-pin package  
6
1
1
1
1
1
1
1
1
6
17  
17  
17  
25  
25  
25  
Extended Temperature: -40° to 105°C  
Z8F021APB020EC  
Z8F021AQB020EC  
Z8F021ASB020EC  
Z8F021ASH020EC  
Z8F021AHH020EC  
Z8F021APH020EC  
Z8F021ASJ020EC  
Z8F021AHJ020EC  
Z8F021APJ020EC  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
2KB  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
64B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0 PDIP 8-pin package  
0 QFN 8-pin package  
0 SOIC 8-pin package  
0 SOIC 20-pin package  
0 SSOP 20-pin package  
0 PDIP 20-pin package  
0 SOIC 28-pin package  
0 SSOP 28-pin package  
0 PDIP 28-pin package  
6
6
17  
17  
17  
25  
25  
25  
Replace C with G for Lead-Free Packaging  
PS022815-0206  
Ordering Information  
Z8 Encore! XP® 4K Series  
Product Specification  
243  
®
Z8 Encore! XP with 1KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0° to 70°C  
Z8F012APB020SC  
Z8F012AQB020SC  
Z8F012ASB020SC  
Z8F012ASH020SC  
Z8F012AHH020SC  
Z8F012APH020SC  
Z8F012ASJ020SC  
Z8F012AHJ020SC  
Z8F012APJ020SC  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
7
7
7
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1 PDIP 8-pin package  
1 QFN 8-pin package  
1 SOIC 8-pin package  
1 SOIC 20-pin package  
1 SSOP 20-pin package  
1 PDIP 20-pin package  
1 SOIC 28-pin package  
1 SSOP 28-pin package  
1 PDIP 28-pin package  
6
1
1
1
1
1
1
1
1
6
17  
17  
17  
23  
23  
23  
Extended Temperature: -40° to 105°C  
Z8F012APB020EC  
Z8F012AQB020EC  
Z8F012ASB020EC  
Z8F012ASH020EC  
Z8F012AHH020EC  
Z8F012APH020EC  
Z8F012ASJ020EC  
Z8F012AHJ020EC  
Z8F012APJ020EC  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
7
7
7
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 PDIP 8-pin package  
1 QFN 8-pin package  
1 SOIC 8-pin package  
1 SOIC 20-pin package  
1 SSOP 20-pin package  
1 PDIP 20-pin package  
1 SOIC 28-pin package  
1 SSOP 28-pin package  
1 PDIP 28-pin package  
6
6
17  
17  
17  
23  
23  
23  
Replace C with G for Lead-Free Packaging  
PS022815-0206  
Ordering Information  
Z8 Encore! XP® 4K Series  
Product Specification  
244  
®
Z8 Encore! XP with 1KB Flash  
Standard Temperature: 0° to 70°C  
Z8F011APB020SC  
Z8F011AQB020SC  
Z8F011ASB020SC  
Z8F011ASH020SC  
Z8F011AHH020SC  
Z8F011APH020SC  
Z8F011ASJ020SC  
Z8F011AHJ020SC  
Z8F011APJ020SC  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0 PDIP 8-pin package  
0 QFN 8-pin package  
0 SOIC 8-pin package  
0 SOIC 20-pin package  
0 SSOP 20-pin package  
0 PDIP 20-pin package  
0 SOIC 28-pin package  
0 SSOP 28-pin package  
0 PDIP 28-pin package  
6
1
1
1
1
1
1
1
1
6
17  
17  
17  
25  
25  
25  
Extended Temperature: -40° to 105°C  
Z8F011APB020EC  
Z8F011AQB020EC  
Z8F011ASB020EC  
Z8F011ASH020EC  
Z8F011AHH020EC  
Z8F011APH020EC  
Z8F011ASJ020EC  
Z8F011AHJ020EC  
Z8F011APJ020EC  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
16B  
6
18  
18  
18  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0 PDIP 8-pin package  
0 QFN 8-pin package  
0 SOIC 8-pin package  
0 SOIC 20-pin package  
0 SSOP 20-pin package  
0 PDIP 20-pin package  
0 SOIC 28-pin package  
0 SSOP 28-pin package  
0 PDIP 28-pin package  
6
6
17  
17  
17  
25  
25  
25  
Replace C with G for Lead-Free Packaging  
Z8F04A28100KIT  
20 and 28-Pin  
Development Kit  
PS022815-0206  
Ordering Information  
Z8 Encore! XP® 4K Series  
Product Specification  
245  
Z8F04A08100KIT  
ZUSBSC0100ZAC  
8-Pin Development Kit  
USB Smart Cable  
Accessory Kit  
PS022815-0206  
Ordering Information  
Z8 Encore! XP® 4K Series  
Product Specification  
246  
Part Number Suffix Designations  
Z8  
F
04 2A S H 020 S  
C
Environmental Flow:  
C = Standard Plastic Packaging Compound  
G = Green Plastic Packaging Compound  
Temperature Range (°C):  
S = Standard, 0 to 70  
E = Extended, -40 to +105  
Speed:  
020 = 20MHz  
Pin Count:  
B = 8  
H = 20  
J = 28  
Package:  
H = SSOP  
P = PDIP  
Q = QFN  
S = SOIC  
Device Type  
Memory Size:  
04 = 4KB Flash, 1KB RAM, 128B NVDS  
02 = 2KB Flash, 512B RAM, 64B NVDS  
01 = 1KB Flash, 256B RAM, 32B NVDS  
Memory Type:  
