Z8F042ASJ020EG [ZILOG]

IC MCU 8BIT 4KB FLASH 28SOIC;
Z8F042ASJ020EG
型号: Z8F042ASJ020EG
厂家: ZILOG, INC.    ZILOG, INC.
描述:

IC MCU 8BIT 4KB FLASH 28SOIC

文件: 总280页 (文件大小:1308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High-Performance 8-Bit Microcontrollers  
Z8 Encore! XP® F082A  
Series  
Product Specification  
PS022829-0814  
Copyright ©2014 Zilog®, Inc. All rights reserved.  
www.zilog.com  
Z8 Encore! XP® F082A Series  
Product Specification  
ii  
DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.  
Warning:  
LIFE SUPPORT POLICY  
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE  
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF  
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.  
As used herein  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)  
support or sustain life and whose failure to perform when properly used in accordance with instructions for  
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti-  
cal component is any component in a life support device or system whose failure to perform can be reason-  
ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
Document Disclaimer  
©2014 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,  
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES  
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE  
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO  
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED  
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED  
HEREIN OR OTHERWISE. The information contained within this document has been verified according  
to the general principles of electrical and mechanical engineering.  
Z8, Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product  
or service names are the property of their respective owners.  
PS022829-0814  
P R E L I M I N A R Y  
Disclaimer  
Z8 Encore! XP® F082A Series  
Product Specification  
iii  
Revision History  
Each instance in this document’s revision history reflects a change from its previous edi-  
tion. For more details, refer to the corresponding page(s) or appropriate links furnished in  
the table below.  
Revision  
Date Level  
Page  
No.  
Chapter/Section  
Description  
Aug  
2014  
29  
Direct LED Drive Features  
Alternative Function Register  
Port Alternate Function Map-  
ping  
Clarified the Enabling through the LED  
senence. Corrected Port C enabling sen-  
tence. Added LED Drive to the Alternate  
function description in table 14.  
38, 40,  
53  
Apr  
2013  
28  
27  
Timer Pin Signal Operation  
Clarified use/availabity of the T0OUT and  
T1OUT timer functions by mode.  
84  
Dec  
2012  
Port Alternate Function Map-  
ping (Non 8-Pin Parts), Port  
Added missing Port D data to Table 15; cor- 40, 43  
rected active Low status (set overlines) for  
Alternate Function Mapping (8- PA0 (T0OUT), PA2 (RESET) and PA5  
Pin Parts)  
(T1OUT) in Table 16.  
Sep  
2011  
26  
25  
LED Drive Enable Register  
Clarified statement surrounding the Alternate 53,  
Function Register as it relates to the LED  
function; revised Flash Sector Protect Regis- 245  
ter description; revised Packaging chapter.  
157,  
Sep  
2008  
Overview, Address Space,  
Register Map, General-Pur-  
pose Input/Output, Available  
Packages, Ordering Informa-  
tion  
Added references to F042A Series back in  
Table 1, Table 5, Table 7 and Table 14.  
2, 8,  
16, 18,  
36,  
246  
May  
2008  
24  
23  
Overview, Address Space,  
Register Map, General-Pur-  
pose Input/Output, Available  
Packages, Ordering Informa-  
tion  
Changed title to Z8 Encore! XP F082A Series 2, 8,  
and removed references to F042A Series in 16, 18,  
Table 1, Table 5, Table 7 and Table 14.  
36,  
246  
Dec  
2007  
Pin Description, General-Pur- Updated Figure 3, Table 15, Tables 60  
pose Input/Output, Watchdog through 62.  
Timer  
9, 40,  
97  
Jul  
2007  
22  
21  
Electrical Characteristics  
Updated Tables 16 and 132; power con-  
sumption data.  
43,  
229  
Jun  
n/a  
Revision number update.  
All  
2007  
PS022829-0814  
P R E L I M I N A R Y  
Revision History  
Z8 Encore! XP® F082A Series  
Product Specification  
iv  
Table of Contents  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xi  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Part Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
CPU and Peripheral Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
10-Bit Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Low-Power Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Internal Precision Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
External Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Low Voltage Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Universal Asynchronous Receiver/Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
General-Purpose Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Direct LED Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Flash Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Non-Volatile Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Reset Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Available Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Flash Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PS022829-0814  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F082A Series  
Product Specification  
v
Reset, Stop Mode Recovery and Low Voltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Voltage Brown-Out Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Watchdog Timer Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
External Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
External Reset Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
On-Chip Debugger Initiated Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Stop Mode Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Stop Mode Recovery Using Watchdog Timer Time-Out . . . . . . . . . . . . . . . . . . . . . 28  
Stop Mode Recovery Using a GPIO Port Pin Transition . . . . . . . . . . . . . . . . . . . . . 28  
Stop Mode Recovery Using the External RESET Pin . . . . . . . . . . . . . . . . . . . . . . . 29  
Low Voltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Reset Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Halt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Peripheral-Level Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Power Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
General-Purpose Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
GPIO Port Availability By Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
GPIO Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Direct LED Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Shared Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Shared Debug Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Crystal Oscillator Override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5V Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
External Clock Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
GPIO Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
GPIO Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Port A–D Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Port A–D Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Port A–D Data Direction Subregisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Port A–D Alternate Function Subregisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port A–C Input Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Port A–D Output Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
LED Drive Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
LED Drive Level High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
PS022829-0814  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F082A Series  
Product Specification  
vi  
LED Drive Level Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GPIO Mode Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Interrupt Vector Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Master Interrupt Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Interrupt Vectors and Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Software Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Watchdog Timer Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Interrupt Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Interrupt Request 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Interrupt Request 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Interrupt Request 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
IRQ0 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
IRQ1 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
IRQ2 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Interrupt Edge Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Shared Interrupt Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Interrupt Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Timer Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Reading the Timer Count Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Timer Pin Signal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Timer 0–1 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Timer 0–1 High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Timer Reload High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Timer 0–1 PWM High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Watchdog Timer Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Watchdog Timer Time-Out Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Watchdog Timer Reload Unlock Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Watchdog Timer Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Watchdog Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Watchdog Timer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Watchdog Timer Reload Upper, High and Low Byte Registers . . . . . . . . . . . . . . . 97  
PS022829-0814  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F082A Series  
Product Specification  
vii  
Universal Asynchronous Receiver/Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Transmitting Data using the Polled Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Transmitting Data using the Interrupt-Driven Method . . . . . . . . . . . . . . . . . . . . . . 102  
Receiving Data using the Polled Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Receiving Data using the Interrupt-Driven Method . . . . . . . . . . . . . . . . . . . . . . . . 104  
Clear To Send (CTS) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
MULTIPROCESSOR (9-bit) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
External Driver Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
UART Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
UART Baud Rate Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
UART Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
UART Control 0 and Control 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
UART Status 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
UART Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
UART Transmit Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
UART Receive Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
UART Address Compare Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
UART Baud Rate High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Infrared Encoder/Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Transmitting IrDA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Receiving IrDA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Infrared Encoder/Decoder Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . 123  
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Hardware Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Automatic Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Single-Shot Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Calibration and Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
ADC Compensation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Input Buffer Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
ADC Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
ADC Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
ADC Control/Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
PS022829-0814  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F082A Series  
Product Specification  
viii  
ADC Data High Byte Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
ADC Data Low Byte Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Low Power Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Comparator Control Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Temperature Sensor Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Flash Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Flash Operation Timing Using the Flash Frequency Registers . . . . . . . . . . . . . . . 149  
Flash Code Protection Against External Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Flash Code Protection Against Accidental Program and Erasure . . . . . . . . . . . . . 149  
Byte Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Page Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Mass Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Flash Controller Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Flash Controller Behavior in Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Flash Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Flash Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Flash Page Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Flash Sector Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Flash Frequency High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Flash Option Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Option Bit Configuration By Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Option Bit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Reading the Flash Information Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Flash Option Bit Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Trim Bit Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Trim Bit Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Flash Option Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Flash Program Memory Address 0000H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Flash Program Memory Address 0001H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Trim Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
PS022829-0814  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F082A Series  
Product Specification  
ix  
Trim Bit Address 0000H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Trim Bit Address 0001H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Trim Bit Address 0002H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Trim Bit Address 0003H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Trim Bit Address 0004H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Zilog Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
ADC Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Temperature Sensor Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Watchdog Timer Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Serialization Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Randomized Lot Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Nonvolatile Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
NVDS Code Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Power Failure Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Optimizing NVDS Memory Usage for Execution Speed . . . . . . . . . . . . . . . . . . . . 178  
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
OCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
OCD Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
OCD Auto-Baud Detector/Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
OCD Serial Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
OCD Unlock Sequence (8-Pin Devices Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Runtime Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
On-Chip Debugger Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
On-Chip Debugger Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
OCD Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
OCD Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Oscillator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
System Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Clock Failure Detection and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Oscillator Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
PS022829-0814  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F082A Series  
Product Specification  
x
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Crystal Oscillator Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Oscillator Operation with an External RC Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Internal Precision Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
eZ8 CPU Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Assembly Language Programming Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Assembly Language Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
eZ8 CPU Instruction Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
eZ8 CPU Instruction Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
eZ8 CPU Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Opcode Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
On-Chip Peripheral AC and DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 233  
General Purpose I/O Port Input Data Sample Timing . . . . . . . . . . . . . . . . . . . . . . 240  
General Purpose I/O Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
UART Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
Part Number Suffix Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256  
Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
PS022829-0814  
P R E L I M I N A R Y  
Table of Contents  
Z8 Encore! XP® F082A Series  
Product Specification  
xi  
List of Figures  
Figure 1. Z8 Encore! XP F082A Series Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 2. Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 8-Pin SOIC, QFN/MLF-S,  
or PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 3. Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 20-Pin SOIC, SSOP   
or PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 4. Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 28-Pin SOIC, SSOP   
or PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 5. Power-On Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 6. Voltage Brown-Out Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 7. GPIO Port Pin Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 8. Interrupt Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 9. Timer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 10. UART Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 11. UART Asynchronous Data Format without Parity . . . . . . . . . . . . . . . . . . 101  
Figure 12. UART Asynchronous Data Format with Parity . . . . . . . . . . . . . . . . . . . . . 101  
Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format . . . . . . 105  
Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity) 107  
Figure 15. UART Receiver Interrupt Service Routine Flow . . . . . . . . . . . . . . . . . . . 109  
Figure 16. Infrared Data Communication System Block Diagram . . . . . . . . . . . . . . . 120  
Figure 17. Infrared Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 18. IrDA Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Figure 19. Analog-to-Digital Converter Block Diagram . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 20. Comparator Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Figure 21. Flash Memory Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Figure 22. Flash Controller Operation Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Figure 23. On-Chip Debugger Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Figure 24. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface;   
#1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
PS022829-0814  
P R E L I M I N A R Y  
List of Figures  
Z8 Encore! XP® F082A Series  
Product Specification  
xii  
Figure 25. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface;   
#2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Figure 26. OCD Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Figure 27. Recommended 20MHz Crystal Oscillator Configuration . . . . . . . . . . . . . 199  
Figure 28. Connecting the On-Chip Oscillator to an External RC Network . . . . . . . . 201  
Figure 29. Typical RC Oscillator Frequency as a Function of the External Capacitance  
with a 45kResistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Figure 30. Opcode Map Cell Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Figure 31. First Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Figure 32. Second Opcode Map after 1FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Figure 33. Typical Active Mode IDD Versus System Clock Frequency . . . . . . . . . . 231  
Figure 34. Port Input Sample Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
Figure 35. GPIO Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Figure 36. On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
Figure 37. UART Timing With CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Figure 38. UART Timing Without CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
PS022829-0814  
P R E L I M I N A R Y  
List of Figures  
Z8 Encore! XP® F082A Series  
Product Specification  
xiii  
List of Tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Z8 Encore! XP F082A Series Family Part Selection Guide . . . . . . . . . . . . . 2  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Characteristics (20- and 28-pin Devices) . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Characteristics (8-Pin Devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Z8 Encore! XP F082A Series Program Memory Maps . . . . . . . . . . . . . . . . 16  
Z8 Encore! XP F082A Series Flash Memory Information Area Map . . . . . 17  
Register File Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Reset and Stop Mode Recovery Characteristics and Latency . . . . . . . . . . . 23  
Reset Sources and Resulting Reset Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 10. Stop Mode Recovery Sources and Resulting Action . . . . . . . . . . . . . . . . . . 28  
Table 11. Reset Status Register (RSTSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 12. Reset and Stop Mode Recovery Bit Descriptions . . . . . . . . . . . . . . . . . . . . 31  
Table 13. Power Control Register 0 (PWRCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 14. Port Availability by Device and Package Type . . . . . . . . . . . . . . . . . . . . . . 36  
Table 15. Port Alternate Function Mapping (Non 8-Pin Parts) . . . . . . . . . . . . . . . . . . 40  
Table 16. Port Alternate Function Mapping (8-Pin Parts) . . . . . . . . . . . . . . . . . . . . . . 43  
Table 17. GPIO Port Registers and Subregisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 18. Port A–D GPIO Address Registers (PxADDR) . . . . . . . . . . . . . . . . . . . . . 45  
Table 19. Port A–D GPIO Address Registers by Bit Description . . . . . . . . . . . . . . . . 45  
Table 20. Port A–D Control Registers (PxCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 21. Port A–D Data Direction Subregisters (PxDD) . . . . . . . . . . . . . . . . . . . . . . 46  
Table 22. Port A–D Alternate Function Subregisters (PxAF) . . . . . . . . . . . . . . . . . . . 47  
Table 23. Port A–D Output Control Subregisters (PxOC) . . . . . . . . . . . . . . . . . . . . . 48  
Table 24. Port A–D High Drive Enable Subregisters (PxHDE) . . . . . . . . . . . . . . . . . 48  
Table 25. Port A–D Stop Mode Recovery Source Enable Subregisters (PxSMRE) . . 49  
Table 26. Port A–D Pull-Up Enable Subregisters (PxPUE) . . . . . . . . . . . . . . . . . . . . 50  
Table 27. Port A–D Alternate Function Set 2 Subregisters (PxAFS2) . . . . . . . . . . . . 51  
Table 28. Port A–D Alternate Function Set 1 Subregisters (PxAFS1) . . . . . . . . . . . . 51  
PS022829-0814  
P R E L I M I N A R Y  
List of Tables  
Z8 Encore! XP® F082A Series  
Product Specification  
xiv  
Table 29. Port A–C Input Data Registers (PxIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 30. Port A–D Output Data Register (PxOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 31. LED Drive Enable (LEDEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 32. LED Drive Level High Register (LEDLVLH) . . . . . . . . . . . . . . . . . . . . . . 53  
Table 33. LED Drive Level Low Register (LEDLVLL) . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 34. Trap and Interrupt Vectors in Order of Priority . . . . . . . . . . . . . . . . . . . . . . 56  
Table 35. Interrupt Request 0 Register (IRQ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 36. Interrupt Request 1 Register (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 37. Interrupt Request 2 Register (IRQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 38. IRQ0 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 39. IRQ0 Enable High Bit Register (IRQ0ENH) . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 40. IRQ0 Enable Low Bit Register (IRQ0ENL) . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 41. IRQ1 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 42. IRQ1 Enable Low Bit Register (IRQ1ENL) . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 43. IRQ1 Enable High Bit Register (IRQ1ENH) . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 44. IRQ2 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 45. IRQ2 Enable High Bit Register (IRQ2ENH) . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 46. Interrupt Edge Select Register (IRQES) . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 47. IRQ2 Enable Low Bit Register (IRQ2ENL) . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 48. Shared Interrupt Select Register (IRQSS) . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 49. Interrupt Control Register (IRQCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 50. Timer 0–1 Control Register 0 (TxCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Table 51. Timer 0–1 Control Register 1 (TxCTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Table 52. Timer 0–1 High Byte Register (TxH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Table 53. Timer 0–1 Low Byte Register (TxL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Table 54. Timer 0–1 Reload High Byte Register (TxRH) . . . . . . . . . . . . . . . . . . . . . . 91  
Table 55. Timer 0–1 Reload Low Byte Register (TxRL) . . . . . . . . . . . . . . . . . . . . . . 91  
Table 56. Timer 0–1 PWM High Byte Register (TxPWMH) . . . . . . . . . . . . . . . . . . . 92  
Table 57. Timer 0–1 PWM Low Byte Register (TxPWML) . . . . . . . . . . . . . . . . . . . . 92  
Table 58. Watchdog Timer Approximate Time-Out Delays . . . . . . . . . . . . . . . . . . . . 93  
PS022829-0814  
P R E L I M I N A R Y  
List of Tables  
Z8 Encore! XP® F082A Series  
Product Specification  
xv  
Table 59. Watchdog Timer Control Register (WDTCTL) . . . . . . . . . . . . . . . . . . . . . 96  
Table 60. Watchdog Timer Reload Upper Byte Register (WDTU) . . . . . . . . . . . . . . 97  
Table 61. Watchdog Timer Reload High Byte Register (WDTH) . . . . . . . . . . . . . . . 97  
Table 62. Watchdog Timer Reload Low Byte Register (WDTL) . . . . . . . . . . . . . . . . 98  
Table 63. UART Control 0 Register (U0CTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Table 64. UART Control 1 Register (U0CTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Table 65. UART Status 0 Register (U0STAT0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Table 66. UART Status 1 Register (U0STAT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Table 67. UART Transmit Data Register (U0TXD) . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table 68. UART Receive Data Register (U0RXD) . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table 69. UART Address Compare Register (U0ADDR) . . . . . . . . . . . . . . . . . . . . . 117  
Table 70. UART Baud Rate High Byte Register (U0BRH) . . . . . . . . . . . . . . . . . . . 117  
Table 71. UART Baud Rate Low Byte Register (U0BRL) . . . . . . . . . . . . . . . . . . . . 117  
Table 72. UART Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Table 73. ADC Control Register 0 (ADCCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Table 74. ADC Control/Status Register 1 (ADCCTL1) . . . . . . . . . . . . . . . . . . . . . . 136  
Table 75. ADC Data High Byte Register (ADCD_H) . . . . . . . . . . . . . . . . . . . . . . . . 137  
Table 76. ADC Data Low Byte Register (ADCD_L) . . . . . . . . . . . . . . . . . . . . . . . . 137  
Table 77. Comparator Control Register (CMP0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Table 78. Z8 Encore! XP F082A Series Flash Memory Configurations . . . . . . . . . . 146  
Table 79. Flash Code Protection Using the Flash Option Bits . . . . . . . . . . . . . . . . . 150  
Table 80. Flash Status Register (FSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Table 81. Flash Control Register (FCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Table 82. Flash Page Select Register (FPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Table 83. Flash Sector Protect Register (FPROT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Table 84. Flash Frequency High Byte Register (FFREQH) . . . . . . . . . . . . . . . . . . . 158  
Table 85. Flash Frequency Low Byte Register (FFREQL) . . . . . . . . . . . . . . . . . . . . 158  
Table 86. Trim Bit Address Register (TRMADR) . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Table 87. Trim Bit Data Register (TRMDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Table 88. Flash Option Bits at Program Memory Address 0000H . . . . . . . . . . . . . . 162  
PS022829-0814  
P R E L I M I N A R Y  
List of Tables  
Z8 Encore! XP® F082A Series  
Product Specification  
xvi  
Table 89. Flash Options Bits at Program Memory Address 0001H . . . . . . . . . . . . . 164  
Table 90. Trim Options Bits at Address 0000H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Table 91. Trim Option Bits at 0001H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Table 92. Trim Option Bits at 0002H (TIPO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Table 93. Trim Option Bits at Address 0003H (TLVD) . . . . . . . . . . . . . . . . . . . . . . 166  
Table 94. LVD Trim Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Table 95. Trim Option Bits at 0004H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Table 96. ADC Calibration Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 97. ADC Calibration Data Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 98. Temperature Sensor Calibration High Byte at 003A (TSCALH) . . . . . . . 171  
Table 99. Temperature Sensor Calibration Low Byte at 003B (TSCALL) . . . . . . . . 171  
Table 100. Watchdog Calibration High Byte at 007EH (WDTCALH) . . . . . . . . . . . . 172  
Table 101. Serial Number at 001C - 001F (S_NUM) . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Table 102. Serialization Data Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Table 103. Watchdog Calibration Low Byte at 007FH (WDTCALL) . . . . . . . . . . . . 173  
Table 104. Lot Identification Number (RAND_LOT) . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 105. Randomized Lot ID Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 106. Write Status Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Table 107. NVDS Read Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Table 108. OCD Baud-Rate Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Table 109. Debug Command Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 110. OCD Control Register (OCDCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Table 111. OCD Status Register (OCDSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Table 112. Oscillator Configuration and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Table 113. Oscillator Control Register (OSCCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 114. Recommended Crystal Oscillator Specifications . . . . . . . . . . . . . . . . . . . 200  
Table 115. Transconductance Values for Low, Medium and High Gain Operating   
Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Table 116. Assembly Language Syntax Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 117. Assembly Language Syntax Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 118. Notational Shorthand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
PS022829-0814  
P R E L I M I N A R Y  
List of Tables  
Z8 Encore! XP® F082A Series  
Product Specification  
xvii  
Table 119. Additional Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Table 120. Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Table 121. Bit Manipulation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Table 122. Block Transfer Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Table 123. CPU Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Table 124. Load Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Table 125. Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Table 126. Program Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 127. Rotate and Shift Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 128. eZ8 CPU Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Table 129. Opcode Map Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Table 130. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Table 131. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Table 132. Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Table 133. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
Table 134. Internal Precision Oscillator Electrical Characteristics . . . . . . . . . . . . . . . 232  
Table 135. Power-On Reset and Voltage Brown-Out Electrical Characteristics   
and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Table 136. Flash Memory Electrical Characteristics and Timing . . . . . . . . . . . . . . . . 234  
Table 137. Watchdog Timer Electrical Characteristics and Timing . . . . . . . . . . . . . . 235  
Table 138. Non-Volatile Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
Table 139. Analog-to-Digital Converter Electrical Characteristics and Timing . . . . . 236  
Table 140. Low Power Operational Amplifier Electrical Characteristics . . . . . . . . . . 238  
Table 141. Comparator Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
Table 142. Temperature Sensor Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 239  
Table 143. GPIO Port Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
Table 144. GPIO Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Table 145. On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
Table 146. UART Timing With CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Table 147. UART Timing Without CTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
Table 148. Z8 Encore! XP F082A Series Ordering Matrix . . . . . . . . . . . . . . . . . . . . . 246  
PS022829-0814  
P R E L I M I N A R Y  
List of Tables  
Z8 Encore! XP® F082A Series  
Product Specification  
1
Overview  
Zilog’s Z8 Encore! MCU family of products are the first in a line of Zilog microcontroller  
products based upon the 8-bit eZ8 CPU. Zilog’s Z8 Encore! XP F082A Series products  
expand upon Zilog’s extensive line of 8-bit microcontrollers. The Flash in-circuit pro-  
gramming capability allows for faster development time and program changes in the field.  
The new eZ8 CPU is upward compatible with existing Z8 instructions. The rich peripheral  
set of the Z8 Encore! XP F082A Series makes it suitable for a variety of applications  
including motor control, security systems, home appliances, personal electronic devices  
and sensors.  
Features  
The key features of Z8 Encore! XP F082A Series products include:  
20MHz eZ8 CPU  
1KB, 2KB, 4KB, or 8KB Flash memory with in-circuit programming capability  
256B, 512B, or 1KB register RAM  
Up to 128B nonvolatile data storage (NVDS)  
Internal precision oscillator trimmed to ±1% accuracy  
External crystal oscillator, operating up to 20MHz  
Optional 8-channel, 10-bit analog-to-digital converter (ADC)  
Optional on-chip temperature sensor  
On-chip analog comparator  
Optional on-chip low-power operational amplifier (LPO)  
Full-duplex UART  
The UART baud rate generator (BRG) can be configured and used as a basic 16-bit timer  
Infrared Data Association (IrDA)-compliant infrared encoder/decoders, integrated  
with the UART  
Two enhanced 16-bit timers with capture, compare and PWM capability  
Watchdog Timer (WDT) with dedicated internal RC oscillator  
Up to 20 vectored interrupts  
6 to 25 I/O pins depending upon package  
Up to thirteen 5 V-tolerant input pins  
PS022829-0814  
P R E L I M I N A R Y  
Overview  
Z8 Encore! XP® F082A Series  
Product Specification  
2
Up to 8 ports capable of direct LED drive with no current limit resistor required  
On-Chip Debugger (OCD)  
Voltage Brown-Out (VBO) protection  
Programmable low battery detection (LVD) (8-pin devices only)  
Bandgap generated precision voltage references available for the ADC, comparator,  
VBO and LVD  
Power-On Reset (POR)  
2.7V to 3.6V operating voltage  
8-, 20- and 28-pin packages  
0°C to +70°C and –40°C to +105°C for operating temperature ranges  
Part Selection Guide  
Table 1 identifies the basic features and package styles available for each device within the  
Z8 Encore! XP F082A Series product line.  
Table 1. Z8 Encore! XP F082A Series Family Part Selection Guide  
1
Part  
Number (KB)  
Flash RAM  
NVDS  
(B)  
Advanced ADC  
2
(B)  
1024  
1024  
1024  
1024  
512  
I/O  
Comparator  
Yes  
Analog  
Yes  
No  
Inputs  
4–8  
0
Packages  
Z8F082A  
Z8F081A  
Z8F042A  
Z8F041A  
Z8F022A  
Z8F021A  
Z8F012A  
Z8F011A  
Notes:  
8
8
4
4
2
2
1
1
0
0
6–23  
6–25  
6–23  
6–25  
6–23  
6–25  
6–23  
6–25  
8-, 20- and 28-pin  
8-, 20- and 28-pin  
8-, 20- and 28-pin  
8-, 20- and 28-pin  
8-, 20- and 28-pin  
8-, 20- and 28-pin  
8-, 20- and 28-pin  
8-, 20- and 28-pin  
Yes  
128  
128  
64  
64  
16  
16  
Yes  
Yes  
No  
4–8  
0
Yes  
Yes  
Yes  
No  
4–8  
0
512  
Yes  
256  
Yes  
Yes  
No  
4–8  
0
256  
Yes  
1. Non-volatile data storage.  
2. Advanced Analog includes ADC, temperature sensor and low-power operational amplifier.  
PS022829-0814  
P R E L I M I N A R Y  
Part Selection Guide  
Z8 Encore! XP® F082A Series  
Product Specification  
3
Block Diagram  
Figure 1 displays the block diagram of the architecture of the Z8 Encore! XP F082A  
Series devices.  
System  
Clock  
Oscillator  
Control  
XTAL/RC  
Oscillator  
Internal  
Precision  
Oscillator  
Low Power  
RC Oscillator  
On-Chip  
Debugger  
POR/VBO  
and Reset  
Controller  
eZ8  
CPU  
Interrupt  
Controller  
WDT  
Memory Busses  
Register Bus  
NVDS  
Controller  
Flash  
Controller  
RAM  
ADC  
Timers  
UART  
IrDA  
Comparator  
Controller  
Low  
Power  
Temperature  
Sensor  
Op Amp  
Flash Memory  
RAM  
GPIO  
Figure 1. Z8 Encore! XP F082A Series Block Diagram  
PS022829-0814  
P R E L I M I N A R Y  
Block Diagram  
Z8 Encore! XP® F082A Series  
Product Specification  
4
CPU and Peripheral Overview  
The eZ8 CPU, Zilog’s latest 8-bit Central Processing Unit (CPU), meets the continuing  
demand for faster and more code-efficient microcontrollers. The eZ8 CPU executes a  
superset of the original Z8 instruction set. The features of eZ8 CPU include:  
Direct register-to-register architecture allows each register to function as an  
accumulator, improving execution time and decreasing the required program  
memory  
Software stack allows much greater depth in subroutine calls and interrupts than  
hardware stacks  
Compatible with existing Z8 code  
Expanded internal Register File allows access of up to 4 KB  
New instructions improve execution efficiency for code developed using higher-  
level programming languages, including C  
Pipelined instruction fetch and execution  
New instructions for improved performance including BIT, BSWAP, BTJ, CPC,  
LDC, LDCI, LEA, MULT and SRL  
New instructions support 12-bit linear addressing of the Register File  
Up to 10 MIPS operation  
C-Compiler friendly  
2 to 9 clock cycles per instruction  
For more information about eZ8 CPU, refer to the eZ8 CPU Core User Manual  
(UM0128), which is available for download on www.zilog.com.  
10-Bit Analog-to-Digital Converter  
The optional analog-to-digital converter (ADC) converts an analog input signal to a 10-bit  
binary number. The ADC accepts inputs from eight different analog input pins in both sin-  
gle-ended and differential modes. The ADC also features a unity gain buffer when high  
input impedance is required.  
Low-Power Operational Amplifier  
The optional low-power operational amplifier (LPO) is a general-purpose amplifier pri-  
marily targeted for current sense applications. The LPO output may be routed internally to  
the ADC or externally to a pin.  
PS022829-0814  
P R E L I M I N A R Y  
CPU and Peripheral Overview  
Z8 Encore! XP® F082A Series  
Product Specification  
5
Internal Precision Oscillator  
The internal precision oscillator (IPO) is a trimmable clock source that requires no exter-  
nal components.  
Temperature Sensor  
The optional temperature sensor produces an analog output proportional to the device tem-  
perature. This signal can be sent to either the ADC or the analog comparator.  
Analog Comparator  
The analog comparator compares the signal at an input pin with either an internal pro-  
grammable voltage reference or a second input pin. The comparator output can be used to  
drive either an output pin or to generate an interrupt.  
External Crystal Oscillator  
The crystal oscillator circuit provides highly accurate clock frequencies with the use of an  
external crystal, ceramic resonator or RC network.  
Low Voltage Detector  
The low voltage detector (LVD) is able to generate an interrupt when the supply voltage  
drops below a user-programmable level. The LVD is available on 8-pin devices only.  
On-Chip Debugger  
The Z8 Encore! XP F082A Series products feature an integrated on-chip debugger (OCD)  
accessed via a single-pin interface. The OCD provides a rich-set of debugging capabilities,  
such as reading and writing registers, programming Flash memory, setting breakpoints and  
executing code.  
Universal Asynchronous Receiver/Transmitter  
The full-duplex universal asynchronous receiver/transmitter (UART) is included in all Z8  
Encore! XP package types. The UART supports 8- and 9-bit data modes and selectable  
parity. The UART also supports multi-drop address processing in hardware. The UART  
baud rate generator (BRG) can be configured and used as a basic 16-bit timer.  
Timers  
Two enhanced 16-bit reloadable timers can be used for timing/counting events or for  
motor control operations. These timers provide a 16-bit programmable reload counter and  
PS022829-0814  
P R E L I M I N A R Y  
CPU and Peripheral Overview  
Z8 Encore! XP® F082A Series  
Product Specification  
6
operate in One-Shot, Continuous, Gated, Capture, Capture Restart, Compare, Capture and  
Compare, PWM Single Output and PWM Dual Output modes.  
General-Purpose Input/Output  
The Product Line MCUs feature 6 to 25 port pins (Ports A–D) for general- purpose input/  
output (GPIO). The number of GPIO pins available is a function of package and each pin  
is individually programmable. 5 V tolerant input pins are available on all   
I/Os on 8-pin devices and most I/Os on other package types.  
Direct LED Drive  
The 20- and 28-pin devices support controlled current sinking output pins capable of driv-  
ing LEDs without the need for a current limiting resistor. These LED drivers are indepen-  
dently programmable to four different intensity levels.  
Flash Controller  
The Flash Controller programs and erases Flash memory. The Flash Controller supports  
several protection mechanisms against accidental program and erasure, plus factory serial-  
ization and read protection.  
Non-Volatile Data Storage  
The nonvolatile data storage (NVDS) uses a hybrid hardware/software scheme to imple-  
ment a byte programmable data memory and is capable of over 100,000 write cycles.  
Devices with 8KB of Flash memory do not include the NVDS feature.  
Note:  
Interrupt Controller  
The Z8 Encore! XP F082A Series products support up to 20 interrupts. These interrupts  
consist of 8 internal peripheral interrupts and 12 general-purpose I/O pin interrupt sources.  
The interrupts have three levels of programmable interrupt priority.  
Reset Controller  
The Z8 Encore! XP F082A Series products can be reset using the RESET pin, Power-On  
Reset, Watchdog Timer (WDT) time-out, Stop Mode exit, or Voltage Brown-Out (VBO)  
warning signal. The RESET pin is bidirectional, that is, it functions as reset source and as  
a reset indicator.  
PS022829-0814  
P R E L I M I N A R Y  
CPU and Peripheral Overview  
Z8 Encore! XP® F082A Series  
Product Specification  
8
Pin Description  
The Z8 Encore! XP F082A Series products are available in a variety of packages styles  
and pin configurations. This chapter describes the signals and available pin configurations  
for each of the package styles. For information about physical package specifications, see  
the Packaging chapter on page 245.  
Available Packages  
The following package styles are available for each device in the Z8 Encore! XP F082A  
Series product line:  
SOIC: 8-, 20- and 28-pin  
PDIP: 8-, 20- and 28-pin  
SSOP: 20- and 28- pin  
QFN 8-pin (MLF-S, a QFN-style package with an 8-pin SOIC footprint)  
In addition, the Z8 Encore! XP F082A Series devices are available both with and without  
advanced analog capability (ADC, temperature sensor and op amp). Devices Z8F082A,  
Z8F042A, Z8F022A and Z8F012A contain the advanced analog, while devices Z8F081A,  
Z8F041A, Z8F021A and Z8F011A do not have the advanced analog capability.  
Pin Configurations  
Figure 2 through Figure 4 display the pin configurations for all the packages available in  
the Z8 Encore! XP F082A Series. See Table 2 on page 10 for a description of the signals.  
The analog input alternate functions (ANAx) are not available on the Z8F081A, Z8F041A,  
Z8F021A and Z8F011A devices. The analog supply pins (AVDD and AVSS) are also not  
available on these parts and are replaced by PB6 and PB7.  
At reset, all Port A, B and C pins default to an input state. In addition, any alternate func-  
tionality is not enabled, so the pins function as general purpose input ports until pro-  
grammed otherwise. At powerup, the PD0 pin defaults to the RESET alternate function.  
The pin configurations listed are preliminary and subject to change based on manufactur-  
ing limitations.  
PS022829-0814  
P R E L I M I N A R Y  
Pin Description  
Z8 Encore! XP® F082A Series  
Product Specification  
9
VSS  
VDD  
PA0/T0IN/T0OUT/XIN//DBG  
1
2
3
4
8
7
6
5
PA5/TXD0/T1OUT/ANA0/CINP/AMPOUT  
PA4/RXD0/ANA1/CINN/AMPINN  
PA1/T0OUT/XOUT/ANA3/VREF/CLKIN  
PA2/RESET/DE0/T1OUT  
PA3/CTS0/ANA2/COUT/AMPINP/T1IN  
Figure 2. Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 8-Pin SOIC, QFN/MLF-S, or PDIP Package  
PB1/ANA1/AMPINN  
PB2/ANA2/AMPINP  
PB3/CLKIN/ANA3  
VDD  
PB0/ANA0/AMPOUT  
PC3/COUT/LED  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PC2/ANA6/LED/VREF  
PC1/ANA5/CINN/LED  
PC0/ANA4/CINP/LED  
PA0/T0IN/T0OUT/XIN  
PA1/T0OUT/XOUT  
VSS  
DBG  
RESET/PD0  
PA7/T1OUT  
PA6/T1IN/T1OUT  
PA5/TXD0  
PA2/DE0  
PA3/CTS0  
PA4/RXD0  
Figure 3. Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 20-Pin SOIC, SSOP or PDIP Package  
PB2/ANA2/AMPINP  
PB1/ANA1/AMPINN  
PB0/ANA0/AMPOUT  
PC3/COUT/LED  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
PB4/ANA7  
PB5/VREF  
3
PB3/CLKIN/ANA3  
(PB6) AVDD  
PC2/ANA6/LED  
4
PC1/ANA5/CINN/LED  
5
6
PC0/ANA4/CINP/LED  
DBG  
VDD  
PA0/T0IN/T0OUT/XIN  
PA1/T0OUT/XOUT  
VSS  
7
8
RESET/PD0  
PC7/LED  
9
(PB7) AVSS  
10  
11  
12  
13  
14  
PC6/LED  
PA2/DE0  
PA7/T1OUT  
PC5/LED  
PA3/CTS0  
PA4/RXD0  
PC4/LED  
PA5/TXD0  
PA6/T1IN/T1OUT  
Figure 4. Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 28-Pin SOIC, SSOP or PDIP Package  
PS022829-0814  
P R E L I M I N A R Y  
Pin Configurations  
Z8 Encore! XP® F082A Series  
Product Specification  
10  
Signal Descriptions  
Table 2 describes the Z8 Encore! XP F082A Series signals. See the Pin Configurations  
section on page 8 to determine the signals available for the specific package styles.  
Table 2. Signal Descriptions  
Signal Mnemonic  
I/O  
Description  
General-Purpose I/O Ports A–D  
PA[7:0]  
PB[7:0]  
I/O  
I/O  
Port A. These pins are used for general-purpose I/O.  
Port B. These pins are used for general-purpose I/O. PB6 and PB7 are  
available only in those devices without an ADC.  
PC[7:0]  
PD[0]  
I/O  
I/O  
Port C. These pins are used for general-purpose I/O.  
Port D. This pin is used for general-purpose output only.  
UART Controllers  
TXD0  
RXD0  
CTS0  
DE  
O
I
Transmit Data. This signal is the transmit output from the UART and IrDA.  
Receive Data. This signal is the receive input for the UART and IrDA.  
Clear To Send. This signal is the flow control input for the UART.  
I
O
Driver Enable. This signal allows automatic control of external RS-485  
drivers. This signal is approximately the inverse of the TXE (Transmit  
Empty) bit in the UART Status 0 Register. The DE signal may be used to  
ensure the external RS-485 driver is enabled when data is transmitted by  
the UART.  
Timers  
T0OUT/T1OUT  
T0OUT/T1OUT  
O
O
Timer Output 0–1. These signals are outputs from the timers.  
Timer Complement Output 0–1. These signals are output from the timers  
in PWM Dual Output mode.  
T0IN/T1IN  
I
Timer Input 0–1. These signals are used as the capture, gating and coun-  
ter inputs.  
Comparator  
CINP/CINN  
I
Comparator Inputs. These signals are the positive and negative inputs to  
the comparator.  
COUT  
Notes:  
O
Comparator Output.  
1. PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC, they are  
replaced by AVDD and AVSS  
.
2. The AVDD and AVSS signals are available only in 28-pin packages with ADC. They are replaced by PB6 and  
PB7 on 28-pin packages without ADC.  
PS022829-0814  
P R E L I M I N A R Y  
Signal Descriptions  
Z8 Encore! XP® F082A Series  
Product Specification  
11  
Table 2. Signal Descriptions (Continued)  
Signal Mnemonic  
I/O  
Description  
Analog  
ANA[7:0]  
I
Analog Port. These signals are used as inputs to the analog-to-digital con-  
verter (ADC).  
V
I/O  
Analog-to-digital converter reference voltage input, or buffered output for  
internal reference.  
REF  
Low-Power Operational Amplifier (LPO)  
AMPINP/AMPINN  
I
LPO inputs. If enabled, these pins drive the positive and negative amplifier  
inputs respectively.  
AMPOUT  
O
LPO output. If enabled, this pin is driven by the on-chip LPO.  
Oscillators  
X
I
External Crystal Input. This is the input pin to the crystal oscillator. A crystal  
IN  
can be connected between it and the X  
pin to form the oscillator. In  
OUT  
addition, this pin is used with external RC networks or external clock driv-  
ers to provide the system clock.  
X
O
I
External Crystal Output. This pin is the output of the crystal oscillator. A  
OUT  
crystal can be connected between it and the X pin to form the oscillator.  
IN  
Clock Input  
CLKIN  
Clock Input Signal. This pin may be used to input a TTL-level signal to be  
used as the system clock.  
LED Drivers  
LED  
O
Direct LED drive capability. All port C pins have the capability to drive an  
LED without any other external components. These pins have programma-  
ble drive strengths set by the GPIO block.  
On-Chip Debugger  
DBG  
I/O  
Debug. This signal is the control and data input and output to and from the  
On-Chip Debugger.  
Caution: The DBG pin is open-drain and requires a pull-up resistor to  
ensure proper operation.  
Notes:  
1. PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC, they are  
replaced by AVDD and AVSS  
.
2. The AVDD and AVSS signals are available only in 28-pin packages with ADC. They are replaced by PB6 and  
PB7 on 28-pin packages without ADC.  
PS022829-0814  
P R E L I M I N A R Y  
Signal Descriptions  
Z8 Encore! XP® F082A Series  
Product Specification  
12  
Table 2. Signal Descriptions (Continued)  
Signal Mnemonic  
I/O  
Description  
Reset  
RESET  
I/O  
RESET. Generates a Reset when asserted (driven Low). Also serves as a  
reset indicator; the Z8 Encore! XP forces this pin low when in reset. This  
pin is open-drain and features an enabled internal pull-up resistor.  
Power Supply  
V
I
I
I
I
Digital Power Supply.  
Analog Power Supply.  
Digital Ground.  
DD  
AV  
DD  
V
SS  
AV  
Analog Ground.  
SS  
Notes:  
1. PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC, they are  
replaced by AVDD and AVSS  
.
2. The AVDD and AVSS signals are available only in 28-pin packages with ADC. They are replaced by PB6 and  
PB7 on 28-pin packages without ADC.  
Pin Characteristics  
Table 3 describes the characteristics for each pin available on the Z8 Encore! XP F082A  
Series 20- and 28-pin devices. Data in Table 3 is sorted alphabetically by the pin symbol  
mnemonic.  
Table 4 on page 14 provides detailed information about the characteristics for each pin  
available on the Z8 Encore! XP F082A Series 8-pin devices.  
All six I/O pins on the 8-pin packages are 5 V-tolerant (unless the pull-up devices are  
enabled). The column in Table 3 below describes 5 V-tolerance for the 20- and 28-pin  
packages only.  
Note:  
PS022829-0814  
P R E L I M I N A R Y  
Pin Characteristics  
Z8 Encore! XP® F082A Series  
Product Specification  
13  
Table 3. Pin Characteristics (20- and 28-pin Devices)  
Active  
Low  
or  
Internal  
Schmitt-  
Symbol  
Mnemonic Direction Direction  
Reset  
Active Tristate Pull-up or Trigger Open Drain  
5 V  
Tolerance  
High  
N/A  
N/A  
N/A  
N/A  
Output Pull-down  
Input  
N/A  
N/A  
Yes  
Yes  
Output  
AV  
N/A  
N/A  
I/O  
N/A  
N/A  
N/A  
Yes  
Yes  
N/A  
N/A  
Yes  
N/A  
N/A  
NA  
DD  
AVSS  
DBG  
N/A  
N/A  
I
I
Yes  
No  
PA[7:0]  
I/O  
Programma-  
ble  
Yes,  
PA[7:2]  
Programma- unless pul-  
Pull-up  
ble  
lups  
enabled  
PB[7:0]  
PC[7:0]  
I/O  
I/O  
I/O  
I
I
N/A  
N/A  
Yes  
Yes  
Programma-  
ble  
Yes  
Yes  
Yes  
Yes,  
PB[7:6]  
Programma- unless pul-  
Pull-up  
ble  
lups  
enabled  
Programma-  
ble  
Yes,  
PC[7:3]  
Programma- unless pul-  
Pull-up  
ble  
lups  
enabled  
RESET/  
PD0  
I/O  
Low (in  
Yes  
(PD0  
Programma-  
ble for PD0;  
Programma-  
ble for PD0; unless pul-  
Yes,  
(defaults to Reset  
RESET)  
mode)  
only) always on for  
RESET  
always on for  
RESET  
lups  
enabled  
V
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
DD  
V
SS  
PB6 and PB7 are available only in those devices without ADC.  
Note:  
PS022829-0814  
P R E L I M I N A R Y  
Pin Characteristics  
Z8 Encore! XP® F082A Series  
Product Specification  
14  
)
Table 4. Pin Characteristics (8-Pin Devices)  
Active  
Low  
or  
Internal  
Schmitt-  
Symbol  
Mnemonic Direction Direction  
Reset  
Active Tristate Pull-up or  
Trigger Open Drain  
5V  
Tolerance  
High  
Output Pull-down  
Input  
Output  
PA0/DBG  
I/O  
I (but can  
change  
during  
reset if key  
sequence  
detected)  
N/A  
Yes  
Programma-  
ble  
Yes  
Yes,  
Programma-  
ble  
Yes,  
unless  
pull-ups  
enabled  
Pull-up  
PA1  
I/O  
I/O  
I/O  
I
N/A  
Yes  
Yes  
Yes  
Programma-  
ble  
Yes  
Yes  
Yes  
Yes,  
Programma-  
ble  
Yes,  
unless  
pull-ups  
enabled  
Pull-up  
RESET/  
PA2  
I/O  
(defaults  
to RESET) mode)  
Low (in  
Reset  
Programma-  
ble for PA2;  
always on for  
RESET  
Programma-  
ble for PA2;  
always on for pull-ups  
Yes,  
unless  
RESET  
enabled  
PA[5:3]  
I
N/A  
Programma-  
ble  
Yes,  
Programma-  
ble  
Yes,  
unless  
pull-ups  
enabled  
Pull-up  
V
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
DD  
V
SS  
PS022829-0814  
P R E L I M I N A R Y  
Pin Characteristics  
Z8 Encore! XP® F082A Series  
Product Specification  
15  
Address Space  
The eZ8 CPU can access the following three distinct address spaces:  
The Register File contains addresses for the general-purpose registers and the eZ8  
CPU, peripheral and general-purpose I/O port control registers.  
The Program Memory contains addresses for all memory locations having executable  
code and/or data.  
The Data Memory contains addresses for all memory locations that contain data only.  
These three address spaces are covered briefly in the following subsections. For more  
information about eZ8 CPU and its address space, refer to the eZ8 CPU Core User Manual  
(UM0128), which is available for download on www.zilog.com.  
Register File  
The Register File address space in the Z8 Encore! MCU is 4 KB (4096 bytes). The Regis-  
ter File is composed of two sections: control registers and general-purpose registers. When  
instructions are executed, registers defined as sources are read and registers defined as  
destinations are written. The architecture of the eZ8 CPU allows all general-purpose regis-  
ters to function as accumulators, address pointers, index registers, stack areas, or scratch  
pad memory.  
The upper 256 bytes of the 4 KB Register File address space are reserved for control of the  
eZ8 CPU, the on-chip peripherals and the I/O ports. These registers are located at  
addresses from F00Hto FFFH. Some of the addresses within the 256 B control register  
section are reserved (unavailable). Reading from a reserved Register File address returns  
an undefined value. Writing to reserved Register File addresses is not recommended and  
can produce unpredictable results.  
The on-chip RAM always begins at address 000Hin the Register File address space. The  
Z8 Encore! XPF082A Series devices contain 256 B to 1KB of on-chip RAM. Reading  
from Register File addresses outside the available RAM addresses (and not within the con-  
trol register address space) returns an undefined value. Writing to these Register File  
addresses produces no effect.  