F = Flash  
Device Family  
PS022815-0206  
Ordering Information  
Z8 Encore! XP® 4K Series  
Product Specification  
247  
Precharacterization Product  
The product represented by this document is newly introduced and ZiLOG has not com-  
pleted the full characterization of the product. The document states what ZiLOG knows  
about this product at this time, but additional features or nonconformance with some  
aspects of the document might be found, either by ZiLOG or its customers in the course of  
further application and characterization work. In addition, ZiLOG cautions that delivery  
might be uncertain at times, because of start-up yield issues.  
ZiLOG, Inc.  
532 Race Street  
San Jose, CA 95126  
Telephone (408) 558-8500  
FAX 408 558-8300  
Internet: www.zilog.com  
Customer Support  
For valuable information about downloading other relevant documents or for hardware  
and software development tools, visit the ZiLOG web site at www.zilog.com.  
PS022815-0206  
Ordering Information  
Z8 Encore! XP® 4K Series  
Product Specification  
248  
Customer Feedback Form  
Customer Support  
If you experience any problems while operating this product, please check the ZiLOG  
Knowledge Base:  
http://kb.zilog.com/kb/oKBmain.asp  
If you cannot find an answer or have further questions, please see the ZiLOG Technical  
Support web page:  
http://support.zilog.com  
PS022815-0206  
Customer Feedback Form  
Z8 Encore! XP® 4K Series  
Product Specification  
249  
ANDX 197  
arithmetic instructions 195  
assembly language programming 191  
assembly language syntax 192  
Index  
Symbols  
# 194  
% 194  
@ 194  
B
B 194  
b 193  
baud rate generator, UART 99  
BCLR 196  
binary number suffix 194  
BIT 196  
Numerics  
10-bit ADC 4  
40-lead plastic dual-inline package 237, 238  
bit 193  
clear 196  
manipulation instructions 196  
set 196  
set or clear 196  
swap 196  
A
absolute maximum ratings 212  
AC characteristics 217  
ADC 195  
test and jump 198  
test and jump if non-zero 198  
test and jump if zero 198  
bit jump and test if non-zero 198  
bit swap 198  
block diagram 2  
block transfer instructions 196  
BRK 198  
BSET 196  
BSWAP 196, 198  
BTJ 198  
BTJNZ 198  
BTJZ 198  
architecture 113  
automatic power-down 114  
block diagram 114  
continuous conversion 116  
control register 124, 126  
control register definitions 124  
data high byte register 127  
data low bits register 127  
electrical characteristics and timing 221  
operation 114  
single-shot conversion 115  
ADCCTL register 124, 126  
ADCDH register 127  
ADCDL register 127  
ADCX 195  
ADD 195  
C
CALL procedure 198  
capture mode 80, 81  
capture/compare mode 80  
cc 193  
add - extended addressing 195  
add with carry 195  
add with carry - extended addressing 195  
additional symbols 194  
address space 13  
CCF 196  
characteristics, electrical 212  
clear 197  
CLR 197  
ADDX 195  
analog signals 10  
analog-to-digital converter (ADC) 113  
AND 197  
COM 197  
PS022815-0206  
Index  
Z8 Encore! XP® 4K Series  
Product Specification  
250  
compare 80  
compare - extended addressing 195  
compare mode 80  
compare with carry 195  
compare with carry - extended addressing 195  
complement 197  
complement carry flag 196  
condition code 193  
continuous conversion (ADC) 116  
continuous mode 80  
control register definition, UART 100  
Control Registers 13, 16  
counter modes 80  
CP 195  
CPC 195  
CPCX 195  
CPU and peripheral overview 4  
CPU control instructions 196  
CPX 195  
Customer Feedback Form 248  
Customer Information 248  
E
EI 196  
electrical characteristics 212  
ADC 221  
flash memory and timing 220  
GPIO input data sample timing 224  
watch-dog timer 220, 223  
enable interrupt 196  
ER 193  
extended addressing register 193  
external pin reset 24  
eZ8 CPU features 4  
eZ8 CPU instruction classes 194  
eZ8 CPU instruction notation 192  
eZ8 CPU instruction set 191  
eZ8 CPU instruction summary 199  
F
FCTL register 144, 150, 151  
features, Z8 Encore! 1  
first opcode map 210  
FLAGS 194  
flags register 194  
flash  
D
DA 193, 195  