Program Memory  
The eZ8 CPU supports 64 KB of Program Memory address space. The Z8 Encore! XP  
F082A Series devices contain 1 KB to 8KB of on-chip Flash memory in the Program  
Memory address space, depending on the device. Reading from Program Memory  
PS022829-0814  
P R E L I M I N A R Y  
Address Space  
Z8 Encore! XP® F082A Series  
Product Specification  
16  
addresses outside the available Flash memory addresses returns FFH. Writing to these  
unimplemented Program Memory addresses produces no effect. Table 5 describes the Pro-  
gram Memory Maps for the Z8 Encore! XP F082A Series products.  
Table 5. Z8 Encore! XP F082A Series Program Memory Maps  
Program Memory Address (Hex)  
Function  
Z8F082A and Z8F081A Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Reserved  
0006–0007  
0008–0037  
0038–0039  
003A–003D  
Oscillator Fail Trap Vectors  
Program Memory  
003E–1FFF  
Z8F042A and Z8F041A Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Reserved  
0006–0007  
0008–0037  
0038–0039  
003A–003D  
Oscillator Fail Trap Vectors  
Program Memory  
003E–0FFF  
Z8F022A and Z8F021A Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Reserved  
0006–0007  
0008–0037  
0038–0039  
003A–003D  
Oscillator Fail Trap Vectors  
Program Memory  
003E–07FF  
Z8F012A and Z8F011A Products  
0000–0001  
Flash Option Bits  
Note: *See Table 32 on page 56 for a list of the interrupt vectors.  
PS022829-0814  
P R E L I M I N A R Y  
Program Memory  
Z8 Encore! XP® F082A Series  
Product Specification  
17  
Table 5. Z8 Encore! XP F082A Series Program Memory Maps (Continued)  
Program Memory Address (Hex)  
0002–0003  
Function  
Reset Vector  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Reserved  
0006–0007  
0008–0037  
0038–0039  
003A–003D  
Oscillator Fail Trap Vectors  
Program Memory  
003E–03FF  
Note: *See Table 32 on page 56 for a list of the interrupt vectors.  
Data Memory  
The Z8 Encore! XP F082A Series does not use the eZ8 CPU’s 64 KB Data Memory  
address space.  
Flash Information Area  
Table 6 describes the Z8 Encore! XP F082A Series Flash Information Area. This 128B  
Information Area is accessed by setting bit 7 of the Flash Page Select Register to 1. When  
access is enabled, the Flash Information Area is mapped into the Program Memory and  
overlays the 128 bytes at addresses FE00Hto FF7FH. When the Information Area access is  
enabled, all reads from these Program Memory addresses return the Information Area data  
rather than the Program Memory data. Access to the Flash Information Area is read-only.  
Table 6. Z8 Encore! XP F082A Series Flash Memory Information Area Map  
Program Memory  
Address (Hex)  
FE00–FE3F  
FE40–FE53  
Function  
Zilog Option Bits/Calibration Data  
Part Number  
20-character ASCII alphanumeric code  
Left-justified and filled with FFH  
FE54–FE5F  
FE60–FE7F  
FE80–FFFF  
Reserved  
Zilog Calibration Data  
Reserved  
PS022829-0814  
P R E L I M I N A R Y  
Data Memory  
Z8 Encore! XP® F082A Series  
Product Specification  
18  
Register Map  
Table 7 provides the address map for the Register File of the Z8 Encore! XP F082A Series  
devices. Not all devices and package styles in the Z8 Encore! XP F082A Series support  
the ADC, or all of the GPIO Ports. Consider registers for unimplemented peripherals as  
Reserved.  
Table 7. Register File Address Map  
Address (Hex)  
Register Description  
Mnemonic  
Reset (Hex)  
Page  
General-Purpose RAM  
Z8F082A/Z8F081A Devices  
000–3FF  
400–EFF  
General-Purpose Register File RAM  
Reserved  
XX  
XX  
Z8F042A/Z8F041A Devices  
000–3FF  
400–EFF  
General-Purpose Register File RAM  
Reserved  
XX  
XX  
Z8F022A/Z8F021A Devices  
000–1FF  
200–EFF  
General-Purpose Register File RAM  
Reserved  
XX  
XX  
Z8F012A/Z8F011A Devices  
000–0FF  
100–EFF  
General-Purpose Register File RAM  
XX  
XX  
Reserved  
Timer 0  
F00  
Timer 0 High Byte  
T0H  
00  
01  
FF  
FF  
00  
00  
00  
00  
89  
89  
90  
90  
91  
91  
85  
86  
F01  
Timer 0 Low Byte  
T0L  
F02  
Timer 0 Reload High Byte  
Timer 0 Reload Low Byte  
Timer 0 PWM High Byte  
Timer 0 PWM Low Byte  
Timer 0 Control 0  
T0RH  
F03  
T0RL  
F04  
T0PWMH  
T0PWML  
T0CTL0  
T0CTL1  
F05  
F06  
F07  
Timer 0 Control 1  
Notes:  
1. XX = Undefined.  
2. Refer to the eZ8 CPU Core User Manual (UM0128).  
PS022829-0814  
P R E L I M I N A R Y  
Register Map  
Z8 Encore! XP® F082A Series  
Product Specification  
19  
Table 7. Register File Address Map (Continued)  
Address (Hex)  
Register Description  
Mnemonic  
Reset (Hex)  
Page  
Timer 1  
F08  
Timer 1 High Byte  
T1H  
T1L  
00  
01  
FF  
89  
89  
90  
F09  
Timer 1 Low Byte  
F0A  
Timer 1 Reload High Byte  
T1RH  
Timer 1 (cont’d)  
F0B  
Timer 1 Reload Low Byte  
Timer 1 PWM High Byte  
Timer 1 PWM Low Byte  
Timer 1 Control 0  
T1RL  
FF  
00  
00  
00  
00  
XX  
90  
91  
91  
85  
86  
F0C  
T1PWMH  
T1PWML  
T1CTL0  
T1CTL1  
F0D  
F0E  
F0F  
Timer 1 Control 1  
F10–F6F  
Reserved  
UART  
F40  
F41  
F42  
F43  
F44  
F45  
F46  
F47  
UART Transmit/Receive Data registers  
UART Status 0 Register  
TXD, RXD  
U0STAT0  
U0CTL0  
U0CTL1  
U0STAT1  
U0ADDR  
U0BRH  
XX  
00  
00  
00  
00  
00  
FF  
FF  
115  
114  
110  
110  
115  
116  
117  
117  
UART Control 0 Register  
UART Control 1 Register  
UART Status 1 Register  
UART Address Compare Register  
UART Baud Rate High Byte Register  
UART Baud Rate Low Byte Register  
U0BRL  
Analog-to-Digital Converter (ADC)  
F70  
ADC Control 0  
ADC Control 1  
ADC Data High Byte  
ADC Data Low Byte  
Reserved  
ADCCTL0  
ADCCTL1  
ADCD_H  
ADCD_L  
00  
134  
136  
137  
137  
F71  
80  
F72  
XX  
XX  
XX  
F73  
F74–F7F  
Low Power Control  
F80  
F81  
Power Control 0  
PWRCTL0  
80  
34  
Reserved  
XX  
LED Controller  
F82  
F83  
F84  
LED Drive Enable  
LEDEN  
00  
00  
00  
53  
53  
54  
LED Drive Level High Byte  
LED Drive Level Low Byte  
LEDLVLH  
LEDLVLL  
Notes:  
1. XX = Undefined.  
2. Refer to the eZ8 CPU Core User Manual (UM0128).  
PS022829-0814  
P R E L I M I N A R Y  
Register Map  
Z8 Encore! XP® F082A Series  
Product Specification  
20  
Table 7. Register File Address Map (Continued)  
Address (Hex)  
Register Description  
Mnemonic  
Reset (Hex)  
Page  
196  
F85  
Reserved  
XX  
Oscillator Control  
F86  
Oscillator Control  
Reserved  
OSCCTL  
A0  
XX  
F87–F8F  
Comparator 0  
F90  
Comparator 0 Control  
Reserved  
CMP0  
14  
141  
F91–FBF  
XX  
Interrupt Controller  
FC0  
Interrupt Request 0  
IRQ0  
00  
00  
00  
00  
00  
00  
00  
00  
00  
XX  
00  
00  
00  
60  
63  
63  
61  
65  
65  
62  
66  
67  
FC1  
IRQ0 Enable High Bit  
IRQ0 Enable Low Bit  
Interrupt Request 1  
IRQ1 Enable High Bit  
IRQ1 Enable Low Bit  
Interrupt Request 2  
IRQ2 Enable High Bit  
IRQ2 Enable Low Bit  
Reserved  
IRQ0ENH  
IRQ0ENL  
IRQ1  
FC2  
FC3  
FC4  
IRQ1ENH  
IRQ1ENL  
IRQ2  
FC5  
FC6  
FC7  
IRQ2ENH  
IRQ2ENL  
FC8  
FC9–FCC  
FCD  
FCE  
FCF  
Interrupt Edge Select  
Shared Interrupt Select  
Interrupt Control  
IRQES  
IRQSS  
IRQCTL  
68  
68  
69  
GPIO Port A  
FD0  
Port A Address  
Port A Control  
PAADDR  
PACTL  
PAIN  
00  
00  
XX  
00  
44  
46  
46  
46  
FD1  
FD2  
Port A Input Data  
Port A Output Data  
FD3  
PAOUT  
GPIO Port B  
FD4  
Port B Address  
Port B Control  
PBADDR  
PBCTL  
PBIN  
00  
00  
XX  
00  
44  
46  
46  
46  
FD5  
FD6  
Port B Input Data  
Port B Output Data  
FD7  
PBOUT  
GPIO Port C  
FD8  
Port C Address  
PCADDR  
00  
44  
Notes:  
1. XX = Undefined.  
2. Refer to the eZ8 CPU Core User Manual (UM0128).  
PS022829-0814  
P R E L I M I N A R Y  
Register Map  
Z8 Encore! XP® F082A Series  
Product Specification  
21  
Table 7. Register File Address Map (Continued)  
Address (Hex)  
Register Description  
Port C Control  
Mnemonic  
PCCTL  
PCIN  
Reset (Hex)  
Page  
46  
FD9  
FDA  
FDB  
00  
XX  
00  
Port C Input Data  
Port C Output Data  
46  
PCOUT  
46  
GPIO Port D  
FDC  
Port D Address  
Port D Control  
Reserved  
PDADDR  
PDCTL  
00  
00  
XX  
00  
XX  
44  
46  
FDD  
FDE  
FDF  
Port D Output Data  
Reserved  
PDOUT  
46  
FE0–FEF  
Watchdog Timer (WDT)  
FF0  
Reset Status (Read-only)  
RSTSTAT  
WDTCTL  
WDTU  
WDTH  
WDTL  
X0  
N/A  
00  
29  
96  
97  
97  
98  
Watchdog Timer Control (Write-only)  
Watchdog Timer Reload Upper Byte  
Watchdog Timer Reload High Byte  
Watchdog Timer Reload Low Byte  
Reserved  
FF1  
FF2  
04  
FF3  
00  
FF4–FF5  
XX  
Trim Bit Control  
FF6  
FF7  
Trim Bit Address  
Trim Bit Data  
TRMADR  
TRMDR  
00  
00  
161  
162  
Flash Memory Controller  
FF8  
FF8  
FF9  
Flash Control  
FCTL  
00  
00  
00  
00  
00  
00  
155  
155  
156  
157  
158  
158  
Flash Status  
FSTAT  
FPS  
Flash Page Select  
Flash Sector Protect  
FPROT  
FFREQH  
FFREQL  
FFA  
FFB  
Flash Programming Frequency High Byte  
Flash Programming Frequency Low Byte  
eZ8 CPU  
FFC  
Flags  
XX  
XX  
XX  
XX  
See  
foot-  
note 2.  
FFD  
Register Pointer  
Stack Pointer High Byte  
Stack Pointer Low Byte  
RP  
FFE  
SPH  
SPL  
FFF  
Notes:  
1. XX = Undefined.  
2. Refer to the eZ8 CPU Core User Manual (UM0128).  
PS022829-0814  
P R E L I M I N A R Y  
Register Map  
Z8 Encore! XP® F082A Series  
Product Specification  
22  
Reset, Stop Mode Recovery and Low  
Voltage Detection  
The Reset Controller within the Z8 Encore! XP F082A Series controls Reset and Stop  
Mode Recovery operation and provides indication of low supply voltage conditions. In  
typical operation, the following events cause a Reset:  
Power-On Reset (POR)  
Voltage Brown-Out (VBO)  
Watchdog Timer time-out (when configured by the WDT_RES Flash option bit to ini-  
tiate a reset)  
External RESET pin assertion (when the alternate RESET function is enabled by the  
GPIO Register)  
On-chip debugger initiated Reset (OCDCTL[0] set to 1)  
When the device is in Stop Mode, a Stop Mode Recovery is initiated by either of the fol-  
lowing occurrences:  
Watchdog Timer time-out  
GPIO Port input pin transition on an enabled Stop Mode Recovery source  
The low voltage detection circuitry on the device (available on the 8-pin product versions  
only) performs the following functions:  
Generates the VBO reset when the supply voltage drops below a minimum safe level.  
Generates an interrupt when the supply voltage drops below a user-defined level (8-pin  
devices only).  
Reset Types  
The Z8 Encore! XP F082A Series provides several different types of Reset operation. Stop  
Mode Recovery is considered as a form of Reset. Table 8 lists the types of Reset and their  
operating characteristics. The System Reset is longer if the external crystal oscillator is  
enabled by the Flash option bits, allowing additional time for oscillator start-up.  
PS022829-0814  
P R E L I M I N A R Y  
Reset, Stop Mode Recovery and Low  
Z8 Encore! XP® F082A Series  
Product Specification  
23  
Table 8. Reset and Stop Mode Recovery Characteristics and Latency  
Reset Characteristics and Latency  
eZ8  
Reset Type  
Control Registers  
Reset (as applicable)  
CPU Reset Latency (Delay)  
System Reset  
Reset 66 Internal Precision Oscillator Cycles  
Reset 5000 Internal Precision Oscillator Cycles  
System Reset with Crystal Reset (as applicable)  
Oscillator Enabled  
Stop Mode Recovery  
Unaffected, except  
WDT_CTL and  
Reset 66 Internal Precision Oscillator Cycles  
+ IPO startup time  
OSC_CTL registers  
Stop Mode Recovery with Unaffected, except  
Crystal Oscillator Enabled WDT_CTL and  
OSC_CTL registers  
Reset 5000 Internal Precision Oscillator Cycles  
During a System Reset or Stop Mode Recovery, the Internal Precision Oscillator requires  
4 µs to start up. Then the Z8 Encore! XP F082A Series device is held in Reset for 66  
cycles of the Internal Precision Oscillator. If the crystal oscillator is enabled in the Flash  
option bits, this reset period is increased to 5000 IPO cycles. When a reset occurs because  
of a low voltage condition or Power-On Reset (POR), this delay is measured from the time  
that the supply voltage first exceeds the POR level. If the external pin reset remains  
asserted at the end of the reset period, the device remains in reset until the pin is deas-  
serted.  
At the beginning of Reset, all GPIO pins are configured as inputs with pull-up resistor dis-  
abled, except PD0 (or PA2 on 8-pin devices) which is shared with the reset pin. On reset,  
the PD0 is configured as a bidirectional open-drain reset. The pin is internally driven low  
during port reset, after which the user code may reconfigure this pin as a general purpose  
output.  
During Reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal  
oscillator and Watchdog Timer oscillator continue to run.  
Upon Reset, control registers within the Register File that have a defined Reset value are  
loaded with their reset values. Other control registers (including the Stack Pointer, Regis-  
ter Pointer and Flags) and general-purpose RAM are undefined following Reset. The eZ8  
CPU fetches the Reset vector at Program Memory addresses 0002Hand 0003Hand loads  
that value into the Program Counter. Program execution begins at the Reset vector  
address.  
As the control registers are reinitialized by a system reset, the system clock after reset is  
always the IPO. The software must reconfigure the oscillator control block, such that the  
correct system clock source is enabled and selected.  
PS022829-0814  
P R E L I M I N A R Y  
Reset Types  
Z8 Encore! XP® F082A Series  
Product Specification  
24  
Reset Sources  
Table 9 lists the possible sources of a system reset.  
Table 9. Reset Sources and Resulting Reset Type  
Operating Mode  
Reset Source  
Special Conditions  
Normal or Halt modes Power-On Reset/Voltage Brown- Reset delay begins after supply voltage  
Out  
exceeds POR level.  
None.  
Watchdog Timer time-out  
when configured for Reset  
RESET pin assertion  
All reset pulses less than three system clocks  
in width are ignored.  
On-Chip Debugger initiated ResetSystem Reset, except the On-Chip Debugger  
(OCDCTL[0] set to 1) is unaffected by the reset.  
Power-On Reset/Voltage Brown- Reset delay begins after supply voltage  
Stop Mode  
Out  
exceeds POR level.  
RESET pin assertion  
All reset pulses less than the specified analog  
delay are ignored. See Table 131 on  
page 229.  
DBG pin driven Low  
None.  
Power-On Reset  
Z8 Encore! XP F082A Series devices contain an internal Power-On Reset circuit. The  
POR circuit monitors the supply voltage and holds the device in the Reset state until the  
supply voltage reaches a safe operating level. After the supply voltage exceeds the POR  
voltage threshold (VPOR), the device is held in the Reset state until the POR Counter has  
timed out. If the crystal oscillator is enabled by the option bits, this time-out is longer.  
After the Z8 Encore! XP F082A Series device exits the Power-On Reset state, the eZ8  
CPU fetches the Reset vector. Following Power-On Reset, the PORstatus bit in the Reset  
Status (RSTSTAT) Register is set to 1.  
Figure 5 displays Power-On Reset operation. See Electrical Characteristics on page 221  
for the POR threshold voltage (VPOR).  
PS022829-0814  
P R E L I M I N A R Y  
Reset Sources  
Z8 Encore! XP® F082A Series  
Product Specification  
25  
VCC = 3.3V  
VPOR  
VVBO  
Program  
Execution  
VCC = 0.0 V  
Internal Precision  
Oscillator  
Crystal  
Oscillator  
Oscillator  
Start-up  
Internal RESET  
signal  
POR  
counter delay  
optional XTAL  
counter delay  
Note: Not to Scale  
Figure 5. Power-On Reset Operation  
Voltage Brown-Out Reset  
The devices in the Z8 Encore! XP F082A Series provide low Voltage Brown-Out (VBO)  
protection. The VBO circuit senses when the supply voltage drops to an unsafe level  
(below the VBO threshold voltage) and forces the device into the Reset state. While the  
supply voltage remains below the Power-On Reset voltage threshold (VPOR), the VBO  
block holds the device in the Reset.  
After the supply voltage again exceeds the Power-On Reset voltage threshold, the device  
progresses through a full System Reset sequence, as described in the Power-On Reset sec-  
tion. Following Power-On Reset, the POR status bit in the Reset Status (RSTSTAT) Regis-  
ter is set to 1. Figure 6 displays Voltage Brown-Out operation. See the Electrical  
Characteristics chapter on page 226 for the VBO and POR threshold voltages (VVBO and  
VPOR).  
The Voltage Brown-Out circuit can be either enabled or disabled during Stop Mode. Oper-  
ation during Stop Mode is set by the VBO_AO Flash option bit. See the Flash Option Bits  
chapter on page 159 for information about configuring VBO_AO.  
PS022829-0814  
P R E L I M I N A R Y  
Reset Sources  
Z8 Encore! XP® F082A Series  
Product Specification  
26  
VCC = 3.3V  
VCC = 3.3 V  
VPOR  
VVBO  
Program  
Voltage  
Program  
Execution  
Brown-Out  
Execution  
System Clock  
Internal RESET  
signal  
POR  
counter delay  
Note: Not to Scale  
Figure 6. Voltage Brown-Out Reset Operation  
The POR level is greater than the VBO level by the specified hysteresis value. This  
ensures that the device undergoes a Power-On Reset after recovering from a VBO condi-  
tion.  
Watchdog Timer Reset  
If the device is operating in Normal or Halt Mode, the Watchdog Timer can initiate a Sys-  
tem Reset at time-out if the WDT_RES Flash option bit is programmed to 1, i.e., the  
unprogrammed state of the WDT_RES Flash option bit. If the bit is programmed to 0, it  
configures the Watchdog Timer to cause an interrupt, not a System Reset, at time-out.  
The WDT bit in the Reset Status (RSTSTAT) Register is set to signify that the reset was  
initiated by the Watchdog Timer.  
External Reset Input  
The RESET pin has a Schmitt-Triggered input and an internal pull-up resistor. Once the  
RESET pin is asserted for a minimum of four system clock cycles, the device progresses  
through the System Reset sequence. Because of the possible asynchronicity of the system  
clock and reset signals, the required reset duration may be as short as three clock periods  
PS022829-0814  
P R E L I M I N A R Y  
Reset Sources  
Z8 Encore! XP® F082A Series  
Product Specification  
27  
and as long as four. A reset pulse three clock cycles in duration might trigger a reset; a  
pulse four cycles in duration always triggers a reset.  
While the RESET input pin is asserted Low, the Z8 Encore! XP F082A Series devices  
remain in the Reset state. If the RESET pin is held Low beyond the System Reset time-  
out, the device exits the Reset state on the system clock rising edge following RESET pin  
deassertion. Following a System Reset initiated by the external RESET pin, the EXT sta-  
tus bit in the Reset Status (RSTSTAT) Register is set to 1.  
External Reset Indicator  
During System Reset or when enabled by the GPIO logic (see Table 20 on page 46), the  
RESET pin functions as an open-drain (active Low) reset mode indicator in addition to the  
input functionality. This reset output feature allows a Z8 Encore! XP F082A Series device  
to reset other components to which it is connected, even if that reset is caused by internal  
sources such as POR, VBO or WDT events.  
After an internal reset event occurs, the internal circuitry begins driving the RESET pin  
Low. The RESET pin is held Low by the internal circuitry until the appropriate delay  
listed in Table 8 has elapsed.  
On-Chip Debugger Initiated Reset  
A Power-On Reset can be initiated using the On-Chip Debugger by setting the RST bit in  
the OCD Control Register. The On-Chip Debugger block is not reset but the rest of the  
chip goes through a normal system reset. The RST bit automatically clears during the sys-  
tem reset. Following the system reset the POR bit in the Reset Status (RSTSTAT) Register  
is set.  
Stop Mode Recovery  
Stop Mode is entered by execution of a Stop instruction by the eZ8 CPU. See the Low-  
Power Modes chapter on page 32 for detailed Stop Mode information. During Stop Mode  
Recovery (SMR), the CPU is held in reset for 66 IPO cycles if the crystal oscillator is dis-  
abled or 5000 cycles if it is enabled. The SMR delay (see Table 135 on page 233) TSMR  
also includes the time required to start up the IPO.  
,
Stop Mode Recovery does not affect on-chip registers other than the Watchdog Timer  
Control Register (WDTCTL) and the Oscillator Control Register (OSCCTL). After any  
Stop Mode Recovery, the IPO is enabled and selected as the system clock. If another sys-  
tem clock source is required, the Stop Mode Recovery code must reconfigure the oscillator  
control block such that the correct system clock source is enabled and selected.  
The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002Hand 0003H  
and loads that value into the Program Counter. Program execution begins at the Reset vec-  
PS022829-0814  
P R E L I M I N A R Y  
Stop Mode Recovery  
Z8 Encore! XP® F082A Series  
Product Specification  
28  
tor address. Following Stop Mode Recovery, the Stop bit in the Reset Status (RSTSTAT)  
Register is set to 1. Table 10 lists the Stop Mode Recovery sources and resulting actions.  
The text following provides more detailed information about each of the Stop Mode  
Recovery sources.  
Table 10. Stop Mode Recovery Sources and Resulting Action  
Operating Mode  
Stop Mode Recovery Source  
Action  
Stop Mode  
Watchdog Timer time-out when configured  
for Reset  
Stop Mode Recovery  
Watchdog Timer time-out when configured  
for interrupt  
Stop Mode Recovery followed by  
interrupt (if interrupts are enabled)  
Data transition on any GPIO port pin enabled Stop Mode Recovery  
as a Stop Mode Recovery source  
Assertion of external RESET Pin  
Debug Pin driven Low  
System Reset  
System Reset  
Stop Mode Recovery Using Watchdog Timer Time-Out  
If the Watchdog Timer times out during Stop Mode, the device undergoes a Stop Mode  
Recovery sequence. In the Reset Status (RSTSTAT) Register, the WDT and Stop bits are  
set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and  
the Z8 Encore! XP F082A Series device is configured to respond to interrupts, the eZ8  
CPU services the Watchdog Timer interrupt request following the normal Stop Mode  
Recovery sequence.  
Stop Mode Recovery Using a GPIO Port Pin Transition  
Each of the GPIO port pins may be configured as a Stop Mode Recovery input source. On  
any GPIO pin enabled as a Stop Mode Recovery source, a change in the input pin value  
(from High to Low or from Low to High) initiates Stop Mode Recovery.  
SMR pulses shorter than specified do not trigger a recovery (see Table 135 on page 233).  
In this instance, the Stop bit in the Reset Status (RSTSTAT) Register is set to 1.  
Note:  
In Stop Mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input  
Data registers record the Port transition only if the signal stays on the Port pin through  
the end of the Stop Mode Recovery delay. As a result, short pulses on the Port pin can  
initiate Stop Mode Recovery without being written to the Port Input Data Register or  
Caution:  
PS022829-0814  
P R E L I M I N A R Y  
Stop Mode Recovery  
Z8 Encore! XP® F082A Series  
Product Specification  
29  
without initiating an interrupt (if enabled for that pin).  
Stop Mode Recovery Using the External RESET Pin  
When the Z8 Encore! XP F082A Series device is in Stop Mode and the external RESET  
pin is driven Low, a system reset occurs. Because of a glitch filter operating on the RESET  
pin, the Low pulse must be greater than the minimum width specified, or it is ignored. See  
the Electrical Characteristics chapter on page 226 for details.  
Low Voltage Detection  
In addition to the Voltage Brown-Out (VBO) Reset described above, it is also possible to  
generate an interrupt when the supply voltage drops below a user-selected value. For  
details about configuring the Low Voltage Detection (LVD) and the threshold levels avail-  
able, see the Trim Option Bits at Address 0003H (TLVD) Register on page 166. The LVD  
function is available on the 8-pin product versions only.  
When the supply voltage drops below the LVD threshold, the LVD bit of the Reset Status  
(RSTSTAT) Register is set to one. This bit remains one until the low-voltage condition  
goes away. Reading or writing this bit does not clear it. The LVD circuit can also generate  
an interrupt when so enabled, see the GPIO Mode Interrupt Controller chapter on page 55.  
The LVD bit is not latched; therefore, enabling the interrupt is the only way to guarantee  
detection of a transient low voltage event.  
The LVD functionality depends on circuitry shared with the VBO block; therefore, dis-  
abling the VBO also disables the LVD.  
Reset Register Definitions  
The following sections define the Reset registers.  
Reset Status Register  
The read-only Reset Status (RSTSTAT) Register, shown in Table 11, indicates the source  
of the most recent Reset event, indicates a Stop Mode Recovery event and indicates a  
Watchdog Timer time-out. Reading this register resets the upper four bits to 0. This regis-  
ter shares its address with the write-only Watchdog Timer Control Register.  
Table 12 lists the bit settings for Reset and Stop Mode Recovery events.  
PS022829-0814  
P R E L I M I N A R Y  
Low Voltage Detection  
Z8 Encore! XP® F082A Series  
Product Specification  
30  
Table 11. Reset Status Register (RSTSTAT)  
Bit  
7
6
5
4
EXT  
0
3
2
1
0
LVD  
0
Field  
POR  
STOP  
WDT  
Reserved  
RESET  
R/W  
See descriptions below  
0
0
0
R
R
R
R
R
R
R
R
Address  
FF0H  
Bit  
Description  
Power-On Reset Indicator  
[7]  
POR  
If this bit is set to 1, a Power-On Reset event occurs. This bit is reset to 0 if a WDT time-out or  
Stop Mode Recovery occurs. This bit is also reset to 0 when the register is read.  
[6]  
STOP  
Stop Mode Recovery Indicator  
If this bit is set to 1, a Stop Mode Recovery occurs. If the Stop and WDT bits are both set to 1,  
the Stop Mode Recovery occurs because of a WDT time-out. If the Stop bit is 1 and the WDT  
bit is 0, the Stop Mode Recovery was not caused by a WDT time-out. This bit is reset by a  
Power-On Reset or a WDT time-out that occurred while not in Stop Mode. Reading this register  
also resets this bit.  
[5]  
WDT  
Watchdog Timer Time-Out Indicator  
If this bit is set to 1, a WDT time-out occurs. A POR resets this pin. A Stop Mode Recovery  
from a change in an input pin also resets this bit. Reading this register resets this bit. This read  
must occur before clearing the WDT interrupt.  
[4]  
EXT  
External Reset Indicator  
If this bit is set to 1, a Reset initiated by the external RESET pin occurs. A Power-On Reset or  
a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register  
resets this bit.  
[3:1]  
Reserved  
These bits are reserved and must be programmed to 000.  
[0]  
LVD  
Low Voltage Detection Indicator  
If this bit is set to 1 the current state of the supply voltage is below the low voltage detection  
threshold. This value is not latched but is a real-time indicator of the supply voltage level.  
PS022829-0814  
P R E L I M I N A R Y  
Reset Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
31  
Table 12. Reset and Stop Mode Recovery Bit Descriptions  
Reset or Stop Mode Recovery Event  
Power-On Reset  
POR  
STOP  
WDT  
EXT  
0
1
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
1
Reset using RESET pin assertion  
1
Reset using Watchdog Timer time-out  
0
Reset using the On-Chip Debugger (OCTCTL[1] set to 1)  
Reset from Stop Mode using DBG Pin driven Low  
Stop Mode Recovery using GPIO pin transition  
Stop Mode Recovery using Watchdog Timer time-out  
0
0
0
0
PS022829-0814  
P R E L I M I N A R Y  
Reset Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
32  
Low-Power Modes  
The Z8 Encore! XP F082A Series products contain power-saving features. The highest  
level of power reduction is provided by the Stop Mode, in which nearly all device func-  
tions are powered down. The next lower level of power reduction is provided by the Halt  
Mode, in which the CPU is powered down.  
Further power savings can be implemented by disabling individual peripheral blocks  
while in Active mode (defined as being in neither Stop nor Halt Mode).  
Stop Mode  
Executing the eZ8 CPU’s Stop instruction places the device into Stop Mode, powering  
down all peripherals except the Voltage Brown-Out detector, the Low-power Operational  
Amplifier and the Watchdog Timer. These three blocks may also be disabled for additional  
power savings. Specifically, the operating characteristics are:  
Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT  
(if previously enabled) are disabled and PA0/PA1 revert to the states programmed by  
the GPIO registers  
System clock is stopped  
eZ8 CPU is stopped  
Program counter (PC) stops incrementing  
Watchdog Timer’s internal RC oscillator continues to operate if enabled by the Oscil-  
lator Control Register  
If enabled, the Watchdog Timer logic continues to operate  
If enabled for operation in Stop Mode by the associated Flash option bit, the Voltage  
Brown-Out protection circuit continues to operate  
Low-power operational amplifier continues to operate if enabled by the Power Control  
Register  
All other on-chip peripherals are idle  
To minimize current in Stop Mode, all GPIO pins that are configured as digital inputs must  
be driven to one of the supply rails (VCC or GND). Additionally, any GPIOs configured as  
outputs must also be driven to one of the supply rails. The device can be brought out of  
Stop Mode using Stop Mode Recovery. For more information about Stop Mode Recovery,  
see the Reset, Stop Mode Recovery and Low Voltage Detection chapter on page 22.  
PS022829-0814  
P R E L I M I N A R Y  
Low-Power Modes  
Z8 Encore! XP® F082A Series  
Product Specification  
33  
Halt Mode  
Executing the eZ8 CPU’s Halt instruction places the device into Halt Mode, which powers  
down the CPU but leaves all other peripherals active. In Halt Mode, the operating charac-  
teristics are:  
Primary oscillator is enabled and continues to operate  
System clock is enabled and continues to operate  
eZ8 CPU is stopped  
Program counter (PC) stops incrementing  
Watchdog Timer’s internal RC oscillator continues to operate  
If enabled, the Watchdog Timer continues to operate  
All other on-chip peripherals continue to operate, if enabled  
The eZ8 CPU can be brought out of Halt Mode by any of the following operations:  
Interrupt  
Watchdog Timer time-out (interrupt or reset)  
Power-On Reset  
Voltage Brown-Out reset  
External RESET pin assertion  
To minimize current in Halt Mode, all GPIO pins that are configured as inputs must be  
driven to one of the supply rails (VCC or GND).  
Peripheral-Level Power Control  
In addition to the Stop and Halt modes, it is possible to disable each peripheral on each of  
the Z8 Encore! XP F082A Series devices. Disabling a given peripheral minimizes its  
power consumption.  
Power Control Register Definitions  
The following sections define the Power Control registers.  
Power Control Register 0  
Each bit of the following registers disables a peripheral block, either by gating its system  
clock input or by removing power from the block. The default state of the low-power  
PS022829-0814  
P R E L I M I N A R Y  
Halt Mode  
Z8 Encore! XP® F082A Series  
Product Specification  
34  
operational amplifier (LPO) is OFF. To use the LPO, clear the LPO bit, turning it ON.  
Clearing this bit might interfere with normal ADC measurements on ANA0 (the LPO out-  
put). This bit enables the amplifier even in Stop Mode. If the amplifier is not required in  
Stop Mode, disable it. Failure to perform this results in Stop Mode currents greater than  
specified.  
This register is only reset during a POR sequence. Other system reset events do not affect it.  
Note:  
Table 13. Power Control Register 0 (PWRCTL0)  
Bit  
7
6
5
4
3
TEMP  
0
2
1
COMP  
0
0
Reserved  
0
Field  
LPO  
1
Reserved  
VBO  
0
ADC  
0
RESET  
R/W  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F80H  
Bit  
Description  
[7]  
LPO  
Low-Power Operational Amplifier Disable  
0 = LPO is enabled (this applies even in Stop Mode).  
1 = LPO is disabled.  
[6:5]  
Reserved  
These bits are reserved and must be programmed to 00.  
[4]  
VBO  
Voltage Brown-Out Detector Disable  
This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be active.  
0 = VBO enabled.  
1 = VBO disabled.  
[3]  
TEMP  
Temperature Sensor Disable  
0 = Temperature Sensor enabled.  
1 = Temperature Sensor disabled.  
[2]  
ADC  
Analog-to-Digital Converter Disable  
0 = Analog-to-Digital Converter enabled.  
1 = Analog-to-Digital Converter disabled.  
[1]  
COMP  
Comparator Disable  
0 = Comparator is enabled.  
1 = Comparator is disabled.  
[0]  
Reserved  
This bit is reserved and must be programmed to 0.  
PS022829-0814  
P R E L I M I N A R Y  
Power Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
35  
Asserting any power control bit disables the targeted block regardless of any enable bits  
contained in the target block’s control registers.  
Note:  
PS022829-0814  
P R E L I M I N A R Y  
Power Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
36  
General-Purpose Input/Output  
The Z8 Encore! XP F082A Series products support a maximum of 25 port pins (Ports  
A–D) for general-purpose input/output (GPIO) operations. Each port contains control and  
data registers. The GPIO control registers determine data direction, open-drain, output  
drive current, programmable pull-ups, Stop Mode Recovery functionality and alternate pin  
functions. Each port pin is individually programmable. In addition, the Port C pins are  
capable of direct LED drive at programmable drive strengths.  
GPIO Port Availability By Device  
Table 14 lists the port pins available with each device and package type.  
Table 14. Port Availability by Device and Package Type  
Devices  
Package ADC Port A Port B Port C Port D Total I/O  
Z8F082ASB, Z8F082APB, Z8F082AQB  
Z8F042ASB, Z8F042APB, Z8F042AQB  
Z8F022ASB, Z8F022APB, Z8F022AQB  
Z8F012ASB, Z8F012APB, Z8F012AQB  
8-pin  
Yes  
[5:0]  
[5:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
No  
No  
No  
No  
[0]  
[0]  
[0]  
[0]  
6
Z8F081ASB, Z8F081APB, Z8F081AQB  
Z8F041ASB, Z8F041APB, Z8F041AQB  
Z8F021ASB, Z8F021APB, Z8F021AQB  
Z8F011ASB, Z8F011APB, Z8F011AQB  
8-pin  
No  
No  
No  
6
Z8F082APH, Z8F082AHH, Z8F082ASH  
Z8F042APH, Z8F042AHH, Z8F042ASH  
Z8F022APH, Z8F022AHH, Z8F022ASH  
Z8F012APH, Z8F012AHH, Z8F012ASH  
20-pin  
20-pin  
28-pin  
28-pin  
Yes  
No  
[3:0]  
[3:0]  
[5:0]  
[7:0]  
[3:0]  
[3:0]  
[7:0]  
[7:0]  
17  
17  
23  
25  
Z8F081APH, Z8F081AHH, Z8F081ASH  
Z8F041APH, Z8F041AHH, Z8F041ASH  
Z8F021APH, Z8F021AHH, Z8F021ASH  
Z8F011APH, Z8F011AHH, Z8F011ASH  
Z8F082APJ, Z8F082ASJ, Z8F082AHJ  
Z8F042APJ, Z8F042ASJ, Z8F042AHJ  
Z8F022APJ, Z8F022ASJ, Z8F022AHJ  
Z8F012APJ, Z8F012ASJ, Z8F012AHJ  
Yes  
No  
Z8F081APJ, Z8F081ASJ, Z8F081AHJ  
Z8F041APJ, Z8F041ASJ, Z8F041AHJ  
Z8F021APJ, Z8F021ASJ, Z8F021AHJ  
Z8F011APJ, Z8F011ASJ, Z8F011AHJ  
PS022829-0814  
P R E L I M I N A R Y  
General-Purpose Input/Output  
Z8 Encore! XP® F082A Series  
Product Specification  
37  
Architecture  
Figure 7 displays a simplified block diagram of a GPIO port pin. In this figure, the ability  
to accommodate alternate functions and variable port current drive strength is not dis-  
played.  
Port Input  
Data Register  
Schmitt-Trigger  
Q
D
Q
D
System  
Clock  
VDD  
Port Output Control  
Port Output  
Data Register  
DATA  
Bus  
D
Q
Port  
Pin  
System  
Clock  
Port Data Direction  
GND  
Figure 7. GPIO Port Pin Block Diagram  
GPIO Alternate Functions  
Many of the GPIO port pins can be used for general-purpose I/O and access to on-chip  
peripheral functions such as the timers and serial communication devices. The Port A–D  
Alternate Function subregisters configure these pins for either General-Purpose I/O or  
alternate function operation. When a pin is configured for alternate function, control of the  
port pin direction (input/output) is passed from the Port A–D Data Direction registers to  
the alternate function assigned to this pin. Table 15 on page 40 lists the alternate functions  
possible with each port pin. For those pins with more one alternate function, the alternate  
function is defined through Alternate Function Sets subregisters AFS1 and AFS2.  
The crystal oscillator functionality is not controlled by the GPIO block. When the crystal  
oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1  
is overridden. In that case, those pins function as input and output for the crystal oscillator.  
PS022829-0814  
P R E L I M I N A R Y  
Architecture  
Z8 Encore! XP® F082A Series  
Product Specification  
38  
PA0 and PA6 contain two different timer functions, a timer input and a complementary  
timer output. Both of these functions require the same GPIO configuration, the selection  
between the two is based on the timer mode. See the Timers chapter on page 70 for more  
details.  
For pins with multiple alternate functions, Zilog recommends writing to the AFS1 and  
AFS2 subregisters before enabling the alternate function via the AF subregister. As a re-  
sult, spurious transitions through unwanted alternate function modes will be prevented.  
Caution:  
Direct LED Drive  
The Port C pins provide a current sinked output capable of driving an LED without requir-  
ing an external resistor. The output sinks current at programmable levels of 3 mA, 7 mA,  
13 mA and 20 mA. This mode is enabled through the Alternate Function register and  
Alternate Function Subregister AFS1 and is programmable through the LED registers.  
The LED Drive Enable (LEDEN) Register turns on the drivers. The LED Drive Level  
(LEDLVLH and LEDLVLL) registers select the sink current.  
For correct function, the LED anode must be connected to VDD and the cathode to the  
GPIO pin. Using all Port C pins in LED drive mode with maximum current may result in  
excessive total current. See the Electrical Characteristics chapter on page 226 for the max-  
imum total current for the applicable package.  
Shared Reset Pin  
On the 20- and 28-pin devices, the PD0 pin shares function with a bidirectional reset pin.  
Unlike all other I/O pins, this pin does not default to GPIO function on power-up. This pin  
acts as a bidirectional input/open-drain output reset until the software reconfigures it. The  
PD0 pin is an output-only open drain when in GPIO mode. There are no pull-up, High  
Drive, or Stop Mode Recovery source features associated with the PD0 pin.  
On the 8-pin product versions, the reset pin is shared with PA2, but the pin is not limited to  
output-only when in GPIO mode.  
If PA2 on the 8-pin product is reconfigured as an input, ensure that no external stimulus  
drives the pin low during any reset sequence. Since PA2 returns to its RESET alternate  
function during system resets, driving it Low holds the chip in a reset state until the pin  
is released.  
Caution:  
PS022829-0814  
P R E L I M I N A R Y  
Direct LED Drive  
Z8 Encore! XP® F082A Series  
Product Specification  
39  
Shared Debug Pin  
On the 8-pin version of this device only, the Debug pin shares function with the PA0 GPIO  
pin. This pin performs as a general purpose input pin on power-up, but the debug logic  
monitors this pin during the reset sequence to determine if the unlock sequence occurs. If  
the unlock sequence is present, the debug function is unlocked and the pin no longer func-  
tions as a GPIO pin. If it is not present, the debug feature is disabled until/unless another  
reset event occurs. For more details, see the On-Chip Debugger chapter on page 180.  
Crystal Oscillator Override  
For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When  
the crystal oscillator is enabled, the GPIO settings are overridden and PA0 and PA1 are  
disabled. See the Oscillator Control Register Definitions section on page 196 for details.  
5V Tolerance  
All six I/O pins on the 8-pin devices are 5V-tolerant, unless the programmable pull-ups  
are enabled. If the pull-ups are enabled and inputs higher than VDD are applied to these  
parts, excessive current flows through those pull-up devices and can damage the chip.  
In the 20- and 28-pin versions of this device, any pin which shares functionality with an  
ADC, crystal or comparator port is not 5 V-tolerant, including PA[1:0], PB[5:0] and  
PC[2:0]. All other signal pins are 5 V-tolerant and can safely handle inputs higher than  
VDD except when the programmable pull-ups are enabled.  
Note:  
External Clock Setup  
For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin  
devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator  
Control (OSCCTL) Register such that the external oscillator is selected as the system  
clock. See the Oscillator Control Register Definitions section on page 196 for details. For  
8-pin devices, use PA1 instead of PB3.  
PS022829-0814  
P R E L I M I N A R Y  
Shared Debug Pin  
Z8 Encore! XP® F082A Series  
Product Specification  
40  
Table 15. Port Alternate Function Mapping (Non 8-Pin Parts)  
Alternate Function  
Set Register AFS1  
Port  
Pin  
Mnemonic  
T0IN/T0OUT  
Reserved  
T0OUT  
Alternate Function Description  
1,2  
Port A  
PA0  
Timer 0 Input/Timer 0 Output Complement N/A  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
Timer 0 Output  
Reserved  
DE0  
UART 0 Driver Enable  
Reserved  
CTS0  
UART 0 Clear to Send  
Reserved  
RXD0/IRRX0  
Reserved  
TXD0/IRTX0  
Reserved  
T1IN/T1OUT  
Reserved  
T1OUT  
UART 0/IrDA 0 Receive Data  
UART 0/IrDA 0 Transmit Data  
Timer 1 Input/Timer 1 Output Complement  
Timer 1 Output  
Reserved  
Notes:  
1. Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not  
implemented for Port A. Enabling alternate function selections automatically enables the associated alternate  
function. See the Port A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
2. Whether PA0/PA6 takes on the timer input or timer output complement function depends on the timer configura-  
tion. See the Timer Pin Signal Operation section on page 84 for details.  
3. Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set  
Register AFS2 is not used to select the function. Alternate function selection must also be enabled. See the Port  
A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
4. VREF is available on PB5 in 28-pin products and on PC2 in 20-pin parts.  
5. Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function Set  
Register AFS2 is not used to select the function. Alternate function selection must also be enabled. See the Port  
A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
6. Because there is only a single alternate function for the Port PD0 pin, the Alternate Function Set registers are  
not implemented for Port D. Enabling alternate function selections automatically enables the associated alter-  
nate function. See the Port A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
PS022829-0814  
P R E L I M I N A R Y  
External Clock Setup  
Z8 Encore! XP® F082A Series  
Product Specification  
41  
Table 15. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)  
Alternate Function  
Set Register AFS1  
Port  
Pin  
Mnemonic  
Alternate Function Description  
3
Port B  
PB0  
Reserved  
AFS1[0]: 0  
AFS1[0]: 1  
AFS1[1]: 0  
AFS1[1]: 1  
AFS1[2]: 0  
AFS1[2]: 1  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[4]: 0  
AFS1[4]: 1  
AFS1[5]: 0  
AFS1[5]: 1  
AFS1[6]: 0  
AFS1[6]: 1  
AFS1[7]: 0  
AFS1[7]: 1  
ANA0/AMPOUT ADC Analog Input/LPO Output  
Reserved  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
ANA1/AMPINN  
Reserved  
ANA2/AMPINP  
CLKIN  
ADC Analog Input/LPO Input (N)  
ADC Analog Input/LPO Input (P)  
External Clock Input  
ANA3  
ADC Analog Input  
Reserved  
ANA7  
ADC Analog Input  
Reserved  
4
V
ADC Voltage Reference  
REF  
Reserved  
Reserved  
Reserved  
Reserved  
Notes:  
1. Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not  
implemented for Port A. Enabling alternate function selections automatically enables the associated alternate  
function. See the Port A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
2. Whether PA0/PA6 takes on the timer input or timer output complement function depends on the timer configura-  
tion. See the Timer Pin Signal Operation section on page 84 for details.  
3. Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set  
Register AFS2 is not used to select the function. Alternate function selection must also be enabled. See the Port  
A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
4. VREF is available on PB5 in 28-pin products and on PC2 in 20-pin parts.  
5. Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function Set  
Register AFS2 is not used to select the function. Alternate function selection must also be enabled. See the Port  
A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
6. Because there is only a single alternate function for the Port PD0 pin, the Alternate Function Set registers are  
not implemented for Port D. Enabling alternate function selections automatically enables the associated alter-  
nate function. See the Port A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
PS022829-0814  
P R E L I M I N A R Y  
External Clock Setup  
Z8 Encore! XP® F082A Series  
Product Specification  
42  
Table 15. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)  
Alternate Function  
Set Register AFS1  
Port  
Pin  
Mnemonic  
Alternate Function Description  
5
Port C  
PC0  
Reserved  
AFS1[0]: 0  
AFS1[0]: 1  
AFS1[1]: 0  
AFS1[1]: 1  
AFS1[2]: 0  
ANA4/CINP/LED ADC, Comparator Input, or LED Drive  
Reserved  
PC1  
PC2  
ANA5/CINN/LED ADC, Comparator Input, or LED Drive  
Reserved  
4
ANA6/LED/V  
ADC Analog Input, LED, or ADC Voltage AFS1[2]: 1  
REF  
Reference  
PC3  
PC4  
PC5  
PC6  
PC7  
PD0  
COUT  
LED  
Comparator Output  
LED drive  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[4]: 0  
AFS1[4]: 1  
AFS1[5]: 0  
AFS1[5]: 1  
AFS1[6]: 0  
AFS1[6]: 1  
AFS1[7]: 0  
AFS1[7]: 1  
N/A  
Reserved  
LED  
LED drive  
LED drive  
LED drive  
Reserved  
LED  
Reserved  
LED  
Reserved  
LED  
LED drive  
6
Port D  
RESET  
External Reset  
Notes:  
1. Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not  
implemented for Port A. Enabling alternate function selections automatically enables the associated alternate  
function. See the Port A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
2. Whether PA0/PA6 takes on the timer input or timer output complement function depends on the timer configura-  
tion. See the Timer Pin Signal Operation section on page 84 for details.  
3. Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set  
Register AFS2 is not used to select the function. Alternate function selection must also be enabled. See the Port  
A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
4. VREF is available on PB5 in 28-pin products and on PC2 in 20-pin parts.  
5. Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function Set  
Register AFS2 is not used to select the function. Alternate function selection must also be enabled. See the Port  
A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
6. Because there is only a single alternate function for the Port PD0 pin, the Alternate Function Set registers are  
not implemented for Port D. Enabling alternate function selections automatically enables the associated alter-  
nate function. See the Port A–D Alternate Function Subregisters (PxAF) section on page 47 for details.  
PS022829-0814  
P R E L I M I N A R Y  
External Clock Setup  
Z8 Encore! XP® F082A Series  
Product Specification  
43  
Table 16. Port Alternate Function Mapping (8-Pin Parts)  
Alternate  
Function  
Select  
Register  
AFS2  
Alternate  
Function Select  
Register AFS1  
Alternate Function  
Description  
Port  
Pin  
Mnemonic  
T0IN  
Port A  
PA0  
Timer 0 Input  
AFS1[0]: 0  
AFS1[0]: 0  
AFS1[0]: 1  
AFS1[0]: 1  
AFS1[1]: 0  
AFS1[1]: 0  
AFS1[1]: 1  
AFS1[1]: 1  
AFS1[2]: 0  
AFS1[2]: 0  
AFS1[2]: 1  
AFS1[2]: 1  
AFS1[3]: 0  
AFS1[3]: 0  
AFS1[3]: 1  
AFS2[0]: 0  
AFS2[0]: 1  
AFS2[0]: 0  
AFS2[0]: 1  
AFS2[1]: 0  
AFS2[1]: 1  
AFS2[1]: 0  
AFS2[1]: 1  
AFS2[2]: 0  
AFS2[2]: 1  
AFS2[2]: 0  
AFS2[2]: 1  
AFS2[3]: 0  
AFS2[3]: 1  
AFS2[3]: 0  
AFS2[3]: 1  
AFS2[4]: 0  
AFS2[4]: 1  
AFS2[4]: 0  
AFS2[4]: 1  
Reserved  
Reserved  
T0OUT  
Timer 0 Output Complement  
Timer 0 Outp ut  
PA1  
PA2  
PA3  
PA4  
T0OUT  
Reserved  
CLKIN  
External Clock Input  
1
Analog Functions ADC Analog Input/V  
REF  
DE0  
UART 0 Driver Enable  
RESET  
T1OUT  
Reserved  
CTS0  
External Reset  
Timer 1 Output  
UART 0 Clear to Send  
Comparator Output  
Timer 1 Input  
COUT  
T1IN  
2
Analog Functions ADC Analog Input/LPO Input (P) AFS1[3]: 1  
RXD0  
UART 0 Receive Data  
AFS1[4]: 0  
AFS1[4]: 0  
AFS1[4]: 1  
Reserved  
Reserved  
2
Analog Functions ADC/Comparator Input (N)/LPO AFS1[4]: 1  
Input (N)  
PA5  
TXD0  
UART 0 Transmit Data  
AFS1[5]: 0  
AFS1[5]: 0  
AFS1[5]: 1  
AFS2[5]: 0  
AFS2[5]: 1  
AFS2[5]: 0  
AFS2[5]: 1  
T1OUT  
Reserved  
Timer 1 Output Complement  
2
Analog Functions ADC/Comparator Input (P) LPO AFS1[5]: 1  
Output  
Notes:  
1. Analog functions include ADC inputs, ADC reference, comparator inputs and LPO ports.  
2. The alternate function selection must be enabled; see the Port A–D Alternate Function Subregisters (PxAF) sec-  
tion on page 47 for details.  
PS022829-0814  
P R E L I M I N A R Y  
External Clock Setup  
Z8 Encore! XP® F082A Series  
Product Specification  
44  
GPIO Interrupts  
Many of the GPIO port pins can be used as interrupt sources. Some port pins can be con-  
figured to generate an interrupt request on either the rising edge or falling edge of the pin  
input signal. Other port pin interrupt sources generate an interrupt when any edge occurs  
(both rising and falling). See the GPIO Mode Interrupt Controller chapter on page 55 for  
more information about interrupts using the GPIO pins.  
GPIO Control Register Definitions  
Four registers for each port provide access to GPIO control, input data and output data.  
Table 17 lists these port registers. Use the Port A–D Address and Control registers  
together to provide access to subregisters for port configuration and control.  
Table 17. GPIO Port Registers and Subregisters  
Port Register Mnemonic  
Port Register Name  
PxADDR  
PxCTL  
PxIN  
Port A–D Address Register; selects subregisters.  
Port A–D Control Register; provides access to subregisters.  
Port A–D Input Data Register.  
PxOUT  
Port A–D Output Data Register.  
Port Subregister Mnemonic Port Register Name  
PxDD  
Data Direction.  
PxAF  
Alternate Function.  
PxOC  
Output Control (Open-Drain).  
High Drive Enable.  
PxHDE  
PxSMRE  
PxPUE  
PxAFS1  
PxAFS2  
Stop Mode Recovery Source Enable.  
Pull-up Enable.  
Alternate Function Set 1.  
Alternate Function Set 2.  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Interrupts  
Z8 Encore! XP® F082A Series  
Product Specification  
45  
Port A–D Address Registers  
The Port A–D Address registers select the GPIO port functionality accessible through the  
Port A–D Control registers. The Port A–D Address and Control registers combine to pro-  
vide access to all GPIO port controls; see Tables 18 and 19.  
Table 18. Port A–D GPIO Address Registers (PxADDR)  
Bit  
7
6
5
4
3
2
1
0
Field  
PADDR[7:0]  
00H  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FD0H, FD4H, FD8H, FDCH  
Bit  
Description  
[7:0]  
Port Address  
PADDRx The Port Address selects one of the subregisters accessible through the Port Control Register.  
Note: x indicates the specific GPIO port pin number (7–0).  
Table 19. Port A–D GPIO Address Registers by Bit Description  
PADDR[7:0] Port Control Subregister accessible using the Port A–D Control Registers  
00H  
01H  
No function. Provides some protection against accidental port reconfiguration.  
Data Direction.  
02H  
Alternate Function.  
03H  
Output Control (Open-Drain).  
High Drive Enable.  
04H  
05H  
Stop Mode Recovery Source Enable.  
Pull-up Enable.  
06H  
07H  
Alternate Function Set 1.  
Alternate Function Set 2.  
No function.  
08H  
09H–FFH  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
46  
Port A–D Control Registers  
The Port A–D Control registers set the GPIO port operation. The value in the correspond-  
ing Port A–D Address Register determines which subregister is read from or written to by  
a Port A–D Control Register transaction; see Table 20.  
Table 20. Port A–D Control Registers (PxCTL)  
Bit  
7
6
5
4
3
2
1
0
Field  
PCTL  
00H  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FD1H, FD5H, FD9H, FDDH  
Bit  
Description  
Port Control  
[7:0]  
PCTLx  
The Port Control Register provides access to all subregisters that configure the GPIO port  
operation.  
Note: x indicates the specific GPIO port pin number (7–0).  
Port A–D Data Direction Subregisters  
The Port A–D Data Direction subregister is accessed through the Port A–D Control Regis-  
ter by writing 01Hto the Port A–D Address Register; see Table 21.  
Table 21. Port A–D Data Direction Subregisters (PxDD)  
Bit  
7
6
5
4
3
2
1
0
Field  
DD7  
1
DD6  
1
DD5  
1
DD4  
1
DD3  
1
DD2  
1
DD1  
1
DD0  
1
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
If 01H in Port A–D Address Register, accessible through the Port A–D Control Register  
Bit  
Description  
[7:0]  
DDx  
Data Direction  
These bits control the direction of the associated port pin. Port Alternate Function operation  
overrides the Data Direction Register setting.  
0 = Output. Data in the Port A–D Output Data Register is driven onto the port pin.  
1 = Input. The port pin is sampled and the value written into the Port A–D Input Data Register.  
The output driver is tristated.  
Note: x indicates the specific GPIO port pin number (7–0).  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
47  
Port A–D Alternate Function Subregisters  
The Port A–D Alternate Function Subregister, shown in Table 22, is accessed through the  
Port A–D Control Register by writing 02Hto the Port A–D Address Register. The Port  
A–D Alternate Function subregisters enable the alternate function selection on pins. If dis-  
abled, pins functions as GPIO. If enabled, select one of four alternate functions using  
alternate function set subregisters 1 and 2 as described in the the Port A–D Alternate Func-  
tion Set 1 Subregisters section on page 50, the GPIO Alternate Functions section on  
page 37 and the Port A–D Alternate Function Set 2 Subregisters section on page 51. See  
the GPIO Alternate Functions section on page 37 to determine the alternate function asso-  
ciated with each port pin.  
Do not enable alternate functions for GPIO port pins for which there is no associated al-  
ternate function. Failure to follow this guideline can result in unpredictable operation.  
Caution:  
Table 22. Port A–D Alternate Function Subregisters (PxAF)  
Bit  
7
AF7  
6
5
4
3
2
1
0
Field  
RESET  
R/W  
AF6  
AF5  
AF4  
AF3  
AF2  
AF1  
AF0  
00H (Ports A–C); 01H (Port D); 04H (Port A of 8-pin device)  
R/W  
Address  
If 02H in Port A–D Address Register, accessible through the Port A–D Control Register  
Bit  
Description  
[7:0]  
AFx  
Port Alternate Function Enabled  
0 = The port pin is in normal mode and the DDx bit in the Port A–D Data Direction subregister  
determines the direction of the pin.  
1 = The alternate function selected through Alternate Function Set subregisters is enabled.  
Port pin operation is controlled by the alternate function.  
Note: x indicates the specific GPIO port pin number (7–0).  
Port A–D Output Control Subregisters  
The Port A–D Output Control Subregister, shown in Table 23, is accessed through the Port  
A–D Control Register by writing 03Hto the Port A–D Address Register. Setting the bits in  
the Port A–D Output Control subregisters to 1 configures the specified port pins for open-  
drain operation. These subregisters affect the pins directly and, as a result, alternate func-  
tions are also affected.  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
48  
Table 23. Port A–D Output Control Subregisters (PxOC)  
Bit  
7
6
5
4
3
2
1
0
Field  
POC7  
POC6  
POC5  
POC4  
POC3  
POC2  
POC1  
POC0  
RESET  
R/W  
00H (Ports A-C); 01H (Port D)  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
If 03H in Port A–D Address Register, accessible through the Port A–D Control Register  
Bit  
Description  
[7:0]  
POCx  
Port Output Control  
These bits function independently of the alternate function bit and always disable the drains if  
set to 1.  
0 = The source current is enabled for any output mode unless overridden by the alternate func-  
tion (push-pull output).  
1 = The source current for the associated pin is disabled (open-drain mode).  
Note: x indicates the specific GPIO port pin number (7–0).  
Port A–D High Drive Enable Subregisters  
The Port A–D High Drive Enable Subregister, shown in Table 24, is accessed through the  
port A–D Control Register by writing 04Hto the Port A–D Address Register. Setting the  
bits in the Port A–D High Drive Enable subregisters to 1 configures the specified port pins  
for high current output drive operation. The Port A–D High Drive Enable subregister  
affects the pins directly and, as a result, alternate functions are also affected.  
Table 24. Port A–D High Drive Enable Subregisters (PxHDE)  
Bit  
7
PHDE7  
0
6
PHDE6  
0
5
PHDE5  
0
4
PHDE4  
0
3
PHDE3  
0
2
PHDE2  
0
1
PHDE1  
0
0
PHDE0  
0
Field  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
If 04H in Port A–D Address Register, accessible through the Port A–D Control Register  
Bit  
Description  
[7:0]  
PHDEx  
Port High Drive Enabled  
0 = The port pin is configured for standard output current drive.  
1 = The port pin is configured for high output current drive.  
Note: x indicates the specific GPIO port pin number (7–0).  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
49  
Port A–D Stop Mode Recovery Source Enable Subregisters  
The Port A–D Stop Mode Recovery Source Enable Subregister, shown in Table 25, is  
accessed through the Port A–D Control Register by writing 05Hto the Port A–D Address  
Register. Setting the bits in the Port A–D Stop Mode Recovery Source Enable subregisters  
to 1 configures the specified port pins as a Stop Mode Recovery source. During Stop  
Mode, any logic transition on a port pin enabled as a Stop Mode Recovery source initiates  
Stop Mode Recovery.  
Table 25. Port A–D Stop Mode Recovery Source Enable Subregisters (PxSMRE)  
Bit  
7
6
5
4
3
2
1
0
Field  
PSMRE7 PSMRE6 PSMRE5 PSMRE4 PSMRE3 PSMRE2 PSMRE1 PSMRE0  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
If 05H in Port A–D Address Register, accessible through the Port A–D Control Register  
Bit  
Description  
Port Stop Mode Recovery Source Enabled  
[7:0]  
PSMREx 0 = The port pin is not configured as a Stop Mode Recovery source. Transitions on this pin dur-  
ing Stop Mode do not initiate Stop Mode Recovery.  
1 = The port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin  
during Stop Mode initiates Stop Mode Recovery.  
Note: x indicates the specific GPIO port pin number (7–0).  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
50  
Port A–D Pull-up Enable Subregisters  
The Port A–D Pull-up Enable Subregister, shown in Table 26, is accessed through the Port  
A–D Control Register by writing 06Hto the Port A–D Address Register. Setting the bits in  
the Port A–D Pull-up Enable subregisters enables a weak internal resistive pull-up on the  
specified port pins.  
Table 26. Port A–D Pull-Up Enable Subregisters (PxPUE)  
Bit  
7
6
5
4
3
2
1
0
Field  
PPUE7  
PPUE6  
PPUE5  
PPUE4  
PPUE3  
PPUE2  
PPUE1  
PPUE0  
RESET  
R/W  
00H (Ports A-C); 01H (Port D); 04H (Port A of 8-pin device)  
R/W R/W R/W R/W R/W R/W  
R/W  
R/W  
Address  
If 06H in Port AD Address Register, accessible through the Port AD Control Register  
Bit  
Description  
[7:0]  
PPUEx  
Port Pull-up Enabled  
0 = The weak pull-up on the port pin is disabled.  
1 = The weak pull-up on the port pin is enabled.  
Note: x indicates the specific GPIO port pin number (7–0).  
Port A–D Alternate Function Set 1 Subregisters  
The Port A–D Alternate Function Set1 Subregister, shown in Table 27, is accessed  
through the Port A–D Control Register by writing 07Hto the Port A–D Address Register.  
The Alternate Function Set 1 subregisters selects the alternate function available at a port  
pin. Alternate Functions selected by setting or clearing bits of this register are defined in  
the GPIO Alternate Functions section on page 37.  
Alternate function selection on port pins must also be enabled as described in the Port  
A–D Alternate Function Subregisters section on page 47.  
Note:  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
51  
Table 27. Port A–D Alternate Function Set 1 Subregisters (PxAFS1)  
Bit  
7
PAFS17  
0
6
PAFS16  
0
5
PAFS15  
0
4
PAFS14  
0
3
PAFS13  
0
2
PAFS12  
0
1
PAFS11  
0
0
PAFS10  
0
Field  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
If 07H in Port A–D Address Register, accessible through the Port A–D Control Register  
Bit  
Description  
[7:0]  
PAFSx  
Port Alternate Function Set 1  
0 = Port Alternate Function selected, as defined in Tables 15 and 16 on page 43.  
1 = Port Alternate Function selected, as defined in Tables 15 and 16 on page 43.  
Note: x indicates the specific GPIO port pin number (7–0).  
Port A–D Alternate Function Set 2 Subregisters  
The Port A–D Alternate Function Set 2 Subregister, shown in Table 28, is accessed  
through the Port A–D Control Register by writing 08Hto the Port A–D Address Register.  
The Alternate Function Set 2 subregisters selects the alternate function available at a port  
pin. Alternate Functions selected by setting or clearing bits of this register is defined in  
Table 16 on page 43.  
Alternate function selection on the port pins must also be enabled. See the Port A–D Alter-  
nate Function Subregisters section on page 47 for details.  
Note:  
Table 28. Port A–D Alternate Function Set 2 Subregisters (PxAFS2)  
Bit  
7
6
5
4
3
2
1
0
Field  
PAFS27  
PAFS26  
PAFS25  
PAFS24  
PAFS23  
PAFS22  
PAFS21  
PAFS20  
RESET  
R/W  
00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)  
R/W R/W R/W R/W R/W R/W  
R/W  
R/W  
Address  
If 08H in Port A–D Address Register, accessible through the Port A–D Control Register  
Bit  
Description  
Port Alternate Function Set 2  
[7]  
PAFS2x 0 = Port Alternate Function selected, as defined in Table 16.  
1 = Port Alternate Function selected, as defined in Table 16.  
Note: x indicates the specific GPIO port pin number (7–0).  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
52  
Port A–C Input Data Registers  
Reading from the Port A–C Input Data registers, shown in Table 29, return the sampled  
values from the corresponding port pins. The Port A–C Input Data registers are read-only.  
The value returned for any unused ports is 0. Unused ports include those missing on the 8-  
and 28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.  
Table 29. Port A–C Input Data Registers (PxIN)  
Bit  
7
PIN7  
X
6
PIN6  
X
5
PIN5  
X
4
PIN4  
X
3
PIN3  
X
2
PIN2  
X
1
PIN1  
X
0
PIN0  
X
Field  
RESET  
R/W  
R
R
R
R
R
R
R
R
Address  
FD2H, FD6H, FDAH  
X = Undefined.  
Bit  
Description  
Port Input Data  
[7:0]  
PxIN  
Sampled data from the corresponding port pin input.  
0 = Input data is logical 0 (Low).  
1 = Input data is logical 1 (High).  
Note: x indicates the specific GPIO port pin number (7–0).  
Port A–D Output Data Register  
The Port A–D Output Data Register, shown in Table 30, controls the output data to the pins.  
Table 30. Port A–D Output Data Register (PxOUT)  
Bit  
7
POUT7  
0
6
POUT6  
0
5
POUT5  
0
4
POUT4  
0
3
POUT3  
0
2
POUT2  
0
1
POUT1  
0
0
POUT0  
0
Field  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FD3H, FD7H, FDBH, FDFH  
Bit  
Description  
[7:0]  
PxOUT  
Port Output Data  
These bits contain the data to be driven to the port pins. The values are only driven if the corre-  
sponding pin is configured as an output and the pin is not configured for alternate function operation.  
0 = Drive a logical 0 (Low).  
1 = Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting  
the corresponding Port Output Control Register bit to 1.  
Note: x indicates the specific GPIO port pin number (7–0).  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
53  
LED Drive Enable Register  
The LED Drive Enable Register, shown in Table 31, activates the controlled current drive.  
The Port C pin must first be enabled for the LED function by setting Alternate Function  
sub-register AFS1 and Alternate Function register.. LEDEN bits [7:0] correspond to Port  
C bits [7:0], respectively.  
Table 31. LED Drive Enable (LEDEN)  
Bit  
7
6
5
4
3
2
1
0
Field  
LEDEN[7:0]  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F82H  
Bit  
Description  
[7:0]  
LED Drive Enable  
LEDENx These bits determine which Port C pins are connected to an internal current sink.  
0 = Tristate the Port C pin.  
1 = Enable controlled current sink on the Port C pin.  
Note: x indicates the specific GPIO port pin number (7–0).  
LED Drive Level High Register  
The LED Drive Level registers contain two control bits for each Port C pin, as shown in  
Table 32. These two bits select between four programmable drive levels. Each pin is indi-  
vidually programmable.  
Table 32. LED Drive Level High Register (LEDLVLH)  
Bit  
7
6
5
4
3
2
1
0
Field  
LEDLVLH[7:0]  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F83H  
Bit  
Description  
[7:0]  
LED Level High Bit  
LEDLVLHx {LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.  
00 = 3mA  
01 = 7mA  
10 = 13mA  
11 = 20mA  
Note: x indicates the specific GPIO port pin number (7–0).  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
54  
LED Drive Level Low Register  
The LED Drive Level registers contain two control bits for each Port C pin (Table 33).  
These two bits select between four programmable drive levels. Each pin is individually  
programmable.  
Table 33. LED Drive Level Low Register (LEDLVLL)  
Bit  
7
6
5
4
3
2
1
0
Field  
LEDLVLL[7:0]  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F84H  
Bit  
Description  
[7:0]  
LED Level Low Bit  
LEDLVLLx {LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C  
pin.  
00 = 3mA  
01 = 7mA  
10 = 13mA  
11 = 20mA  
Note: x indicates the specific GPIO port pin number (7–0).  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
55  
GPIO Mode Interrupt Controller  
The interrupt controller on the Z8 Encore! XP F082A Series products prioritizes the inter-  
rupt requests from the on-chip peripherals and the GPIO port pins. The features of inter-  
rupt controller include:  
20 possible interrupt sources with 18 unique interrupt vectors:  
Twelve GPIO port pin interrupt sources (two interrupt vectors are shared)  
Eight on-chip peripheral interrupt sources (two interrupt vectors are shared)  
Flexible GPIO interrupts:  
Eight selectable rising and falling edge GPIO interrupts  
Four dual-edge interrupts  
Three levels of individually programmable interrupt priority  
Watchdog Timer and LVD can be configured to generate an interrupt  
Supports vectored and polled interrupts  
Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly  
manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt  
service routine is involved with the exchange of data, status information, or control infor-  
mation between the CPU and the interrupting peripheral. When the service routine is com-  
pleted, the CPU returns to the operation from which it was interrupted.  
The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts,  
the interrupt controller has no effect on operation. For more information about interrupt  
servicing by the eZ8 CPU, refer to the eZ8 CPU Core User Manual (UM0128), which is  
available for download on www.zilog.com.  
Interrupt Vector Listing  
Table 34 lists all of the interrupts available in order of priority. The interrupt vector is  
stored with the most-significant byte (MSB) at the even Program Memory address and the  
least-significant byte (LSB) at the following odd Program Memory address.  
Some port interrupts are not available on the 8- and 20-pin packages. The ADC interrupt is  
unavailable on devices not containing an ADC.  
Note:  
PS022829-0814  
P R E L I M I N A R Y  
GPIO Mode Interrupt Controller  
Z8 Encore! XP® F082A Series  
Product Specification  
56  
Table 34. Trap and Interrupt Vectors in Order of Priority  
Program  
Memory  
Priority Vector Address Interrupt or Trap Source  
Highest 0002H  
0004H  
Reset (not an interrupt)  
Watchdog Timer (see Watchdog Timer)  
003AH  
003CH  
0006H  
Primary Oscillator Fail Trap (not an interrupt)  
Watchdog Oscillator Fail Trap (not an interrupt)  
Illegal Instruction Trap (not an interrupt)  
0008H  
Reserved  
Timer 1  
000AH  
000CH  
000EH  
0010H  
Timer 0  
UART 0 receiver  
UART 0 transmitter  
Reserved  
Reserved  
ADC  
0012H  
0014H  
0016H  
0018H  
Port A Pin 7, selectable rising or falling input edge or LVD (see Reset, Stop  
Mode Recovery and Low Voltage Detection)  
001AH  
001CH  
Port A Pin 6, selectable rising or falling input edge or Comparator Output  
Port A Pin 5, selectable rising or falling input edge  
Port A Pin 4, selectable rising or falling input edge  
Port A Pin 3, selectable rising or falling input edge  
Port A Pin 2, selectable rising or falling input edge  
Port A Pin 1, selectable rising or falling input edge  
Port A Pin 0, selectable rising or falling input edge  
Reserved  
001EH  
0020H  
0022H  
0024H  
0026H  
0028H  
002AH  
Reserved  
002CH  
Reserved  
002EH  
Reserved  
0030H  
Port C Pin 3, both input edges  
0032H  
Port C Pin 2, both input edges  
0034H  
Port C Pin 1, both input edges  
Lowest 0036H  
0038H  
Port C Pin 0, both input edges  
Reserved  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Vector Listing  
Z8 Encore! XP® F082A Series  
Product Specification  
57  
Architecture  
Figure 8 displays the interrupt controller block diagram.  
High  
Priority  
Port Interrupts  
Vector  
Priority  
Mux  
IRQ Request  
Medium  
Priority  
Internal Interrupts  
Low  
Priority  
Figure 8. Interrupt Controller Block Diagram  
Operation  
This section describes the operational aspects of the following functions.  
Master Interrupt Enable: see page 57  
Interrupt Vectors and Priority: see page 58  
Interrupt Assertion: see page 58  
Software Interrupt Assertion: see page 59  
Watchdog Timer Interrupt Assertion: see page 59  
Master Interrupt Enable  
The master interrupt enable bit (IRQE) in the Interrupt Control Register globally enables  
and disables interrupts. Interrupts are globally enabled by any of the following actions:  
Execution of an EI (Enable Interrupt) instruction  
Execution of an IRET (Return from Interrupt) instruction  
PS022829-0814  
P R E L I M I N A R Y  
Architecture  
Z8 Encore! XP® F082A Series  
Product Specification  
58  
Writing a 1 to the IRQEbit in the Interrupt Control Register  
Interrupts are globally disabled by any of the following actions:  
Execution of a Disable Interrupt (DI) instruction  
eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller  
Writing a 0 to the IRQEbit in the Interrupt Control Register  
Reset  
Execution of a Trap instruction  
Illegal Instruction Trap  
Primary Oscillator Fail Trap  
Watchdog Oscillator Fail Trap  
Interrupt Vectors and Priority  
The interrupt controller supports three levels of interrupt priority. Level 3 is the highest  
priority, Level 2 is the second highest priority and Level 1 is the lowest priority. If all of  
the interrupts are enabled with identical interrupt priority (all as Level 2 interrupts, for  
example), the interrupt priority is assigned from highest to lowest as specified in Table 34  
on page 56. Level 3 interrupts are always assigned higher priority than Level 2 interrupts  
which, in turn, always are assigned higher priority than Level 1 interrupts. Within each  
interrupt priority level (Level 1, Level 2, or Level 3), priority is assigned as specified in  
Table 34, above. Reset, Watchdog Timer interrupt (if enabled), Primary Oscillator Fail  
Trap, Watchdog Oscillator Fail Trap and Illegal Instruction Trap always have highest  
(level 3) priority.  
Interrupt Assertion  
Interrupt sources assert their interrupt requests for only a single system clock period (sin-  
gle pulse). When the interrupt request is acknowledged by the eZ8 CPU, the correspond-  
ing bit in the Interrupt Request Register is cleared until the next interrupt occurs. Writing a  
0 to the corresponding bit in the Interrupt Request Register likewise clears the interrupt  
request.  
Zilog recommends not using a coding style that clears bits in the Interrupt Request reg-  
isters. All incoming interrupts received between execution of the first LDX command and  
the final LDX command are lost. See Example 1, which follows.  
Caution:  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
59  
Example 1. A poor coding style that can result in lost interrupt requests:  
LDX r0, IRQ0  
AND r0, MASK  
LDX IRQ0, r0  
To avoid missing interrupts, use the coding style in Example 2 to clear bits in the Interrupt  
Request 0 Register:  
Example 2. A good coding style that avoids lost interrupt requests:  
ANDX IRQ0, MASK  
Software Interrupt Assertion  
Program code can generate interrupts directly. Writing a 1 to the correct bit in the Interrupt  
Request Register triggers an interrupt (assuming that interrupt is enabled). When the inter-  
rupt request is acknowledged by the eZ8 CPU, the bit in the Interrupt Request Register is  
automatically cleared to 0.  
Zilog recommends not using a coding style to generate software interrupts by setting bits  
in the Interrupt Request registers. All incoming interrupts received between execution of  
the first LDX command and the final LDX command are lost. See Example 3, which fol-  
lows.  
Caution:  
Example 3. A poor coding style that can result in lost interrupt requests:  
LDX r0, IRQ0  
OR r0, MASK  
LDX IRQ0, r0  
To avoid missing interrupts, use the coding style in Example 4 to set bits in the Interrupt  
Request registers:  
Example 4. A good coding style that avoids lost interrupt requests:  
ORX IRQ0, MASK  
Watchdog Timer Interrupt Assertion  
The Watchdog Timer interrupt behavior is different from interrupts generated by other  
sources. The Watchdog Timer continues to assert an interrupt as long as the time-out con-  
dition continues. As it operates on a different (and usually slower) clock domain than the  
rest of the device, the Watchdog Timer continues to assert this interrupt for many system  
clocks until the counter rolls over.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
60  
To avoid retriggerings of the Watchdog Timer interrupt after exiting the associated inter-  
rupt service routine, Zilog recommends that the service routine continues to read from  
the RSTSTAT Register until the WDT bit is cleared as shown in the following example.  
Caution:  
CLEARWDT:  
LDX r0, RSTSTAT ; read reset status register to clear wdt bit  
BTJNZ 5, r0, CLEARWDT  
; loop until bit is cleared  
Interrupt Control Register Definitions  
For all interrupts other than the Watchdog Timer interrupt, the Primary Oscillator Fail  
Trap and the Watchdog Oscillator Fail Trap, the interrupt control registers enable individ-  
ual interrupts, set interrupt priorities and indicate interrupt requests.  
Interrupt Request 0 Register  
The Interrupt Request 0 (IRQ0) Register, shown in Table 35, stores the interrupt requests  
for both vectored and polled interrupts. When a request is presented to the interrupt con-  
troller, the corresponding bit in the IRQ0 Register becomes 1. If interrupts are globally  
enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8  
CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the  
Interrupt Request 0 Register to determine if any interrupt requests are pending.  
Table 35. Interrupt Request 0 Register (IRQ0)  
Bit  
7
Reserved  
0
6
T1I  
0
5
T0I  
0
4
U0RXI  
0
3
U0TXI  
0
2
1
0
ADCI  
0
Field  
Reserved Reserved  
RESET  
R/W  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FC0H  
Bit  
Description  
Reserved  
[7]  
This bit is reserved and must be programmed to 0.  
[6]  
T1I  
Timer 1 Interrupt Request  
0 = No interrupt request is pending for Timer 1.  
1 = An interrupt request from Timer 1 is awaiting service.  
[5]  
T0I  
Timer 0 Interrupt Request  
0 = No interrupt request is pending for Timer 0.  
1 = An interrupt request from Timer 0 is awaiting service.  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
61  
Bit  
Description (Continued)  
[4]  
U0RXI  
UART 0 Receiver Interrupt Request  
0 = No interrupt request is pending for the UART 0 receiver.  
1 = An interrupt request from the UART 0 receiver is awaiting service.  
[3]  
U0TXI  
UART 0 Transmitter Interrupt Request  
0 = No interrupt request is pending for the UART 0 transmitter.  
1 = An interrupt request from the UART 0 transmitter is awaiting service.  
[2:1]  
Reserved  
These bits are reserved and must be programmed to 00.  
[0]  
ADCI  
ADC Interrupt Request  
0 = No interrupt request is pending for the analog-to-digital Converter.  
1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.  
Interrupt Request 1 Register  
The Interrupt Request 1 (IRQ1) Register, shown in Table 36, stores interrupt requests for  
both vectored and polled interrupts. When a request is presented to the interrupt controller,  
the corresponding bit in the IRQ1 Register becomes 1. If interrupts are globally enabled  
(vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If  
interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt  
Request 1 Register to determine if any interrupt requests are pending.  
Table 36. Interrupt Request 1 Register (IRQ1)  
Bit  
7
PA7VI  
0
6
PA6CI  
0
5
4
3
2
1
0
Field  
PA5I  
0
PA4I  
0
PA3I  
0
PA2I  
0
PA1I  
0
PA0I  
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FC3H  
Bit  
Description  
[7]  
PA7VI  
Port A Pin 7 or LVD Interrupt Request  
0 = No interrupt request is pending for GPIO Port A or LVD.  
1 = An interrupt request from GPIO Port A or LVD.  
[6]  
PA6CI  
Port A Pin 6 or Comparator Interrupt Request  
0 = No interrupt request is pending for GPIO Port A or Comparator.  
1 = An interrupt request from GPIO Port A or Comparator.  
[5:0]  
PA5I  
Port A Pin x Interrupt Request  
0 = No interrupt request is pending for GPIO Port A pin x.  
1 = An interrupt request from GPIO Port A pin x is awaiting service.  
Note: x indicates the specific GPIO port pin number (0–5).  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
62  
Interrupt Request 2 Register  
The Interrupt Request 2 (IRQ2) Register, shown in Table 37, stores interrupt requests for  
both vectored and polled interrupts. When a request is presented to the interrupt controller,  
the corresponding bit in the IRQ2 Register becomes 1. If interrupts are globally enabled  
(vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If  
interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt  
Request 2 Register to determine if any interrupt requests are pending.  
Table 37. Interrupt Request 2 Register (IRQ2)  
Bit  
7
6
5
4
3
PC3I  
0
2
PC2I  
0
1
PC1I  
0
0
PC0I  
0
Field  
Reserved  
RESET  
R/W  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FC6H  
Bit  
Description  
Reserved  
[7:4]  
These bits are reserved and must be programmed to 0000.  
[3:0]  
PCxI  
Port C Pin x Interrupt Request  
0 = No interrupt request is pending for GPIO Port C pin x.  
1 = An interrupt request from GPIO Port C pin x is awaiting service.  
Note: x indicates the specific GPIO Port C pin number (0–3).  
IRQ0 Enable High and Low Bit Registers  
Table 38 describes the priority control for IRQ0. The IRQ0 Enable High and Low Bit reg-  
isters, shown in Tables 39 and 40, form a priority-encoded enabling for interrupts in the  
Interrupt Request 0 Register.  
Table 38. IRQ0 Enable and Priority Encoding  
IRQ0ENH[x]  
IRQ0ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Disabled  
Level 1  
Level 2  
Level 3  
Medium  
High  
Note: x indicates register bits 0–7.  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
63  
Table 39. IRQ0 Enable High Bit Register (IRQ0ENH)  
Bit  
7
6
5
T0ENH  
0
4
3
2
1
0
Field  
Reserved T1ENH  
U0RENH U0TENH Reserved Reserved ADCENH  
RESET  
R/W  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FC1H  
Bit  
Description  
Reserved  
[7]  
This bit is reserved and must be programmed to 0.  
[6]  
Timer 1 Interrupt Request Enable High Bit  
T1ENH  
[5]  
Timer 0 Interrupt Request Enable High Bit  
T0ENH  
[4]  
U0RENH  
UART 0 Receive Interrupt Request Enable High Bit  
UART 0 Transmit Interrupt Request Enable High Bit  
[3]  
U0TENH  
[2:1]  
Reserved  
These bits are reserved and must be programmed to 00.  
[0]  
ADC Interrupt Request Enable High Bit  
ADCENH  
Table 40. IRQ0 Enable Low Bit Register (IRQ0ENL)  
Bit  
7
6
T1ENL  
0
5
T0ENL  
0
4
3
2
1
0
Field  
Reserved  
U0RENL U0TENL Reserved Reserved ADCENL  
RESET  
R/W  
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R/W  
R
R
R/W  
Address  
FC2H  
Bit  
Description  
Reserved  
[7]  
This bit is reserved and must be programmed to 0.  
[6]  
Timer 1 Interrupt Request Enable Low Bit  
T1ENL  
[5]  
Timer 0 Interrupt Request Enable Low Bit  
T0ENL  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
64  
Bit  
Description (Continued)  
[4]  
UART 0 Receive Interrupt Request Enable Low Bit  
U0RENL  
[3]  
UART 0 Transmit Interrupt Request Enable Low Bit  
U0TENL  
[2:1]  
Reserved  
These bits are reserved and must be programmed to 00.  
[0]  
ADC Interrupt Request Enable Low Bit  
ADCENL  
IRQ1 Enable High and Low Bit Registers  
Table 41 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit reg-  
isters, shown in Tables 41 and 42, form a priority-encoded enabling for interrupts in the  
Interrupt Request 1 Register.  
Table 41. IRQ1 Enable and Priority Encoding  
IRQ1ENH[x]  
IRQ1ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Disabled  
Level 1  
Level 2  
Level 3  
Medium  
High  
Note: x indicates register bits 0–7.  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
65  
Table 42. IRQ1 Enable High Bit Register (IRQ1ENH)  
Bit  
7
6
5
4
3
2
1
0
Field  
PA7VENH PA6CENH PA5ENH PA4ENH PA3ENH PA2ENH PA1ENH PA0ENH  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FC4H  
Bit  
Description  
[7]  
Port A Bit[7] or LVD Interrupt Request Enable High Bit  
PA7VENH  
[6]  
Port A Bit[7] or Comparator Interrupt Request Enable High Bit  
PA6CENH  
[5:0]  
Port A Bit[x] Interrupt Request Enable High Bit  
PAxENH  
See the Shared Interrupt Select Register (IRQSS) Register on page 68 for selection of  
either the LVD or the comparator as the interrupt source.  
Table 43. IRQ1 Enable Low Bit Register (IRQ1ENL)  
Bit  
7
6
5
4
3
2
1
0
Field  
PA7VENL PA6CENL PA5ENL PA4ENL PA3ENL PA2ENL PA1ENL PA0ENL  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FC5H  
Bit  
Description  
[7]  
Port A Bit[7] or LVD Interrupt Request Enable Low Bit  
PA7VENL  
[6]  
Port A Bit[6] or Comparator Interrupt Request Enable Low Bit  
PA6CENL  
[5:0]  
Port A Bit[x] Interrupt Request Enable Low Bit  
PAxENL  
IRQ2 Enable High and Low Bit Registers  
Table 44 describes the priority control for IRQ2. The IRQ2 Enable High and Low Bit reg-  
isters, shown in Tables 44 and 45, form a priority-encoded enabling for interrupts in the  
Interrupt Request 2 Register.  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
66  
Table 44. IRQ2 Enable and Priority Encoding  
IRQ2ENH[x]  
IRQ2ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Disabled  
Level 1  
Level 2  
Level 3  
Medium  
High  
Note: x indicates register bits 0–7.  
Table 45. IRQ2 Enable High Bit Register (IRQ2ENH)  
Bit  
7
6
5
4
3
C3ENH  
0
2
C2ENH  
0
1
C1ENH  
0
0
C0ENH  
0
Field  
Reserved  
RESET  
R/W  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FC7H  
Bit  
Description  
Reserved  
[7:4]  
These bits are reserved and must be programmed to 0000.  
[3]  
Port C3 Interrupt Request Enable High Bit  
C3ENH  
[2]  
C2ENH  
Port C2 Interrupt Request Enable High Bit  
Port C1 Interrupt Request Enable High Bit  
Port C0 Interrupt Request Enable High Bit  
[1]  
C1ENH  
[0]  
C0ENH  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
67  
Table 46. IRQ2 Enable Low Bit Register (IRQ2ENL)  
Bit  
7
6
5
4
3
C3ENL  
0
2
C2ENL  
0
1
C1ENL  
0
0
C0ENL  
0
Field  
Reserved  
RESET  
R/W  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FC8H  
Bit  
Description  
Reserved  
[7:4]  
These bits are reserved and must be programmed to 0000.  
[3]  
Port C3 Interrupt Request Enable Low Bit  
C3ENL  
[2]  
C2ENL  
Port C2 Interrupt Request Enable Low Bit  
Port C1 Interrupt Request Enable Low Bit  
Port C0 Interrupt Request Enable Low Bit  
[1]  
C1ENL  
[0]  
C0ENL  
Interrupt Edge Select Register  
The Interrupt Edge Select (IRQES) Register, shown in Table 47, determines whether an  
interrupt is generated for the rising edge or falling edge on the selected GPIO Port A input  
pin.  
Table 47. Interrupt Edge Select Register (IRQES)  
Bit  
7
6
5
4
3
2
1
0
Field  
IES7  
0
IES6  
0
IES5  
0
IES4  
0
IES3  
0
IES2  
0
IES1  
0
IES0  
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FCDH  
Bit  
Description  
[7:0]  
IESx  
Interrupt Edge Select x  
0 = An interrupt request is generated on the falling edge of the PAx input.  
1 = An interrupt request is generated on the rising edge of the PAx input.  
Note: x indicates the specific GPIO port pin number (0–7).  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
68  
Shared Interrupt Select Register  
The Shared Interrupt Select (IRQSS) Register, shown in Table 48, determines the source  
of the PADxS interrupts. The Shared Interrupt Select Register selects between Port A and  
alternate sources for the individual interrupts.  
Because these shared interrupts are edge-triggered, it is possible to generate an interrupt  
just by switching from one shared source to another. For this reason, an interrupt must be  
disabled before switching between sources.  
Table 48. Shared Interrupt Select Register (IRQSS)  
Bit  
7
PA7VS  
0
6
PA6CS  
0
5
4
3
2
1
0
Field  
Reserved  
RESET  
R/W  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FCEH  
Bit  
Description  
[7]  
PA7VS  
PA7/LVD Selection  
0 = PA7 is used for the interrupt for PA7VS interrupt request.  
1 = The LVD is used for the interrupt for PA7VS interrupt request.  
[6]  
PA6CS  
PA6/Comparator Selection  
0 = PA6 is used for the interrupt for PA6CS interrupt request.  
1 = The Comparator is used for the interrupt for PA6CS interrupt request.  
[5:0]  
Reserved  
These bits are reserved and must be programmed to 000000.  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
69  
Interrupt Control Register  
The Interrupt Control (IRQCTL) Register, shown in Table 49, contains the master enable  
bit for all interrupts.  
Table 49. Interrupt Control Register (IRQCTL)  
Bit  
7
IRQE  
0
6
5
4
3
2
1
0
Field  
Reserved  
RESET  
R/W  
0
0
0
0
0
0
0
R/W  
R
R
R
R
R
R
R
Address  
FCFH  
Bit  
Description  
[7]  
IRQE  
Interrupt Request Enable  
This bit is set to 1 by executing an EI (Enable Interrupts) or IRET (Interrupt Return) instruction,  
or by a direct register write of a 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8  
CPU acknowledgement of an interrupt request, Reset or by a direct register write of a 0 to this  
bit.  
0 = Interrupts are disabled.  
1 = Interrupts are enabled.  
[6:0]  
Reserved  
These bits are reserved and must be programmed to 0000000.  
PS022829-0814  
P R E L I M I N A R Y  
Interrupt Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
70  
Timers  
These Z8 Encore! XP F082A Series products contain two 16-bit reloadable timers that can  
be used for timing, event counting, or generation of pulse-width modulated (PWM) sig-  
nals. The timers’ feature include:  
16-bit reload counter  
Programmable prescaler with prescale values from 1 to 128  
PWM output generation  
Capture and compare capability  
External input pin for timer input, clock gating, or capture signal. External input pin  
signal frequency is limited to a maximum of one-fourth the system clock frequency  
Timer output pin  
Timer interrupt  
In addition to the timers described in this chapter, the Baud Rate Generator of the UART  
(if unused) may also provide basic timing functionality. For information about using the  
Baud Rate Generator as an additional timer, see the Universal Asynchronous Receiver/  
Transmitter chapter on page 99.  
Architecture  
Figure 9 displays the architecture of the timers.  
PS022829-0814  
P R E L I M I N A R Y  
Timers  
Z8 Encore! XP® F082A Series  
Product Specification  
71  
Timer Block  
Timer  
Control  
Data  
Bus  
Block  
Control  
Timer  
Interrupt  
16-Bit  
Reload Register  
Interrupt,  
PWM,  
and  
Timer Output  
Control  
Timer  
Output  
System  
Clock  
Timer  
Output  
16-Bit Counter  
with Prescaler  
Timer  
Input  
Complement  
Gate  
Input  
16-Bit  
PWM/Compare  
Capture  
Input  
Figure 9. Timer Block Diagram  
Operation  
The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value  
0001hinto the Timer Reload High and Low Byte registers and setting the prescale value  
to 1. Maximum time-out delay is set by loading the value 0000hinto the Timer Reload  
High and Low Byte registers and setting the prescale value to 128. If the Timer reaches  
FFFFh, the timer rolls over to 0000hand continues counting.  
Timer Operating Modes  
The timers can be configured to operate in the following modes:  
One-Shot Mode  
In One-Shot Mode, the timer counts up to the 16-bit reload value stored in the Timer  
Reload High and Low byte registers. The timer input is the system clock. Upon reaching  
the reload value, the timer generates an interrupt and the count value in the Timer High  
and Low Byte registers is reset to 0001h. The timer is automatically disabled and stops  
counting.  
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state  
for one system clock cycle (from Low to High or from High to Low) upon timer reload. If  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
72  
it is appropriate to have the Timer Output make a state change at a One-Shot time-out  
(rather than a single cycle pulse), first set the TPOL bit in the Timer Control Register to  
the start value before enabling One-Shot Mode. After starting the timer, set TPOL to the  
opposite bit value.  
Observe the following steps for configuring a timer for One-Shot Mode and initiating the  
count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for One-Shot Mode.  
Set the prescale value.  
Set the initial output level (High or Low) if using the Timer Output alternate func-  
tion.  
2. Write to the Timer High and Low Byte registers to set the starting count value.  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control Register to enable the timer and initiate counting.  
In One-Shot Mode, the system clock always provides the timer input. The timer period is  
computed via the following equation:  
Reload Value Start Value Prescale  
-----------------------------------------------------------------------------------------------------------------  
ONE-SHOT Mode Time-Out Period s=  
System Clock Frequency Hz  
Continuous Mode  
In Continuous Mode, the timer counts up to the 16-bit reload value stored in the Timer  
Reload High and Low Byte registers. The timer input is the system clock. Upon reaching  
the reload value, the timer generates an interrupt, the count value in the Timer High and  
Low Byte registers is reset to 0001hand counting resumes. Also, if the Timer Output  
alternate function is enabled, the Timer Output pin changes state (from Low to High or  
from High to Low) at timer reload.  