data memory 15  
DC characteristics 213  
debugger, on-chip 167  
DEC 195  
decimal adjust 195  
decrement 195  
decrement and jump non-zero 198  
decrement word 195  
DECW 195  
destination operand 194  
device, port availability 32  
DI 196  
controller 4  
option bit address space 151  
option bit configuration - reset 148  
program memory address 0000H 151  
program memory address 0001H 152  
flash memory 136  
arrrangement 137  
byte programming 142  
code protection 140  
configurations 136  
control register definitions 144, 150  
controller bypass 143  
electrical characteristics and timing 220  
flash control register 144, 150, 151  
flash option bits 141  
flash status register 145  
flow chart 139  
direct address 193  
disable interrupts 196  
DJNZ 198  
dst 194  
frequency high and low byte registers 147  
mass erase 142  
PS022815-0206  
Index  
Z8 Encore! XP® 4K Series  
Product Specification  
251  
operation 138  
immediate data 193  
operation timing 140  
page erase 142  
immediate operand prefix 194  
INC 195  
page select register 145, 146  
FPS register 145, 146  
FSTAT register 145  
increment 195  
increment word 195  
INCW 195  
indexed 193  
indirect address prefix 194  
indirect register 193  
indirect register pair 193  
indirect working register 193  
indirect working register pair 193  
infrared encoder/decoder (IrDA) 109  
Instruction Set 191  
instruction set, ez8 CPU 191  
instructions  
G
gated mode 80  
general-purpose I/O 32  
GPIO 4, 32  
alternate functions 33  
architecture 33  
control register definitions 40  
input data sample timing 224  
interrupts 40  
port A-C pull-up enable sub-registers 45,  
46  
port A-H address registers 41  
port A-H alternate function sub-registers 42  
port A-H control registers 42  
port A-H data direction sub-registers 42  
port A-H high drive enable sub-registers 44  
port A-H input data registers 46  
port A-H output control sub-registers 43  
port A-H output data registers 47  
port A-H stop mode recovery sub-registers  
44  
ADC 195  
ADCX 195  
ADD 195  
ADDX 195  
AND 197  
ANDX 197  
arithmetic 195  
BCLR 196  
BIT 196  
bit manipulation 196  
block transfer 196  
BRK 198  
BSET 196  
BSWAP 196, 198  
BTJ 198  
BTJNZ 198  
port availability by device 32  
port input timing 225  
port output timing 226  
BTJZ 198  
CALL 198  
CCF 196  
CLR 197  
COM 197  
CP 195  
CPC 195  
CPCX 195  
H
H 194  
HALT 196  
halt mode 30, 196  
hexadecimal number prefix/suffix 194  
CPU control 196  
CPX 195  
DA 195  
I
I2C 4  
DEC 195  
IM 193  
PS022815-0206  
Index  
Z8 Encore! XP® 4K Series  
Product Specification  
252  
DECW 195  
DI 196  
TCMX 196  
TM 196  
DJNZ 198  
EI 196  
TMX 196  
TRAP 198  
HALT 196  
INC 195  
watch-dog timer refresh 197  
XOR 198  
INCW 195  
IRET 198  
JP 198  
LD 197  
LDC 197  
XORX 198  
instructions, eZ8 classes of 194  
interrupt control register 61  
interrupt controller 50  
architecture 50  
LDCI 196, 197  
LDE 197  
LDEI 196  
LDX 197  
LEA 197  
load 197  
logical 197  
MULT 195  
NOP 196  
OR 197  
ORX 197  
POP 197  
POPX 197  
program control 198  
PUSH 197  
PUSHX 197  
RCF 196  
RET 198  
RL 198  
interrupt assertion types 53  
interrupt vectors and priority 53  
operation 52  
register definitions 54  
software interrupt assertion 54  
interrupt edge select register 60  
interrupt request 0 register 54  
interrupt request 1 register 55  
interrupt request 2 register 56  
interrupt return 198  
interrupt vector listing 50  
interrupts  
UART 97  
IR 193  
Ir 193  
IrDA  
architecture 109  
block diagram 109  
control register definitions 112  
operation 109  
RLC 198  
rotate and shift 198  
RR 198  
receiving data 111  
transmitting data 110  
IRET 198  
IRQ0 enable high and low bit registers 57  
IRQ1 enable high and low bit registers 58  
IRQ2 enable high and low bit registers 59  
IRR 193  
RRC 198  
SBC 195  
SCF 196  
SRA 198  
SRL 199  
SRP 196  
STOP 197  
SUB 195  
SUBX 195  
SWAP 199  
TCM 196  
Irr 193  
J
JP 198  
jump, conditional, relative, and relative condi-  
PS022815-0206  
Index  
Z8 Encore! XP® 4K Series  