Observe the following steps for configuring a timer for Continuous Mode and initiating  
the count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Continuous Mode  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
73  
Set the prescale value  
If using the Timer Output alternate function, set the initial output level (High or  
Low)  
2. Write to the Timer High and Low Byte registers to set the starting count value (usually  
0001h). This action only affects the first pass in Continuous Mode. After the first  
timer reload in Continuous Mode, counting always begins at the reset value of 0001h.  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. Enable the timer interrupt (if appropriate) and set the timer interrupt priority by writ-  
ing to the relevant interrupt registers.  
5. Configure the associated GPIO port pin (if using the Timer Output function) for the  
Timer Output alternate function.  
6. Write to the Timer Control Register to enable the timer and initiate counting.  
In Continuous Mode, the system clock always provides the timer input. The timer period  
is computed via the following equation:  
Reload Value Prescale  
CONTINUOUS Mode Time-Out Period (s) = -----------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001his loaded into the Timer High and Low Byte  
registers, use the One-Shot Mode equation to determine the first time-out period.  
Counter Mode  
In Counter Mode, the timer counts input transitions from a GPIO port pin. The timer input  
is taken from the GPIO port pin Timer Input alternate function. The TPOL bit in the Timer  
Control Register selects whether the count occurs on the rising edge or the falling edge of  
the Timer Input signal. In Counter Mode, the prescaler is disabled.  
The input frequency of the Timer Input signal must not exceed one-fourth the system  
clock frequency. Further, the high or low state of the input signal pulse must be no less  
than twice the system clock period. A shorter pulse may not be captured.  
Caution:  
Upon reaching the reload value stored in the Timer Reload High and Low Byte registers,  
the timer generates an interrupt, the count value in the Timer High and Low Byte registers  
is reset to 0001hand counting resumes. Also, if the Timer Output alternate function is  
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at  
timer reload.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
74  
Observe the following steps for configuring a timer for Counter Mode and initiating the  
count:  
1. Write to the Timer Control Register to:  
Disable the timer.  
Configure the timer for Counter Mode.  
Select either the rising edge or falling edge of the Timer Input signal for the count.  
This selection also sets the initial logic level (High or Low) for the Timer Output  
alternate function. However, the Timer Output function is not required to be  
enabled.  
2. Write to the Timer High and Low Byte registers to set the starting count value. This  
only affects the first pass in Counter Mode. After the first timer reload in Counter  
Mode, counting always begins at the reset value of 0001h. In Counter Mode the  
Timer High and Low Byte registers must be written with the value 0001h.  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
7. Write to the Timer Control Register to enable the timer.  
In Counter Mode, the number of Timer Input transitions since the timer start is computed  
via the following equation:  
COUNTER Mode Timer Input Transitions = Current Count Value-Start Value  
Comparator Counter Mode  
In Comparator Counter Mode, the timer counts input transitions from the analog compara-  
tor output. The TPOL bit in the Timer Control Register selects whether the count occurs  
on the rising edge or the falling edge of the comparator output signal. In Comparator  
Counter Mode, the prescaler is disabled.  
The frequency of the comparator output signal must not exceed one-fourth the system  
clock frequency. Further, the high or low state of the comparator output signal pulse must  
be no less than twice the system clock period. A shorter pulse may not be captured.  
Caution:  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
75  
After reaching the reload value stored in the Timer Reload High and Low Byte registers,  
the timer generates an interrupt, the count value in the Timer High and Low Byte registers  
is reset to 0001hand counting resumes. Also, if the Timer Output alternate function is  
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at  
timer reload.  
Observe the following steps for configuring a timer for Comparator Counter Mode and  
initiating the count:  
1. Write to the Timer Control Register to:  
Disable the timer.  
Configure the timer for Comparator Counter Mode.  
Select either the rising edge or falling edge of the comparator output signal for the  
count. This also sets the initial logic level (High or Low) for the Timer Output  
alternate function. However, the Timer Output function is not required to be  
enabled.  
2. Write to the Timer High and Low Byte registers to set the starting count value. This  
action only affects the first pass in Comparator Counter Mode. After the first timer  
reload in Comparator Counter Mode, counting always begins at the reset value of  
0001h. Generally, in Comparator Counter Mode the Timer High and Low Byte regis-  
ters must be written with the value 0001h.  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control Register to enable the timer.  
In Comparator Counter Mode, the number of comparator output transitions since the timer  
start is computed via the following equation:  
Comparator Output Transitions = Current Count Value Start Value  
PWM Single Output Mode  
In PWM Single Output Mode, the timer outputs a Pulse-Width Modulator (PWM) output  
signal through a GPIO port pin. The timer input is the system clock. The timer first counts  
up to the 16-bit PWM match value stored in the Timer PWM High and Low Byte registers.  
When the timer count value matches the PWM value, the Timer Output toggles. The timer  
continues counting until it reaches the reload value stored in the Timer Reload High and  
Low Byte registers. Upon reaching the reload value, the timer generates an interrupt, the  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
76  
count value in the Timer High and Low Byte registers is reset to 0001hand counting  
resumes.  
If the TPOL bit in the Timer Control Register is set to 1, the Timer Output signal begins as  
a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The  
Timer Output signal returns to a High (1) after the timer reaches the reload value and is  
reset to 0001h.  
If the TPOL bit in the Timer Control Register is set to 0, the Timer Output signal begins as  
a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The  
Timer Output signal returns to a Low (0) after the timer reaches the reload value and is  
reset to 0001h.  
Observe the following steps for configuring a timer for PWM Single Output Mode and ini-  
tiating the PWM operation:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for PWM Single Output Mode  
Set the prescale value  
Set the initial logic level (High or Low) and PWM High/Low transition for the  
Timer Output alternate function  
2. Write to the Timer High and Low Byte registers to set the starting count value (typi-  
cally 0001h). This only affects the first pass in PWM Mode. After the first timer reset  
in PWM Mode, counting always begins at the reset value of 0001h.  
3. Write to the PWM High and Low Byte registers to set the PWM value.  
4. Write to the Timer Reload High and Low Byte registers to set the reload value (PWM  
period). The reload value must be greater than the PWM value.  
5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
6. Configure the associated GPIO port pin for the Timer Output alternate function.  
7. Write to the Timer Control Register to enable the timer and initiate counting.  
The PWM period is represented by the following equation:  
Reload Value Prescale  
PWM Period (s) = -----------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001his loaded into the Timer High and Low Byte  
registers, use the One-Shot Mode equation to determine the first PWM time-out period.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
77  
If TPOL is set to 0, the ratio of the PWM output High time to the total period is repre-  
sented by:  
Reload Value PWM Value  
-----------------------------------------------------------------  
PWM Output High Time Ratio (%) =  
100  
Reload Value  
If TPOL is set to 1, the ratio of the PWM output High time to the total period is repre-  
sented by:  
PWM Value  
Reload Value  
--------------------------------  
PWM Output High Time Ratio (%) =  
100  
PWM Dual Output Mode  
In PWM Dual Output Mode, the timer outputs a Pulse-Width Modulated (PWM) output  
signal pair (basic PWM signal and its complement) through two GPIO port pins. The  
timer input is the system clock. The timer first counts up to the 16-bit PWM match value  
stored in the Timer PWM High and Low Byte registers. When the timer count value  
matches the PWM value, the Timer Output toggles. The timer continues counting until it  
reaches the reload value stored in the Timer Reload High and Low Byte registers. Upon  
reaching the reload value, the timer generates an interrupt, the count value in the Timer  
High and Low Byte registers is reset to 0001hand counting resumes.  
If the TPOL bit in the Timer Control Register is set to 1, the Timer Output signal begins as  
a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The  
Timer Output signal returns to a High (1) after the timer reaches the reload value and is  
reset to 0001h.  
If the TPOL bit in the Timer Control Register is set to 0, the Timer Output signal begins as  
a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The  
Timer Output signal returns to a Low (0) after the timer reaches the reload value and is  
reset to 0001h.  
The timer also generates a second PWM output signal Timer Output Complement. The  
Timer Output Complement is the complement of the Timer Output PWM signal. A pro-  
grammable deadband delay can be configured to time delay (0 to 128 system clock cycles)  
PWM output transitions on these two pins from a low to a high (inactive to active). This  
delay ensures a time gap between the deassertion of one PWM output to the assertion of its  
complement.  
Observe the following steps for configuring a timer for PWM Dual Output Mode and ini-  
tiating the PWM operation:  
1. Write to the Timer Control Register to:  
Disable the timer  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
78  
Configure the timer for PWM Dual Output Mode by writing the TMODE bits in  
the TxCTL1 Register and the TMODEHI bit in TxCTL0 Register  
Set the prescale value  
Set the initial logic level (High or Low) and PWM High/Low transition for the  
Timer Output alternate function  
2. Write to the Timer High and Low Byte registers to set the starting count value (typi-  
cally 0001h). This only affects the first pass in PWM Mode. After the first timer reset  
in PWM Mode, counting always begins at the reset value of 0001h.  
3. Write to the PWM High and Low Byte registers to set the PWM value.  
4. Write to the PWM Control Register to set the PWM dead band delay value. The dead-  
band delay must be less than the duration of the positive phase of the PWM signal (as  
defined by the PWM high and low byte registers). It must also be less than the dura-  
tion of the negative phase of the PWM signal (as defined by the difference between  
the PWM registers and the Timer Reload registers).  
5. Write to the Timer Reload High and Low Byte registers to set the reload value (PWM  
period). The reload value must be greater than the PWM value.  
6. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
7. Configure the associated GPIO port pin for the Timer Output and Timer Output Com-  
plement alternate functions. The Timer Output Complement function is shared with  
the Timer Input function for both timers. Setting the timer mode to Dual PWM auto-  
matically switches the function from Timer In to Timer Out Complement.  
8. Write to the Timer Control Register to enable the timer and initiate counting.  
The PWM period is represented by the following equation:  
Reload Value xPrescale  
PWM Period (s) = -------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001his loaded into the Timer High and Low Byte  
registers, the One-Shot Mode equation determines the first PWM time-out period.  
If TPOL is set to 0, the ratio of the PWM output High time to the total period is repre-  
sented by:  
Reload Value PWM Value  
-------------------------------------------------------------------  
PWM Output High Time Ratio (%) =  
100  
Reload Value  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
79  
If TPOL is set to 1, the ratio of the PWM output High time to the total period is repre-  
sented by:  
PWM Value  
Reload Value  
--------------------------------  
PWM Output High Time Ratio (%) =  
100  
Capture Mode  
In Capture Mode, the current timer count value is recorded when the appropriate external  
Timer Input transition occurs. The Capture count value is written to the Timer PWM High  
and Low Byte registers. The timer input is the system clock. The TPOL bit in the Timer  
Control Register determines if the Capture occurs on a rising edge or a falling edge of the  
Timer Input signal. When the Capture event occurs, an interrupt is generated and the timer  
continues counting. The INPCAP bit in TxCTL0 Register is set to indicate the timer inter-  
rupt is because of an input capture event.  
The timer continues counting up to the 16-bit reload value stored in the Timer Reload  
High and Low Byte registers. Upon reaching the reload value, the timer generates an inter-  
rupt and continues counting. The INPCAP bit in TxCTL0 Register clears indicating the  
timer interrupt is not because of an input capture event.  
Observe the following steps for configuring a timer for Capture Mode and initiating the  
count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Capture Mode  
Set the prescale value  
Set the Capture edge (rising or falling) for the Timer Input  
2. Write to the Timer High and Low Byte registers to set the starting count value (typi-  
cally 0001h).  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. Clear the Timer PWM High and Low Byte registers to 0000h. Clearing these registers  
allows the software to determine if interrupts were generated by either a capture event  
or a reload. If the PWM High and Low Byte registers still contain 0000hafter the  
interrupt, the interrupt was generated by a Reload.  
5. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input capture and reload events. If appropriate, configure the timer interrupt to be gen-  
erated only at the input capture event or the reload event by setting TICONFIG field  
of the TxCTL0 Register.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
80  
6. Configure the associated GPIO port pin for the Timer Input alternate function.  
7. Write to the Timer Control Register to enable the timer and initiate counting.  
In Capture Mode, the elapsed time from timer start to Capture event can be calculated  
using the following equation:  
Capture Value Start ValuePrescale  
Capture Elapsed Time (s) = --------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
Capture Restart Mode  
In Capture Restart Mode, the current timer count value is recorded when the acceptable  
external Timer Input transition occurs. The Capture count value is written to the Timer  
PWM High and Low Byte registers. The timer input is the system clock. The TPOL bit in  
the Timer Control Register determines if the Capture occurs on a rising edge or a falling  
edge of the Timer Input signal. When the Capture event occurs, an interrupt is generated  
and the count value in the Timer High and Low Byte registers is reset to 0001hand count-  
ing resumes. The INPCAP bit in TxCTL0 Register is set to indicate the timer interrupt is  
because of an input capture event.  
If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the  
Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer  
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to  
0001hand counting resumes. The INPCAP bit in TxCTL0 Register is cleared to indicate  
the timer interrupt is not caused by an input capture event.  
Observe the following steps for configuring a timer for Capture Restart Mode and initiat-  
ing the count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Capture Restart Mode by writing the TMODE bits in the  
TxCTL1 Register and the TMODEHIbit in TxCTL0 Register  
Set the prescale value  
Set the Capture edge (rising or falling) for the Timer Input  
2. Write to the Timer High and Low Byte registers to set the starting count value (typi-  
cally 0001h).  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. Clear the Timer PWM High and Low Byte registers to 0000h. This allows the soft-  
ware to determine if interrupts were generated by either a capture event or a reload. If  
the PWM High and Low Byte registers still contain 0000hafter the interrupt, the  
interrupt was generated by a Reload.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
81  
5. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input capture and reload events. If appropriate, configure the timer interrupt to be gen-  
erated only at the input capture event or the reload event by setting TICONFIG field  
of the TxCTL0 Register.  
6. Configure the associated GPIO port pin for the Timer Input alternate function.  
7. Write to the Timer Control Register to enable the timer and initiate counting.  
In Capture Mode, the elapsed time from timer start to Capture event can be calculated  
using the following equation:  
Capture Value Start ValuePrescale  
Capture Elapsed Time (s) = --------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
Compare Mode  
In Compare Mode, the timer counts up to the 16-bit maximum Compare value stored in  
the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon  
reaching the Compare value, the timer generates an interrupt and counting continues (the  
timer value is not reset to 0001h). Also, if the Timer Output alternate function is enabled,  
the Timer Output pin changes state (from Low to High or from High to Low) upon Com-  
pare.  
If the Timer reaches FFFFh, the timer rolls over to 0000hand continue counting.  
Observe the following steps for configuring a timer for Compare Mode and initiating the  
count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Compare Mode  
Set the prescale value  
Set the initial logic level (High or Low) for the Timer Output alternate function, if  
appropriate  
2. Write to the Timer High and Low Byte registers to set the starting count value.  
3. Write to the Timer Reload High and Low Byte registers to set the Compare value.  
4. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
82  
6. Write to the Timer Control Register to enable the timer and initiate counting.  
In Compare Mode, the system clock always provides the timer input. The Compare time  
can be calculated by the following equation:  
Compare Value Start ValuePrescale  
COMPARE Mode Time (s) = -----------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
Gated Mode  
In Gated Mode, the timer counts only when the Timer Input signal is in its active state  
(asserted), as determined by the TPOL bit in the Timer Control Register. When the Timer  
Input signal is asserted, counting begins. A timer interrupt is generated when the Timer  
Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal  
deassertion generated the interrupt, read the associated GPIO input value and compare to  
the value stored in the TPOL bit.  
The timer counts up to the 16-bit reload value stored in the Timer Reload High and Low  
Byte registers. The timer input is the system clock. When reaching the reload value, the  
timer generates an interrupt, the count value in the Timer High and Low Byte registers is  
reset to 0001hand counting resumes (assuming the Timer Input signal remains asserted).  
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state  
(from Low to High or from High to Low) at timer reset.  
Observe the following steps for configuring a timer for Gated Mode and initiating the  
count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Gated Mode  
Set the prescale value  
2. Write to the Timer High and Low Byte registers to set the starting count value. Writing  
these registers only affects the first pass in Gated Mode. After the first timer reset in  
Gated Mode, counting always begins at the reset value of 0001h.  
3. Write to the Timer Reload High and Low Byte registers to set the reload value.  
4. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input deassertion and reload events. If appropriate, configure the timer interrupt to be  
generated only at the input deassertion event or the reload event by setting TICONFIG  
field of the TxCTL0 Register.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
83  
6. Write to the Timer Control Register to enable the timer.  
7. Assert the Timer Input signal to initiate the counting.  
Capture/Compare Mode  
In Capture/Compare Mode, the timer begins counting on the first external Timer Input  
transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in  
the Timer Control Register. The timer input is the system clock.  
Every subsequent acceptable transition (after the first) of the Timer Input signal captures  
the current count value. The Capture value is written to the Timer PWM High and Low  
Byte registers. When the Capture event occurs, an interrupt is generated, the count value  
in the Timer High and Low Byte registers is reset to 0001hand counting resumes. The  
INPCAPbit in TxCTL0 Register is set to indicate the timer interrupt is caused by an input  
capture event.  
If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the  
Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer  
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to  
0001hand counting resumes. The INPCAPbit in TxCTL0 Register is cleared to indicate  
the timer interrupt is not because of an input capture event.  
Observe the following steps for configuring a timer for Capture/Compare Mode and initi-  
ating the count:  
1. Write to the Timer Control Register to:  
Disable the timer  
Configure the timer for Capture/Compare Mode  
Set the prescale value  
Set the Capture edge (rising or falling) for the Timer Input  
2. Write to the Timer High and Low Byte registers to set the starting count value (typi-  
cally 0001h).  
3. Write to the Timer Reload High and Low Byte registers to set the Compare value.  
4. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing  
to the relevant interrupt registers.By default, the timer interrupt are generated for both  
input capture and reload events. If appropriate, configure the timer interrupt to be gen-  
erated only at the input capture event or the reload event by setting TICONFIG field  
of the TxCTL0 Register.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. Write to the Timer Control Register to enable the timer.  
7. Counting begins on the first appropriate transition of the Timer Input signal. No inter-  
rupt is generated by this first edge.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
84  
In Capture/Compare Mode, the elapsed time from timer start to Capture event can be cal-  
culated using the following equation:  
Capture Value Start Value  Prescale  
----------------------------------------------------------------------------------------------------------------------  
Capture Elapsed Time (s) =  
System Clock Frequency (Hz)  
Reading the Timer Count Values  
The current count value in the timers can be read while counting (enabled). This capability  
has no effect on timer operation. When the timer is enabled and the Timer High Byte Reg-  
ister is read, the contents of the Timer Low Byte Register are placed in a holding register.  
A subsequent read from the Timer Low Byte Register returns the value in the holding reg-  
ister. This operation allows accurate reads of the full 16-bit timer count value while  
enabled. When the timers are not enabled, a read from the Timer Low Byte Register  
returns the actual value in the counter.  
Timer Pin Signal Operation  
The timer output function is a GPIO port pin alternate function. The timer output is tog-  
gled every time the counter is reloaded.  
The timer input can be used as a selectable counting source. It shares the same pin as the  
complementary timer output (TxOUT). When selected by the GPIO Alternate Function  
registers, this pin functions as a timer input in all modes except for Dual PWM Output  
Mode. For this mode, there is no timer input available. For the 8-pin device, the T0OUT  
function is available for the various timer out functions. The T1OUT function is only  
available in Dual PWM Output Mode.  
Timer Control Register Definitions  
This section defines the features of the following Timer Control registers.  
Timer 0–1 Control Registers: see page 84  
Timer 0–1 High and Low Byte Registers: see page 88  
Timer Reload High and Low Byte Registers: see page 90  
Timer 0–1 PWM High and Low Byte Registers: see page 91  
Timer 0–1 Control Registers  
The Timer Control registers are 8-bit read/write registers that control the operation of their  
associated counter/timers.  
PS022829-0814  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
85  
Time 0–1 Control Register 0  
The Timer Control Register 0 (TxCTL0) and Timer Control Register 1 (TxCTL1), shown  
in Table 50, determine the timer operating mode. These registers each include a program-  
mable PWM deadband delay, two bits to configure timer interrupt definition and a status  
bit to identify if the most recent timer interrupt is caused by an input capture event.  
Table 50. Timer 0–1 Control Register 0 (TxCTL0)  
Bit  
7
TMODEHI  
0
6
5
4
Reserved  
0
3
2
PWMD  
0
1
0
Field  
TICONFIG  
INPCAP  
RESET  
R/W  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Address  
F06H, F0EH  
Bit  
Description  
[7]  
Timer Mode High Bit  
TMODEHI This bit, along with the TMODE field in the TxCTL1 Register, determines the operating  
mode of the timer. This bit is the most significant bit of the timer mode selection value. See  
the description of the Timer 0–1 Control Register 1 (TxCTL1) for details about the full timer  
mode decoding.  
[6:5]  
Timer Interrupt Configuration  
TICONFIG This field configures timer interrupt definition.  
0x = Timer Interrupt occurs on all defined Reload, Compare and Input Events.  
10 = Timer Interrupt only on defined Input Capture/Deassertion Events.  
11 = Timer Interrupt only on defined Reload/Compare Events.  
[4]  
Reserved  
This bit is reserved and must be programmed to 0.  
[3:1]  
PWMD  
PWM Delay Value  
This field is a programmable delay to control the number of system clock cycles delay  
before the Timer Output and the Timer Output Complement are forced to their active state.  
000 = No delay.  
001 = 2 cycles delay.  
010 = 4 cycles delay.  
011 = 8 cycles delay.  
100 = 16 cycles delay.  
101 = 32 cycles delay.  
110 = 64 cycles delay.  
111 = 128 cycles delay.  
[0]  
INPCAP  
Input Capture Event  
This bit indicates if the most recent timer interrupt is caused by a Timer Input Capture Event.  
0 = Previous timer interrupt is not a result of Timer Input Capture Event.  
1 = Previous timer interrupt is a result of Timer Input Capture Event.  
PS022829-0814  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
86  
Timer 0–1 Control Register 1  
The Timer 0–1 Control (TxCTL1) registers, shown in Table 51, enable and disable the  
timers, set the prescaler value and determine the timer operating mode.  
Table 51. Timer 0–1 Control Register 1 (TxCTL1)  
Bit  
7
6
TPOL  
0
5
4
PRES  
0
3
2
1
TMODE  
0
0
Field  
TEN  
0
RESET  
R/W  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F07H, F0FH  
Bit  
Description  
[7]  
TEN  
Timer Enable  
0 = Timer is disabled.  
1 = Timer enabled to count.  
[6]  
TPOL  
Timer Input/Output Polarity  
Operation of this bit is a function of the current operating mode of the timer.  
One-Shot Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the  
timer is enabled, the Timer Output signal is complemented upon timer Reload.  
Continuous Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the  
timer is enabled, the Timer Output signal is complemented upon timer Reload.  
Counter Mode  
If the timer is enabled the Timer Output signal is complemented after timer reload.  
0 = Count occurs on the rising edge of the Timer Input signal.  
1 = Count occurs on the falling edge of the Timer Input signal.  
PWM Single Output Mode  
0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output  
is forced High (1) upon PWM count match and forced Low (0) upon reload.  
1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Out-  
put is forced Low (0) upon PWM count match and forced High (1) upon reload.  
Capture Mode  
0 = Count is captured on the rising edge of the Timer Input signal.  
1 = Count is captured on the falling edge of the Timer Input signal.  
Compare Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the  
timer is enabled, the Timer Output signal is complemented upon timer Reload.  
PS022829-0814  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
87  
Bit  
Description (Continued)  
Gated Mode  
0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the  
falling edge of the Timer Input.  
[6]  
TPOL  
(cont’d)  
1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the  
rising edge of the Timer Input.  
Capture/Compare Mode  
0 = Counting is started on the first rising edge of the Timer Input signal. The current count is  
captured on subsequent rising edges of the Timer Input signal.  
1 = Counting is started on the first falling edge of the Timer Input signal. The current count is  
captured on subsequent falling edges of the Timer Input signal.  
PWM Dual Output Mode  
0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1) when the  
timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count  
match and forced Low (0) upon reload. When enabled, the Timer Output Complement is  
forced Low (0) upon PWM count match and forced High (1) upon reload. The PWMD field  
in TxCTL0 Register is a programmable delay to control the number of cycles time delay  
before the Timer Output and the Timer Output Complement is forced to High (1).  
1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0) when the  
timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count  
match and forced High (1) upon reload.When enabled, the Timer Output Complement is  
forced High (1) upon PWM count match and forced Low (0) upon reload. The PWMD field  
in TxCTL0 Register is a programmable delay to control the number of cycles time delay  
before the Timer Output and the Timer Output Complement is forced to Low (0).  
Capture Restart Mode  
0 = Count is captured on the rising edge of the Timer Input signal.  
1 = Count is captured on the falling edge of the Timer Input signal.  
Comparator Counter Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the  
timer is enabled, the Timer Output signal is complemented upon timer Reload. Also:  
0 = Count is captured on the rising edge of the comparator output.  
1 = Count is captured on the falling edge of the comparator output.  
Caution: When the Timer Output alternate function TxOUT on a GPIO port pin is enabled,  
TxOUT changes to whatever state the TPOL bit is in.The timer does not need to be enabled for  
that to happen. Also, the Port Data Direction Subregister is not required to be set to output on  
TxOUT. Changing the TPOL bit with the timer enabled and running does not immediately  
change the TxOUT.  
PS022829-0814  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
88  
Bit  
Description (Continued)  
[5:3]  
PRES  
Prescale value  
The timer input clock is divided by 2  
PRES  
, where PRES can be set from 0 to 7. The prescaler is  
reset each time the Timer is disabled. This reset ensures proper clock division each time the  
Timer is restarted.  
000 = Divide by 1.  
001 = Divide by 2.  
010 = Divide by 4.  
011 = Divide by 8.  
100 = Divide by 16.  
101 = Divide by 32.  
110 = Divide by 64.  
111 = Divide by 128.  
[2:0]  
Timer Mode  
TMODE This field, along with the TMODEHI bit in the TxCTL0 Register, determines the operating mode  
of the timer. TMODEHI is the most significant bit of the timer mode selection value. The entire  
operating mode bits are expressed as {TMODEHI, TMODE[2:0]}. The TMODEHI is bit 7 of the  
TxCTL0 Register while TMODE[2:0] is the lower 3 bits of the TxCTL1 Register.  
0000 = One-Shot Mode.  
0001 = Continuous Mode.  
0010 = Counter Mode.  
0011 = PWM Single Output Mode.  
0100 = Capture Mode.  
0101 = Compare Mode.  
0110 = Gated Mode.  
0111 = Capture/Compare Mode.  
1000 = PWM Dual Output Mode.  
1001 = Capture Restart Mode.  
1010 = Comparator Counter Mode.  
Timer 0–1 High and Low Byte Registers  
The Timer 0–1 High and Low Byte (TxH and TxL) registers, shown in Tables 52 and 53,  
contain the current 16-bit timer count value. When the timer is enabled, a read from TxH  
causes the value in TxL to be stored in a temporary holding register. A read from TxL  
always returns this temporary register when the timers are enabled. When the timer is dis-  
abled, reads from TxL read the register directly.  
Writing to the Timer High and Low Byte registers while the timer is enabled is not recom-  
mended. There are no temporary holding registers available for write operations, so simul-  
taneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are  
written during counting, the 8-bit written value is placed in the counter (High or Low  
Byte) at the next clock edge. The counter continues counting from the new value.  
PS022829-0814  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
89  
Table 52. Timer 0–1 High Byte Register (TxH)  
Bit  
7
6
5
4
3
2
1
0
Field  
TH  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F00H, F08H  
Table 53. Timer 0–1 Low Byte Register (TxL)  
Bit  
7
6
5
4
3
2
1
0
Field  
TL  
RESET  
R/W  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F01H, F09H  
Bit  
Description  
[7:0]  
TH, TL  
Timer High and Low Bytes  
These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value.  
PS022829-0814  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
90  
Timer Reload High and Low Byte Registers  
The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers, shown in  
Tables 54 and 55, store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the  
Timer Reload High Byte Register are stored in a temporary holding register. When a write  
to the Timer Reload Low Byte Register occurs, the temporary holding register value is  
written to the Timer High Byte Register. This operation allows simultaneous updates of  
the 16-bit Timer reload value.  
In Compare Mode, the Timer Reload High and Low Byte registers store the 16-bit Com-  
pare value.  
Table 54. Timer 0–1 Reload High Byte Register (TxRH)  
Bit  
7
6
5
4
3
2
1
0
Field  
TRH  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F02H, F0AH  
Table 55. Timer 0–1 Reload Low Byte Register (TxRL)  
Bit  
7
6
5
4
3
2
1
0
Field  
TRL  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F03H, F0BH  
Bit  
Description  
[7:0]  
TRH, TRL  
Timer Reload Register High and Low  
These two bytes form the 16-bit reload value, {TRH[7:0], TRL[7:0]}. This value sets the max-  
imum count value which initiates a timer reload to 0001h. In Compare Mode, these two  
bytes form the 16-bit Compare value.  
PS022829-0814  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
91  
Timer 0–1 PWM High and Low Byte Registers  
The Timer 0–1 PWM High and Low Byte (TxPWMH and TxPWML) registers, shown in  
Tables 56 and 57, control Pulse-Width Modulator (PWM) operations. These registers also  
store the Capture values for the Capture and Capture/Compare modes.  
Table 56. Timer 0–1 PWM High Byte Register (TxPWMH)  
Bit  
7
6
5
4
3
2
1
0
Field  
PWMH  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F04H, F0CH  
Table 57. Timer 0–1 PWM Low Byte Register (TxPWML)  
Bit  
7
6
5
4
3
2
1
0
Field  
PWML  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F05H, F0DH  
Bit  
Description  
[7:0]  
Pulse-Width Modulator High and Low Bytes  
PWMH, These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current  
PWML  
16-bit timer count. When a match occurs, the PWM output changes state. The PWM output  
value is set by the TPOLbit in the Timer Control Register (TxCTL1) Register.  
The TxPWMH and TxPWML registers also store the 16-bit captured timer value when  
operating in Capture or Capture/Compare modes.  
PS022829-0814  
P R E L I M I N A R Y  
Timer Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
93  
Watchdog Timer  
The Watchdog Timer (WDT) protects against corrupt or unreliable software, power faults  
and other system-level problems which may place the Z8 Encore! XP F082A Series  
devices into unsuitable operating states. The features of Watchdog Timer include:  
On-chip RC oscillator  
A selectable time-out response: reset or interrupt  
24-bit programmable time-out value  
Operation  
The Watchdog Timer is a one-shot timer that resets or interrupts the Z8 Encore! XP F082A  
Series devices when the WDT reaches its terminal count. The Watchdog Timer uses a ded-  
icated on-chip RC oscillator as its clock source. The Watchdog Timer operates in only two  
modes: ON and OFF. Once enabled, it always counts and must be refreshed to prevent a  
time-out. Perform an enable by executing the WDT instruction or by setting the WDT_AO  
Flash option bit. The WDT_AO bit forces the Watchdog Timer to operate immediately  
upon reset, even if a WDT instruction has not been executed.  
The Watchdog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in  
the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is  
described by the following equation:  
WDT Reload Value  
------------------------------------------  
WDT Time-out Period (ms) =  
10  
where the WDT reload value is the decimal value of the 24-bit value given by  
{WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator  
frequency is 10kHz. The Watchdog Timer cannot be refreshed after it reaches 000002H.  
The WDT reload value must not be set to values below 000004H. Table 58 provides infor-  
mation about approximate time-out delays for the minimum and maximum WDT reload  
values.  
Table 58. Watchdog Timer Approximate Time-Out Delays  
Approximate Time-Out Delay  
(with 10kHz typical WDT oscillator frequency)  
WDT Reload Value WDT Reload Value  
(Hex)  
000004  
FFFFFF  
(Decimal)  
Typical  
400 s  
Description  
4
Minimum time-out delay  
Maximum time-out delay  
16,777,215  
28 minutes  
PS022829-0814  
P R E L I M I N A R Y  
Watchdog Timer  
Z8 Encore! XP® F082A Series  
Product Specification  
94  
Watchdog Timer Refresh  
When first enabled, the Watchdog Timer is loaded with the value in the Watchdog Timer  
Reload registers. The Watchdog Timer counts down to 000000Hunless a WDT instruc-  
tion is executed by the eZ8 CPU. Execution of the WDT instruction causes the downcoun-  
ter to be reloaded with the WDT reload value stored in the Watchdog Timer Reload  
registers. Counting resumes following the reload operation.  
When the Z8 Encore! XP F082A Series devices are operating in Debug Mode (using the  
on-chip debugger), the Watchdog Timer is continuously refreshed to prevent any Watch-  
dog Timer time-outs.  
Watchdog Timer Time-Out Response  
The Watchdog Timer times out when the counter reaches 000000H. A time-out of the  
Watchdog Timer generates either an interrupt or a system reset. The WDT_RES Flash  
option bit determines the time-out response of the Watchdog Timer. For information about  
programming the WDT_RES Flash option bit, see the Flash Option Bits chapter on  
page 159.  
WDT Interrupt in Normal Operation  
If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues  
an interrupt request to the interrupt controller and sets the WDTstatus bit in the Reset Sta-  
tus (RSTSTAT) Register; see the Reset Status Register on page 29. If interrupts are  
enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer  
interrupt vector and executing code from the vector address. After time-out and interrupt  
generation, the Watchdog Timer counter rolls over to its maximum value of FFFFFHand  
continues counting. The Watchdog Timer counter is not automatically returned to its  
reload value.  
The Reset Status (RSTSTAT) Register must be read before clearing the WDT interrupt.  
This read clears the WDT time-out Flag and prevents further WDT interrupts from imme-  
diately occurring.  
WDT Interrupt in Stop Mode  
If configured to generate an interrupt when a time-out occurs and the Z8 Encore! XP  
F082A Series devices are in Stop Mode, the Watchdog Timer automatically initiates a  
Stop Mode Recovery and generates an interrupt request. Both the WDT status bit and the  
Stop bit in the Reset Status (RSTSTAT) Register are set to 1 following a WDT time-out in  
Stop Mode. For more information about Stop Mode Recovery, see the Reset, Stop Mode  
Recovery and Low Voltage Detection chapter on page 22.  
If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU  
responds to the interrupt request by fetching the Watchdog Timer interrupt vector and exe-  
cuting code from the vector address.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
95  
WDT Reset in Normal Operation  
If configured to generate a Reset when a time-out occurs, the Watchdog Timer forces the  
device into the System Reset state. The WDT status bit in the Reset Status (RSTSTAT)  
Register is set to 1. For more information about system reset, see the Reset, Stop Mode  
Recovery and Low Voltage Detection chapter on page 22.  
WDT Reset in Stop Mode  
If configured to generate a Reset when a time-out occurs and the device is in Stop Mode,  
the Watchdog Timer initiates a Stop Mode Recovery. Both the WDT status bit and the  
Stop bit in the Reset Status (RSTSTAT) Register are set to 1 following WDT time-out in  
Stop Mode.  
Watchdog Timer Reload Unlock Sequence  
Writing the unlock sequence to the Watchdog Timer (WDTCTL) Control Register address  
unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH and WDTL) to  
allow changes to the time-out period. These write operations to the WDTCTL Register  
address produce no effect on the bits in the WDTCTL Register. The locking mechanism  
prevents spurious writes to the Reload registers. Observe the following steps to unlock the  
Watchdog Timer Reload Byte registers (WDTU, WDTH and WDTL) for write access.  
1. Write 55Hto the Watchdog Timer Control Register (WDTCTL).  
2. Write AAHto the Watchdog Timer Control Register (WDTCTL).  
3. Write the Watchdog Timer Reload Upper Byte Register (WDTU) with the appropriate  
time-out value.  
4. Write the Watchdog Timer Reload High Byte Register (WDTH) with the appropriate  
time-out value.  
5. Write the Watchdog Timer Reload Low Byte Register (WDTL) with the appropriate  
time-out value.  
All three Watchdog Timer Reload registers must be written in the order just listed. There  
must be no other register writes between each of these operations. If a register write  
occurs, the lock state machine resets and no further writes can occur unless the sequence is  
restarted. The value in the Watchdog Timer Reload registers is loaded into the counter  
when the Watchdog Timer is first enabled and every time a WDT instruction is executed.  
Watchdog Timer Calibration  
Due to its extremely low operating current, the Watchdog Timer oscillator is somewhat  
inaccurate. This variation can be corrected using the calibration data stored in the Flash  
Information Page; see Tables 100 and 101 on page 173 for details. Loading these values  
PS022829-0814  
P R E L I M I N A R Y  
Watchdog Timer Calibration  
Z8 Encore! XP® F082A Series  
Product Specification  
96  
into the Watchdog Timer Reload registers results in a one-second time-out at room tem-  
perature and 3.3V supply voltage. Time-outs other than one second may be obtained by  
scaling the calibration values up or down as required.  
The Watchdog Timer accuracy still degrades as temperature and supply voltage vary. See  
Table 137 on page 235 for details.  
Note:  
Watchdog Timer Control Register Definitions  
This section defines the features of the following Watchdog Timer Control registers.  
Watchdog Timer Control Register (WDTCTL): see page 96  
Watchdog Timer Reload Upper Byte Register (WDTU): see page 97  
Watchdog Timer Reload High Byte Register (WDTH): see page 97  
Watchdog Timer Reload Low Byte Register (WDTL): see page 98  
Watchdog Timer Control Register  
The Watchdog Timer Control (WDTCTL) Register is a write-only control register. Writ-  
ing the 55H, AAHunlock sequence to the WDTCTL Register address unlocks the three  
Watchdog Timer Reload Byte registers (WDTU, WDTH and WDTL) to allow changes to  
the time-out period. These write operations to the WDTCTL Register address produce no  
effect on the bits in the WDTCTL Register. The locking mechanism prevents spurious  
writes to the reload registers. This register address is shared with the read-only Reset Sta-  
tus Register.  
Table 59. Watchdog Timer Control Register (WDTCTL)  
Bit  
7
6
5
4
3
2
1
0
Field  
WDTUNLK  
RESET  
R/W  
X
X
X
X
X
X
X
X
W
W
W
W
W
W
W
W
Address  
FF0H  
Note: X = Undefined.  
Bit  
Description  
Watchdog Timer Unlock  
[7:0]  
WDTUNLK The software must write the correct unlocking sequence to this register before it is allowed  
to modify the contents of the Watchdog Timer reload registers.  
PS022829-0814  
P R E L I M I N A R Y  
Watchdog Timer Control Register  
Z8 Encore! XP® F082A Series  
Product Specification  
97  
Watchdog Timer Reload Upper, High and Low Byte Registers  
The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) regis-  
ters, shown in Tables 60 through 62, form the 24-bit reload value that is loaded into the  
Watchdog Timer when a WDT instruction executes. The 24-bit reload value ranges across  
bits [23:0] to encompass the three bytes {WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writ-  
ing to these registers sets the appropriate reload value. Reading from these registers  
returns the current Watchdog Timer count value.  
The 24-bit WDT reload value must not be set to a value less than 000004H.  
Caution:  
Table 60. Watchdog Timer Reload Upper Byte Register (WDTU)  
Bit  
7
6
5
4
3
2
1
0
Field  
WDTU  
00H  
RESET  
R/W  
R/W*  
FF1H  
Address  
Note: A read returns the current WDT count value; a write sets the appropriate reload value.  
Bit  
Description  
[7:0]  
WDTU  
WDT Reload Upper Byte  
Most-significant byte (MSB); bits[23:16] of the 24-bit WDT reload value.  
Table 61. Watchdog Timer Reload High Byte Register (WDTH)  
Bit  
7
6
5
4
3
2
1
0
Field  
WDTH  
04H  
RESET  
R/W  
R/W*  
FF2H  
Address  
Note: A read returns the current WDT count value; a write sets the appropriate reload value.  
Bit  
Description  
[7:0]  
WDTH  
WDT Reload High Byte  
Middle byte; bits[15:8] of the 24-bit WDT reload value.  
PS022829-0814  
P R E L I M I N A R Y  
Watchdog Timer Control Register  
Z8 Encore! XP® F082A Series  
Product Specification  
98  
Table 62. Watchdog Timer Reload Low Byte Register (WDTL)  
Bit  
7
6
5
4
3
2
1
0
Field  
WDTL  
00H  
RESET  
R/W  
R/W*  
FF3H  
Address  
Note: A read returns the current WDT count value; a write sets the appropriate reload value.  
Bit  
Description  
[7:0]  
WDTL  
WDT Reload Low  
Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.  
PS022829-0814  
P R E L I M I N A R Y  
Watchdog Timer Control Register  
Z8 Encore! XP® F082A Series  
Product Specification  
99  
Universal Asynchronous Receiver/  
Transmitter  
The universal asynchronous receiver/transmitter (UART) is a full-duplex communication  
channel capable of handling asynchronous data transfers. The UART uses a single 8-bit  
data mode with selectable parity. Features of the UART include:  
8-bit asynchronous data transfer  
Selectable even- and odd-parity generation and checking  
Option of one or two Stop bits  
Separate transmit and receive interrupts  
Framing, parity, overrun and break detection  
Separate transmit and receive enables  
16-bit baud rate generator (BRG)  
Selectable MULTIPROCESSOR (9-bit) Mode with three configurable interrupt  
schemes  
Baud rate generator (BRG) can be configured and used as a basic 16-bit timer  
Driver enable (DE) output for external bus transceivers  
Architecture  
The UART consists of three primary functional blocks: transmitter, receiver and baud rate  
generator. The UART’s transmitter and receiver function independently, but employ the  
same baud rate and data format. Figure 10 displays the UART architecture.  
PS022829-0814  
P R E L I M I N A R Y  
Universal Asynchronous Receiver/  
Z8 Encore! XP® F082A Series  
Product Specification  
100  
Parity Checker  
Receive Shifter  
Receiver Control  
with Address Compare  
RXD  
Receive Data  
Register  
Control Registers  
System Bus  
Transmit Data  
Register  
Status Register  
Baud Rate  
Generator  
Transmit Shift  
Register  
TXD  
Transmitter Control  
Parity Generator  
CTS  
DE  
Figure 10. UART Block Diagram  
Operation  
The UART always transmits and receives data in an 8-bit data format, least-significant bit  
first. An even or odd parity bit can be added to the data stream. Each character begins with  
an active Low start bit and ends with either 1 or 2 active High stop bits. Figures 11 and 12  
display the asynchronous data format employed by the UART without parity and with par-  
ity, respectively.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
101  
Data Field  
Stop Bit(s)  
msb  
Idle State  
of Line  
lsb  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
1
2
Figure 11. UART Asynchronous Data Format without Parity  
Data Field  
Stop Bit(s)  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Parity  
1
2
Figure 12. UART Asynchronous Data Format with Parity  
Transmitting Data using the Polled Method  
Observe the following steps to transmit data using the polled method of operation:  
1. Write to the UART Baud Rate High and Low Byte registers to set the required baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Write to the UART Control 1 Register, if MULTIPROCESSOR Mode is appropriate,  
to enable MULTIPROCESSOR (9-bit) Mode functions.  
4. Set the Multiprocessor Mode Select (MPEN) bit to enable MULTIPROCESSOR  
Mode.  
5. Write to the UART Control 0 Register to:  
Set the transmit enable bit (TEN) to enable the UART for data transmission  
Set the parity enable bit (PEN), if parity is appropriate and MULTIPROCESSOR  
Mode is not enabled and select either even or odd parity (PSEL)  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
102  
Set or clear the CTSE bit to enable or disable control from the remote receiver  
using the CTS pin  
6. Check the TDREbit in the UART Status 0 Register to determine if the Transmit Data  
Register is empty (indicated by a 1). If empty, continue to Step 7. If the Transmit Data  
Register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit  
Data Register becomes available to receive new data.  
7. Write the UART Control 1 Register to select the outgoing address bit.  
8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if  
sending a data byte.  
9. Write the data byte to the UART Transmit Data Register. The transmitter automati-  
cally transfers the data to the Transmit Shift Register and transmits the data.  
10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate  
and MULTIPROCESSOR Mode is enabled.  
11. To transmit additional bytes, return to Step 5.  
Transmitting Data using the Interrupt-Driven Method  
The UART Transmitter interrupt indicates the availability of the Transmit Data Register to  
accept new data for transmission. Observe the following steps to configure the UART for  
interrupt-driven data transmission:  
1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Execute a DI instruction to disable interrupts.  
4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and  
set the acceptable priority.  
5. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) Mode  
functions, if MULTIPROCESSOR Mode is appropriate.  
6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR  
Mode.  
7. Write to the UART Control 0 Register to:  
Set the transmit enable bit (TEN) to enable the UART for data transmission  
Enable parity, if appropriate and if MULTIPROCESSOR Mode is not enabled and  
select either even or odd parity  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
103  
Set or clear CTSEto enable or disable control from the remote receiver using the  
CTS pin  
8. Execute an EI instruction to enable interrupts.  
The UART is now configured for interrupt-driven data transmission. Because the UART  
Transmit Data Register is empty, an interrupt is generated immediately. When the UART  
Transmit interrupt is detected, the associated interrupt service routine (ISR) performs the  
following:  
1. Write the UART Control 1 Register to select the multiprocessor bit for the byte to be  
transmitted:  
2. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if  
sending a data byte.  
3. Write the data byte to the UART Transmit Data Register. The transmitter automati-  
cally transfers the data to the Transmit Shift Register and transmits the data.  
4. Clear the UART Transmit interrupt bit in the applicable Interrupt Request Register.  
5. Execute the IRET instruction to return from the interrupt-service routine and wait for  
the Transmit Data Register to again become empty.  
Receiving Data using the Polled Method  
Observe the following steps to configure the UART for polled data reception:  
1. Write to the UART Baud Rate High and Low Byte registers to set an acceptable baud  
rate for the incoming data stream.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Write to the UART Control 1 Register to enable MULTIPROCESSOR Mode func-  
tions, if appropriate.  
4. Write to the UART Control 0 Register to:  
Set the receive enable bit (REN) to enable the UART for data reception  
Enable parity, if appropriate and if Multiprocessor mode is not enabled and select  
either even or odd parity.  
5. Check the RDA bit in the UART Status 0 Register to determine if the Receive Data  
Register contains a valid data byte (indicated by a 1). If RDAis set to 1 to indicate  
available data, continue to Step 5. If the Receive Data Register is empty (indicated by  
a 0), continue to monitor the RDA bit awaiting reception of the valid data.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
104  
6. Read data from the UART Receive Data Register. If operating in MULTIPROCES-  
SOR (9-bit) Mode, further actions may be required depending on the MULTIPRO-  
CESSOR Mode bits MPMD[1:0].  
7. Return to Step 4 to receive additional data.  
Receiving Data using the Interrupt-Driven Method  
The UART Receiver interrupt indicates the availability of new data (and error conditions).  
Observe the following steps to configure the UART receiver for interrupt-driven opera-  
tion:  
1. Write to the UART Baud Rate High and Low Byte registers to set the acceptable baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Execute a DI instruction to disable interrupts.  
4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set  
the acceptable priority.  
5. Clear the UART Receiver interrupt in the applicable Interrupt Request Register.  
6. Write to the UART Control 1 Register to enable Multiprocessor (9-bit) mode func-  
tions, if appropriate.  
Set the Multiprocessor Mode Select (MPEN) to Enable MULTIPROCESSOR  
Mode.  
Set the Multiprocessor Mode Bits, MPMD[1:0],to select the acceptable address  
matching scheme.  
Configure the UART to interrupt on received data and errors or errors only (inter-  
rupt on errors only is unlikely to be useful for Z8 Encore! devices without a DMA  
block)  
7. Write the device address to the Address Compare Register (automatic MULTIPRO-  
CESSOR Modes only).  
8. Write to the UART Control 0 Register to:  
Set the receive enable bit (REN) to enable the UART for data reception  
Enable parity, if appropriate and if multiprocessor mode is not enabled and select  
either even or odd parity  
9. Execute an EI instruction to enable interrupts.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
105  
The UART is now configured for interrupt-driven data reception. When the UART  
Receiver interrupt is detected, the associated interrupt service routine (ISR) performs the  
following:  
1. Checks the UART Status 0 Register to determine the source of the interrupt - error,  
break, or received data.  
2. Reads the data from the UART Receive Data Register if the interrupt was because of  
data available. If operating in MULTIPROCESSOR (9-bit) Mode, further actions may  
be required depending on the MULTIPROCESSOR Mode bits MPMD[1:0].  
3. Clears the UART Receiver interrupt in the applicable Interrupt Request Register.  
4. Executes the IRET instruction to return from the interrupt-service routine and await  
more data.  
Clear To Send (CTS) Operation  
The CTS pin, if enabled by the CTSE bit of the UART Control 0 Register, performs flow  
control on the outgoing transmit datastream. The Clear To Send (CTS) input pin is sam-  
pled one system clock before beginning any new character transmission. To delay trans-  
mission of the next data character, an external receiver must deassert CTS at least one  
system clock cycle before a new data transmission begins. For multiple character trans-  
missions, this action is typically performed during Stop Bit transmission. If CTS deasserts  
in the middle of a character transmission, the current character is sent completely.  
MULTIPROCESSOR (9-bit) Mode  
The UART features a MULTIPROCESSOR (9-bit) Mode that uses an extra (9th) bit for  
selective communication when a number of processors share a common UART bus. In  
MULTIPROCESSOR Mode (also referred to as 9-bit Mode), the multiprocessor bit (MP) is  
transmitted immediately following the 8-bits of data and immediately preceding the Stop  
bit(s) as displayed in Figure 13. The character format is:  
Data Field  
Stop Bit(s)  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
MP  
1
2
Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
106  
In MULTIPROCESSOR (9-bit) Mode, the Parity (9th) bit location becomes the multipro-  
cessor control bit. The UART Control 1 and Status 1 registers provide MULTIPROCES-  
SOR (9-bit) Mode control and status information. If an automatic address matching  
scheme is enabled, the UART Address Compare Register holds the network address of the  
device.  
MULTIPROCESSOR (9-bit) Mode Receive Interrupts  
When MULTIPROCESSOR Mode is enabled, the UART only processes frames addressed  
to it. The determination of whether a frame of data is addressed to the UART can be made  
in hardware, software or some combination of the two, depending on the multiprocessor  
configuration bits. In general, the address compare feature reduces the load on the CPU,  
because it does not require access to the UART when it receives data directed to other  
devices on the multi-node network. The following three MULTIPROCESSOR Modes are  
available in hardware:  
Interrupt on all address bytes  
Interrupt on matched address bytes and correctly framed data bytes  
Interrupt only on correctly framed data bytes  
These modes are selected with MPMD[1:0]in the UART Control 1 Register. For all mul-  
tiprocessor modes, bit MPENof the UART Control 1 Register must be set to 1.  
The first scheme is enabled by writing 01bto MPMD[1:0]. In this mode, all incoming  
address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt  
service routine must manually check the address byte that caused triggered the interrupt. If  
it matches the UART address, the software clears MPMD[0]. Each new incoming byte  
interrupts the CPU. The software is responsible for determining the end of the frame. It  
checks for the end-of-frame by reading the MPRXbit of the UART Status 1 Register for  
each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame  
is different from the UART’s address, MPMD[0] must be set to 1 causing the UART inter-  
rupts to go inactive until the next address byte. If the new frame’s address matches the  
UART’s, the data in the new frame is processed as well.  
The second scheme requires the following: set MPMD[1:0] to 10B and write the UART’s  
address into the UART Address Compare Register. This mode introduces additional hard-  
ware control, interrupting only on frames that match the UART’s address. When an  
incoming address byte does not match the UART’s address, it is ignored. All successive  
data bytes in this frame are also ignored. When a matching address byte occurs, an inter-  
rupt is issued and further interrupts now occur on each successive data byte. When the first  
data byte in the frame is read, the NEWFRMbit of the UART Status 1 Register is asserted.  
All successive data bytes have NEWFRM=0. When the next address byte occurs, the hard-  
ware compares it to the UART’s address. If there is a match, the interrupts continues and  
the NEWFRMbit is set for the first byte of the new frame. If there is no match, the UART  
ignores all incoming bytes until the next address match.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
107  
The third scheme is enabled by setting MPMD[1:0] to 11band by writing the UART’s  
address into the UART Address Compare Register. This mode is identical to the second  
scheme, except that there are no interrupts on address bytes. The first data byte of each  
frame remains accompanied by a NEWFRMassertion.  
External Driver Enable  
The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This fea-  
ture reduces the software overhead associated with using a GPIO pin to control the trans-  
ceiver when communicating on a multi-transceiver bus, such as RS-485.  
Driver Enable is an active High signal that envelopes the entire transmitted data frame  
including parity and Stop bits as displayed in Figure 14. The Driver Enable signal asserts  
when a byte is written to the UART Transmit Data Register. The Driver Enable signal  
asserts at least one UART bit period and no greater than two UART bit periods before the  
Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver  
Enable signal deasserts one system clock period after the final Stop bit is transmitted. This  
one system clock delay allows both time for data to clear the transceiver before disabling  
it, plus the ability to determine if another character follows the current character. In the  
event of back to back characters (new data must be written to the Transmit Data Register  
before the previous character is completely transmitted) the DE signal is not deasserted  
between characters. The DEPOL bit in the UART Control Register 1 sets the polarity of  
the Driver Enable signal.  
1
DE  
0
Data Field  
Stop Bit  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Parity  
1
Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)  
The Driver Enable-to-Start bit setup time is calculated as follows:  
1
2
----------------------------------------  
----------------------------------------  
DE to Start Bit Setup Time (s)   
Baud Rate (Hz)  
Baud Rate (Hz)  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
108  
UART Interrupts  
The UART features separate interrupts for the transmitter and the receiver. In addition,  
when the UART primary functionality is disabled, the Baud Rate Generator can also func-  
tion as a basic timer with interrupt capability.  
Transmitter Interrupts  
The transmitter generates a single interrupt when the Transmit Data Register Empty bit  
(TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for trans-  
mission. The TDRE interrupt occurs after the Transmit Shift Register has shifted the first  
bit of data out. The Transmit Data Register can now be written with the next character to  
send. This action provides 7 bit periods of latency to load the Transmit Data Register  
before the Transmit Shift Register completes shifting the current character. Writing to the  
UART Transmit Data Register clears the TDRE bit to 0.  
Receiver Interrupts  
The receiver generates an interrupt when any of the following actions occur:  
A data byte is received and is available in the UART Receive Data Register. This inter-  
rupt can be disabled independently of the other receiver interrupt sources. The received  
data interrupt occurs after the receive character has been received and placed in the Re-  
ceive Data Register. To avoid an overrun error, software must respond to this received  
data available condition before the next character is completely received.  
Note: In MULTIPROCESSOR Mode (MPEN=1), the receive data interrupts are dependent on the  
multiprocessor configuration and the most recent address byte.  
A break is received.  
An overrun is detected.  
A data framing error is detected.  
UART Overrun Errors  
When an overrun error condition occurs the UART prevents overwriting of the valid data  
currently in the Receive Data Register. The Break Detect and Overrun status bits are not  
displayed until after the valid data has been read.  
After the valid data has been read, the UART Status 0 Register is updated to indicate the  
overrun condition (and Break Detect, if applicable). The RDAbit is set to 1 to indicate that  
the Receive Data Register contains a data byte. However, because the overrun error  
occurred, this byte may not contain valid data and must be ignored. The BRKD bit indi-  
cates if the overrun was caused by a break condition on the line. After reading the status  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
109  
byte indicating an overrun error, the Receive Data Register must be read again to clear the  
error bits is the UART Status 0 Register. Updates to the Receive Data Register occur only  
when the next data word is received.  
UART Data and Error Handling Procedure  
Figure 15 displays the recommended procedure for use in UART receiver interrupt service  
routines.  
Receiver  
Ready  
Receiver  
Interrupt  
Read Status  
No  
Errors?  
Yes  
Read Data which  
clears RDA bit and  
resets error bits  
Read Data  
Discard Data  
Figure 15. UART Receiver Interrupt Service Routine Flow  
Baud Rate Generator Interrupts  
If the baud rate generator (BRG) interrupt enable is set, the UART Receiver interrupt  
asserts when the UART Baud Rate Generator reloads. This condition allows the Baud  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
110  
Rate Generator to function as an additional counter if the UART functionality is not  
employed.  
UART Baud Rate Generator  
The UART Baud Rate Generator creates a lower frequency baud rate clock for data trans-  
mission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate  
High and Low Byte registers combine to create a 16-bit baud rate divisor value  
(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data  
rate is calculated using the following equation:  
System Clock Frequency (Hz)  
--------------------------------------------------------------------------------  
UART Data Rate (bits/s) =  
16 UART Baud Rate Divisor Value  
When the UART is disabled, the Baud Rate Generator functions as a basic 16-bit timer  
with an interrupt upon time-out. Observe the following steps to configure the Baud Rate  
Generator as a timer with an interrupt upon time-out:  
1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 Register  
to 0.  
2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte  
registers.  
3. Enable the Baud Rate Generator timer function and associated interrupt by setting the  
BRGCTLbit in the UART Control 1 Register to 1.  
When configured as a general purpose timer, the interrupt interval is calculated using the  
following equation:  
Interrupt Intervals= System Clock Period (s) BRG15:0  
UART Control Register Definitions  
The UART Control registers support the UART and the associated Infrared Encoder/  
Decoders. For more information about infrared operation, see the Infrared Encoder/  
Decoder chapter on page 120.  
UART Control 0 and Control 1 Registers  
The UART Control 0 (UxCTL0) and Control 1 (UxCTL1) registers, shown in Tables 63  
and 64, configure the properties of the UART’s transmit and receive operations. The  
UART Control registers must not be written while the UART is enabled.  
PS022829-0814  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
111  
Table 63. UART Control 0 Register (U0CTL0)  
Bit  
7
6
5
CTSE  
0
4
3
PSEL  
0
2
SBRK  
0
1
STOP  
0
0
LBEN  
0
Field  
TEN  
0
REN  
0
PEN  
0
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F42H  
Bit  
Description  
[7]  
TEN  
Transmit Enable  
This bit enables or disables the transmitter. The enable is also controlled by the CTS signal  
and the CTSE bit. If the CTS signal is Low and the CTSE bit is 1, the transmitter is enabled.   
0 = Transmitter disabled.  
1 = Transmitter enabled.  
[6]  
REN  
Receive Enable  
This bit enables or disables the receiver.  
0 = Receiver disabled.  
1 = Receiver enabled.  
[5]  
CTSE  
CTS Enable  
0 = The CTS signal has no effect on the transmitter.  
1 = The UART recognizes the CTS signal as an enable control from the transmitter.  
[4]  
PEN  
Parity Enable  
This bit enables or disables parity. Even or odd is determined by the PSEL bit.  
0 = Parity is disabled.  
1 = The transmitter sends data with an additional parity bit and the receiver receives an addi-  
tional parity bit.  
[3]  
PSEL  
Parity Select  
0 = Even parity is transmitted and expected on all received data.   
1 = Odd parity is transmitted and expected on all received data.  
[2]  
SBRK  
Send Break  
This bit pauses or breaks data transmission. Sending a break interrupts any transmission in  
progress, so ensure that the transmitter has finished sending data before setting this bit.   
0 = No break is sent.  
1 = Forces a break condition by setting the output of the transmitter to zero.  
[1]  
STOP  
Stop Bit Select  
0 = The transmitter sends one stop bit.  
1 = The transmitter sends two stop bits.  
[0]  
LBEN  
Loop Back Enable  
0 = Normal operation.  
1 = All transmitted data is looped back to the receiver.  
PS022829-0814  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
112  
Table 64. UART Control 1 Register (U0CTL1)  
Bit  
7
MPMD[1]  
0
6
MPEN  
0
5
MPMD[0]  
0
4
MPBT  
0
3
DEPOL  
0
2
1
0
IREN  
0
Field  
BRGCTL RDAIRQ  
RESET  
R/W  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F43H  
Bit  
Description  
MULTIPROCESSOR Mode  
[7,5]  
MPMD[1,0] If MULTIPROCESSOR (9-bit) Mode is enabled:  
00 = The UART generates an interrupt request on all received bytes (data and address).  
01 = The UART generates an interrupt request only on received address bytes.  
10 = The UART generates an interrupt request when a received address byte matches the  
value stored in the Address Compare Register and on all successive data bytes until  
an address mismatch occurs.  
11 = The UART generates an interrupt request on all received data bytes for which the most  
recent address byte matched the value in the Address Compare Register.  
[6]  
MPEN  
MULTIPROCESSOR (9-bit) Enable  
This bit is used to enable MULTIPROCESSOR (9-bit) Mode.   
0 = Disable MULTIPROCESSOR (9-bit) Mode.  
1 = Enable MULTIPROCESSOR (9-bit) Mode.  
[4]  
MPBT  
Multiprocessor Bit Transmit  
This bit is applicable only when MULTIPROCESSOR (9-bit) Mode is enabled. The 9th bit is  
used by the receiving device to determine if the data byte contains address or data informa-  
tion.  
0 = Send a 0 in the multiprocessor bit location of the data stream (data byte).  
1 = Send a 1 in the multiprocessor bit location of the data stream (address byte).  
[3]  
DEPOL  
Driver Enable Polarity  
0 = DE signal is Active High.  
1 = DE signal is Active Low.  
PS022829-0814  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
113  
Bit  
Description (Continued)  
Baud Rate Control  
[2]  
BRGCTL  
This bit causes an alternate UART behavior depending on the value of the REN bit in the  
UART Control 0 Register. When the UART receiver is not enabled (REN=0), this bit deter-  
mines whether the Baud Rate Generator issues interrupts.  
0 = Reads from the Baud Rate High and Low Byte registers return the BRG reload value.  
1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0.  
Reads from the Baud Rate High and Low Byte registers return the current BRG count  
value.  
When the UART receiver is enabled (REN=1), this bit allows reads from the Baud Rate reg-  
isters to return the BRG count value instead of the reload value.  
0 = Reads from the Baud Rate High and Low Byte registers return the BRG reload value.  
1 = Reads from the Baud Rate High and Low Byte registers return the current BRG count  
value. Unlike the Timers, there is no mechanism to latch the Low Byte when the High  
Byte is read.  
[1]  
RDAIRQ  
Receive Data Interrupt Enable  
0 = Received data and receiver errors generates an interrupt request to the Interrupt Con-  
troller.  
1 = Received data does not generate an interrupt request to the Interrupt Controller. Only  
receiver errors generate an interrupt request.  
[0]  
IREN  
Infrared Encoder/Decoder Enable  
0 = Infrared Encoder/Decoder is disabled. UART operates normally.  
1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data through  
the Infrared Encoder/Decoder.  
PS022829-0814  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
114  
UART Status 0 Register  
The UART Status 0 (UxSTAT0) and Status 1(UxSTAT1) registers, shown in Tables 65 and  
66, identify the current UART operating configuration and status.  
Table 65. UART Status 0 Register (U0STAT0)  
Bit  
7
RDA  
0
6
PE  
0
5
OE  
0
4
FE  
0
3
BRKD  
0
2
TDRE  
1
1
TXE  
1
0
CTS  
X
Field  
RESET  
R/W  
R
R
R
R
R
R
R
R
Address  
F41H  
Bit  
Description  
[7]  
RDA  
Receive Data Available  
This bit indicates that the UART Receive Data Register has received data. Reading the UART  
Receive Data Register clears this bit.  
0 = The UART Receive Data Register is empty.  
1 = There is a byte in the UART Receive Data Register.  
[6]  
PE  
Parity Error  
This bit indicates that a parity error has occurred. Reading the UART Receive Data Register  
clears this bit.  
0 = No parity error has occurred.  
1 = A parity error has occurred.  
[5]  
OE  
Overrun Error  
This bit indicates that an overrun error has occurred. An overrun occurs when new data is  
received and the UART Receive Data Register has not been read. If the RDA bit is reset to 0,  
reading the UART Receive Data Register clears this bit.  
0 = No overrun error occurred.  
1 = An overrun error occurred.  
[4]  
FE  
Framing Error  
This bit indicates that a framing error (no Stop bit following data reception) was detected.  
Reading the UART Receive Data Register clears this bit.  
0 = No framing error occurred.  
1 = A framing error occurred.  
[3]  
BRKD  
Break Detect  
This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit and Stop bit(s)  
are all 0s this bit is set to 1. Reading the UART Receive Data Register clears this bit.  
0 = No break occurred.  
1 = A break occurred.  
PS022829-0814  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
115  
Bit  
Description (Continued)  
[2]  
TDRE  
TDRE—Transmitter Data Register Empty  
This bit indicates that the UART Transmit Data Register is empty and ready for additional data.  
Writing to the UART Transmit Data Register resets this bit.  
0 = Do not write to the UART Transmit Data Register.  
1 = The UART Transmit Data Register is ready to receive an additional byte to be transmitted.  
[1]  
TXE  
Transmitter Empty  
This bit indicates that the Transmit Shift Register is empty and character transmission is finished.  
0 = Data is currently transmitting.  
1 = Transmission is complete.  
[0]  
CTS  
CTS Signal  
When this bit is read it returns the level of the CTS signal. This signal is active Low.  
UART Status 1 Register  
This register contains multiprocessor control and status bits.  
Table 66. UART Status 1 Register (U0STAT1)  
Bit  
7
6
5
4
3
2
1
0
MPRX  
0
Field  
Reserved  
NEWFRM  
RESET  
R/W  
0
0
0
0
0
0
0
R
R
R
R
R/W  
R/W  
R
R
Address  
F44H  
Bit  
Description  
Reserved  
[7:2]  
These bits are reserved and must be programmed to 000000.  
[1]  
NEWFRM  
New Frame  
A status bit denoting the start of a new frame. Reading the UART Receive Data Register  
resets this bit to 0.  
0 = The current byte is not the first data byte of a new frame.  
1 = The current byte is the first data byte of a new frame.  
[0]  
MPRX  
Multiprocessor Receive  
Returns the value of the most recent multiprocessor bit received. Reading from the UART  
Receive Data Register resets this bit to 0.  
UART Transmit Data Register  
Data bytes written to the UART Transmit Data (UxTXD) Register, shown in Table 67, are  
shifted out on the TXDx pin. The Write-only UART Transmit Data Register shares a Reg-  
ister File address with the read-only UART Receive Data Register.  
PS022829-0814  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
116  
Table 67. UART Transmit Data Register (U0TXD)  
Bit  
7
6
5
4
3
2
1
0
Field  
TXD  
RESET  
R/W  
X
X
X
X
X
X
X
X
W
W
W
W
W
W
W
W
Address  
F40H  
Note: X = Undefined.  
Bit  
Description  
Transmit Data  
[7:0]  
TXD  
UART transmitter data byte to be shifted out through the TXDx pin.  
UART Receive Data Register  
Data bytes received through the RXDx pin are stored in the UART Receive Data  
(UxRXD) Register, shown in Table 68. The read-only UART Receive Data Register  
shares a Register File address with the Write-only UART Transmit Data Register.  
Table 68. UART Receive Data Register (U0RXD)  
Bit  
7
6
5
4
3
2
1
0
Field  
RXD  
RESET  
R/W  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
Address  
F40H  
Note: X = Undefined.  
Bit  
Description  
Receive Data  
UART receiver data byte from the RXDx pin.  
[7:0]  
RXD  
UART Address Compare Register  
The UART Address Compare (UxADDR) Register stores the multi-node network address  
of the UART (see Table 69). When the MPMD[1] bit of UART Control Register 0 is set,  
all incoming address bytes are compared to the value stored in the Address Compare Reg-  
ister. Receive interrupts and RDA assertions only occur in the event of a match.  
PS022829-0814  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
117  
Table 69. UART Address Compare Register (U0ADDR)  
Bit  
7
6
5
4
3
2
1
0
Field  
COMP_ADDR  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F45H  
Bit  
Description  
Compare Address  
[7:0]  
COMP_ADDR This 8-bit value is compared to incoming address bytes.  
UART Baud Rate High and Low Byte Registers  
The UART Baud Rate High (UxBRH) and Low Byte (UxBRL) registers, shown in  
Tables 70 and 71, combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets  
the data transmission rate (baud rate) of the UART.  
Table 70. UART Baud Rate High Byte Register (U0BRH)  
Bit  
7
6
5
4
3
2
1
0
Field  
BRH  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F46H  
Bit  
Description  
[7:0]  
UART Baud Rate High Byte  
BRH  
Table 71. UART Baud Rate Low Byte Register (U0BRL)  
Bit  
7
6
5
4
3
2
1
0
Field  
BRL  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F47H  
Bit  
Description  
[7:0]  
UART Baud Rate Low Byte  
BRL  
PS022829-0814  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
118  
The UART data rate is calculated using the following equation:  
System Clock Frequency (Hz)  
16 UART Baud Rate Divisor Value  
-----------------------------------------------------------------------------------------------  
UART Baud Rate (bits/s) =  
For a given UART data rate, calculate the integer baud rate divisor value using the follow-  
ing equation:  
System Clock Frequency (Hz)  
16 UART Data Rate (bits/s)  
-------------------------------------------------------------------------------  
UART Baud Rate Divisor Value (BRG) = Round  
The baud rate error relative to the acceptable baud rate is calculated using the following  
equation:  
Actual Data Rate Desired Data Rate  
----------------------------------------------------------------------------------------------------  
UART Baud Rate Error (%) = 100   
Desired Data Rate  
For reliable communication, the UART baud rate error must never exceed 5 percent.  
Table 72 provides information about the data rate errors for popular baud rates and com-  
monly used crystal oscillator frequencies.  
Table 72. UART Baud Rates  
10.0MHz System Clock  
5.5296MHz System Clock  
Acceptable BRGDivisor Actual Rate Error  
Acceptable BRGDivisor Actual Rate Error  
Rate (kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
N/A  
1
(kHz)  
(%)  
Rate (kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(kHz)  
(%)  
N/A  
N/A  
N/A  
N/A  
1
N/A  
N/A  
625.0  
208.33  
125.0  
56.8  
0.00  
N/A  
N/A  
3
–16.67  
8.51  
345.6  
115.2  
57.6  
38.4  
19.2  
9.60  
4.80  
2.40  
1.20  
0.60  
0.30  
38.24  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
5
3
11  
–1.36  
1.73  
6
38.4  
16  
39.1  
38.4  
9
19.2  
33  
18.9  
0.16  
19.2  
18  
9.60  
65  
9.62  
0.16  
9.60  
36  
4.80  
130  
260  
521  
1042  
2083  
4.81  
0.16  
4.80  
72  
2.40  
2.40  
–0.03  
–0.03  
–0.03  
0.2  
2.40  
144  
288  
576  
1152  
1.20  
1.20  
1.20  
0.60  
0.60  
0.60  
0.30  
0.30  
0.30  
3.579545MHz System Clock  
1.8432MHz System Clock  
PS022829-0814  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
119  
Table 72. UART Baud Rates (Continued)  
Acceptable BRGDivisor Actual Rate Error Acceptable BRGDivisor Actual Rate Error  
Rate (kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(kHz)  
(%)  
Rate (kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(kHz)  
(%)  
N/A  
N/A  
1
N/A  
N/A  
N/A  
N/A  
N/A  
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
223.72  
111.9  
55.9  
37.3  
18.6  
9.73  
4.76  
2.41  
1.20  
0.60  
0.30  
–10.51  
–2.90  
–2.90  
–2.90  
–2.90  
1.32  
N/A  
N/A  
2
115.2  
57.6  
38.4  
19.2  
9.60  
4.80  
2.40  
1.20  
0.60  
0.30  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
4
2
38.4  
6
38.4  
3
19.2  
12  
23  
47  
93  
186  
373  
746  
19.2  
6
9.60  
9.60  
12  
24  
48  
96  
192  
384  
4.80  
–0.83  
0.23  
4.80  
2.40  
2.40  
1.20  
0.23  
1.20  
0.60  
–0.04  
–0.04  
0.60  
0.30  
0.30  
PS022829-0814  
P R E L I M I N A R Y  
UART Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
120  
Infrared Encoder/Decoder  
Z8 Encore! XP F082A Series products contain a fully-functional, high-performance  
UART to Infrared Encoder/Decoder (endec). The infrared endec is integrated with an on-  
chip UART to allow easy communication between the Z8 Encore! XP MCU and IrDA  
Physical Layer Specification, Version 1.3-compliant infrared transceivers. Infrared com-  
munication provides secure, reliable, low-cost, point-to-point communication between  
PCs, PDAs, cell phones, printers and other infrared enabled devices.  
Architecture  
Figure 16 displays the architecture of the infrared endec.  
System  
Clock  
Infrared  
Transceiver  
RxD  
RXD  
TXD  
RXD  
TXD  
Infrared  
TxD  
Encoder/Decoder  
(Endec)  
UART  
Baud Rate  
Clock  
Interrupt  
I/O  
Data  
Signal Address  
Figure 16. Infrared Data Communication System Block Diagram  
Operation  
When the infrared endec is enabled, the transmit data from the associated on-chip UART  
is encoded as digital signals in accordance with the IrDA standard and output to the infra-  
red transceiver through the TXD pin. Likewise, data received from the infrared transceiver  
is passed to the infrared endec through the RXD pin, decoded by the infrared endec and  
passed to the UART. Communication is half-duplex, which means simultaneous data  
transmission and reception is not allowed.  
PS022829-0814  
P R E L I M I N A R Y  
Infrared Encoder/Decoder  
Z8 Encore! XP® F082A Series  
Product Specification  
121  
The baud rate is set by the UART’s Baud Rate Generator and supports IrDA standard baud  
rates from 9600 baud to 115.2 kbaud. Higher baud rates are possible, but do not meet IrDA  
specifications. The UART must be enabled to use the infrared endec. The infrared endec  
data rate is calculated using the following equation:  
System Clock Frequency (Hz)  
--------------------------------------------------------------------------------  
Infrared Data Rate (bits/s) =  
16 UART Baud Rate Divisor Value  
Transmitting IrDA Data  
The data to be transmitted using the infrared transceiver is first sent to the UART. The  
UART’s transmit signal (TXD) and baud rate clock are used by the IrDA to generate the  
modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared  
data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains  
low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first out-  
puts a 7 clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse is  
output to complete the full 16 clock data period. Figure 17 displays IrDA data transmis-  
sion. When the infrared endec is enabled, the UART’s TXD signal is internal to the Z8  
Encore! XP F082A Series products while the IR_TXD signal is output through the TXD  
pin.  
16 clock  
period  
Baud Rate  
Clock  
UART’s  
TXD  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
3 clock  
pulse  
IR_TXD  
7-clock  
delay  
Figure 17. Infrared Data Transmission  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
122  
Receiving IrDA Data  
Data received from the infrared transceiver using the IR_RXD signal through the RXD pin  
is decoded by the infrared endec and passed to the UART. The UART’s baud rate clock is  
used by the infrared endec to generate the demodulated signal (RXD) that drives the  
UART. Each UART/Infrared data bit is 16-clocks wide. Figure 18 displays data reception.  
When the infrared endec is enabled, the UART’s RXD signal is internal to the Z8 Encore!  
XP F082A Series products while the IR_RXD signal is received through the RXD pin.  
16 clock  
period  
Baud Rate  
Clock  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
IR_RXD  
min. 1.4 s  
pulse  
UART’s  
RXD  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
8 clock  
delay  
16 clock  
period  
16 clock  
period  
16 clock  
period  
16 clock  
period  
Figure 18. IrDA Data Reception  
Infrared Data Reception  
The system clock frequency must be at least 1.0MHz to ensure proper reception of the  
1.4µs minimum width pulses allowed by the IrDA standard.  
Caution:  
Endec Receiver Synchronization  
The IrDA receiver uses a local baud rate clock counter (0 to 15 clock periods) to generate  
an input stream for the UART and to create a sampling window for detection of incoming  
pulses. The generated UART input (UART RXD) is delayed by 8 baud rate clock periods  
with respect to the incoming IrDA data stream. When a falling edge in the input data  
stream is detected, the Endec counter is reset. When the count reaches a value of 8, the  
UART RXD value is updated to reflect the value of the decoded data. When the count  
reaches 12 baud clock periods, the sampling window for the next incoming pulse opens.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
123  
The window remains open until the count again reaches 8 (that is, 24 baud clock periods  
since the previous pulse was detected), giving the Endec a sampling window of minus four  
baud rate clocks to plus eight baud rate clocks around the expected time of an incoming  
pulse. If an incoming pulse is detected inside this window this process is repeated. If the  
incoming data is a logical 1 (no pulse), the Endec returns to the initial state and waits for  
the next falling edge. As each falling edge is detected, the Endec clock counter is reset,  
resynchronizing the Endec to the incoming signal, allowing the Endec to tolerate jitter and  
baud rate errors in the incoming datastream. Resynchronizing the Endec does not alter the  
operation of the UART, which ultimately receives the data. The UART is only synchro-  
nized to the incoming data stream when a Start bit is received.  
Infrared Encoder/Decoder Control Register Definitions  
All infrared endec configuration and status information is set by the UART Control regis-  
ters as defined in the Universal Asynchronous Receiver/Transmitter section on page 99.  
To prevent spurious signals during IrDA data transmission, set the IREN bit in the UART  
Control 1 Register to 1 to enable the Infrared Encoder/Decoder before enabling the GPIO  
Port alternate function for the corresponding pin.  
Caution:  
PS022829-0814  
P R E L I M I N A R Y Infrared Encoder/Decoder Control Register  
Z8 Encore! XP® F082A Series  
Product Specification  
124  
Analog-to-Digital Converter  
The analog-to-digital converter (ADC) converts an analog input signal to its digital repre-  
sentation. The features of this sigma-delta ADC include:  
11-bit resolution in DIFFERENTIAL Mode  
10-bit resolution in SINGLE-ENDED Mode  
Eight single-ended analog input sources are multiplexed with general-purpose I/O  
ports  
9th analog input obtained from temperature sensor peripheral  
11 pairs of differential inputs also multiplexed with general-purpose I/O ports  
Low-power operational amplifier (LPO)  
Interrupt on conversion complete  
Bandgap generated internal voltage reference with two selectable levels  
Manual in-circuit calibration is possible employing user code (offset calibration)  
Factory calibrated for in-circuit error compensation  
Architecture  
Figure 19 displays the major functional blocks of the ADC. An analog multiplexer net-  
work selects the ADC input from the available analog pins, ANA0 through ANA7.  
The input stage of the ADC allows both differential gain and buffering. The following  
input options are available:  
Unbuffered input (SINGLE-ENDED and DIFFERENTIAL modes)  
Buffered input with unity gain (SINGLE-ENDED and DIFFERENTIAL modes)  
LPO output with full pin access to the feedback path  
PS022829-0814  
P R E L I M I N A R Y  
Analog-to-Digital Converter  
Z8 Encore! XP® F082A Series  
Product Specification  
125  
2
Internal Voltage  
VREFSEL  
VREF pin  
Reference Generator  
Analog Input  
Multiplexer  
VREFEXT  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
Ref Input  
13  
ADC  
Data  
13 bit  
Sigma-Delta  
Buffer Amplifier  
4
ADC  
ANAIN  
Analog In -  
Analog In +  
-
Analog Input  
Multiplexer  
+
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
ADC  
IRQ  
BUFFMODE  
Amplifier tristates  
when disabled  
-
+
Temp  
Sensor  
Low-Power Operational  
Amplifier  
Figure 19. Analog-to-Digital Converter Block Diagram  
Operation  
In both SINGLE-ENDED and DIFFERENTIAL modes, the effective output of the ADC is  
an 11-bit, signed, two’s complement digital value. In DIFFERENTIAL Mode, the ADC  
can output values across the entire 11-bit range, from –1024 to +1023. In SINGLE-  
ENDED Mode, the output generally ranges from 0 to +1023, but offset errors can cause  
small negative values.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
126  
The ADC registers actually return 13 bits of data, but the two LSBs are intended for com-  
pensation use only. When the software compensation routine is performed on the 13 bit  
raw ADC value, two bits of resolution are lost because of a rounding error. As a result, the  
final value is an 11-bit number.  
Hardware Overflow  
When the hardware overflow bit (OVF) is set in ADC Data Low Byte (ADCD_L) Regis-  
ter, all other data bits are invalid. The hardware overflow bit is set for values greater than  
VREF and less than –VREF (DIFFERENTIAL Mode).  
Automatic Powerdown  
If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles,  
portions of the ADC are automatically powered down. From this powerdown state, the  
ADC requires 40 system clock cycles to power up. The ADC powers up when a conver-  
sion is requested by the ADC Control Register.  
Single-Shot Conversion  
When configured for single-shot conversion, the ADC performs a single analog-to-digital  
conversion on the selected analog input channel. After completion of the conversion, the  
ADC shuts down. Observe the following steps for setting up the ADC and initiating a sin-  
gle-shot conversion:  
1. Enable the appropriate analog inputs by configuring the general-purpose I/O pins for  
alternate analog function. This configuration disables the digital input and output  
drivers.  
2. Write the ADC Control/Status Register 1 to configure the ADC.  
Write to BUFMODE[2:0]to select SINGLE-ENDED or DIFFERENTIAL mode,  
plus unbuffered or buffered mode.  
Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELLbit is.  
contained in the ADC Control Register 0.  
3. Write to the ADC Control Register 0 to configure the ADC and begin the conversion.  
The bit fields in the ADC Control Register can be written simultaneously (the ADC  
can be configured and enabled with the same write instruction):  
Write to the ANAIN[3:0]field to select from the available analog input sources  
(different input pins available depending on the device).  
Clear CONTto 0 to select a single-shot conversion.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
127  
If the internal voltage reference must be output to a pin, set the REFEXTbit to 1.  
The internal voltage reference must be enabled in this case.  
Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELHbit is  
contained in the ADC Control/Status Register 1.  
Set CENto 1 to start the conversion.  
4. CENremains 1 while the conversion is in progress. A single-shot conversion requires  
5129 system clock cycles to complete. If a single-shot conversion is requested from an  
ADC powered down state, the ADC uses 40 additional clock cycles to power up  
before beginning the 5129 cycle conversion.  
5. When the conversion is complete, the ADC control logic performs the following oper-  
ations:  
13-bit two’s-complement result written to {ADCD_H[7:0], ADCD_L[7:3]}  
Sends an interrupt request to the Interrupt Controller denoting conversion com-  
plete  
CENresets to 0 to indicate the conversion is complete  
6. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically  
powered down.  
Continuous Conversion  
When configured for continuous conversion, the ADC continuously performs an analog-  
to-digital conversion on the selected analog input. Each new data value overwrites the pre-  
vious value stored in the ADC Data registers. An interrupt is generated after each conver-  
sion.  
In Continuous Mode, ADC updates are limited by the input signal bandwidth of the ADC  
and the latency of the ADC and its digital filter. Step changes at the input are not imme-  
diately detected at the next output from the ADC. The response of the ADC (in all modes)  
is limited by the input signal bandwidth and the latency.  
Caution:  
Observe the following steps for setting up the ADC and initiating continuous conversion:  
1. Enable the appropriate analog input by configuring the general-purpose I/O pins for  
alternate function. This action disables the digital input and output driver.  
2. Write the ADC Control/Status Register 1 to configure the ADC.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
128  
Write to BUFMODE[2:0] to select SINGLE-ENDED or DIFFERENTIAL mode,  
plus unbuffered or buffered mode.  
Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELLbit is  
contained in the ADC Control Register 0.  
3. Write to the ADC Control Register 0 to configure the ADC for continuous conversion.  
The bit fields in the ADC Control Register may be written simultaneously:  
Write to the ANAIN[3:0]field to select from the available analog input sources  
(different input pins available depending on the device).  
Set CONTto 1 to select continuous conversion.  
If the internal VREF must be output to a pin, set the REFEXTbit to 1. The internal  
voltage reference must be enabled in this case.  
Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELHbit is  
contained in ADC Control/Status Register 1.  
Set CENto 1 to start the conversions.  
4. When the first conversion in continuous operation is complete (after 5129 system  
clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic  
performs the following operations:  
CENresets to 0 to indicate the first conversion is complete. CENremains 0 for all  
subsequent conversions in continuous operation  
An interrupt request is sent to the Interrupt Controller to indicate the conversion is  
complete  
5. The ADC writes a new data result every 256 system clock cycles. For each completed  
conversion, the ADC control logic performs the following operations:  
Writes the 13-bit two’s complement result to {ADCD_H[7:0], ADCD_L[7:3]}  
Sends an interrupt request to the Interrupt Controller denoting conversion com-  
plete  
6. To disable continuous conversion, clear the CONTbit in the ADC Control Register to 0.  
Interrupts  
The ADC is able to interrupt the CPU when a conversion has been completed. When the  
ADC is disabled, no new interrupts are asserted; however, an interrupt pending when the  
ADC is disabled is not cleared.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
129  
Calibration and Compensation  
The Z8 Encore! XP F082A Series ADC is factory calibrated for offset error and gain error,  
with the compensation data stored in Flash memory. Alternatively, you can perform your  
own calibration, storing the values into Flash themselves. Thirdly, the user code can per-  
form a manual offset calibration during DIFFERENTIAL Mode operation.  
Factory Calibration  
Devices that have been factory calibrated contain 30 bytes of calibration data in the Flash  
option bit space. This data consists of 3 bytes for each input mode, one for offset and two  
for gain correction. For a list of input modes for which calibration data exists, see the  
Zilog Calibration Data section on page 168.  
User Calibration  
If you have precision references available, its own external calibration can be performed  
using any input modes. This calibration data takes into account buffer offset and nonlin-  
earity; therefore Zilog recommends that this calibration be performed separately for each  
of the ADC input modes planned for use.  
Manual Offset Calibration  
When uncalibrated, the ADC has significant offset (see Table 139 on page 236). Subse-  
quently, manual offset calibration capability is built into the block. When the ADC Con-  
trol Register 0 sets the input mode (ANAIN[2:0]) to MANUAL OFFSET  
CALIBRATION Mode, the differential inputs to the ADC are shorted together by an inter-  
nal switch. Reading the ADC value at this point produces 0 in an ideal system. The value  
actually read is the ADC offset. This value can be stored in nonvolatile memory (see the  
Nonvolatile Data Storage chapter on page 176) and accessed by user code to compensate  
for the input offset error. There is no provision for manual gain calibration.  
Software Compensation Procedure Using Factory Calibration Data  
The value read from the ADC high and low byte registers is uncompensated. The user  
mode software must apply gain and offset correction to this uncompensated value for  
maximum accuracy. The following equation yields the compensated value:  
16  
ADC  
= ADC  
OFFCAL+ ADC  
OFFCAL  GAINCAL  2  
comp  
uncomp  
uncomp  
where GAINCAL is the gain calibration value, OFFCAL is the offset calibration value and  
ADCuncomp is the uncompensated value read from the ADC. All values are in two’s com-  
plement format.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
130  
The offset compensation is performed first, followed by the gain compensation. One bit of  
resolution is lost because of rounding on both the offset and gain computations. As a  
result the ADC registers read back 13 bits: 1 sign bit, two calibration bits lost to rounding  
and 10 data bits.  
Note:  
Also note that in the second term, the multiplication must be performed before the divi-  
sion by 216. Otherwise, the second term incorrectly evaluates to zero.  
Although the ADC can be used without the gain and offset compensation, it does exhibit  
nonunity gain. Designing the ADC with sub-unity gain reduces noise across the ADC  
range but requires the ADC results to be scaled by a factor of 8/7.  
Caution:  
ADC Compensation Details  
High-efficiency assembly code that performs ADC compensation is available for down-  
load on www.zilog.com. This section offers a bit-specific description of the ADC compen-  
sation process used by this code.  
The following data bit definitions are used:  
0–9, a–f = bit indices in hexadecimal  
s = sign bit  
v = overflow bit  
– = unused  
Input Data  
MSB  
LSB  
s b a 9 8 7 6 5  
4 3 2 1 0 – – v (ADC)  
ADC Output Word; if v =  
1, the data is invalid  
s 6 5 4 3 2 1 0  
Offset Correction Byte  
s s s s s 7 6 5  
s e d c b a 9 8  
4 3 2 1 0 0 0 0 (Offset)  
Offset Byte shifted to align  
with ADC data  
7 6 5 4 3 2 1 0 (Gain)  
Gain Correction Word  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
131  
Compensation Steps:  
1. Correct for Offset:  
ADC MSB  
ADC LSB  
Offset LSB  
#1 LSB  
Offset MSB  
=
#1 MSB  
2. Compute the absolute value of the offset-corrected ADC value if negative; the gain  
correction factor is computed assuming positive numbers, with sign restoration after-  
ward.  
#2 MSB  
#2 LSB  
Also compute the absolute value of the gain correction word, if negative.  
AGain MSB  
AGain LSB  
3. Multiply by the Gain Correction Word. If operating in DIFFERENTIAL Mode, there  
are two gain correction values: one for positive ADC values, another for negative  
ADC values. Use the appropriate Gain Correction Word based on the sign computed  
by byte #2.  
#2 MSB  
#2 LSB  
*
AGain MSB  
AGain LSB  
=
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
132  
#3  
#3  
#3  
#3  
4. Round the result and discard the least significant two bytes (equivalent to dividing by  
216).  
#3  
#3  
#3  
#3  
0x00  
0x00  
0x80  
0x00  
=
#4 MSB  
#4 LSB  
5. Determine the sign of the gain correction factor using the sign bits from Step 2. If the  
offset-corrected ADC value and the gain correction word both have the same sign,  
then the factor is positive and remains unchanged. If they have differing signs, then  
the factor is negative and must be multiplied by –1.  
#5 MSB  
#5 LSB  
6. Add the gain correction factor to the original offset corrected value.  
#5 MSB  
#1 MSB  
#6 MSB  
#5 LSB  
#1 LSB  
#6 LSB  
+
=
7. Shift the result to the right, using the sign bit determined in Step 1, to allow for the  
detection of computational overflow.  
S  
#6 MSB  
#6 LSB  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
133  
Output Data  
The output format of the corrected ADC value is shown below.  
MSB  
LSB  
s v b a 9 8 7 6 5 4 3 2 1 0 – –  
The overflow bit in the corrected output indicates that the computed value was greater  
than the maximum logical value (+1023) or less than the minimum logical value (–1024).  
Unlike the hardware overflow bit, this is not a simple binary flag. For a normal (nonover-  
flow) sample, the sign and the overflow bit match. If the sign bit and overflow bit do not  
match, a computational overflow has occurred.  
Input Buffer Stage  
Many applications require the measurement of an input voltage source with a high output  
impedance. This ADC provides a buffered input for such situations. The drawback of the  
buffered input is a limitation of the input range. When using unity gain buffered mode, the  
input signal must be prevented from coming too close to either VSS or VDD. See Table 139  
on page 236 for details.  
This condition applies only to the input voltage level (with respect to ground) of each dif-  
ferential input signal. The actual differential input voltage magnitude may be less than  
300mV.  
The input range of the unbuffered ADC swings from VSS to VDD. Input signals smaller  
than 300mV must use the unbuffered input mode. If these signals do not contain low out-  
put impedances, they might require off-chip buffering.  
Signals outside the allowable input range can be used without instability or device dam-  
age. Any ADC readings made outside the input range are subject to greater inaccuracy  
than specified.  
ADC Control Register Definitions  
This section defines the features of the following ADC Control registers.  
ADC Control Register 0 (ADCCTL0): see page 134  
ADC Control/Status Register 1 (ADCCTL1): see page 136  
ADC Data High Byte Register (ADCD_H): see page 137  
ADC Data Low Byte Register (ADCD_L): see page 137  
PS022829-0814  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
134  
ADC Control Register 0  
The ADC Control Register 0 (ADCCTL0) selects the analog input channel and initiates  
the analog-to-digital conversion. It also selects the voltage reference configuration.  
Table 73. ADC Control Register 0 (ADCCTL0)  
Bit  
7
6
5
4
CONT  
0
3
2
1
0
Field  
CEN  
0
REFSELL REFOUT  
ANAIN[3:0]  
RESET  
R/W  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F70H  
Bit  
Description  
[7]  
CEN  
Conversion Enable  
0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears  
this bit to 0 when a conversion is complete.  
1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already in  
progress, the conversion restarts. This bit remains 1 until the conversion is complete.  
[6]  
REFSELL  
Voltage Reference Level Select Low Bit  
In conjunction with the High bit (REFSELH) in ADC Control/Status Register 1, this deter-  
mines the level of the internal voltage reference; the following details the effects of {REF-  
SELH, REFSELL}; note that this reference is independent of the Comparator reference.  
00 = Internal Reference Disabled, reference comes from external pin.  
01 = Internal Reference set to 1.0 V.  
10 = Internal Reference set to 2.0 V (default).  
11 = Reserved.  
[5]  
REFOUT  
Internal Reference Output Enable  
0 = Reference buffer is disabled; Vref pin is available for GPIO or analog functions.  
1 = The internal ADC reference is buffered and driven out to the V  
pin.  
REF  
Caution: When the ADC is used with an external reference ({REFSELH,REFSELL}=00),  
the REFOUT bit must be set to 0.  
[4]  
CONT  
Conversion  
0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock  
cycles (measurements of the internal temperature sensor take twice as long).  
1 = Continuous conversion. ADC data updated every 256 system clock cycles after an initial  
5129 clock conversion (measurements of the internal temperature sensor take twice as  
long).  
[3:0]  
Analog Input Select  
ANAIN[3:0] These bits select the analog input for conversion. Not all Port pins in this list are available in  
all packages for the Z8 Encore! XP F082A Series. For information about port pins available  
with each package style, see the Pin Description chapter on page 8. Do not enable unavail-  
able analog inputs. Usage of these bits changes depending on the buffer mode selected in  
ADC Control/Status Register 1.  
PS022829-0814  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
135  
For the reserved values, all input switches are disabled to avoid leakage or other undesir-  
able operation. ADC samples taken with reserved bit settings are undefined.  