Product Specification  
253  
tional 198  
gated 80  
one-shot 79  
PWM 80  
L
modes 80  
MULT 195  
multiply 195  
LD 197  
LDC 197  
multiprocessor mode, UART 95  
LDCI 196, 197  
LDE 197  
LDEI 196, 197  
LDX 197  
LEA 197  
N
NOP (no operation) 196  
notation  
b 193  
load 197  
load constant 196  
load constant to/from program memory 197  
load constant with auto-increment addresses  
197  
cc 193  
DA 193  
ER 193  
load effective address 197  
load external data 197  
load external data to/from data memory and  
auto-increment addresses 196  
load external to/from data memory and auto-in-  
crement addresses 197  
load instructions 197  
IM 193  
IR 193  
Ir 193  
IRR 193  
Irr 193  
p 193  
R 193  
load using extended addressing 197  
logical AND 197  
r 193  
RA 193  
logical AND/extended addressing 197  
logical exclusive OR 198  
logical exclusive OR/extended addressing 198  
logical instructions 197  
logical OR 197  
RR 193  
rr 193  
vector 193  
X 193  
notational shorthand 193  
logical OR/extended addressing 197  
low power modes 29  
O
OCD  
M
architecture 167  
master interrupt enable 52  
memory  
auto-baud detector/generator 170  
baud rate limits 170  
block diagram 167  
breakpoints 172  
data 15  
program 14  
mode  
commands 172  
capture 80, 81  
capture/compare 80  
continuous 80  
counter 80  
control register 177  
data format 170  
DBG pin to RS-232 Interface 168  
debug mode 169  
PS022815-0206  
Index  
Z8 Encore! XP® 4K Series  
Product Specification  
254  
debugger break 198  
interface 168  
serial errors 171  
20-pin PDIP 233, 234  
20-pin SSOP 235, 238  
28-pin PDIP 236  
status register 178  
28-pin SOIC 237  
timing 227  
8-pin PDIP 230  
OCD commands  
8-pin SOIC 231  
execute instruction (12H) 177  
read data memory (0DH) 176  
read OCD control register (05H) 174  
read OCD revision (00H) 174  
read OCD status register (02H) 174  
read program counter (07H) 175  
read program memory (0BH) 175  
read program memory CRC (0EH) 176  
read register (09H) 175  
read runtime counter (03H) 174  
step instruction (10H) 177  
stuff instruction (11H) 177  
write data memory (0CH) 176  
write OCD control register (04H) 174  
write program counter (06H) 174  
write program memory (0AH) 175  
write register (08H) 175  
on-chip debugger (OCD) 167  
on-chip debugger signals 10  
on-chip oscillator 185  
PDIP 237, 238  
part selection guide 2  
PC 194  
PDIP 237, 238  
peripheral AC and DC electrical characteristics  
219  
pin characteristics 11  
Pin Descriptions 7  
polarity 193  
POP 197  
pop using extended addressing 197  
POPX 197  
port availability, device 32  
port input timing (GPIO) 225  
port output timing, GPIO 226  
power supply signals 10  
power-down, automatic (ADC) 114  
power-on and voltage brown-out electrical  
characteristics and timing 219  
power-on reset (POR) 22  
program control instructions 198  
program counter 194  
program memory 14  
PUSH 197  
one-shot mode 79  
opcode map  
abbreviations 209  
cell description 208  
first 210  
second after 1FH 211  
push using extended addressing 197  
PUSHX 197  
Operational Description 20, 29, 32, 50, 62, 83,  
89, 109, 113, 130, 134, 136, 148, 163, 167,  
180, 185, 190  
PWM mode 80  
PxADDR register 41  
PxCTL register 42  
OR 197  
ordering information 239  
ORX 197  
oscillator signals 10  
R
R 193  
r 193  
RA  
P
p 193  
register address 193  
RCF 196  
packaging  
receive  
PS022815-0206  
Index  
Z8 Encore! XP® 4K Series  
Product Specification  
255  
IrDA data 111  
receiving UART data-interrupt-driven method  
94  
receiving UART data-polled method 93  
register 193  
sources 22  
RET 198  
return 198  
RL 198  
RLC 198  
ADC control (ADCCTL) 124, 126  
ADC data high byte (ADCDH) 127  
ADC data low bits (ADCDL) 127  
flash control (FCTL) 144, 150, 151  
flash high and low byte (FFREQH and  
FREEQL) 147  
rotate and shift instuctions 198  
rotate left 198  
rotate left through carry 198  
rotate right 198  
rotate right through carry 198  
RP 194  
flash page select (FPS) 145, 146  
flash status (FSTAT) 145  