SINGLE-ENDED Mode:  
0000 = ANA0 (transimpedance amp output when enabled)  
0001 = ANA1 (transimpedance amp inverting input)  
0010 = ANA2 (transimpedance amp noninverting input)  
0011 = ANA3  
0100 = ANA4  
0101 = ANA5  
0110 = ANA6  
0111 = ANA7  
1000 = Reserved  
1001 = Reserved  
1010 = Reserved  
1011 = Reserved  
1100 = Hold transimpedance input nodes (ANA1 and ANA2) to ground.  
1101 = Reserved  
1110 = Temperature Sensor.  
1111 = Reserved.  
DIFFERENTIAL Mode (noninverting input and inverting input respectively):  
0000 = ANA0 and ANA1  
0001 = ANA2 and ANA3  
0010 = ANA4 and ANA5  
0011 = ANA1 and ANA0  
0100 = ANA3 and ANA2  
0101 = ANA5 and ANA4  
0110 = ANA6 and ANA5  
0111 = ANA0 and ANA2  
1000 = ANA0 and ANA3  
1001 = ANA0 and ANA4  
1010 = ANA0 and ANA5  
1011 = Reserved  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Manual Offset Calibration Mode  
ADC Control/Status Register 1  
The ADC Control/Status Register 1 (ADCCTL1) configures the input buffer stage,  
enables the threshold interrupts and contains the status of both threshold triggers. It is also  
used to select the voltage reference configuration.  
PS022829-0814  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
136  
Table 74. ADC Control/Status Register 1 (ADCCTL1)  
Bit  
7
REFSELH  
1
6
5
4
3
2
1
0
Field  
Reserved  
BUFMODE[2:0]  
RESET  
R/W  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F71H  
Bit  
Description  
Voltage Reference Level Select High Bit  
[7]  
REFSELH  
In conjunction with the Low bit (REFSELL) in ADC Control Register 0, this determines  
the level of the internal voltage reference; the following details the effects of {REFSELH,  
REFSELL}; this reference is independent of the Comparator reference.  
00= Internal Reference Disabled, reference comes from external pin.  
01= Internal Reference set to 1.0V.  
10= Internal Reference set to 2.0V (default).  
11= Reserved.  
[6:3]  
Reserved  
These bits are reserved and must be programmed to 0000.  
[2:0]  
Input Buffer Mode Select  
BUFMODE[2:0] 000 = Single-ended, unbuffered input.  
001 = Single-ended, buffered input with unity gain.  
010 = Reserved.  
011 = Reserved.  
100 = Differential, unbuffered input.  
101 = Differential, buffered input with unity gain.  
110 = Reserved.  
111 = Reserved.  
ADC Data High Byte Register  
The ADC Data High Byte (ADCD_H) Register contains the upper eight bits of the ADC  
output. The output is an 13-bit two’s complement value. During a single-shot conversion,  
this value is invalid. Access to the ADC Data High Byte Register is read-only. Reading the  
ADC Data High Byte Register latches data in the ADC Low Bits Register.  
PS022829-0814  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
137  
Table 75. ADC Data High Byte Register (ADCD_H)  
Bit  
7
6
5
4
3
2
1
0
Field  
ADCDH  
F72H  
RESET  
R/W  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
Address  
X = Undefined.  
Bit  
Description  
ADC Data High Byte  
[7:0]  
ADCDH This byte contains the upper eight bits of the ADC output. These bits are not valid during a sin-  
gle-shot conversion. During a continuous conversion, the most recent conversion output is  
held in this register. These bits are undefined after a Reset.  
ADC Data Low Byte Register  
The ADC Data Low Byte (ADCD_L) Register contains the lower bits of the ADC output  
plus an overflow status bit. The output is a 13-bit two’s complement value. During a sin-  
gle-shot conversion, this value is invalid. Access to the ADC Data Low Byte Register is  
read-only. Reading the ADC Data High Byte Register latches data in the ADC Low Bits  
Register.  
Table 76. ADC Data Low Byte Register (ADCD_L)  
Bit  
7
6
5
4
3
2
1
0
OVF  
X
Field  
ADCDL  
Reserved  
RESET  
R/W  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
R
Address  
X = Undefined.  
F73H  
Bit  
Description  
ADC Data Low Bits  
[7:3]  
ADCDL These bits are the least significant five bits of the 13-bits of the ADC output. These bits are  
undefined after a Reset.  
PS022829-0814  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
138  
Bit  
Description (Continued)  
[2:1]  
Reserved  
These bits are reserved and must be undefined.  
[0]  
OVF  
Overflow Status  
0 = A hardware overflow did not occur in the ADC for the current sample.  
1= A hardware overflow did occur in the ADC for the current sample, therefore the current  
sample is invalid.  
PS022829-0814  
P R E L I M I N A R Y  
ADC Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
139  
Low Power Operational Amplifier  
The LPO is a general-purpose low power operational amplifier. Each of the three ports of  
the amplifier is accessible from the package pins. The LPO contains only one pin configu-  
ration: ANA0 is the output/feedback node, ANA1 is the inverting input and ANA2 is the  
noninverting input.  
Operation  
To use the LPO, it must be enabled in the Power Control Register 0 (PWRCTL0). The default  
state of the LPO is OFF. To use the LPO, the LPO bit must be cleared by turning it ON (for  
details, see the Power Control Register 0 section on page 33). When making normal ADC  
measurements on ANA0 (i.e., measurements not involving the LPO output), the LPO bit  
must be turned OFF. Turning the LPO bit ON interferes with normal ADC measurements.  
The LPO bit enables the amplifier even in Stop Mode. If the amplifier is not required in  
Stop Mode, disable it. Failing to perform this results in Stop Mode currents higher than  
necessary.  
Caution:  
As with other ADC measurements, any pins used for analog purposes must be configured  
as such in the GPIO registers. See the Port A–D Alternate Function Subregisters section  
on page 47 for details.  
LPO output measurements are made on ANA0, as selected by the ANAIN[3:0]bits of  
ADC Control Register 0. It is also possible to make single-ended measurements on ANA1  
and ANA2 while the amplifier is enabled, which is often useful for determining offset con-  
ditions. Differential measurements between ANA0 and ANA2 may be useful for noise  
cancellation purposes.  
If the LPO output is routed to the ADC, then the BUFFMODE[2:0] bits of ADC Control/Sta-  
tus Register 1 must also be configured for unity-gain buffered operation. Sampling the  
LPO in an unbuffered mode is not recommended.  
When either input is overdriven, the amplifier output saturates at the positive or negative  
supply voltage. No instability results.  
PS022829-0814  
P R E L I M I N A R Y  
Low Power Operational Amplifier  
Z8 Encore! XP® F082A Series  
Product Specification  
140  
Comparator  
The Z8 Encore! XP F082A Series devices feature a general purpose comparator that com-  
pares two analog input signals. These analog signals may be external stimulus from a pin  
(CINP and/or CINN) or internally generated signals. Both a programmable voltage refer-  
ence and the temperature sensor output voltage are available internally. The output is  
available as an interrupt source or can be routed to an external pin.  
CINP Pin  
Temperature  
Sensor  
To  
COUT  
Pin  
INPSEL  
INNSEL  
+
-
REFLVL  
Comparator  
Internal  
To Interrupt  
Controller  
Reference  
CINN Pin  
Figure 20. Comparator Block Diagram  
Operation  
When the positive comparator input exceeds the negative input by more than the specified  
hysteresis, the output is a logic High. When the negative input exceeds the positive by  
more than the hysteresis, the output is a logic Low. Otherwise, the comparator output  
retains its present value. See Table 141 on page 238 for details.  
The comparator may be powered down to reduce supply current. See the Power Control  
Register 0 section on page 33 for details.  
Because of the propagation delay of the comparator, Zilog does not recommend enabling  
or reconfiguring the comparator without first disabling the interrupts and waiting for the  
comparator output to settle. Doing so can result in spurious interrupts.  
Caution:  
PS022829-0814  
P R E L I M I N A R Y  
Comparator  
Z8 Encore! XP® F082A Series  
Product Specification  
141  
The following code example illustrates how to safely enable the comparator:  
di  
ld cmp0, r0 ; load some new configuration  
nop  
nop  
; wait for output to settle  
clr irq0 ; clear any spurious interrupts pending  
ei  
Comparator Control Register Definition  
The Comparator Control Register (CMP0) configures the comparator inputs and sets the  
value of the internal voltage reference.  
Table 77. Comparator Control Register (CMP0)  
Bit  
7
6
5
4
3
2
1
0
Reserved (20-/28-pin)  
REFLVL (8-pin)  
Field  
INPSEL  
INNSEL  
REFLVL  
RESET  
R/W  
0
0
0
1
0
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F90H  
Bit  
Description  
[7]  
Signal Select for Positive Input  
INPSEL 0 = GPIO pin used as positive comparator input.  
1 = Temperature sensor used as positive comparator input.  
[6]  
Signal Select for Negative Input  
INNSEL 0 = Internal reference disabled, GPIO pin used as negative comparator input.  
1 = Internal reference enabled as negative comparator input.  
PS022829-0814  
P R E L I M I N A R Y  
Comparator Control Register Definition  
Z8 Encore! XP® F082A Series  
Product Specification  
142  
Bit  
Description (Continued)  
[5:2]  
Internal Reference Voltage Level  
REFLVL This reference is independent of the ADC voltage reference. Note: 8-pin devices contain two  
additional LSBs for increased resolution.  
For 20-/28-pin devices:  
0000 = 0.0 V  
0001 = 0.2 V  
0010 = 0.4 V  
0011 = 0.6 V  
0100 = 0.8 V  
0101 = 1.0 V (Default)  
0110 = 1.2 V  
0111 = 1.4 V  
1000 = 1.6 V  
1001 = 1.8 V  
1010–1111 = Reserved  
PS022829-0814  
P R E L I M I N A R Y  
Comparator Control Register Definition  
Z8 Encore! XP® F082A Series  
Product Specification  
143  
Bit  
Description (Continued)  
[1:0]  
For 8-pin devices, the following voltages can be configured; for 20- and 28-pin devices, these  
bits are reserved.  
000000 = 0.00 V  
000001 = 0.05 V  
000010 = 0.10 V  
000011 = 0.15 V  
000100 = 0.20 V  
000101 = 0.25 V  
000110 = 0.30 V  
000111 = 0.35 V  
001000 = 0.40 V  
001001 = 0.45 V  
001010 = 0.50 V  
001011 = 0.55 V  
001100 = 0.60 V  
001101 = 0.65 V  
001110 = 0.70 V  
001111 = 0.75 V  
010000 = 0.80 V  
010001 = 0.85 V  
010010 = 0.90 V  
010011 = 0.95 V  
010100 = 1.00 V (Default)  
010101 = 1.05 V  
010110 = 1.10 V  
010111 = 1.15 V  
011000 = 1.20 V  
011001 = 1.25 V  
011010 = 1.30 V  
011011 = 1.35 V  
011100 = 1.40 V  
011101 = 1.45 V  
011110 = 1.50 V  
011111 = 1.55 V  
100000 = 1.60 V  
100001 = 1.65 V  
100010 = 1.70 V  
100011 = 1.75 V  
100100 = 1.80 V  
PS022829-0814  
P R E L I M I N A R Y  
Comparator Control Register Definition  
Z8 Encore! XP® F082A Series  
Product Specification  
144  
Temperature Sensor  
The on-chip Temperature Sensor allows you to measure temperature on the die with either  
the on-board ADC or on-board comparator. This block is factory calibrated for in-circuit  
software correction. Uncalibrated accuracy is significantly worse, therefore the tempera-  
ture sensor is not recommended for uncalibrated use.  
Temperature Sensor Operation  
The on-chip temperature sensor is a Proportional to Absolute Temperature (PTAT) topol-  
ogy. A pair of Flash option bytes contain the calibration data. The temperature sensor can  
be disabled by a bit in the Power Control Register 0 section on page 33 to reduce power  
consumption.  
The temperature sensor can be directly read by the ADC to determine the absolute value of  
its output. The temperature sensor output is also available as an input to the comparator for  
threshold type measurement determination. The accuracy of the sensor when used with the  
comparator is substantially less than when measured by the ADC.  
If the temperature sensor is routed to the ADC, the ADC must be configured in unity-gain  
buffered mode (for details, see the Input Buffer Stage section on page 133). The value read  
back from the ADC is a signed number, although it is always positive.  
The sensor is factory-trimmed through the ADC using the external 2.0 V reference. Unless  
the sensor is retrimmed for use with a different reference, it is most accurate when used  
with the external 2.0 V reference.  
Because this sensor is an on-chip sensor, Zilog recommends that the user account for the  
difference between ambient and die temperature when inferring ambient temperature con-  
ditions.  
During normal operation, the die undergoes heating that causes a mismatch between the  
ambient temperature and that measured by the sensor. For best results, the Z8 Encore! XP  
device must be placed into Stop Mode for sufficient time such that the die and ambient  
temperatures converge (this time is dependent on the thermal design of the system). The  
temperature sensor measurement must then be made immediately after recovery from Stop  
Mode.  
The following equation defines the transfer function between the temperature sensor out-  
put voltage and the die temperature. This is needed for comparator threshold measure-  
ments.  
V = 0.01 T + 0.65  
PS022829-0814  
P R E L I M I N A R Y  
Temperature Sensor  
Z8 Encore! XP® F082A Series  
Product Specification  
145  
In the above equation, T is the temperature in °C; V is the sensor output in volts.  
Assuming a compensated ADC measurement, the following equation defines the relation-  
ship between the ADC reading and the die temperature:  
T = 25 128ADC TSCAL11:2 + 30  
In the above equation, T is the temperature in C; ADC is the 10-bit compensated ADC  
value; and TSCAL is the temperature sensor calibration value, ignoring the two least sig-  
nificant bits of the 12-bit value.  
See the Temperature Sensor Calibration Data section on page 171 for the location of  
TSCAL.  
Calibration  
The temperature sensor undergoes calibration during the manufacturing process and is  
maximally accurate at 30°C. Accuracy decreases as measured temperatures move further  
from the calibration point.  
PS022829-0814  
P R E L I M I N A R Y  
Temperature Sensor Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
146  
Flash Memory  
The products in the Z8 Encore! XP F082A Series feature a nonvolatile Flash memory of  
8KB (8192), 4 KB (4096), 2 KB (2048 bytes), or 1KB (1024) with read/write/erase capa-  
bility. The Flash Memory can be programmed and erased in-circuit by user code or  
through the On-Chip Debugger. The features include:  
User controlled read and write protect capability  
Sector-based write protection scheme  
Additional protection schemes against accidental program and erasure  
Architecture  
The Flash memory array is arranged in pages with 512 bytes per page. The 512-byte page  
is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64  
bytes.  
For program or data protection, the Flash memory is also divided into sectors. In the Z8  
Encore! XP F082A Series, these sectors are either 1024 bytes (in the 8KB devices) or 512  
bytes (all other memory sizes) in size. Page and sector sizes are not generally equal.  
The first 2 bytes of Flash Program memory are used as Flash option bits. For more infor-  
mation about their operation, see the Flash Option Bits chapter on page 159.  
Table 78 describes the Flash memory configuration for each device in the Z8 Encore! XP  
F082A Series. Figure 21 displays the Flash memory arrangement.  
Table 78. Z8 Encore! XP F082A Series Flash Memory Configurations  
Flash Size  
Part Number KB (Bytes)  
Flash  
Pages  
Program Memory  
Addresses  
Flash Sector  
Size (Bytes)  
Z8F08xA  
Z8F04xA  
Z8F02xA  
Z8F01xA  
8 (8192)  
4 (4096)  
2 (2048)  
1 (1024)  
16  
8
0000H–1FFFH  
0000H–0FFFH  
0000H–07FFH  
0000H–03FFH  
1024  
512  
512  
512  
4
2
PS022829-0814  
P R E L I M I N A R Y  
Flash Memory  
Z8 Encore! XP® F082A Series  
Product Specification  
147  
4KB Flash  
Program Memory  
8KB Flash  
Program Memory  
2KB Flash  
Program Memory  
Addresses (hex)  
Addresses (hex)  
0FFF  
Addresses (hex)  
1FFF  
07FF  
Sector 3  
Sector 7  
Sector 6  
Sector 7  
Sector 6  
0600  
0E00  
0DFF  
1C00  
1BFF  
05FF  
Sector 2  
0400  
03FF  
0C00  
0BFF  
1800  
17FF  
Sector 1  
0200  
01FF  
Sector 5  
Sector 4  
Sector 3  
Sector 2  
Sector 5  
Sector 4  
Sector 3  
Sector 2  
Sector 0  
0A00  
09FF  
1400  
13FF  
0000  
0800  
07FF  
1000  
0FFF  
1KB Flash  
Program Memory  
Addresses (hex)  
0600  
05FF  
0C00  
0BFF  
03FF  
Sector 1  
0400  
03FF  
0800  
07FF  
0200  
01FF  
Sector 0  
Sector 1  
Sector 0  
Sector 1  
Sector 0  
0200  
01FF  
0400  
03FF  
0000  
0000  
0000  
Figure 21. Flash Memory Arrangement  
Flash Information Area  
The Flash information area is separate from Program Memory and is mapped to the  
address range FE00Hto FFFFH. This area is readable but cannot be erased or overwritten.  
Factory trim values for the analog peripherals are stored here. Factory calibration data for  
the ADC is also stored here.  
Operation  
The Flash Controller programs and erases Flash memory. The Flash Controller provides  
the proper Flash controls and timing for Byte Programming, Page Erase and Mass Erase of  
Flash memory.  
The Flash Controller contains several protection mechanisms to prevent accidental program-  
ming or erasure. These mechanism operate on the page, sector and full-memory levels.  
PS022829-0814  
P R E L I M I N A R Y  
Flash Information Area  
Z8 Encore! XP® F082A Series  
Product Specification  
148  
Figure 22 displays a basic Flash Controller flow. The following subsections provide  
details about the various operations displayed in Figure 22.  
Reset  
Lock State 0  
Write Page  
Select Register  
Write FCTL  
No  
73H  
Yes  
Lock State 1  
Writes to Page Select  
Register in Lock State 1  
result in a return to  
Lock State 0  
Write FCTL  
No  
8CH  
Yes  
Write Page  
Select Register  
No  
Page Select  
values match?  
Yes  
Yes  
Page in  
Protected Sector?  
Byte Program  
Write FCTL  
No  
Page  
Yes  
Unlocked  
95H  
No  
Page Erase  
Program/Erase  
Enabled  
Figure 22. Flash Controller Operation Flow Chart  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
149  
Flash Operation Timing Using the Flash Frequency Registers  
Before performing either a program or erase operation on Flash memory, you must first  
configure the Flash Frequency High and Low Byte registers. The Flash Frequency regis-  
ters allow programming and erasing of the Flash with system clock frequencies ranging  
from 32kHz (32768Hz) through 20MHz.  
The Flash Frequency High and Low Byte registers combine to form a 16-bit value,  
FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash  
Frequency value must contain the system clock frequency (in kHz). This value is calcu-  
lated using the following equation:  
System Clock Frequency (Hz)  
-----------------------------------------------------------------  
FFREQ[15:0] =  
1000  
Flash programming and erasure are not supported for system clock frequencies below  
32kHz (32768Hz) or above 20MHz. The Flash Frequency High and Low Byte registers  
must be loaded with the correct value to ensure operation of the Z8 Encore! XP F082A  
Series devices.  
Caution:  
Flash Code Protection Against External Access  
The user code contained within the Flash memory can be protected against external access  
by the on-chip debugger. Programming the FRP Flash option bit prevents reading of the  
user code with the On-Chip Debugger. See the Flash Option Bits chapter on page 159 and  
the On-Chip Debugger chapter on page 180 for more information.  
Flash Code Protection Against Accidental Program and  
Erasure  
The Z8 Encore! XP F082A Series provides several levels of protection against accidental  
program and erasure of the Flash memory contents. This protection is provided by a com-  
bination of the Flash option bits, the register locking mechanism, the page select redun-  
dancy and the sector level protection control of the Flash Controller.  
Flash Code Protection Using the Flash Option Bits  
The FRP and FWP Flash option bits combine to provide three levels of Flash Program  
Memory protection, as shown in Table 79. See the Flash Option Bits chapter on page 159  
for more information.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
150  
.
Table 79. Flash Code Protection Using the Flash Option Bits  
FWP Flash Code Protection Description  
0
Programming and erasing disabled for all of Flash Program Mem-  
ory. In user code programming, Page Erase and Mass Erase are all  
disabled. Mass Erase is available through the On-Chip Debugger.  
1
Programming, Page Erase and Mass Erase are enabled for all of  
Flash Program Memory.  
Flash Code Protection Using the Flash Controller  
At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash  
memory. To program or erase the Flash memory, first write the Page Select Register with  
the target page. Unlock the Flash Controller by making two consecutive writes to the  
Flash Control Register with the values 73Hand 8CH, sequentially. The Page Select Regis-  
ter must be rewritten with the target page. If the two Page Select writes do not match, the  
controller reverts to a locked state. If the two writes match, the selected page becomes  
active. See Figure 22 on page 148 for details.  
After unlocking a specific page, you can enable either Page Program or Erase. Writing the  
value 95Hcauses a Page Erase only if the active page resides in a sector that is not pro-  
tected. Any other value written to the Flash Control Register locks the Flash Controller.  
Mass Erase is not allowed in the user code but only in through the Debug Port.  
After unlocking a specific page, you can also write to any byte on that page. After a byte is  
written, the page remains unlocked, allowing for subsequent writes to other bytes on the  
same page. Further writes to the Flash Control Register cause the active page to revert to a  
locked state.  
Sector-Based Flash Protection  
The final protection mechanism is implemented on a per-sector basis. The Flash memories  
of Z8 Encore! XP devices are divided into maximum number of 8 sectors. A sector is 1/8  
of the total Flash memory size unless this value is smaller than the page size – in which  
case, the sector and page sizes are equal. On Z8 Encore! F082A Series devices, the sector  
size is varied according to the Flash memory configuration shown in Table 78 on page  
146.  
The Flash Sector Protect Register can be configured to prevent sectors from being pro-  
grammed or erased. After a sector is protected, it cannot be unprotected by user code. The  
Flash Sector Protect Register is cleared after reset, and any previously-written protection  
values are lost. User code must write this register in their initialization routine if they pre-  
fer to enable sector protection.  
The Flash Sector Protect Register shares its Register File address with the Page Select  
Register. The Flash Sector Protect Register is accessed by writing the Flash Control Regis-  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
151  
ter with 5EH. After the Flash Sector Protect Register is selected, it can be accessed at the  
Page Select Register address. When user code writes the Flash Sector Protect Register,  
bits can only be set to 1. Thus, sectors can be protected, but not unprotected, via register  
write operations. Writing a value other than 5EHto the Flash Control Register deselects  
the Flash Sector Protect Register and reenables access to the Page Select Register.  
Observe the following procedure to setup the Flash Sector Protect Register from user  
code:  
1. Write 00Hto the Flash Control Register to reset the Flash Controller.  
2. Write 5EHto the Flash Control Register to select the Flash Sector Protect Register.  
3. Read and/or write the Flash Sector Protect Register which is now at Register File  
address FF9H.  
4. Write 00Hto the Flash Control Register to return the Flash Controller to its reset state.  
The Sector Protect Register is initialized to 0 on reset, putting each sector into an unpro-  
tected state. When a bit in the Sector Protect Register is written to 1, the corresponding  
sector is no longer written or erased by the CPU. External Flash programming through the  
OCD or via the Flash Controller Bypass mode are unaffected. After a bit of the Sector Pro-  
tect Register has been set, it cannot be cleared except by powering down the device.  
Byte Programming  
Flash Memory is enabled for byte programming after unlocking the Flash Controller and  
successfully enabling either Mass Erase or Page Erase. When the Flash Controller is  
unlocked and Mass Erase is successfully completed, all Program Memory locations are  
available for byte programming. In contrast, when the Flash Controller is unlocked and  
Page Erase is successfully completed, only the locations of the selected page are available  
for byte programming. An erased Flash byte contains all 1’s (FFH). The programming  
operation can only be used to change bits from 1 to 0. To change a Flash bit (or multiple  
bits) from 0 to 1 requires execution of either the Page Erase or Mass Erase commands.  
Byte Programming can be accomplished using the On-Chip Debugger’s Write Memory  
command or eZ8 CPU execution of the LDC or LDCI instructions. Refer to the eZ8 CPU  
Core User Manual (UM0128), available for download on www.zilog.com, for a descrip-  
tion of the LDC and LDCI instructions. While the Flash Controller programs the Flash  
memory, the eZ8 CPU idles but the system clock and on-chip peripherals continue to oper-  
ate. To exit programming mode and lock the Flash, write any value to the Flash Control  
Register, except the Mass Erase or Page Erase commands.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
152  
The byte at each address of the Flash memory cannot be programmed (any bits written  
to 0) more than twice before an erase cycle occurs. Doing so may result in corrupted data  
at the target byte.  
Caution:  
Page Erase  
The Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash  
memory sets all bytes in that page to the value FFH. The Flash Page Select Register identi-  
fies the page to be erased. Only a page residing in an unprotected sector can be erased.  
With the Flash Controller unlocked and the active page set, writing the value 95hto the  
Flash Control Register initiates the Page Erase operation. While the Flash Controller exe-  
cutes the Page Erase operation, the eZ8 CPU idles but the system clock and on-chip  
peripherals continue to operate. The eZ8 CPU resumes operation after the Page Erase  
operation completes. If the Page Erase operation is performed using the On-Chip Debug-  
ger, poll the Flash Status Register to determine when the Page Erase operation is complete.  
When the Page Erase is complete, the Flash Controller returns to its locked state.  
Mass Erase  
The Flash memory can also be Mass Erased using the Flash Controller, but only by using  
the On-Chip Debugger. Mass Erasing the Flash memory sets all bytes to the value FFH.  
With the Flash Controller unlocked and the Mass Erase successfully enabled, writing the  
value 63Hto the Flash Control Register initiates the Mass Erase operation. While the  
Flash Controller executes the Mass Erase operation, the eZ8 CPU idles but the system  
clock and on-chip peripherals continue to operate. Using the On-Chip Debugger, poll the  
Flash Status Register to determine when the Mass Erase operation is complete. When the  
Mass Erase is complete, the Flash Controller returns to its locked state.  
Flash Controller Bypass  
The Flash Controller can be bypassed and the control signals for the Flash memory  
brought out to the GPIO pins. Bypassing the Flash Controller allows faster Row Program-  
ming algorithms by controlling the Flash programming signals directly.  
Row programming is recommended for gang programming applications and large volume  
customers who do not require in-circuit initial programming of the Flash memory. Page  
Erase operations are also supported when the Flash Controller is bypassed.  
For more information about bypassing the Flash Controller, refer to the Third-Party Flash  
Programming Support for Z8 Encore! MCUs Application Note (AN0117), which is avail-  
able for download on www.zilog.com.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
153  
Flash Controller Behavior in Debug Mode  
The following changes in behavior of the Flash Controller occur when the Flash Control-  
ler is accessed using the On-Chip Debugger:  
The Flash Write Protect option bit is ignored.  
The Flash Sector Protect Register is ignored for programming and erase  
operations.  
Programming operations are not limited to the page selected in the Page Select  
Register.  
Bits in the Flash Sector Protect Register can be written to one or zero.  
The second write of the Page Select Register to unlock the Flash Controller is not  
necessary.  
The Page Select Register can be written when the Flash Controller is unlocked.  
The Mass Erase command is enabled through the Flash Control Register.  
For security reasons, the Flash controller allows only a single page to be opened for write/  
erase. When writing multiple Flash pages, the flash controller must go through the unlock  
sequence again to select another page.  
Caution:  
Flash Control Register Definitions  
This section defines the features of the following Flash Control registers.  
Flash Control Register: see page 153  
Flash Status Register: see page 155  
Flash Page Select Register: see page 156  
Flash Sector Protect Register: see page 157  
Flash Frequency High and Low Byte Registers: see page 157  
Flash Control Register  
The Flash Controller must be unlocked using the Flash Control (FCTL) Register before  
programming or erasing the Flash memory. Writing the sequence 73H8CH, sequentially,  
to the Flash Control Register unlocks the Flash Controller. When the Flash Controller is  
unlocked, the Flash memory can be enabled for Mass Erase or Page Erase by writing the  
appropriate enable command to the FCTL. Page Erase applies only to the active page  
selected in Flash Page Select Register. Mass Erase is enabled only through the On-Chip  
PS022829-0814  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
154  
Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to  
its locked state. The Write-only Flash Control Register shares its Register File address  
with the read-only Flash Status Register.  
PS022829-0814  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
155  
Table 80. Flash Control Register (FCTL)  
Bit  
7
6
5
4
3
2
1
0
Field  
FCMD  
FF8H  
RESET  
R/W  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
Address  
Bit  
Description  
[7:0]  
FCMD  
Flash Command  
73H = First unlock command.  
8CH = Second unlock command.  
95H = Page Erase command (must be third command in sequence to initiate Page Erase).  
63H = Mass Erase command (must be third command in sequence to initiate Mass Erase).  
5EH = Enable Flash Sector Protect Register Access  
Flash Status Register  
The Flash Status (FSTAT) Register indicates the current state of the Flash Controller. This  
register can be read at any time. The read-only Flash Status Register shares its Register  
File address with the Write-only Flash Control Register.  
Table 81. Flash Status Register (FSTAT)  
Bit  
7
6
5
4
3
2
1
0
Field  
Reserved  
FSTAT  
RESET  
R/W  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Address  
FF8H  
Bit  
Description  
[7:6]  
These bits are reserved and must be programmed to 00.  
[5:0]  
FSTAT  
Flash Controller Status  
000000 = Flash Controller locked.  
000001 = First unlock command received (73H written).  
000010 = Second unlock command received (8CH written).  
000011 = Flash Controller unlocked.  
000100 = Sector protect register selected.  
001xxx = Program operation in progress.  
010xxx = Page erase operation in progress.  
100xxx = Mass erase operation in progress.  
PS022829-0814  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
156  
Flash Page Select Register  
The Flash Page Select (FPS) Register shares address space with the Flash Sector Protect  
Register. Unless the Flash controller is unlocked and written with 5EH, writes to this  
address target the Flash Page Select Register.  
The register is used to select one of the available Flash memory pages to be programmed  
or erased. Each Flash Page contains 512 bytes of Flash memory. During a Page Erase  
operation, all Flash memory having addresses with the most significant 7 bits given by  
FPS[6:0] are chosen for program/erase operation.  
Table 82. Flash Page Select Register (FPS)  
Bit  
7
INFO_EN  
0
6
5
4
3
PAGE  
0
2
1
0
Field  
RESET  
R/W  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FF9H  
Bit  
Description  
[7]  
Information Area Enable  
INFO_EN 0 = Information Area us not selected.  
1 = Information Area is selected. The Information Area is mapped into the Program Memory  
address space at addresses FE00Hthrough FFFFH.  
[6:0]  
PAGE  
Page Select  
This 7-bit field identifies the Flash memory page for Page Erase and page unlocking. Program  
Memory Address[15:9] = PAGE[6:0]. For the Z8F08xx devices, the upper 3 bits must be zero.  
For the Z8F04xx devices, the upper 4 bits must be zero. For Z8F02xx devices, the upper 5 bits  
must always be 0. For the Z8F01xx devices, the upper 6 bits must always be 0.  
PS022829-0814  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
157  
Flash Sector Protect Register  
The Flash Sector Protect (FPROT) Register is shared with the Flash Page Select Register.  
When the Flash Control Register is written with 5EH, the next write to this address targets  
the Flash Sector Protect Register. In all other cases, it targets the Flash Page Select Regis-  
ter.  
This register selects one of the 8 available Flash memory sectors to be protected. The reset  
state of each Sector Protect bit is an unprotected state. After a sector is protected by setting  
its corresponding register bit, it cannot be unprotected (the register bit cannot be cleared)  
without powering down the device.  
Table 83. Flash Sector Protect Register (FPROT)  
Bit  
7
6
5
4
3
2
1
0
Field  
SPROT7 SPROT6 SPROT5 SPROT4 SPROT3 SPROT2 SPROT1 SPROT0  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FF9H  
Bit  
Description  
[7:0]  
Sector Protection  
SPROTn Each bit corresponds to a 1024-byte Flash sector on devices in the 8K range, while the  
remaining devices correspond to a 512-byte Flash sector. To determine the appropriate Flash  
memory sector address range and sector number for your Z8F082A Series product, please  
refer to Table 78 on page 146 and to Figure 21, which follows the table.  
• For Z8F08xA and Z8F04xA devices, all bits are used.  
• For Z8F02xA devices, the upper 4 bits are unused.  
• For Z8F01xA devices, the upper 6 bits are unused.  
Flash Frequency High and Low Byte Registers  
The Flash Frequency High (FFREQH) and Low Byte (FFREQL) registers combine to  
form a 16-bit value, FFREQ, to control timing for Flash program and erase operations.  
The 16-bit binary Flash Frequency value must contain the system clock frequency (in  
kHz) and is calculated using the following equation:  
System Clock Frequency  
-------------------------------------------------------  
FFREQ[15:0] = FFREQH[7:0],FFREQL[7:0]=  
1000  
PS022829-0814  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
158  
The Flash Frequency High and Low Byte registers must be loaded with the correct value  
to ensure proper operation of the device. Also, Flash programming and erasure is not sup-  
ported for system clock frequencies below 20kHz or above 20MHz.  
Caution:  
Table 84. Flash Frequency High Byte Register (FFREQH)  
Bit  
7
6
5
4
3
2
1
0
Field  
RESET  
R/W  
FFREQH  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FFAH  
Bit  
Description  
[7:0]  
Flash Frequency High Byte  
FFREQH High byte of the 16-bit Flash Frequency value.  
Table 85. Flash Frequency Low Byte Register (FFREQL)  
Bit  
7
6
5
4
3
2
1
0
Field  
FFREQL  
0
RESET  
R/W  
R/W  
Address  
FFBH  
Bit  
Description  
[7:0]  
Flash Frequency Low Byte  
FFREQL Low byte of the 16-bit Flash Frequency value.  
PS022829-0814  
P R E L I M I N A R Y  
Flash Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
159  
Flash Option Bits  
Programmable Flash option bits allow user configuration of certain aspects of Z8 Encore!  
XP F082A Series operation. The feature configuration data is stored in Flash program  
memory and loaded into holding registers during Reset. The features available for control  
through the Flash option bits include:  
Watchdog Timer time-out response selection–interrupt or system reset  
Watchdog Timer always on (enabled at Reset)  
The ability to prevent unwanted read access to user code in Program Memory  
The ability to prevent accidental programming and erasure of all or a portion of the user  
code in Program Memory  
Voltage Brown-Out configuration-always enabled or disabled during Stop Mode to re-  
duce Stop Mode power consumption  
Oscillator mode selection-for high, medium and low power crystal oscillators, or exter-  
nal RC oscillator  
Factory trimming information for the internal precision oscillator and low voltage de-  
tection  
Factory calibration values for ADC, temperature sensor and Watchdog Timer compen-  
sation  
Factory serialization and randomized lot identifier (optional)  
Operation  
This section describes the type and configuration of the programmable Flash option bits.  
Option Bit Configuration By Reset  
Each time the Flash option bits are programmed or erased, the device must be Reset for  
the change to take effect. During any reset operation (System Reset, Power-On Reset, or  
Stop Mode Recovery), the Flash option bits are automatically read from Flash program  
memory and written to the Option Configuration registers. The Option Configuration reg-  
isters control the operation of the devices within the Z8 Encore! XP F082A Series. Option  
bit control is established before the device exits Reset and the eZ8 CPU begins code exe-  
cution. The Option Configuration registers are not part of the Register File and are not  
accessible for read or write access.  
PS022829-0814  
P R E L I M I N A R Y  
Flash Option Bits  
Z8 Encore! XP® F082A Series  
Product Specification  
160  
Option Bit Types  
This section describes the five types of Flash option bits.  
User Option Bits  
The user option bits are contained in the first two bytes of program memory. User access  
to these bits has been provided because these locations contain application-specific device  
configurations. The information contained here is lost when page 0 of the program mem-  
ory is erased.  
Trim Option Bits  
The trim option bits are contained in the information page of the Flash memory. These bits  
are factory programmed values required to optimize the operation of onboard analog cir-  
cuitry and cannot be permanently altered. Program Memory may be erased without endan-  
gering these values. It is possible to alter working values of these bits by accessing the  
Trim Bit Address and Data registers, but these working values are lost after a power loss  
or any other reset event.  
There are 32 bytes of trim data. To modify one of these values the user code must first  
write a value between 00Hand 1FHinto the Trim Bit Address Register. The next write to  
the Trim Bit Data Register changes the working value of the target trim data byte.  
Reading the trim data requires the user code to write a value between 00Hand 1FHinto the  
Trim Bit Address Register. The next read from the Trim Bit Data Register returns the  
working value of the target trim data byte.  
The trim address range is from information address 20–3Fonly. The remainder of the  
Note:  
information page is not accessible through the trim bit address and data registers.  
Calibration Option Bits  
The calibration option bits are also contained in the information page. These bits are fac-  
tory-programmed values intended for use in software correcting the device’s analog per-  
formance. To read these values, the user code must employ the LDC instruction to access  
the information area of the address space as defined in See the Flash Information Area sec-  
tion on page 17.  
Serialization Bits  
As an optional feature, Zilog is able to provide factory-programmed serialization. For seri-  
alized products, the individual devices are programmed with unique serial numbers. These  
serial numbers are binary values, four bytes in length. The numbers increase in size with  
each device, but gaps in the serial sequence may exist.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
161  
These serial numbers are stored in the Flash information page and are unaffected by mass  
erasure of the device's Flash memory. See the Reading the Flash Information Page section  
below and the Serialization Data section on page 173 for more details.  
Randomized Lot Identification Bits  
As an optional feature, Zilog is able to provide a factory-programmed random lot identi-  
fier. With this feature, all devices in a given production lot are programmed with the same  
random number. This random number is uniquely regenerated for each successive produc-  
tion lot and is not likely to be repeated.  
The randomized lot identifier is a 32 byte binary value, stored in the Flash information  
page and is unaffected by mass erasure of the device’s Flash memory. See Reading the  
Flash Information Page, below, and the Randomized Lot Identifier section on page 174 for  
more details.  
Reading the Flash Information Page  
The following code example shows how to read data from the Flash information area.  
; get value at info address 60 (FE60h)  
ldx FPS, #%80 ; enable access to flash info page  
ld R0, #%FE  
ld R1, #%60  
ldc R2, @RR0 ; R2 now contains the calibration value  
Flash Option Bit Control Register Definitions  
This section briefly describes the features of the Trim Bit Address and Data registers.  
Trim Bit Address Register  
The Trim Bit Address (TRMADR) Register contains the target address for an access to the  
trim option bits (Table 86).  
Table 86. Trim Bit Address Register (TRMADR)  
Bit  
7
6
5
4
3
2
1
0
Field  
TRMADR: Trim Bit Address (00H to 1FH)  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FF6H  
PS022829-0814  
P R E L I M I N A R Y  
Flash Option Bit Control Register  
Z8 Encore! XP® F082A Series  
Product Specification  
162  
Trim Bit Data Register  
The Trim Bid Data (TRMDR) Register contains the read or write data for access to the  
trim option bits (Table 87).  
Table 87. Trim Bit Data Register (TRMDR)  
Bit  
7
6
5
4
3
2
1
0
Field  
TRMDR: Trim Bit Data  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
FF7H  
Flash Option Bit Address Space  
The first two bytes of Flash program memory at addresses 0000Hand 0001Hare reserved  
for the user-programmable Flash option bits.  
Flash Program Memory Address 0000H  
Table 88. Flash Option Bits at Program Memory Address 0000H  
Bit  
7
6
5
4
3
VBO_AO  
U
2
1
Reserved  
U
0
Field  
WDT_RES WDT_AO  
OSC_SEL[1:0]  
FRP  
U
FWP  
U
RESET  
R/W  
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Program Memory 0000H  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7]  
WDT_RES  
Watchdog Timer Reset  
0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally  
enabled for the eZ8 CPU to acknowledge the interrupt request.  
1 = Watchdog Timer time-out causes a system reset. This setting is the default for unpro-  
grammed (erased) Flash.  
[6]  
WDT_AO  
Watchdog Timer Always On  
0 = Watchdog Timer is automatically enabled upon application of system power. Watch-  
dog Timer can not be disabled.  
1 = Watchdog Timer is enabled upon execution of the WDT instruction. Once enabled,  
the Watchdog Timer can only be disabled by a Reset or Stop Mode Recovery. This  
setting is the default for unprogrammed (erased) Flash.  
PS022829-0814  
P R E L I M I N A R Y  
Flash Option Bit Address Space  
Z8 Encore! XP® F082A Series  
Product Specification  
163  
Bit  
Description (Continued)  
Oscillator Mode Selection  
[5:4]  
OSC_SEL[1:0] 00 = On-chip oscillator configured for use with external RC networks (<4MHz).  
01 = Minimum power for use with very low frequency crystals (32kHz to 1.0MHz).  
10 = Medium power for use with medium frequency crystals or ceramic resonators  
(0.5MHz to 5.0MHz).  
11 = Maximum power for use with high frequency crystals (5.0MHz to 20.0MHz). This  
setting is the default for unprogrammed (erased) Flash.  
[3]  
VBO_AO  
Voltage Brown-Out Protection Always On  
0 = Voltage Brown-Out Protection can be disabled in Stop Mode to reduce total power  
consumption. For the block to be disabled, the power control register bit must also be  
written (see the Power Control Register Definitions section on page 33).  
1 = Voltage Brown-Out Protection is always enabled including during Stop Mode. This  
setting is the default for unprogrammed (erased) Flash.  
[2]  
FRP  
Flash Read Protect  
0 = User program code is inaccessible. Limited control features are available through the  
On-Chip Debugger.  
1 = User program code is accessible. All On-Chip Debugger commands are enabled.  
This setting is the default for unprogrammed (erased) Flash.  
[1]  
Reserved  
This bit is reserved and must be programmed to 1.  
[0]  
FWP  
Flash Write Protect  
This Option Bit provides Flash Program Memory protection:  
0 = Programming and erasure disabled for all of Flash Program Memory. Programming,  
Page Erase and Mass Erase through User Code is disabled. Mass Erase is available  
using the On-Chip Debugger.  
1 = Programming, Page Erase and Mass Erase are enabled for all of Flash program  
memory.  
PS022829-0814  
P R E L I M I N A R Y  
Flash Option Bit Address Space  
Z8 Encore! XP® F082A Series  
Product Specification  
164  
Flash Program Memory Address 0001H  
Table 89. Flash Options Bits at Program Memory Address 0001H  
Bit  
7
6
Reserved  
U
5
4
XTLDIS  
U
3
2
1
0
Field  
Reserved  
RESET  
R/W  
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Program Memory 0001H  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:5]  
Reserved  
These bits are reserved and must be programmed to 111.  
[4]  
State of the Crystal Oscillator at Reset  
XTLDIS This bit only enables the crystal oscillator. Its selection as a system clock must be performed  
manually.  
0 = Crystal oscillator is enabled during reset, resulting in longer reset timing.  
1 = Crystal oscillator is disabled during reset, resulting in shorter reset timing.  
Caution: Programming the XTLDIS bit to zero on 8-pin versions of this device prevents any  
further communication via the debug pin due to the fact that the X and DBG functions are  
IN  
shared on pin 2 of this package. Do not program this bit to zero on 8-pin devices unless further  
debugging or Flash programming is not required.  
[3:0]  
Reserved  
These bits are reserved and must be programmed to 1111.  
PS022829-0814  
P R E L I M I N A R Y  
Flash Option Bit Address Space  
Z8 Encore! XP® F082A Series  
Product Specification  
165  
Trim Bit Address Space  
All available Trim bit addresses and their functions are listed in Table 90 through  
Table 95.  
Trim Bit Address 0000H  
Table 90. Trim Options Bits at Address 0000H  
Bit  
7
6
5
4
3
2
1
0
Field  
Reserved  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 0020H  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
Reserved  
[7:0]  
These bits are reserved; altering this register may result in incorrect device operation.  
Trim Bit Address 0001H  
Table 91. Trim Option Bits at 0001H  
Bit  
7
6
5
4
3
2
1
0
Field  
Reserved  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 0021H  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
Reserved  
[7:0]  
These bits are reserved; altering this register may result in incorrect device operation.  
PS022829-0814  
P R E L I M I N A R Y  
Trim Bit Address Space  
Z8 Encore! XP® F082A Series  
Product Specification  
166  
Trim Bit Address 0002H  
Table 92. Trim Option Bits at 0002H (TIPO)  
Bit  
7
6
5
4
3
2
1
0
Field  
IPO_TRIM  
RESET  
R/W  
U
R/W  
Address  
Information Page Memory 0022H  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:0]  
Internal Precision Oscillator Trim Byte  
IPO_TRIM Contains trimming bits for the Internal Precision Oscillator.  
Trim Bit Address 0003H  
The LVD is available on 8-pin devices only.  
Note:  
Table 93. Trim Option Bits at Address 0003H (TLVD)  
Bit  
7
6
Reserved  
U
5
4
3
2
LVD_TRIM  
U
1
0
Field  
RESET  
R/W  
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 0023H  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:5]  
Reserved  
These bits are reserved and must be programmed to 111.  
[4:0]  
Low Voltage Detect Trimm  
LVD_TRIM This trimming affects the low voltage detection threshold. Each LSB represents a 50mV  
change in the threshold level. Alternatively, the low voltage threshold may be computed from  
the options bit value by the following equation:  
LVD_LVL = 3.6 V LVD_TRIM 0.05 V  
These values are tabulated in Table 94.  
PS022829-0814  
P R E L I M I N A R Y  
Trim Bit Address Space  
Z8 Encore! XP® F082A Series  
Product Specification  
167  
Table 94. LVD Trim Values  
LVD Threshold (V)  
LVD_TRIM  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
Typical  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
Description  
Maximum LVD threshold  
Default on Reset  
10000  
10001  
10010  
10011  
to  
2.70  
to  
11111  
1.65  
Minimum LVD threshold  
PS022829-0814  
P R E L I M I N A R Y  
Trim Bit Address Space  
Z8 Encore! XP® F082A Series  
Product Specification  
168  
Trim Bit Address 0004H  
Table 95. Trim Option Bits at 0004H  
Bit  
7
6
5
4
3
2
1
0
Field  
Reserved  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 0024H  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
Reserved  
[7:0]  
These bits are reserved; altering this register may result in incorrect device operation.  
Zilog Calibration Data  
This section briefly describes the features of the following Flash option bit calibration reg-  
isters.  
ADC Calibration Data: see page 169  
Temperature Sensor Calibration Data: see page 171  
Watchdog Timer Calibration Data: see page 172  
Serialization Data: see page 173  
Randomized Lot Identifier: see page 174  
PS022829-0814  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F082A Series  
Product Specification  
169  
ADC Calibration Data  
Table 96. ADC Calibration Bits  
Bit  
7
6
5
4
3
2
1
0
Field  
ADC_CAL  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 0060H–007DH  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:0]  
Analog-to-Digital Converter Calibration Values  
ADC_CAL Contains factory-calibrated values for ADC gain and offset compensation. Each of the ten  
supported modes has one byte of offset calibration and two bytes of gain calibration. These  
values are read by the software to compensate ADC measurements as described in the  
Software Compensation Procedure Using Factory Calibration Data section on page 129.  