GPIO port A-H address (PxADDR) 41  
GPIO port A-H alternate function sub-regis-  
ters 43  
RR 193, 198  
rr 193  
RRC 198  
GPIO port A-H control address (PxCTL) 42  
GPIO port A-H data direction sub-registers  
42  
S
SBC 195  
SCF 196  
OCD control 177  
second opcode map after 1FH 211  
set carry flag 196  
set register pointer 196  
shift right arithmatic 198  
shift right logical 199  
signal descriptions 9  
single-sho conversion (ADC) 115  
software trap 198  
source operand 194  
SP 194  
SRA 198  
src 194  
SRL 199  
SRP 196  
stack pointer 194  
STOP 197  
OCD status 178  
UARTx baud rate high byte (UxBRH) 106  
UARTx baud rate low byte (UxBRL) 106  
UARTx Control 0 (UxCTL0) 103, 106  
UARTx control 1 (UxCTL1) 104  
UARTx receive data (UxRXD) 101  
UARTx status 0 (UxSTAT0) 101  
UARTx status 1 (UxSTAT1) 103  
UARTx transmit data (UxTXD) 100  
watch-dog timer control (WDTCTL) 28, 86,  
131, 183  
watch-dog timer reload high byte (WDTH)  
87  
watch-dog timer reload low byte (WDTL)  
88  
watch-dog timer reload upper byte (WDTU)  
87  
register file 13  
register pair 193  
register pointer 194  
stop mode 29, 197  
stop mode recovery  
sources 25, 27  
using a GPIO port pin transition 26, 27  
using watch-dog timer time-out 26  
SUB 195  
reset  
and stop mode characteristics 21  
and stop mode recovery 20  
carry flag 196  
subtract 195  
subtract - extended addressing 195  
subtract with carry 195  
PS022815-0206  
Index  
Z8 Encore! XP® 4K Series  
Product Specification  
256  
subtract with carry - extended addressing 195  
SUBX 195  
TRAP 198  
SWAP 199  
swap nibbles 199  
symbols, additional 194  
U
UART 4  
architecture 89  
baud rate generator 99  
baud rates table 107  
control register definitions 100  
controller signals 9  
T
TCM 196  
TCMX 196  
test complement under mask 196  
test complement under mask - extended ad-  
dressing 196  
test under mask 196  
test under mask - extended addressing 196  
timer signals 9  
data format 90  
interrupts 97  
multiprocessor mode 95  
receiving data using interrupt-driven meth-  
od 94  
receiving data using the polled method 93  
transmitting data usin the interrupt-driven  
method 92  
timers 62  
architecture 62  
block diagram 63  
transmitting data using the polled method  
91  
x baud rate high and low registers 106  
x control 0 and control 1 registers 103  
x status 0 and status 1 registers 101, 103  
UxBRH register 106  
capture mode 70, 71, 80, 81  
capture/compare mode 74, 80  
compare mode 72, 80  
continuous mode 64, 80  
counter mode 65, 66  
counter modes 80  
UxBRL register 106  
gated mode 73, 80  
one-shot mode 63, 79  
operating mode 63  
UxCTL0 register 103, 106  
UxCTL1 register 104  
UxRXD register 101  
PWM mode 67, 69, 80  
reading the timer count values 75  
reload high and low byte registers 76  
timer control register definitions 76  
timer output signal operation 75  
timers 0-3  
control registers 78, 79  
high and low byte registers 76, 77  
TM 196  
UxSTAT0 register 101  
UxSTAT1 register 103  
UxTXD register 100  
V
vector 193  
voltage brown-out reset (VBR) 23  
TMX 196  
tools, hardware and software 247  
transmit  
W
watch-dog timer  
IrDA data 110  
approximate time-out delay 84  
approximate time-out delays 83, 130, 134,  
163, 180, 190  
transmitting UART data-polled method 91  
transmitting UART dat-interrupt-driven method  
92  
CNTL 23  
PS022815-0206  
Index  
Z8 Encore! XP® 4K Series  
Product Specification  
257  
control register 86, 131, 183  
electrical characteristics and timing 220,  
223  
interrupt in noromal operation 84  
interrupt in stop mode 85  
operation 83, 130, 134, 163, 180, 190  
refresh 84, 197  
reload unlock sequence 85  
reload upper, high and low registers 87  
reset 24  
reset in normal operation 85  
reset in Stop mode 85  
time-out response 84  
WDTCTL register 28, 86, 131, 183  
WDTH register 87  
WDTL register 88  
working register 193  
working register pair 193  
WTDU register 87  
X
X 193  
XOR 198  
XORX 198  
Z
Z8 Encore!  
block diagram 2  
features 1  
part selection guide 2  
PS022815-0206  
Index  