The location of each calibration byte is provided in Table 97.  
Table 97. ADC Calibration Data Location  
Info Page  
Address  
Memory  
Address  
Compensation Usage  
Offset  
ADC Mode  
Reference Type  
Internal 2.0 V  
Internal 2.0 V  
Internal 2.0 V  
Internal 1.0 V  
Internal 1.0 V  
Internal 1.0 V  
External 2.0 V  
External 2.0 V  
External 2.0 V  
Internal 2.0 V  
Internal 2.0 V  
Internal 2.0 V  
External 2.0 V  
External 2.0 V  
External 2.0 V  
Internal 2.0 V  
60  
08  
09  
63  
0A  
0B  
66  
0C  
0D  
69  
0E  
0F  
6C  
10  
11  
FE60  
FE08  
FE09  
FE63  
FE0A  
FE0B  
FE66  
FE0C  
FE0D  
FE69  
FE0E  
FE0F  
FE6C  
FE10  
FE11  
FE6F  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended 1x Buffered  
Single-Ended 1x Buffered  
Single-Ended 1x Buffered  
Single-Ended 1x Buffered  
Single-Ended 1x Buffered  
Single-Ended 1x Buffered  
Differential Unbuffered  
Gain High Byte  
Gain Low Byte  
Offset  
Gain High Byte  
Gain Low Byte  
Offset  
Gain High Byte  
Gain Low Byte  
Offset  
Gain High Byte  
Gain Low Byte  
Offset  
Gain High Byte  
Gain Low Byte  
Offset  
6F  
PS022829-0814  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F082A Series  
Product Specification  
170  
Table 97. ADC Calibration Data Location (Continued)  
Info Page  
Address  
Memory  
Address  
Compensation Usage  
Positive Gain High Byte  
Positive Gain Low Byte  
ADC Mode  
Reference Type  
Internal 2.0 V  
Internal 2.0 V  
Internal 2.0 V  
Internal 2.0 V  
Internal 1.0 V  
Internal 1.0 V  
Internal 1.0 V  
Internal 1.0 V  
Internal 1.0 V  
External 2.0 V  
External 2.0 V  
External 2.0 V  
External 2.0 V  
External 2.0 V  
Internal 2.0 V  
Internal 2.0 V  
Internal 2.0 V  
Internal 2.0 V  
Internal 2.0 V  
External 2.0 V  
External 2.0 V  
External 2.0 V  
External 2.0 V  
External 2.0 V  
12  
13  
30  
31  
72  
14  
15  
32  
33  
75  
16  
17  
34  
35  
78  
18  
19  
36  
37  
7B  
1A  
1B  
38  
39  
FE12  
FE13  
FE30  
FE31  
FE72  
FE14  
FE15  
FE32  
FE33  
FE75  
FE16  
FE17  
FE34  
FE35  
FE78  
FE18  
FE19  
FE36  
FE37  
FE7B  
FE1A  
FE1B  
FE38  
FE39  
Differential Unbuffered  
Differential Unbuffered  
Negative Gain High Byte Differential Unbuffered  
Negative Gain Low Byte Differential Unbuffered  
Offset  
Differential Unbuffered  
Differential Unbuffered  
Differential Unbuffered  
Positive Gain High Byte  
Positive Gain Low Byte  
Negative Gain High Byte Differential Unbuffered  
Negative Gain Low Byte Differential Unbuffered  
Offset  
Differential Unbuffered  
Differential Unbuffered  
Differential Unbuffered  
Positive Gain High Byte  
Positive Gain Low Byte  
Negative Gain High Byte Differential Unbuffered  
Negative Gain Low Byte Differential Unbuffered  
Offset  
Differential 1x Buffered  
Differential 1x Buffered  
Differential 1x Buffered  
Positive Gain High Byte  
Positive Gain Low Byte  
Negative Gain High Byte Differential 1x Buffered  
Negative Gain Low Byte Differential 1x Buffered  
Offset  
Differential 1x Buffered  
Differential 1x Buffered  
Differential 1x Buffered  
Positive Gain High Byte  
Positive Gain Low Byte  
Negative Gain High Byte Differential 1x Buffered  
Negative Gain Low Byte Differential 1x Buffered  
PS022829-0814  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F082A Series  
Product Specification  
171  
Temperature Sensor Calibration Data  
Table 98. Temperature Sensor Calibration High Byte at 003A (TSCALH)  
Bit  
7
6
5
4
3
2
1
0
Field  
TSCALH  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 003A  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:0]  
Temperature Sensor Calibration High Byte  
TSCALH The TSCALH and TSCALL bytes combine to form the 12-bit temperature sensor offset calibra-  
tion value. For more details, see Temperature Sensor Operation on page 139.  
Table 99. Temperature Sensor Calibration Low Byte at 003B (TSCALL)  
Bit  
7
6
5
4
3
2
1
0
Field  
TSCALL  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 003B  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:0]  
Temperature Sensor Calibration Low Byte  
TSCALL The TSCALH and TSCALL bytes combine to form the 12-bit temperature sensor offset calibra-  
tion value. For usage details, see the Temperature Sensor Operation section on page 144.  
PS022829-0814  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F082A Series  
Product Specification  
172  
Watchdog Timer Calibration Data  
Table 100. Watchdog Calibration High Byte at 007EH (WDTCALH)  
Bit  
7
6
5
4
3
2
1
0
Field  
WDTCALH  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 007EH  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:0]  
Watchdog Timer Calibration High Byte  
WDTCALH The WDTCALH and WDTCALL bytes, when loaded into the Watchdog Timer reload regis-  
ters result in a one second time-out at room temperature and 3.3V supply voltage. To use  
the Watchdog Timer calibration, user code must load WDTU with 0x00, WDTH with WDT-  
CALH and WDTL with WDTCALL.  
PS022829-0814  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F082A Series  
Product Specification  
173  
Table 101. Watchdog Calibration Low Byte at 007FH (WDTCALL)  
Bit  
7
6
5
4
3
2
1
0
Field  
WDTCALL  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 007FH  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:0]  
Watchdog Timer Calibration Low Byte  
WDTCALL The WDTCALH and WDTCALL bytes, when loaded into the Watchdog Timer reload regis-  
ters result in a one second time-out at room temperature and 3.3V supply voltage. To use  
the Watchdog Timer calibration, user code must load WDTU with 0x00, WDTH with WDT-  
CALH and WDTL with WDTCALL.  
Serialization Data  
Table 102. Serial Number at 001C - 001F (S_NUM)  
Bit  
7
6
5
4
3
2
1
0
Field  
S_NUM  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Information Page Memory 001C-001F  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7:0]  
Serial Number Byte  
S_NUM The serial number is a unique four-byte binary value. See Table 103.  
Table 103. Serialization Data Locations  
Info Page  
Address  
Memory  
Address  
Usage  
1C  
1D  
1E  
1F  
FE1C  
FE1D  
FE1E  
FE1F  
Serial Number Byte 3 (most significant).  
Serial Number Byte 2.  
Serial Number Byte 1.  
Serial Number Byte 0 (least significant).  
PS022829-0814  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F082A Series  
Product Specification  
174  
Randomized Lot Identifier  
Table 104. Lot Identification Number (RAND_LOT)  
Bit  
7
6
5
4
3
2
1
0
Field  
RAND_LOT  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
Interspersed throughout Information Page Memory  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Bit  
Description  
[7]  
Randomized Lot ID  
RAND_LOT The randomized lot ID is a 32-byte binary value that changes for each production lot. See  
Table 105.  
Table 105. Randomized Lot ID Locations  
Info Page  
Address  
Memory  
Address  
Usage  
3C  
3D  
3E  
3F  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
61  
62  
64  
65  
67  
68  
FE3C  
FE3D  
FE3E  
FE3F  
FE58  
FE59  
FE5A  
FE5B  
FE5C  
FE5D  
FE5E  
FE5F  
FE61  
FE62  
FE64  
FE65  
FE67  
FE68  
Randomized Lot ID Byte 31 (most significant).  
Randomized Lot ID Byte 30.  
Randomized Lot ID Byte 29.  
Randomized Lot ID Byte 28.  
Randomized Lot ID Byte 27.  
Randomized Lot ID Byte 26.  
Randomized Lot ID Byte 25.  
Randomized Lot ID Byte 24.  
Randomized Lot ID Byte 23.  
Randomized Lot ID Byte 22.  
Randomized Lot ID Byte 21.  
Randomized Lot ID Byte 20.  
Randomized Lot ID Byte 19.  
Randomized Lot ID Byte 18.  
Randomized Lot ID Byte 17.  
Randomized Lot ID Byte 16.  
Randomized Lot ID Byte 15.  
Randomized Lot ID Byte 14.  
PS022829-0814  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F082A Series  
Product Specification  
175  
Table 105. Randomized Lot ID Locations (Continued)  
Info Page  
Address  
Memory  
Address  
Usage  
6A  
6B  
6D  
6E  
70  
71  
73  
74  
76  
77  
79  
7A  
7C  
7D  
FE6A  
FE6B  
FE6D  
FE6E  
FE70  
FE71  
FE73  
FE74  
FE76  
FE77  
FE79  
FE7A  
FE7C  
FE7D  
Randomized Lot ID Byte 13.  
Randomized Lot ID Byte 12.  
Randomized Lot ID Byte 11.  
Randomized Lot ID Byte 10.  
Randomized Lot ID Byte 9.  
Randomized Lot ID Byte 8.  
Randomized Lot ID Byte 7.  
Randomized Lot ID Byte 6.  
Randomized Lot ID Byte 5.  
Randomized Lot ID Byte 4.  
Randomized Lot ID Byte 3.  
Randomized Lot ID Byte 2.  
Randomized Lot ID Byte 1.  
Randomized Lot ID Byte 0 (least significant).  
PS022829-0814  
P R E L I M I N A R Y  
Zilog Calibration Data  
Z8 Encore! XP® F082A Series  
Product Specification  
176  
Nonvolatile Data Storage  
The Z8 Encore! XP F082A Series devices contain a nonvolatile data storage (NVDS) ele-  
ment of up to 128 bytes. This memory can perform over 100,000 write cycles.  
Operation  
The NVDS is implemented by special purpose Zilog software stored in areas of program  
memory, which are not user-accessible. These special-purpose routines use the Flash  
memory to store the data. The routines incorporate a dynamic addressing scheme to maxi-  
mize the write/erase endurance of the Flash.  
Different members of the Z8 Encore! XP F082A Series feature multiple NVDS array  
sizes; see the Part Selection Guide section on page 2 for details. Devices containing 8KB  
of Flash memory do not include the NVDS feature.  
Note:  
NVDS Code Interface  
Two routines are required to access the NVDS: a write routine and a read routine. Both of  
these routines are accessed with a CALL instruction to a predefined address outside of the  
user-accessible program memory. Both the NVDS address and data are single-byte values.  
Because these routines disturb the working register set, user code must ensure that any  
required working register values are preserved by pushing them onto the stack or by  
changing the working register pointer just prior to NVDS execution.  
During both read and write accesses to the NVDS, interrupt service is NOT disabled. Any  
interrupts that occur during the NVDS execution must take care not to disturb the working  
register and existing stack contents or else the array may become corrupted. Disabling  
interrupts before executing NVDS operations is recommended.  
Use of the NVDS requires 15 bytes of available stack space. Also, the contents of the  
working register set are overwritten.  
For correct NVDS operation, the Flash Frequency registers must be programmed based on  
the system clock frequency (see the Flash Operation Timing Using the Flash Frequency  
Registers section on page 149).  
PS022829-0814  
P R E L I M I N A R Y  
Nonvolatile Data Storage  
Z8 Encore! XP® F082A Series  
Product Specification  
177  
Byte Write  
To write a byte to the NVDS array, the user code must first push the address, then the data  
byte onto the stack. The user code issues a CALLinstruction to the address of the byte-  
write routine (0x10B3). At the return from the sub-routine, the write status byte resides in  
working register R0. The bit fields of this status byte are defined in Table 106. The con-  
tents of the status byte are undefined for write operations to illegal addresses. Also, user  
code must pop the address and data bytes off the stack.  
The write routine uses 13 bytes of stack space in addition to the two bytes of address and  
data pushed by the user. Sufficient memory must be available for this stack usage.  
Because of the Flash memory architecture, NVDS writes exhibit a nonuniform execution  
time. In general, a write takes 251µs (assuming a 20MHz system clock). Every 400 to 500  
writes, however, a maintenance operation is necessary. In this rare occurrence, the write  
takes up to 61ms to complete. Slower system clock speeds result in proportionally higher  
execution times.  
NVDS byte writes to invalid addresses (those exceeding the NVDS array size) have no  
effect. Illegal write operations have a 2µs execution time.  
Table 106. Write Status Byte  
Bit  
7
6
5
4
3
2
1
0
Field  
Reserved  
RCPY  
PF  
AWE  
DWE  
Default  
Value  
0
0
0
0
0
0
0
0
Bit  
Description  
Reserved  
[7:4]  
These bits are reserved and must be programmed to 0000.  
[3]  
RCPY  
Recopy Subroutine Executed  
A recopy subroutine was executed. These operations take significantly longer than a normal  
write operation.  
[2]  
PF  
Power Failure Indicator  
A power failure or system reset occurred during the most recent attempted write to the NVDS  
array.  
[1]  
AWE  
Address Write Error  
An address byte failure occurred during the most recent attempted write to the NVDS array.  
[0]  
DWE  
Data Write Error  
A data byte failure occurred during the most recent attempted write to the NVDS array.  
PS022829-0814  
P R E L I M I N A R Y  
NVDS Code Interface  
Z8 Encore! XP® F082A Series  
Product Specification  
178  
Byte Read  
To read a byte from the NVDS array, user code must first push the address onto the stack.  
User code issues a CALLinstruction to the address of the byte-read routine (0x1000). At  
the return from the sub-routine, the read byte resides in working register R0 and the read  
status byte resides in working register R1. The contents of the status byte are undefined for  
read operations to illegal addresses. Also, the user code must pop the address byte off the  
stack.  
The read routine uses 9 bytes of stack space in addition to the one byte of address pushed  
by the user. Sufficient memory must be available for this stack usage.  
Because of the Flash memory architecture, NVDS reads exhibit a nonuniform execution  
time. A read operation takes between 44 s and 489 s (assuming a 20MHz system  
clock). Slower system clock speeds result in proportionally higher execution times.  
NVDS byte reads from invalid addresses (those exceeding the NVDS array size) return  
0xff. Illegal read operations have a 2 s execution time.  
The status byte returned by the NVDS read routine is zero for successful read, as deter-  
mined by a CRC check. If the status byte is nonzero, there was a corrupted value in the  
NVDS array at the location being read. In this case, the value returned in R0 is the byte  
most recently written to the array that does not have a CRC error.  
Power Failure Protection  
The NVDS routines employ error checking mechanisms to ensure a power failure endan-  
gers only the most recently written byte. Bytes previously written to the array are not per-  
turbed.  
A system reset (such as a pin reset or Watchdog Timer reset) that occurs during a write  
operation also perturbs the byte currently being written. All other bytes in the array are  
unperturbed.  
Optimizing NVDS Memory Usage for Execution Speed  
NVDS read time can vary drastically. This discrepancy is a trade-off for minimizing the  
frequency of writes that require post-write page erases, as indicated in Table 107. The  
NVDS read time of address N is a function of the number of writes to addresses other than  
N since the most recent write to address N, plus the number of writes since the most recent  
page erase. Neglecting effects caused by page erases and results caused by the initial con-  
dition in which the NVDS is blank, a rule of thumb is that every write since the most  
recent page erase causes read times of unwritten addresses to increase by 1s up to a max-  
imum of (511-NVDS_SIZE)s.  
PS022829-0814  
P R E L I M I N A R Y  
NVDS Code Interface  
Z8 Encore! XP® F082A Series  
Product Specification  
179  
Table 107. NVDS Read Time  
Minimum  
Latency  
Maximum  
Latency  
Operation  
Read (16 byte array)  
Read (64 byte array)  
Read (128 byte array)  
Write (16 byte array)  
Write (64 byte array)  
Write (128 byte array)  
Illegal Read  
875  
876  
883  
4973  
4971  
4984  
43  
9961  
8952  
7609  
5009  
5013  
5023  
43  
Illegal Write  
31  
31  
If NVDS read performance is critical to your software architecture, you can optimize your  
code for speed. Try the first suggestion below before attempting the second.  
1. Periodically refresh all addresses that are used. The optimal use of NVDS in terms of  
speed is to rotate the writes evenly among all addresses planned to use, bringing all  
reads closer to the minimum read time. Because the minimum read time is much less  
than the write time, however, actual speed benefits are not always realized.  
2. Use as few unique addresses as possible to optimize the impact of refreshing, plus  
minimize the requirement for it.  
PS022829-0814  
P R E L I M I N A R Y  
NVDS Code Interface  
Z8 Encore! XP® F082A Series  
Product Specification  
180  
On-Chip Debugger  
The Z8 Encore! XP F082A Series devices contain an integrated On-Chip Debugger  
(OCD) that provides advanced debugging features including:  
Single pin interface  
Reading and writing of the register file  
Reading and writing of program and data memory  
Setting of breakpoints and watchpoints  
Executing eZ8 CPU instructions  
Debug pin sharing with general-purpose input-output function to maximize pins avail-  
able to the user (8-pin product only)  
Architecture  
The on-chip debugger consists of four primary functional blocks: transmitter, receiver,  
auto-baud detector/generator and debug controller. Figure 23 displays the architecture of  
the on-chip debugger.  
System Clock  
Auto-Baud  
Detector/Generator  
Transmitter  
Debug Controller  
Receiver  
DBG Pin  
Figure 23. On-Chip Debugger Block Diagram  
PS022829-0814  
P R E L I M I N A R Y  
On-Chip Debugger  
Z8 Encore! XP® F082A Series  
Product Specification  
181  
Operation  
This section describes the interface and modes of operation of the On-Chip Debugger.  
OCD Interface  
The on-chip debugger uses the DBG pin for communication with an external host. This  
one-pin interface is a bidirectional, open-drain interface that transmits and receives data.  
Data transmission is half-duplex, in that transmit and receive cannot occur simultaneously.  
The serial data on the DBG pin is sent using the standard asynchronous data format  
defined in RS-232. This pin creates an interface from the Z8 Encore! XP F082A Series  
products to the serial port of a host PC using minimal external hardware.Two different  
methods for connecting the DBG pin to an RS-232 interface are displayed in Figure 24  
and Figure 25. The recommended method is the buffered implementation displayed in  
Figure 25. The DBG pin has a internal pull-up resistor which is sufficient for some appli-  
cations (for more details about the pull-up current, see the Electrical Characteristics chap-  
ter on page 226). For OCD operation at higher data rates or in noisy systems, an external  
pull-up resistor is recommended.  
For operation of the on-chip debugger, all power pins (VDD and AVDD) must be supplied  
with power and all ground pins (VSS and AVSS) must be properly grounded. The DBG  
pin is open-drain and may require an external pull-up resistor to ensure proper operation.  
Caution:  
VDD  
RS-232  
Transceiver  
10 KOhm  
DBG Pin  
Schottky  
Diode  
RS-232 TX  
RS-232 RX  
Figure 24. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface; #1 of 2  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
182  
VDD  
RS-232  
Transceiver  
10 k  
Open-Drain  
Buffer  
RS-232 TX  
RS-232 RX  
DBG Pin  
Figure 25. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface; #2 of 2  
Debug Mode  
The operating characteristics of the devices in Debug Mode are:  
The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to ex-  
ecute specific instructions  
The system clock operates unless in Stop Mode  
All enabled on-chip peripherals operate unless in Stop Mode  
Automatically exits Halt Mode  
Constantly refreshes the Watchdog Timer, if enabled  
Entering Debug Mode  
The operating characteristics of the devices entering Debug Mode are:  
The device enters Debug Mode after the eZ8 CPU executes a BRK (Breakpoint) in-  
struction  
If the DBG pin is held Low during the final clock cycle of system reset, the part enters  
Debug Mode immediately (20-/28-pin products only)  
Note: Holding the DBG pin Low for an additional 5000 (minimum) clock cycles after reset (making  
sure to account for any specified frequency error if using an internal oscillator) prevents a  
false interpretation of an Autobaud sequence (see the OCD Auto-Baud Detector/Generator  
section on page 183).  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
183  
If the PA2/RESET pin is held Low while a 32-bit key sequence is issued to the PA0/  
DBG pin, the DBG feature is unlocked. After releasing PA2/RESET, it is pulled High.  
At this point, the PA0/DBG pin may be used to autobaud and cause the device to enter  
Debug Mode. See the OCD Unlock Sequence (8-Pin Devices Only) section on  
page 185.  
Exiting Debug Mode  
The device exits Debug Mode following any of these operations:  
Clearing the DBGMODE bit in the OCD Control Register to 0  
Power-On Reset  
Voltage Brown-Out reset  
Watchdog Timer reset  
Asserting the RESET pin Low to initiate a Reset  
Driving the DBG pin Low while the device is in Stop Mode initiates a System Reset  
OCD Data Format  
The OCD interface uses the asynchronous data format defined for RS-232. Each character  
transmitted and received by the OCD consists of 1 Start bit, 8 data bits (least-significant  
bit first) and 1 Stop bit as displayed in Figure 26.  
START  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
STOP  
Figure 26. OCD Data Format  
When responding to a request for data, the OCD may commence transmitting immediately  
after receiving the stop bit of an incoming frame. Therefore, when sending the stop bit, the  
host must not actively drive the DBG pin High for more than 0.5 bit times. Zilog recom-  
mends that, if possible, the host drives the DBG pin using an open drain output to avoid  
this issue.  
Note:  
OCD Auto-Baud Detector/Generator  
To run over a range of baud rates (data bits per second) with various system clock frequen-  
cies, the On-Chip Debugger contains an Auto-Baud Detector/Generator. After a reset, the  
OCD is idle until it receives data. The OCD requires that the first character sent from the  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
184  
host is the character 80H. The character 80Hhas eight continuous bits Low (one Start bit  
plus 7 data bits), framed between High bits. The Auto-Baud Detector measures this period  
and sets the OCD Baud Rate Generator accordingly.  
The Auto-Baud Detector/Generator is clocked by the system clock. The minimum baud  
rate is the system clock frequency divided by 512. For optimal operation with asynchro-  
nous datastreams, the maximum recommended baud rate is the system clock frequency  
divided by 8. The maximum possible baud rate for asynchronous datastreams is the sys-  
tem clock frequency divided by 4, but this theoretical maximum is possible only for low  
noise designs with clean signals. Table 108 lists minimum and recommended maximum  
baud rates for sample crystal frequencies.  
Table 108. OCD Baud-Rate Limits  
Recommended  
System Clock  
Frequency (MHz)  
Recommended Maximum Standard PC Baud  
Minimum Baud  
Rate (Kbps)  
Baud Rate (Kbps)  
Rate (bps)  
1,843,200  
115,200  
2,400  
20.0  
1.0  
2500.0  
39  
125.0  
1.95  
0.064  
0.032768 (32kHz)  
4.096  
If the OCD receives a Serial Break (nine or more continuous bits Low) the Auto-Baud  
Detector/Generator resets. Reconfigure the Auto-Baud Detector/Generator by sending  
80H.  
OCD Serial Errors  
The On-Chip Debugger can detect any of the following error conditions on the DBG pin:  
Serial Break (a minimum of nine continuous bits Low)  
Framing Error (received Stopbit is Low)  
Transmit Collision (OCD and host simultaneous transmission detected by the OCD)  
When the OCD detects one of these errors, it aborts any command currently in progress,  
transmits a four character long Serial Break back to the host and resets the Auto-Baud  
Detector/Generator. A Framing Error or Transmit Collision may be caused by the host  
sending a Serial Break to the OCD. Because of the open-drain nature of the interface,  
returning a Serial Break break back to the host only extends the length of the Serial Break  
if the host releases the Serial Break early.  
The host transmits a Serial Break on the DBGpin when first connecting to the Z8 Encore!  
XP F082A Series devices or when recovering from an error. A Serial Break from the host  
resets the Auto-Baud Generator/Detector but does not reset the OCD Control Register. A  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
185  
Serial Break leaves the device in Debug Mode if that is the current mode. The OCD is held  
in Reset until the end of the Serial Break when the DBG pin returns High. Because of the  
open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the  
OCD is transmitting a character.  
OCD Unlock Sequence (8-Pin Devices Only)  
Because of pin-sharing on the 8-pin device, an unlock sequence must be performed to  
access the DBG pin. If this sequence is not completed during a system reset, then the PA0/  
DBG pin functions only as a GPIO pin.  
The following sequence unlocks the DBG pin:  
1. Hold PA2/RESET Low.  
2. Wait 5ms for the internal reset sequence to complete.  
3. Send the following bytes serially to the debug pin:  
DBG80H (autobaud)  
DBGEBH  
DBG5AH  
DBG70H  
DBGCDH (32-bit unlock key)  
4. Release PA2/RESET. The PA0/DBG pin is now identical in function to that of the  
DBG pin on the 20-/28-pin device. To enter Debug Mode, reautobaud and write 80H  
to the OCD Control Register (see the On-Chip Debugger Commands section on  
page 186).  
Between Steps 3 and 4, there is an interval during which the 8-pin device is neither in RE-  
SET nor Debug Mode. If a device has been erased or has not yet been programmed, all  
program memory bytes contain FFH. The CPU interprets this value as an illegal instruc-  
tion; therefore some irregular behavior can occur before entering Debug Mode, and the  
register values after entering Debug Mode will differ from their specified reset values.  
However, none of these irregularities prevent the programming of Flash memory. Before  
beginning system debug, Zilog recommends that some legal code be programmed into  
the 8-pin device and that a RESET occurs.  
Caution:  
Breakpoints  
Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the  
eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are  
enabled, the OCD enters Debug Mode and idles the eZ8 CPU. If Breakpoints are not  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
186  
enabled, the OCD ignores the BRK signal and the BRKinstruction operates as an NOP  
instruction.  
Breakpoints in Flash Memory  
The BRKinstruction is opcode 00H, which corresponds to the fully programmed state of a  
byte in Flash memory. To implement a Breakpoint, write 00Hto the required break  
address, overwriting the current instruction. To remove a Breakpoint, the corresponding  
page of Flash memory must be erased and reprogrammed with the original data.  
Runtime Counter  
The On-Chip Debugger contains a 16-bit Runtime Counter. It counts system clock cycles  
between Breakpoints. The counter starts counting when the On-Chip Debugger leaves  
Debug Mode and stops counting when it enters Debug Mode again or when it reaches the  
maximum count of FFFFH.  
On-Chip Debugger Commands  
The host communicates to the on-chip debugger by sending OCD commands using the  
DBG interface. During normal operation, only a subset of the OCD commands are avail-  
able. In Debug Mode, all OCD commands become available unless the user code and con-  
trol registers are protected by programming the Flash Read Protect Option bit (FRP). The  
Flash Read Protect Option bit prevents the code in memory from being read out of the Z8  
Encore! XP F082A Series device. When this option is enabled, several of the OCD com-  
mands are disabled. See Table 109.  
Table 110 on page 191 is a summary of the on-chip debugger commands. Each OCD com-  
mand is described in further detail in the bulleted list following this table. Table 110 also  
indicates those commands that operate when the device is not in Debug Mode (normal  
operation) and those commands that are disabled by programming the Flash Read Protect  
Option bit.  
Table 109. Debug Command Enable/Disable  
Enabled when  
Command  
Byte  
Not in Debug  
Mode?  
Disabled by Flash Read Protect  
Option Bit  
Debug Command  
Read OCD Revision  
Reserved  
00H  
01H  
02H  
03H  
04H  
05H  
Yes  
Read OCD Status Register  
Read Runtime Counter  
Write OCD Control Register  
Read OCD Control Register  
Yes  
Yes  
Yes  
Cannot clear DBGMODE bit.  
PS022829-0814  
P R E L I M I N A R Y  
On-Chip Debugger Commands  
Z8 Encore! XP® F082A Series  
Product Specification  
187  
Table 109. Debug Command Enable/Disable (Continued)  
Enabled when  
Not in Debug  
Mode?  
Command  
Byte  
Disabled by Flash Read Protect  
Option Bit  
Debug Command  
Write Program Counter  
Read Program Counter  
Write Register  
06H  
07H  
08H  
Disabled.  
Disabled.  
Only writes of the Flash Memory Control  
registers are allowed. Additionally, only  
the Mass Erase command is allowed to  
be written to the Flash Control Register.  
Read Register  
09H  
0AH  
Disabled.  
Disabled.  
Disabled.  
Yes.  
Write Program Memory  
Read Program Memory  
Write Data Memory  
Read Data Memory  
Read Program Memory CRC  
Reserved  
0BH  
0CH  
0DH  
0EH  
0FH  
Step Instruction  
10H  
Disabled.  
Disabled.  
Disabled.  
Stuff Instruction  
11H  
Execute Instruction  
Reserved  
12H  
13H–FFH  
In the list of OCD commands that follows, data and commands sent from the host to the  
On-Chip Debugger are identified by DBG Command/Data. Data sent from the On-  
Chip Debugger back to the host is identified by DBG Data.  
Read OCD Revision (00H). The Read OCD Revision command determines the version of  
the On-Chip Debugger. If OCD commands are added, removed, or changed, this revision  
number changes.  
DBG 00H  
DBG OCDRev[15:8] (Major revision number)  
DBG OCDRev[7:0] (Minor revision number)  
Read OCD Status Register (02H). The Read OCD Status Register command reads the  
OCDSTAT Register.  
DBG 02H  
DBG OCDSTAT[7:0]  
Read Runtime Counter (03H). The Runtime Counter counts system clock cycles in  
between Breakpoints. The 16-bit Runtime Counter counts up from 0000Hand stops at the  
maximum count of FFFFH. The Runtime Counter is overwritten during the Write Memory,  
PS022829-0814  
P R E L I M I N A R Y  
On-Chip Debugger Commands  
Z8 Encore! XP® F082A Series  
Product Specification  
188  
Read Memory, Write Register, Read Register, Read Memory CRC, Step Instruction, Stuff  
Instruction and Execute Instruction commands.  
DBG 03H  
DBG RuntimeCounter[15:8]  
DBG RuntimeCounter[7:0]  
Write OCD Control Register (04H). The Write OCD Control Register command writes  
the data that follows to the OCDCTL Register. When the Flash Read Protect Option Bit is  
enabled, the DBGMODE bit (OCDCTL[7]) can only be set to 1, it cannot be cleared to 0  
and the only method of returning the device to normal operating mode is to reset the  
device.  
DBG 04H  
DBG OCDCTL[7:0]  
Read OCD Control Register (05H). The Read OCD Control Register command reads the  
value of the OCDCTL Register.  
DBG 05H  
DBG OCDCTL[7:0]  
Write Program Counter (06H). The Write Program Counter command writes the data  
that follows to the eZ8 CPU’s Program Counter (PC). If the device is not in Debug Mode  
or if the Flash Read Protect Option bit is enabled, the Program Counter (PC) values are  
discarded.  
DBG 06H  
DBG ProgramCounter[15:8]  
DBG ProgramCounter[7:0]  
Read Program Counter (07H). The Read Program Counter command reads the value in  
the eZ8 CPU’s Program Counter (PC). If the device is not in Debug Mode or if the Flash  
Read Protect Option bit is enabled, this command returns FFFFH.  
DBG 07H  
DBG ProgramCounter[15:8]  
DBG ProgramCounter[7:0]  
Write Register (08H). The Write Register command writes data to the Register File. Data  
can be written 1–256 bytes at a time (256 bytes can be written by setting size to 0). If the  
device is not in Debug Mode, the address and data values are discarded. If the Flash Read  
Protect Option bit is enabled, only writes to the Flash Control registers are allowed and all  
other register write data values are discarded.  
DBG 08H  
DBG {4’h0,Register Address[11:8]}  
DBG Register Address[7:0]  
DBG Size[7:0]  
DBG 1-256 data bytes  
PS022829-0814  
P R E L I M I N A R Y  
On-Chip Debugger Commands  
Z8 Encore! XP® F082A Series  
Product Specification  
189  
Read Register (09H). The Read Register command reads data from the Register File.  
Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the  
device is not in Debug Mode or if the Flash Read Protect Option bit is enabled, this com-  
mand returns FFHfor all the data values.  
DBG 09H  
DBG {4’h0,Register Address[11:8]  
DBG Register Address[7:0]  
DBG Size[7:0]  
DBG 1-256 data bytes  
Write Program Memory (0AH). The Write Program Memory command writes data to  
Program Memory. This command is equivalent to the LDC and LDCI instructions. Data  
can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0).  
The on-chip Flash Controller must be written to and unlocked for the programming opera-  
tion to occur. If the Flash Controller is not unlocked, the data is discarded. If the device is  
not in Debug Mode or if the Flash Read Protect Option bit is enabled, the data is dis-  
carded.  
DBG 0AH  
DBG Program Memory Address[15:8]  
DBG Program Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Read Program Memory (0BH). The Read Program Memory command reads data from  
Program Memory. This command is equivalent to the LDC and LDCI instructions. Data  
can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If the  
device is not in Debug Mode or if the Flash Read Protect Option bit is enabled, this com-  
mand returns FFHfor the data.  
DBG 0BH  
DBG Program Memory Address[15:8]  
DBG Program Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Write Data Memory (0CH). The Write Data Memory command writes data to Data Mem-  
ory. This command is equivalent to the LDE and LDEI instructions. Data can be written  
1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is  
not in Debug Mode or if the Flash Read Protect Option bit is enabled, the data is dis-  
carded.  
DBG 0CH  
DBG Data Memory Address[15:8]  
DBG Data Memory Address[7:0]  
PS022829-0814  
P R E L I M I N A R Y  
On-Chip Debugger Commands  
Z8 Encore! XP® F082A Series  
Product Specification  
190  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Read Data Memory (0DH). The Read Data Memory command reads from Data Memory.  
This command is equivalent to the LDE and LDEI instructions. Data can be read 1 to  
65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in  
Debug Mode, this command returns FFHfor the data.  
DBG 0DH  
DBG Data Memory Address[15:8]  
DBG Data Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Read Program Memory CRC (0EH). The Read Program Memory CRC command com-  
putes and returns the Cyclic Redundancy Check (CRC) of Program Memory using the 16-  
bit CRC-CCITT polynomial. If the device is not in Debug Mode, this command returns  
FFFFHfor the CRC value. Unlike most other OCD Read commands, there is a delay from  
issuing of the command until the OCD returns the data. The OCD reads the Program  
Memory, calculates the CRC value and returns the result. The delay is a function of the  
Program Memory size and is approximately equal to the system clock period multiplied by  
the number of bytes in the Program Memory.  
DBG 0EH  
DBG CRC[15:8]  
DBG CRC[7:0]  
Step Instruction (10H). The Step Instruction command steps one assembly instruction at  
the current Program Counter (PC) location. If the device is not in Debug Mode or the  
Flash Read Protect Option bit is enabled, the OCD ignores this command.  
DBG 10H  
Stuff Instruction (11H). The Stuff Instruction command steps one assembly instruction  
and allows specification of the first byte of the instruction. The remaining 0-4 bytes of the  
instruction are read from Program Memory. This command is useful for stepping over  
instructions where the first byte of the instruction has been overwritten by a Breakpoint. If  
the device is not in Debug Mode or the Flash Read Protect Option bit is enabled, the OCD  
ignores this command.  
DBG 11H  
DBG opcode[7:0]  
Execute Instruction (12H). The Execute Instruction command allows sending an entire  
instruction to be executed to the eZ8 CPU. This command can also step over Breakpoints.  
The number of bytes to send for the instruction depends on the opcode. If the device is not  
PS022829-0814  
P R E L I M I N A R Y  
On-Chip Debugger Commands  
Z8 Encore! XP® F082A Series  
Product Specification  
191  
in Debug Mode or the Flash Read Protect Option bit is enabled, this command reads and  
discards one byte.  
DBG 12H  
DBG 1-5 byte opcode  
On-Chip Debugger Control Register Definitions  
This section describes the features of the On-Chip Debugger Control and Status registers.  
OCD Control Register  
The OCD Control Register controls the state of the On-Chip Debugger. This register is  
used to enter or exit Debug Mode and to enable the BRKinstruction. It can also reset the Z8  
Encore! XP F082A Series device.  
A reset and stop function can be achieved by writing 81Hto this register. A reset and go  
function can be achieved by writing 41Hto this register. If the device is in Debug Mode, a  
run function can be implemented by writing 40H to this register.  
Table 110. OCD Control Register (OCDCTL)  
Bit  
7
6
5
4
3
2
1
0
Field  
RESET  
R/W  
DBGMODE BRKEN DBGACK  
Reserved  
RST  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R
R
R
R
R/W  
Bit  
Description  
Debug Mode  
[7]  
DBGMODE The device enters Debug Mode when this bit is 1. When in Debug Mode, the eZ8 CPU stops  
fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is auto-  
matically set when a BRK instruction is decoded and Breakpoints are enabled. If the Flash  
Read Protect Option Bit is enabled, this bit can only be cleared by resetting the device. It  
cannot be written to 0.  
0 = The Z8 Encore! XP F082A Series device is operating in Normal Mode.  
1 = The Z8 Encore! XP F082A Series device is in Debug Mode.  
[6]  
BRKEN  
Breakpoint Enable  
This bit controls the behavior of the BRKinstruction (opcode 00H). By default, Breakpoints  
are disabled and the BRKinstruction behaves similar to an NOP instruction. If this bit is 1,  
when a BRKinstruction is decoded, the DBGMODEbit of the OCDCTL Register is automati-  
cally set to 1.  
0 = Breakpoints are disabled.  
1 = Breakpoints are enabled.  
PS022829-0814  
P R E L I M I N A R Y  
On-Chip Debugger Control Register  
Z8 Encore! XP® F082A Series  
Product Specification  
192  
Bit  
Description (Continued)  
Debug Acknowledge  
[5]  
DBGACK  
This bit enables the debug acknowledge feature. If this bit is set to 1, the OCD sends a  
Debug Acknowledge character (FFH) to the host when a Breakpoint occurs.  
0 = Debug Acknowledge is disabled.  
1 = Debug Acknowledge is enabled.  
[4:1]  
Reserved  
These bits are reserved and must be programmed to 0000.  
[0]  
RST  
Reset  
Setting this bit to 1 resets the Z8F04xA family device. The device goes through a normal  
Power-On Reset sequence with the exception that the On-Chip Debugger is not reset. This  
bit is automatically cleared to 0 at the end of reset.  
0 = No effect.  
1 = Reset the Flash Read Protect Option Bit device.  
OCD Status Register  
The OCD Status Register reports status information about the current state of the debugger  
and the system.  
Table 111. OCD Status Register (OCDSTAT)  
Bit  
7
DBG  
0
6
HALT  
0
5
4
3
2
1
0
Field  
RESET  
R/W  
FRPENB  
Reserved  
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Bit  
Description  
[7]  
DBG  
Debug Status  
0 = Normal Mode.  
1 = Debug Mode.  
[6]  
HALT  
Halt Mode  
0 = Not in Halt Mode.  
1 = In Halt Mode.  
[5]  
Flash Read Protect Option Bit Enable  
FRPENB 0 = FRP bit enabled, that allows disabling of many OCD commands.  
1 = FRP bit has no effect.  
[4:0]  
Reserved  
These bits are reserved and must be programmed to 00000.  
PS022829-0814  
P R E L I M I N A R Y  
On-Chip Debugger Control Register  
Z8 Encore! XP® F082A Series  
Product Specification  
193  
Oscillator Control  
The Z8 Encore! XP F082A Series devices uses five possible clocking schemes, each user-  
selectable:  
Internal precision trimmed RC oscillator (IPO)  
On-chip oscillator using off-chip crystal or resonator  
On-chip oscillator using external RC network  
External clock drive  
On-chip low power Watchdog Timer oscillator  
Clock failure detection circuitry  
In addition, Z8 Encore! XP F082A Series devices contain clock failure detection and  
recovery circuitry, allowing continued operation despite a failure of the system clock  
oscillator.  
Operation  
This chapter discusses the logic used to select the system clock and handle primary oscil-  
lator failures.  
System Clock Selection  
The oscillator control block selects from the available clocks. Table 112 details each clock  
source and its usage.  
PS022829-0814  
P R E L I M I N A R Y  
Oscillator Control  
Z8 Encore! XP® F082A Series  
Product Specification  
194  
Table 112. Oscillator Configuration and Selection  
Clock Source  
Characteristics  
Required Setup  
Internal Precision  
RC Oscillator  
• 32.8kHz or 5.53MHz  
• High accuracy  
• No external components required  
• Unlock and write Oscillator Control  
Register (OSCCTL) to enable and  
select oscillator at either 5.53MHz or  
32.8kHz  
External Crystal/  
Resonator  
• 32kHz to 20MHz  
• Very high accuracy (dependent on  
crystal or resonator used)  
• Configure Flash option bits for correct  
external oscillator mode  
• Unlock and write OSCCTL to enable  
crystal oscillator, wait for it to stabilize  
and select as system clock (if the  
XTLDIS option bit has been deas-  
serted, no waiting is required)  
• Requires external components  
External RC Oscilla- • 32kHz to 4MHz  
• Configure Flash option bits for correct  
tor  
• Accuracy dependent on external com- external oscillator mode  
ponents  
• Unlock and write OSCCTL to enable  
crystal oscillator and select as system  
clock  
External Clock  
Drive  
• 0 to 20MHz  
• Accuracy dependent on external clock  
source  
• Write GPIO registers to configure PB3  
pin for external clock function  
• Unlock and write OSCCTL to select  
external system clock  
• Apply external clock signal to GPIO  
Internal Watchdog • 10kHz nominal  
• Enable WDT if not enabled and wait  
until WDT Oscillator is operating  
• Unlock and write Oscillator Control  
Register (OSCCTL) to enable and  
select oscillator  
Timer Oscillator  
• Low accuracy; no external compo-  
nents required  
• Very low power consumption  
Unintentional accesses to the Oscillator Control Register can actually stop the chip by  
switching to a nonfunctioning oscillator. To prevent this condition, the oscillator control  
block employs a register unlocking/locking scheme.  
Caution:  
OSC Control Register Unlocking/Locking  
To write the Oscillator Control Register, unlock it by making two writes to the OSCCTL  
Register with the values E7Hfollowed by 18H. A third write to the OSCCTL Register  
changes the value of the actual register and returns the register to a locked state. Any other  
sequence of Oscillator Control Register writes has no effect. The values written to unlock  
the register must be ordered correctly, but are not necessarily consecutive. It is possible to  
write to or read from other registers within the unlocking/locking operation.  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
195  
When selecting a new clock source, the system clock oscillator failure detection circuitry  
and the Watchdog Timer oscillator failure circuitry must be disabled. If SOFEN and  
WOFEN are not disabled prior to a clock switch-over, it is possible to generate an inter-  
rupt for a failure of either oscillator. The Failure detection circuitry can be enabled any-  
time after a successful write of OSCSEL in the OSCCTL Register.  
The internal precision oscillator is enabled by default. If the user code changes to a differ-  
ent oscillator, it may be appropriate to disable the IPO for power savings. Disabling the  
IPO does not occur automatically.  
Clock Failure Detection and Recovery  
Should an oscillator or timer fail, there are methods of recovery, as this section describes.  
System Clock Oscillator Failure  
The Z8F04xA family devices can generate nonmaskable interrupt-like events when the  
primary oscillator fails. To maintain system function in this situation, the clock failure  
recovery circuitry automatically forces the Watchdog Timer oscillator to drive the system  
clock. The Watchdog Timer oscillator must be enabled to allow the recovery. Although  
this oscillator runs at a much slower speed than the original system clock, the CPU contin-  
ues to operate, allowing execution of a clock failure vector and software routines that  
either remedy the oscillator failure or issue a failure alert. This automatic switch-over is  
not available if the Watchdog Timer is selected as the system clock oscillator. It is also  
unavailable if the Watchdog Timer oscillator is disabled, though it is not necessary to  
enable the Watchdog Timer reset function (see the Watchdog Timer chapter on page 93).  
The primary oscillator failure detection circuitry asserts if the system clock frequency  
drops below 1kHz ±50%. If an external signal is selected as the system oscillator, it is pos-  
sible that a very slow but nonfailing clock can generate a failure condition. Under these  
conditions, do not enable the clock failure circuitry (SOFEN must be deasserted in the  
OSCCTL Register).  
Watchdog Timer Failure  
In the event of a Watchdog Timer oscillator failure, a similar nonmaskable interrupt-like  
event is issued. This event does not trigger an attendant clock switch-over, but alerts the  
CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a pri-  
mary oscillator failure. The failure detection circuitry does not function if the Watchdog  
Timer is used as the system clock oscillator or if the Watchdog Timer oscillator has been  
disabled. For either of these cases, it is necessary to disable the detection circuitry by deas-  
serting the WDFEN bit of the OSCCTL Register.  
The Watchdog Timer oscillator failure detection circuit counts system clocks while look-  
ing for a Watchdog Timer clock. The logic counts 8004 system clock cycles before deter-  
mining that a failure has occurred. The system clock rate determines the speed at which  
PS022829-0814  
P R E L I M I N A R Y  
Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
196  
the Watchdog Timer failure can be detected. A very slow system clock results in very slow  
detection times.  
It is possible to disable the clock failure detection circuitry and all functioning clock  
sources. In this case, the Z8 Encore! XP F082A Series device ceases functioning and can  
only be recovered by Power-On-Reset.  
Caution:  
Oscillator Control Register Definitions  
The Oscillator Control Register (OSCCTL) enables/disables the various oscillator circuits,  
enables/disables the failure detection/recovery circuitry and selects the primary oscillator,  
which becomes the system clock.  
The Oscillator Control Register must be unlocked before writing. Unlock the Oscillator  
Control Register by writing the two-step sequence E7Hfollowed by 18H. The register is  
locked at successful completion of a register write to the OSCCTL.  
Table 113. Oscillator Control Register (OSCCTL)  
Bit  
7
INTEN  
1
6
XTLEN  
0
5
WDTEN  
1
4
SOFEN  
0
3
WDFEN  
0
2
1
SCKSEL  
0
0
Field  
RESET  
R/W  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address  
F86H  
Bit  
Description  
[7]  
INTEN  
Internal Precision Oscillator Enable  
1 = Internal precision oscillator is enabled.  
0 = Internal precision oscillator is disabled.  
[6]  
XTLEN  
Crystal Oscillator Enable; this setting overrides the GPIO register control for PA0 and  
PA1  
1 = Crystal oscillator is enabled.  
0 = Crystal oscillator is disabled.  
[5]  
Watchdog Timer Oscillator Enable  
WDTEN 1 = Watchdog Timer oscillator is enabled.  