相关型号:

Z8F042ASH020EG

IC MCU 8BIT 4KB FLASH 20SOIC
ZILOG

Z8F042ASH020SC

Z8 Encore XP-R 4K Series High-Performance 8-Bit Microcontrollers
ZILOG

Z8F042ASH020SG

IC MCU 8BIT 4KB FLASH 20SOIC
ZILOG

Z8F042ASH020SG2156

IC MCU 8BIT 4KB FLASH 20SOIC
ZILOG

Z8F042ASJ020EC

Z8 Encore XP-R 4K Series High-Performance 8-Bit Microcontrollers
ZILOG

Z8F042ASJ020EG

IC MCU 8BIT 4KB FLASH 28SOIC
ZILOG

Z8F042ASJ020SC

Z8 Encore XP-R 4K Series High-Performance 8-Bit Microcontrollers
ZILOG

Z8F042ASJ020SG

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PDSO28, SOIC-28
IXYS

Z8F042ASJ020SG

High-Performance 8-Bit Microcontrollers
ZILOG

Z8F042ASJ020SG2156

IC MCU 8BIT 4KB FLASH 20SOIC
ZILOG

Z8F0430

High-Performance 8-Bit Microcontrollers
ZILOG

Z8F0430HH020EG

IC MCU 8BIT 4KB FLASH 20SSOP
ZILOG