0 = Watchdog Timer oscillator is disabled.  
[4]  
System Clock Oscillator Failure Detection Enable  
SOFEN 1 = Failure detection and recovery of system clock oscillator is enabled.  
0 = Failure detection and recovery of system clock oscillator is disabled.  
PS022829-0814  
P R E L I M I N A R Y  
Oscillator Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
197  
Bit  
Description (Continued)  
[3]  
Watchdog Timer Oscillator Failure Detection Enable  
WDFEN 1 = Failure detection of Watchdog Timer oscillator is enabled.  
0 = Failure detection of Watchdog Timer oscillator is disabled.  
[2:0]  
System Clock Oscillator Select  
SCKSEL 000 = Internal precision oscillator functions as system clock at 5.53MHz.  
001 = Internal precision oscillator functions as system clock at 32kHz.  
010 = Crystal oscillator or external RC oscillator functions as system clock.  
011 = Watchdog Timer oscillator functions as system.  
100 = External clock signal on PB3 functions as system clock.  
101 = Reserved.  
110 = Reserved.  
111 = Reserved.  
PS022829-0814  
P R E L I M I N A R Y  
Oscillator Control Register Definitions  
Z8 Encore! XP® F082A Series  
Product Specification  
198  
Crystal Oscillator  
The products in the Z8 Encore! XP F082A Series contain an on-chip crystal oscillator for  
use with external crystals with 32kHz to 20MHz frequencies. In addition, the oscillator  
supports external RC networks with oscillation frequencies up to 4MHz or ceramic reso-  
nators with frequencies up to 8MHz. The on-chip crystal oscillator can be used to generate  
the primary system clock for the internal eZ8 CPU and the majority of the on-chip periph-  
erals. Alternatively, the XIN input pin can also accept a CMOS-level clock input signal  
(32kHz–20MHz). If an external clock generator is used, the XOUT pin must be left uncon-  
nected. The Z8 Encore! XP F082A Series products do not contain an internal clock  
divider. The frequency of the signal on the XIN input pin determines the frequency of the  
system clock.  
Although the XIN pin can be used as an input for an external clock generator, the CLKIN  
pin is better suited for such use (see the System Clock Selection section on page 193).  
Note:  
Operating Modes  
The Z8 Encore! XP F082A Series products support four oscillator modes:  
Minimum power for use with very low frequency crystals (32kHz–1MHz)  
Medium power for use with medium frequency crystals or ceramic resonators (0.5MHz  
to 8MHz)  
Maximum power for use with high frequency crystals (8MHz to 20MHz)  
On-chip oscillator configured for use with external RC networks (<4MHz)  
The oscillator mode is selected via user-programmable Flash option bits. See the Flash  
Option Bits chapter on page 159 for information.  
Crystal Oscillator Operation  
The XTLDIS Flash option bit controls whether the crystal oscillator is enabled during  
reset. The crystal may later be disabled after reset if a new oscillator has been selected as  
the system clock. If the crystal is manually enabled after reset through the OSCCTL Reg-  
ister, the user code must wait at least 1000 crystal oscillator cycles for the crystal to stabi-  
lize. After this, the crystal oscillator may be selected as the system clock.  
PS022829-0814  
P R E L I M I N A R Y  
Crystal Oscillator  
Z8 Encore! XP® F082A Series  
Product Specification  
199  
The stabilization time varies depending on the crystal, resonator or feedback network  
used. See Table 115 for transconductance values to compute oscillator stabilization times.  
Note:  
Figure 27 displays a recommended configuration for connection with an external funda-  
mental-mode, parallel-resonant crystal operating at 20MHz. Recommended 20MHz crys-  
tal specifications are provided in Table 114. Printed circuit board layouts must add no  
more than 4pF of stray capacitance to either the XIN or XOUT pins. If oscillation does not  
occur, reduce the values of capacitors C1 and C2 to decrease loading.  
On-Chip Oscillator  
XIN  
XOUT  
Crystal  
C1 = 15 pF  
C2 = 15 pF  
Figure 27. Recommended 20MHz Crystal Oscillator Configuration  
PS022829-0814  
P R E L I M I N A R Y  
Crystal Oscillator Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
200  
Table 114. Recommended Crystal Oscillator Specifications  
Parameter  
Frequency  
Resonance  
Mode  
Value  
Units  
Comments  
20  
MHz  
Parallel  
Fundamental  
Series Resistance (R )  
60  
30  
7
W
pF  
Maximum  
Maximum  
Maximum  
Maximum  
S
Load Capacitance (C )  
L
Shunt Capacitance (C )  
pF  
0
Drive Level  
1
mW  
Table 115. Transconductance Values for Low, Medium and High Gain Operating Modes  
Crystal  
Frequency  
Range  
Transconductance (mA/V)  
(Use this range  
Mode  
Function  
for calculations)  
Low Gain*  
32kHz–1MHz  
Low Power/Frequency Applications  
0.02  
0.84  
1.1  
0.04  
1.7  
0.09  
3.1  
Medium Gain* 0.5MHz–10MHz Medium Power/Frequency Applications  
High Gain* 8MHz–20MHz High Power/Frequency Applications  
2.3  
4.2  
Note: *Printed circuit board layouts must not add more than 4pF of stray capacitance to either the XIN or XOUT pins.  
if no oscillation occurs, reduce the values of the capacitors C1 and C2 to decrease the loading.  
PS022829-0814  
P R E L I M I N A R Y  
Crystal Oscillator Operation  
Z8 Encore! XP® F082A Series  
Product Specification  
201  
Oscillator Operation with an External RC Network  
Figure 28 displays a recommended configuration for connection with an external resistor-  
capacitor (RC) network.  
VDD  
R
XIN  
C
Figure 28. Connecting the On-Chip Oscillator to an External RC Network  
An external resistance value of 45kis recommended for oscillator operation with an  
external RC network. The minimum resistance value to ensure operation is 40 kThe  
typical oscillator frequency can be estimated from the values of the resistor (R in k) and  
capacitor (C in pF) elements using the following equation:  
6
110  
------------------------------------------------------  
Oscillator Frequency (kHz) =  
0.4 R C+ 4 C  
Figure 29 displays the typical (3.3V and 25°C) oscillator frequency as a function of the  
capacitor (C, in pF) employed in the RC network assuming a 45Kexternal resistor. For  
very small values of C, the parasitic capacitance of the oscillator XIN pin and the printed  
circuit board must be included in the estimation of the oscillator frequency.  
It is possible to operate the RC oscillator using only the parasitic capacitance of the pack-  
age and printed circuit board. To minimize sensitivity to external parasitics, external  
capacitance values in excess of 20pF are recommended.  
PS022829-0814  
P R E L I M I N A R Y Oscillator Operation with an External RC  
Z8 Encore! XP® F082A Series  
Product Specification  
202  
4000  
3750  
3500  
3250  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
500  
250  
0
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500  
C (pF)  
Figure 29. Typical RC Oscillator Frequency as a Function of the External Capacitance  
with a 45kResistor  
When using the external RC oscillator mode, the oscillator can stop oscillating if the  
power supply drops below 2.7V, but before the power supply drops to the Voltage Brown-  
Out threshold. The oscillator resumes oscillation when the supply voltage exceeds 2.7V.  
Caution:  
PS022829-0814  
P R E L I M I N A R Y Oscillator Operation with an External RC  
Z8 Encore! XP® F082A Series  
Product Specification  
203  
Internal Precision Oscillator  
The internal precision oscillator (IPO) is designed for use without external components.  
You can either manually trim the oscillator for a nonstandard frequency or use the auto-  
matic factory-trimmed version to achieve a 5.53MHz frequency. IPO features include:  
On-chip RC oscillator that does not require external components  
Output frequency of either 5.53MHz or 32.8kHz (contains both a fast and a slow mode)  
Trimmed through Flash option bits with user override  
Elimination of crystals or ceramic resonators in applications where very high timing  
accuracy is not required  
Operation  
An 8-bit trimming register, incorporated into the design, compensates for absolute varia-  
tion of oscillator frequency. Once trimmed the oscillator frequency is stable and does not  
require subsequent calibration. Trimming is performed during manufacturing and is not  
necessary for you to repeat unless a frequency other than 5.53MHz (fast mode) or  
32.8kHz (slow mode) is required. This trimming is done at +30ºC and a supply voltage of  
3.3V, so accuracy of this operating point is optimal.  
If not used, the IPO can be disabled by the Oscillator Control Register (see the Oscillator  
Control Register Definitions section on page 196).  
By default, the oscillator frequency is set by the factory trim value stored in the write-pro-  
tected Flash information page. However, the user code can override these trim values as  
described in the Trim Bit Address Space section on page 165.  
Select one of two frequencies for the oscillator (5.53MHz and 32.8kHz) using the OSC-  
SEL bits in the the Oscillator Control chapter on page 193.  
PS022829-0814  
P R E L I M I N A R Y  
Internal Precision Oscillator  
Z8 Encore! XP® F082A Series  
Product Specification  
204  
eZ8 CPU Instruction Set  
This chapter describes the following features of the eZ8 CPU instruction set:  
Assembly Language Programming Introduction: see page 204  
Assembly Language Syntax: see page 205  
eZ8 CPU Instruction Notation: see page 206  
eZ8 CPU Instruction Classes: see page 207  
eZ8 CPU Instruction Summary: see page 212  
Assembly Language Programming Introduction  
The eZ8 CPU assembly language provides a means for writing an application program  
without concern for actual memory addresses or machine instruction formats. A program  
written in assembly language is called a source program. Assembly language allows the  
use of symbolic addresses to identify memory locations. It also allows mnemonic codes  
(opcodes and operands) to represent the instructions themselves. The opcodes identify the  
instruction while the operands represent memory locations, registers, or immediate data  
values.  
Each assembly language program consists of a series of symbolic commands called state-  
ments. Each statement can contain labels, operations, operands and comments.  
Labels can be assigned to a particular instruction step in a source program. The label iden-  
tifies that step in the program as an entry point for use by other instructions.  
The assembly language also includes assembler directives that supplement the machine  
instruction. The assembler directives, or pseudo-ops, are not translated into a machine  
instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the  
assembly process.  
The source program is processed (assembled) by the assembler to obtain a machine lan-  
guage program called the object code. The object code is executed by the eZ8 CPU. An  
example segment of an assembly language program is detailed in the following example.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F082A Series  
Product Specification  
205  
Assembly Language Source Program Example  
JP START  
START:  
; Everything after the semicolon is a comment.  
; A label called ‘START’. The first instruction (JP START) in this  
; example causes program execution to jump to the point within the  
; program where the STARTlabel occurs.  
LD R4, R7  
; A Load (LD) instruction with two operands. The first operand,  
; Working Register R4, is the destination. The second operand,  
; Working Register R7, is the source. The contents of R7 is  
; written into R4.  
LD 234H, #%01  
; Another Load (LD) instruction with two operands.  
; The first operand, Extended Mode Register Address 234H,  
; identifies the destination. The second operand, Immediate Data  
; value 01H, is the source. The value 01His written into the  
; Register at address 234H.  
Assembly Language Syntax  
For proper instruction execution, eZ8 CPU assembly language syntax requires that the  
operands be written as ‘destination, source’. After assembly, the object code usually has  
the operands in the order ‘source, destination’, but ordering is opcode-dependent. The fol-  
lowing instruction examples illustrate the format of some basic assembly instructions and  
the resulting object code produced by the assembler. This binary format must be followed  
if manual program coding is preferred or if you intend to implement your own assembler.  
Example 1. If the contents of registers 43Hand 08Hare added and the result is stored in  
43H, the assembly syntax and resulting object code is:  
Table 116. Assembly Language Syntax Example 1  
Assembly Language Code  
Object Code  
ADD 43H, 08H  
04 08 43  
(ADD dst, src)  
(OPC src, dst)  
Example 2. In general, when an instruction format requires an 8-bit register address, that  
address can specify any register location in the range 0–255 or, using Escaped Mode  
Addressing, a Working Register R0–R15. If the contents of Register 43H and Working  
Register R8 are added and the result is stored in 43H, the assembly syntax and resulting  
object code is:  
Table 117. Assembly Language Syntax Example 2  
Assembly Language Code  
Object Code  
ADD 43H, R8  
04 E8 43  
(ADD dst, src)  
(OPC src, dst)  
PS022829-0814  
P R E L I M I N A R Y  
Assembly Language Syntax  
Z8 Encore! XP® F082A Series  
Product Specification  
206  
Register file size varies depending on the device type. See the device-specific Z8 Encore!  
XP Product Specification to determine the exact register file range available.  
eZ8 CPU Instruction Notation  
In the eZ8 CPU Instruction Summary and Description sections, the operands, condition  
codes, status flags and address modes are represented by a notational shorthand that is  
described in Table 118.  
.
Table 118. Notational Shorthand  
Notation Description  
Operand Range  
b
Bit  
b
b represents a value from 0 to 7 (000B to 111B).  
cc  
Condition code  
Refer to the Condition Codes section in the eZ8  
CPU Core User Manual (UM0128).  
DA  
ER  
Direct address  
Addrs  
Represents a number in the range 0000H to  
FFFFH.  
Extended addressing register Reg  
Reg. represents a number in the range of 000H  
to FFFH.  
IM  
Ir  
Immediate data  
#Data  
Data is a number between 00H to FFH.  
n = 0–15.  
Indirect working register  
Indirect register  
@Rn  
IR  
@Reg  
Reg. represents a number in the range of 00H  
to FFH.  
Irr  
Indirect working register pair  
Indirect register pair  
@RRp  
@Reg  
p = 0, 2, 4, 6, 8, 10, 12, or 14.  
IRR  
Reg. represents an even number in the range  
00H to FEH.  
p
Polarity  
p
Polarity is a single bit binary value of either 0B  
or 1B.  
r
Working register  
Register  
Rn  
n = 0 – 15.  
R
Reg  
Reg. represents a number in the range of 00H  
to FFH.  
RA  
Relative address  
X
X represents an index in the range of +127 to  
–128 which is an offset relative to the address of  
the next instruction.  
rr  
Working register pair  
Register pair  
RRp  
Reg  
p = 0, 2, 4, 6, 8, 10, 12, or 14.  
RR  
Reg. represents an even number in the range of  
00H to FEH.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Notation  
Z8 Encore! XP® F082A Series  
Product Specification  
207  
Table 118. Notational Shorthand (Continued)  
Operand Range  
Notation Description  
Vector  
Vector address  
Vector  
Vector represents a number in the range of 00H  
to FFH.  
X
Indexed  
#Index  
The register or register pair to be indexed is off-  
set by the signed Index value (#Index) in a +127  
to –128 range.  
Table 119 lists additional symbols that are used throughout the Instruction Summary and  
Instruction Set Description sections.  
Table 119. Additional Symbols  
Symbol  
dst  
src  
@
Definition  
Destination Operand  
Source Operand  
Indirect Address Prefix  
Stack Pointer  
SP  
PC  
FLAGS  
RP  
#
Program Counter  
Flags Register  
Register Pointer  
Immediate Operand Prefix  
Binary Number Suffix  
Hexadecimal Number Prefix  
Hexadecimal Number Suffix  
B
%
H
Assignment of a value is indicated by an arrow, as shown in the following example.  
dst dst + src  
This example indicates that the source data is added to the destination data; the result is  
stored in the destination location.  
eZ8 CPU Instruction Classes  
eZ8 CPU instructions can be divided functionally into the following groups:  
Arithmetic  
Bit Manipulation  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Classes  
Z8 Encore! XP® F082A Series  
Product Specification  
208  
Block Transfer  
CPU Control  
Load  
Logical  
Program Control  
Rotate and Shift  
Tables 120 through 127 list the instructions belonging to each group and the number of  
operands required for each instruction. Some instructions appear in more than one table as  
these instruction can be considered as a subset of more than one category. Within these  
tables, the source operand is identified as src, the destination operand is dst and a condi-  
tion code is cc.  
Table 120. Arithmetic Instructions  
Mnemonic  
ADC  
Operands  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst  
Instruction  
Add with Carry  
ADCX  
ADD  
Add with Carry using Extended Addressing  
Add  
ADDX  
CP  
Add using Extended Addressing  
Compare  
CPC  
Compare with Carry  
CPCX  
CPX  
Compare with Carry using Extended Addressing  
Compare using Extended Addressing  
Decimal Adjust  
DA  
DEC  
dst  
Decrement  
DECW  
INC  
dst  
Decrement Word  
dst  
Increment  
INCW  
MULT  
SBC  
dst  
Increment Word  
dst  
Multiply  
dst, src  
dst, src  
dst, src  
dst, src  
Subtract with Carry  
SBCX  
SUB  
Subtract with Carry using Extended Addressing  
Subtract  
SUBX  
Subtract using Extended Addressing  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Classes  
Z8 Encore! XP® F082A Series  
Product Specification  
209  
Table 121. Bit Manipulation Instructions  
Mnemonic  
BCLR  
BIT  
Operands  
bit, dst  
p, bit, dst  
bit, dst  
dst  
Instruction  
Bit Clear  
Bit Set or Clear  
Bit Set  
BSET  
BSWAP  
CCF  
Bit Swap  
Complement Carry Flag  
Reset Carry Flag  
Set Carry Flag  
Test Complement Under Mask  
RCF  
SCF  
TCM  
dst, src  
dst, src  
TCMX  
Test Complement Under Mask using Extended  
Addressing  
TM  
dst, src  
dst, src  
Test Under Mask  
TMX  
Test Under Mask using Extended Addressing  
Table 122. Block Transfer Instructions  
Mnemonic  
Operands  
Instruction  
LDCI  
dst, src  
Load Constant to/from Program Memory and Auto-  
Increment Addresses  
LDEI  
dst, src  
Load External Data to/from Data Memory and Auto-  
Increment Addresses  
Table 123. CPU Control Instructions  
Mnemonic  
ATM  
CCF  
DI  
Operands  
Instruction  
Atomic Execution  
Complement Carry Flag  
Disable Interrupts  
Enable Interrupts  
Halt Mode  
EI  
HALT  
NOP  
No Operation  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Classes  
Z8 Encore! XP® F082A Series  
Product Specification  
210  
Table 123. CPU Control Instructions (Continued)  
Mnemonic  
RCF  
Operands  
Instruction  
src  
Reset Carry Flag  
Set Carry Flag  
SCF  
SRP  
Set Register Pointer  
Stop Mode  
STOP  
WDT  
Watchdog Timer Refresh  
Table 124. Load Instructions  
Mnemonic  
CLR  
Operands  
dst  
Instruction  
Clear  
LD  
dst, src  
dst, src  
dst, src  
Load  
LDC  
Load Constant to/from Program Memory  
LDCI  
Load Constant to/from Program Memory and Auto-  
Increment Addresses  
LDE  
dst, src  
dst, src  
Load External Data to/from Data Memory  
LDEI  
Load External Data to/from Data Memory and Auto-  
Increment Addresses  
LDWX  
LDX  
dst, src  
dst, src  
dst, X(src)  
dst  
Load Word using Extended Addressing  
Load using Extended Addressing  
Load Effective Address  
Pop  
LEA  
POP  
POPX  
PUSH  
PUSHX  
dst  
Pop using Extended Addressing  
Push  
src  
src  
Push using Extended Addressing  
Table 125. Logical Instructions  
Mnemonic  
AND  
Operands  
dst, src  
dst, src  
dst  
Instruction  
Logical AND  
ANDX  
COM  
Logical AND using Extended Addressing  
Complement  
OR  
dst, src  
dst, src  
dst, src  
dst, src  
Logical OR  
ORX  
Logical OR using Extended Addressing  
Logical Exclusive OR  
XOR  
XORX  
Logical Exclusive OR using Extended Addressing  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Classes  
Z8 Encore! XP® F082A Series  
Product Specification  
211  
Table 126. Program Control Instructions  
Mnemonic  
BRK  
Operands  
Instruction  
On-Chip Debugger Break  
BTJ  
p, bit, src, DA Bit Test and Jump  
BTJNZ  
BTJZ  
CALL  
DJNZ  
IRET  
JP  
bit, src, DA  
Bit Test and Jump if Non-Zero  
bit, src, DA  
Bit Test and Jump if Zero  
Call Procedure  
dst  
dst, src, RA  
Decrement and Jump Non-Zero  
Interrupt Return  
Jump  
dst  
dst  
DA  
DA  
JP cc  
JR  
Jump Conditional  
Jump Relative  
JR cc  
RET  
Jump Relative Conditional  
Return  
TRAP  
vector  
Software Trap  
Table 127. Rotate and Shift Instructions  
Mnemonic  
BSWAP  
RL  
Operands  
dst  
Instruction  
Bit Swap  
dst  
Rotate Left  
RLC  
dst  
Rotate Left through Carry  
Rotate Right  
RR  
dst  
RRC  
dst  
Rotate Right through Carry  
Shift Right Arithmetic  
Shift Right Logical  
Swap Nibbles  
SRA  
dst  
SRL  
dst  
SWAP  
dst  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Classes  
Z8 Encore! XP® F082A Series  
Product Specification  
212  
eZ8 CPU Instruction Summary  
Table 128 summarizes the eZ8 CPU instructions. The table identifies the addressing  
modes employed by the instruction, the effect upon the Flags Register, the number of CPU  
clock cycles required for the instruction fetch and the number of CPU clock cycles  
required for the instruction execution.  
Table 128. eZ8 CPU Instruction Summary  
Address  
Mode  
Fetch Instr.  
Cycle Cycle  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Symbolic Operation dst src  
C Z S V D H  
s
2
2
3
3
3
3
4
4
2
2
3
3
3
3
4
4
s
3
4
3
4
3
4
3
3
3
4
3
4
3
4
3
3
ADC dst, src  
dst dst + src + C  
r
r
r
12  
13  
14  
15  
16  
17  
18  
19  
02  
03  
04  
05  
06  
07  
08  
09  
*
*
*
*
0
*
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
r
R
IR  
ER  
ER  
r
ADCX dst, src  
ADD dst, src  
dst dst + src + C  
dst dst + src  
*
*
*
*
*
*
*
*
0
0
*
*
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
ADDX dst, src  
dst dst + src  
*
*
*
*
0
*
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F082A Series  
Product Specification  
213  
Table 128. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Fetch Instr.  
Cycle Cycle  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Symbolic Operation dst  
src  
C Z S V D H  
s
2
2
3
3
3
3
4
4
1
s
3
4
3
4
3
4
3
3
2
AND dst, src  
dst dst AND src  
r
r
r
52  
53  
54  
55  
56  
57  
58  
59  
2F  
*
*
0
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
ANDX dst, src  
ATM  
dst dst AND src  
*
*
0
Block all interrupt and  
DMA requests during  
execution of the next  
3 instructions  
BCLR bit, dst  
BIT p, bit, dst  
BRK  
dst[bit] 0  
r
r
E2  
E2  
00  
E2  
D5  
F6  
F7  
F6  
F7  
F6  
F7  
X
*
*
0
2
2
1
2
2
3
3
3
3
3
3
2
2
1
2
2
3
4
3
4
3
4
dst[bit] p  
Debugger Break  
dst[bit] 1  
BSET bit, dst  
BSWAP dst  
r
dst[7:0] dst[0:7]  
R
BTJ p, bit, src, if src[bit] = p  
dst PC PC + X  
r
Ir  
r
BTJNZ bit, src, if src[bit] = 1  
dst  
PC PC + X  
Ir  
r
BTJZ bit, src,  
dst  
if src[bit] = 0  
PC PC + X  
Ir  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F082A Series  
Product Specification  
214  
Table 128. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Fetch Instr.  
Cycle Cycle  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Symbolic Operation dst  
src  
C Z S V D H  
s
2
3
s
6
3
CALL dst  
SP SP -2  
@SP PC  
PC dst  
IRR  
D4  
D6  
DA  
CCF  
C ~C  
EF  
B0  
*
– –-  
1
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
5
5
4
4
2
2
3
2
3
3
4
3
4
3
4
3
4
3
4
3
4
3
3
3
3
CLR dst  
dst 00H  
R
IR  
R
B1  
COM dst  
dst ~dst  
60  
*
*
*
*
*
0
*
IR  
r
61  
CP dst, src  
dst - src  
r
A2  
r
Ir  
A3  
R
R
A4  
R
IR  
IM  
IM  
r
A5  
R
A6  
IR  
r
A7  
CPC dst, src  
dst - src - C  
1F A2  
1F A3  
1F A4  
1F A5  
1F A6  
1F A7  
1F A8  
1F A9  
A8  
*
*
*
*
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
ER  
IM  
R
IR  
ER  
ER  
ER  
ER  
CPCX dst, src  
CPX dst, src  
dst - src - C  
dst - src  
*
*
*
*
*
*
*
*
A9  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F082A Series  
Product Specification  
215  
Table 128. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Fetch Instr.  
Cycle Cycle  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Symbolic Operation dst  
src  
C Z S V D H  
s
2
2
2
2
2
2
1
2
s
2
3
2
3
5
6
2
3
DA dst  
dst DA(dst)  
dst dst - 1  
dst dst - 1  
IRQCTL[7] 0  
R
IR  
40  
41  
*
*
*
*
*
*
*
X
DEC dst  
DECW dst  
R
30  
*
IR  
31  
RR  
IRR  
80  
*
81  
DI  
8F  
DJNZ dst, RA  
dst dst – 1  
if dst 0  
r
0A-FA  
PC PC + X  
EI  
IRQCTL[7] 1  
Halt Mode  
9F  
7F  
*
*
1
1
2
2
1
2
2
1
2
2
2
3
2
5
6
5
HALT  
INC dst  
dst dst + 1  
R
IR  
20  
21  
r
0E-FE  
A0  
INCW dst  
IRET  
dst dst + 1  
RR  
IRR  
*
*
*
*
*
*
*
*
*
A1  
FLAGS @SP  
SP SP + 1  
PC @SP  
BF  
SP SP + 2  
IRQCTL[7] 1  
JP dst  
PC dst  
DA  
IRR  
DA  
8D  
C4  
3
2
3
2
3
2
JP cc, dst  
if cc is true  
PC dst  
0D-FD  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F082A Series  
Product Specification  
216  
Table 128. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Fetch Instr.  
Cycle Cycle  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Symbolic Operation dst  
src  
C Z S V D H  
s
2
2
s
2
2
JR dst  
PC PC + X  
DA  
8B  
JR cc, dst  
if cc is true  
DA  
0B-FB  
PC PC + X  
LD dst, rc  
dst src  
r
r
IM  
X(r)  
r
0C-FC  
C7  
D7  
E3  
2
3
3
2
3
3
3
3
2
3
2
2
2
2
2
2
3
4
3
2
4
2
3
3
3
5
9
5
9
9
X(r)  
r
Ir  
R
R
R
IR  
Ir  
R
E4  
IR  
IM  
IM  
r
E5  
E6  
E7  
F3  
IR  
r
R
F5  
LDC dst, src  
LDCI dst, src  
dst src  
Irr  
Irr  
r
C2  
C5  
D2  
C3  
D3  
Ir  
Irr  
Ir  
dst src  
r r + 1  
rr rr + 1  
Irr  
Ir  
Irr  
LDE dst, src  
LDEI dst, src  
dst src  
r
Irr  
r
82  
92  
83  
93  
2
2
2
2
5
5
9
9
Irr  
Ir  
dst src  
r r + 1  
rr rr + 1  
Irr  
Ir  
Irr  
LDWX dst, src dst src  
ER  
ER  
1FE8  
5
4
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F082A Series  
Product Specification  
217  
Table 128. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Fetch Instr.  
Cycle Cycle  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Symbolic Operation dst  
src  
ER  
C Z S V D H  
s
3
3
3
3
3
3
3
3
3
3
4
4
3
3
2
s
2
3
4
5
4
4
2
3
4
5
2
2
3
5
8
LDX dst, src  
dst src  
r
Ir  
84  
85  
86  
87  
88  
89  
94  
95  
96  
97  
E8  
E9  
98  
99  
F4  
ER  
IRR  
IRR  
X(rr)  
r
R
IR  
r
X(rr)  
ER  
ER  
IRR  
IRR  
ER  
ER  
r
r
Ir  
R
IR  
ER  
IM  
LEA dst, X(src) dst src + X  
X(r)  
X(rr)  
rr  
MULT dst  
dst[15:0]    
RR  
dst[15:8] * dst[7:0]  
NOP  
No operation  
0F  
42  
43  
44  
45  
46  
47  
*
*
0
1
2
2
3
3
3
3
2
3
4
3
4
3
4
OR dst, src  
dst dst OR src  
r
r
r
Ir  
R
R
R
IR  
R
IR  
IM  
IM  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F082A Series  
Product Specification  
218  
Table 128. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Fetch Instr.  
Cycle Cycle  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Symbolic Operation dst  
src  
C Z S V D H  
s
4
4
2
2
3
s
3
3
2
3
2
ORX dst, src  
dst dst OR src  
ER  
ER  
R
ER  
IM  
48  
49  
50  
51  
D8  
*
*
0
POP dst  
dst @SP  
SP SP + 1  
IR  
POPX dst  
PUSH src  
dst @SP  
SP SP + 1  
ER  
SP SP – 1  
@SP src  
R
IR  
IM  
70  
71  
2
2
3
2
3
2
IF70  
PUSHX src  
SP SP – 1  
@SP src  
ER  
C8  
3
2
RCF  
RET  
C 0  
CF  
AF  
0
1
1
2
4
PC @SP  
SP SP + 2  
RL dst  
R
90  
91  
*
*
*
*
2
2
2
3
C
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
RLC dst  
RR dst  
R
10  
11  
*
*
*
*
*
*
*
*
2
2
2
3
C
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
R
E0  
E1  
2
2
2
3
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
IR  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F082A Series  
Product Specification  
219  
Table 128. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Fetch Instr.  
Cycle Cycle  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Symbolic Operation dst  
src  
C Z S V D H  
s
2
2
s
2
3
RRC dst  
R
C0  
C1  
*
*
*
*
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
IR  
SBC dst, src  
dst dst – src - C  
r
r
r
32  
33  
34  
35  
36  
37  
38  
39  
DF  
D0  
D1  
*
*
*
*
1
*
2
2
3
3
3
3
4
4
1
2
2
3
4
3
4
3
4
3
3
2
2
3
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
SBCX dst, src  
dst dst – src - C  
C 1  
*
*
*
*
1
*
SCF  
1
*
*
*
0
SRA dst  
R
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
C
IR  
SRL dst  
R
1F C0  
1F C1  
*
*
0
*
3
3
2
3
0
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
SRP src  
STOP  
RP src  
Stop Mode  
IM  
01  
6F  
2
1
2
2
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F082A Series  
Product Specification  
220  
Table 128. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Fetch Instr.  
Cycle Cycle  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Symbolic Operation dst  
src  
C Z S V D H  
s
2
2
3
3
3
3
4
4
2
2
2
2
3
3
3
3
4
4
2
2
3
3
3
3
s
3
4
3
4
3
4
3
3
2
3
3
4
3
4
3
4
3
3
3
4
3
4
3
4
SUB dst, src  
dst dst – src  
r
r
r
22  
23  
24  
25  
26  
27  
28  
29  
F0  
F1  
62  
63  
64  
65  
66  
67  
68  
69  
72  
73  
74  
75  
76  
77  
*
*
*
*
1
*
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
R
SUBX dst, src  
SWAP dst  
dst dst – src  
*
*
*
*
*
*
*
*
1
*
dst[7:4] dst[3:0]  
(NOT dst) AND src  
X
X
0
IR  
r
TCM dst, src  
r
Ir  
r
R
R
R
IR  
IM  
IM  
ER  
IM  
r
R
IR  
ER  
ER  
r
TCMX dst, src (NOT dst) AND src  
*
*
*
*
0
0
TM dst, src  
dst AND src  
r
Ir  
R
R
R
IR  
IM  
IM  
R
IR  
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F082A Series  
Product Specification  
221  
Table 128. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Fetch Instr.  
Cycle Cycle  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Symbolic Operation dst  
src  
C Z S V D H  
s
4
4
2
s
3
3
6
TMX dst, src  
dst AND src  
ER  
ER  
ER  
IM  
78  
79  
F2  
*
*
0
TRAP Vector  
SP SP – 2  
@SP PC  
Vector  
SP SP – 1  
@SP FLAGS  
PC @Vector  
WDT  
5F  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
*
*
0
1
2
2
3
3
3
3
4
4
2
3
4
3
4
3
4
3
3
XOR dst, src  
dst dst XOR src  
r
r
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
XORX dst, src dst dst XOR src  
*
*
0
Note: Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected.  
X = Undefined.  
0 = Reset to 0.  
1 = Set to 1.  
PS022829-0814  
P R E L I M I N A R Y  
eZ8 CPU Instruction Summary  
Z8 Encore! XP® F082A Series  
Product Specification  
222  
Opcode Maps  
A description of the opcode map data and the abbreviations are provided in Figure 30.  
Figures 31 and 32 display the eZ8 CPU instructions. Table 129 lists Opcode Map abbrevi-  
ations.  
Opcode  
Lower Nibble  
Fetch Cycles  
Instruction Cycles  
4
3.3  
CP  
Opcode  
Upper Nibble  
A
R2,R1  
First Operand  
After Assembly  
Second Operand  
After Assembly  
Figure 30. Opcode Map Cell Description  
PS022829-0814  
P R E L I M I N A R Y  
Opcode Maps  
Z8 Encore! XP® F082A Series  
Product Specification  
223  
Table 129. Opcode Map Abbreviations  
Abbreviation Description  
Abbreviation Description  
b
Bit position.  
IRR  
p
Indirect register pair.  
Polarity (0 or 1).  
cc  
X
Condition code.  
8-bit signed index or displacement.  
Destination address.  
Extended addressing register.  
r
4-bit working register.  
8-bit register.  
DA  
ER  
R
r1, R1, Ir1, Irr1, Destination address.  
IR1, rr1, RR1,  
IRR1, ER1  
IM  
Immediate data value.  
r2, R2, Ir2, Irr2, Source address.  
IR2, rr2, RR2,  
IRR2, ER2  
Ir  
Indirect working register.  
Indirect register.  
RA  
rr  
Relative.  
IR  
Irr  
Working register pair.  
Register pair.  
Indirect working register pair.  
RR  
PS022829-0814  
P R E L I M I N A R Y  
Opcode Maps  
Z8 Encore! XP® F082A Series  
Product Specification  
224  
Lower Nibble (Hex)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
1.1  
2.2  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4  
4.3  
4.3  
2.3  
2.2  
JR  
cc,X  
2.2  
LD  
r1,IM  
3.2  
JP  
cc,DA  
1.2  
INC  
r1  
1.2  
NOP  
BRK SRP ADD ADD ADD ADD ADD ADD ADDX ADDX DJNZ  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
IM  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
r1,X  
2.2  
RLC  
R1  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
See 2nd  
Opcode  
Map  
RLC ADC ADC ADC ADC ADC ADC ADCX ADCX  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
INC  
R1  
2.3  
INC  
IR1  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1
SUB SUB SUB SUB SUB SUB SUBX SUBX  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
DEC DEC SBC SBC SBC SBC SBC SBC SBCX SBCX  
R1  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
DA  
R1  
2.3  
DA  
IR1  
2.3  
OR  
r1,r2  
2.4  
OR  
r1,Ir2  
3.3  
OR  
R2,R1  
3.4  
OR  
IR2,R1  
3.3  
OR  
R1,IM  
3.4  
4.3  
4.3  
OR  
ORX ORX  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1.2  
WDT  
POP POP AND AND AND AND AND AND ANDX ANDX  
R1  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1.2  
STOP  
COM COM TCM TCM TCM TCM TCM TCM TCMX TCMX  
R1  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
TM  
r1,Ir2  
3.3  
TM  
R2,R1  
3.4  
TM  
IR2,R1  
3.3  
TM  
R1,IM  
3.4  
4.3  
4.3  
1.2  
HALT  
PUSH PUSH TM  
R2  
TM  
TMX TMX  
IR2  
r1,r2  
IR1,IM ER2,ER1 IM,ER1  
2.5  
2.6  
2.5  
2.9  
3.2  
3.3  
LDX  
3.4  
LDX  
3.5  
3.4  
3.4  
1.2  
DI  
DECW DECW LDE LDEI LDX  
RR1  
LDX  
LDX  
LDX  
IRR1  
r1,Irr2  
Ir1,Irr2 r1,ER2 Ir1,ER2 IRR2,R1 IRR2,IR1 r1,rr2,X rr1,r2,X  
2.2  
RL  
R1  
2.3  
RL  
IR1  
2.5  
2.9  
3.2  
3.3  
LDX  
3.4  
LDX  
3.5  
3.3  
3.5  
1.2  
EI  
LDE LDEI LDX  
r2,Irr1  
LDX  
LEA  
LEA  
Ir2,Irr1 r2,ER1 Ir2,ER1 R2,IRR1 IR2,IRR1 r1,r2,X rr1,rr2,X  
2.5  
2.6  
2.3  
CP  
r1,r2  
2.4  
CP  
r1,Ir2  
3.3  
CP  
R2,R1  
3.4  
CP  
IR2,R1  
3.3  
CP  
R1,IM  
3.4  
4.3  
4.3  
1.4  
RET  
INCW INCW  
RR1  
CP  
CPX  
CPX  
IRR1  
IR1,IM ER2,ER1 IM,ER1  
2.2  
CLR  
R1  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4 4.3 4.3  
1.5  
IRET  
CLR XOR XOR XOR XOR XOR XOR XORX XORX  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
3.4 3.2  
LD PUSHX  
2.2  
2.3  
2.5  
2.9  
2.3  
JP  
IRR1  
2.9  
LDC  
Ir1,Irr2  
1.2  
RCF  
RRC RRC LDC LDCI  
R1  
IR1  
r1,Irr2  
Ir1,Irr2  
r1,r2,X  
ER2  
2.2  
2.3  
2.5  
2.9  
2.6  
2.2  
3.3  
3.4  
LD  
r2,r1,X  
3.2  
POPX  
ER1  
1.2  
SCF  
SRA SRA LDC LDCI CALL BSWAP CALL  
R1  
IR1  
r2,Irr1  
Ir2,Irr1  
IRR1  
R1  
DA  
2.2  
RR  
R1  
2.3  
RR  
IR1  
2.2  
BIT  
p,b,r1  
2.3  
LD  
r1,Ir2  
3.2  
LD  
R2,R1  
3.3  
LD  
IR2,R1  
3.2  
LD  
R1,IM  
3.3  
4.2  
4.2  
1.2  
CCF  
LD  
LDX  
LDX  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.6  
2.3  
LD  
Ir1,r2  
2.8  
MULT  
RR1  
3.3  
LD  
3.3  
BTJ  
3.4  
BTJ  
SWAP SWAP TRAP  
R1  
IR1  
Vector  
R2,IR1 p,b,r1,X p,b,Ir1,X  
Figure 31. First Opcode Map  
PS022829-0814  
P R E L I M I N A R Y  
Opcode Maps  
Z8 Encore! XP® F082A Series  
Product Specification  
225  
Lower Nibble (Hex)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
3
,
3.3  
3.4  
4.3  
4.4  
4.3  
4.4  
5.3  
5.3  
CPC CPC  
r1,r2  
CPC CPC  
R2,R1  
CPC CPC CPCX CPCX  
R1,IM  
r1,Ir2  
IR2,R1  
IR1,IM ER2,ER1 IM,ER1  
3.2  
3.3  
SRL  
IR1  
SRL  
R1  
5, 4  
LDWX  
ER2,ER1  
Figure 32. Second Opcode Map after 1FH  
PS022829-0814  
P R E L I M I N A R Y  
Opcode Maps  
Z8 Encore! XP® F082A Series  
Product Specification  
226  
Electrical Characteristics  
The data in this chapter represents all known data prior to qualification and characteriza-  
tion of the F082A Series of products, and is therefore subject to change. Additional electri-  
cal characteristics may be found in the individual chapters of this document.  
Absolute Maximum Ratings  
Stresses greater than those listed in Table 130 may cause permanent damage to the device.  
These ratings are stress ratings only. Operation of the device at any condition outside those  
indicated in the operational sections of these specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
For improved reliability, tie unused inputs to one of the supply voltages (VDD or VSS).  
Table 130. Absolute Maximum Ratings  
Parameter  
Minimum Maximum Units  
Notes  
Ambient temperature under bias  
Storage temperature  
–40  
–65  
–0.3  
–0.3  
–0.3  
–5  
+105  
+150  
+5.5  
+3.9  
+3.6  
+5  
°C  
°C  
V
Voltage on any pin with respect to V  
1
2
SS  
V
Voltage on V pin with respect to V  
V
DD  
SS  
Maximum current on input and/or inactive output pin  
Maximum output current from active output pin  
µA  
mA  
–25  
+25  
8-pin Packages Maximum Ratings at 0°C to 70°C  
Total power dissipation  
220  
60  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
20-pin Packages Maximum Ratings at 0°C to 70°C  
Total power dissipation  
430  
mW  
PS022829-0814  
P R E L I M I N A R Y  
Electrical Characteristics  
Z8 Encore! XP® F082A Series  
Product Specification  
227  
Table 130. Absolute Maximum Ratings (Continued)  
Parameter  
Maximum current into V or out of V  
Minimum Maximum Units  
Notes  
120  
mA  
DD  
SS  
28-pin Packages Maximum Ratings at 0°C to 70°C  
Total power dissipation  
450  
125  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
Notes: Operating temperature is specified in DC Characteristics.  
1. This voltage applies to all pins except the following: VDD, AVDD, pins supporting analog input (Port B[5:0], Port  
C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1). On the 8-pin packages, this applies to all pins  
but V  
.
DD  
2. This voltage applies to pins on the 20-/28-pin packages supporting analog input (Port B[5:0], Port C[2:0]) and  
pins supporting the crystal oscillator (PA0 and PA1).  
DC Characteristics  
Table 131 lists the DC characteristics of the Z8 Encore! XP F082A Series products. All  
voltages are referenced to VSS, the primary system ground.  
Table 131. DC Characteristics  
T = –40°C to +105°C  
A
(unless otherwise specified)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
V
Supply Voltage  
2.7  
3.6  
V
V
DD  
IL1  
Low Level Input  
Voltage  
–0.3  
0.3*V  
DD  
V
V
V
High Level Input  
Voltage  
0.7*V  
0.7*V  
5.5  
V
V
V
For all input pins without analog  
or oscillator function. For all sig-  
nal pins on the 8-pin devices.  
Programmable pull-ups must  
also be disabled.  
IH1  
IH2  
OL1  
DD  
DD  
High Level Input  
Voltage  
V
+0.3  
For those pins with analog or  
oscillator function (20-/28-pin  
devices only), or when pro-  
grammable pull-ups are  
enabled.  
DD  
Low Level Output  
Voltage  
0.4  
I
= 2 mA; V = 3.0 V  
OL DD  
High Output Drive disabled.  
Notes:  
1. This condition excludes all pins that have on-chip pull-ups, when driven Low.  
2. These values are provided for design guidance only and are not tested in production.  
PS022829-0814  
P R E L I M I N A R Y  
DC Characteristics  
Z8 Encore! XP® F082A Series  
Product Specification  
228  
Table 131. DC Characteristics (Continued)  
T = –40°C to +105°C  
A
(unless otherwise specified)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
V
V
High Level Output  
Voltage  
2.4  
0.6  
V
I
= -2 mA; V = 3.0 V  
OH DD  
OH1  
OL2  
OH2  
High Output Drive disabled.  
Low Level Output  
Voltage  
V
I
OL  
= 20 mA; V = 3.3V  
DD  
High Output Drive enabled.  
High Level Output  
Voltage  
2.4  
V
I
OH  
= -20 mA; V = 3.3V  
DD  
High Output Drive enabled.  
I
I
I
I
Input Leakage Cur-  
rent  
+0.002  
+0.007  
+5  
+5  
+5  
µA  
µA  
µA  
V
V
= V  
DD  
IH  
IN  
= 3.3V;  
DD  
Input Leakage Cur-  
rent  
V
V
= V  
SS  
IL  
IN  
= 3.3V;  
DD  
Tristate Leakage  
Current  
TL  
Controlled Current  
Drive  
1.8  
2.8  
7.8  
12  
3
7
4.5  
10.5  
19.5  
30  
mA {AFS2,AFS1} = {0,0}  
mA {AFS2,AFS1} = {0,1}  
mA {AFS2,AFS1} = {1,0}  
mA {AFS2,AFS1} = {1,1}  
pF  
LED  
13  
20  
2
C
C
C
GPIO Port Pad  
Capacitance  
8.0  
PAD  
2
X
Pad Capaci-  
8.0  
pF  
pF  
XIN  
IN  
tance  
2
X
Pad Capaci-  
OUT  
9.5  
XOUT  
tance  
I
Weak Pull-up Cur-  
rent  
30  
100  
350  
µA  
V
V
= 3.0 V–3.6 V  
DD  
PU  
V
RAM Data Reten-  
tion Voltage  
TBD  
Voltage at which RAM retains  
static values; no reading or writ-  
ing is allowed.  
RAM  
Notes:  
1. This condition excludes all pins that have on-chip pull-ups, when driven Low.  
2. These values are provided for design guidance only and are not tested in production.  
PS022829-0814  
P R E L I M I N A R Y  
DC Characteristics  
Z8 Encore! XP® F082A Series  
Product Specification  
229  
Table 132. Power Consumption  
V
= 2.7 V to 3.6 V  
DD  
Maximum Maximum  
Typical Std Temp Ext Temp Units Conditions  
1
2
3
Symbol Parameter  
I
Supply Current in  
Stop Mode  
0.1  
µA No peripherals enabled. All pins  
driven to V or V  
DD  
Stop  
.
SS  
DD  
I
Halt Supply Current in  
Halt Mode (with all  
peripherals dis-  
abled)  
35  
520  
2.1  
55  
65  
µA 32kHz.  
DD  
µA 5.5MHz.  
mA 20MHz.  
2.85  
2.85  
I
Supply Current in  
ACTIVE Mode  
(with all peripherals  
disabled)  
2.8  
4.5  
5.5  
7.9  
0.9  
mA 32kHz.  
mA 5.5MHz.  
mA 10MHz.  
mA 20MHz.  
µA  
DD  
5.2  
6.5  
5.2  
6.5  
11.5  
1.0  
11.5  
1.1  
I
Watchdog Timer  
DD  
WDT  
Supply Current  
I
Crystal Oscillator  
Supply Current  
40  
µA 32kHz.  
µA 4MHz.  
µA 20MHz.  
µA  
DD  
XTAL  
230  
760  
350  
I
IPO Internal Precision  
Oscillator Supply  
Current  
500  
550  
DD  
I
Voltage Brown-Out  
50  
µA For 20-/28-pin devices (VBO  
only); See Note 4.  
DD  
VBO  
and Low-Voltage  
Detect Supply Cur-  
rent  
For 8-pin devices; See Note 4.  
I
Analog to Digital  
Converter Supply  
Current (with  
External Refer-  
ence)  
2.8  
3.1  
3.3  
3.7  
3.1  
3.6  
3.7  
4.2  
3.2  
3.7  
3.8  
4.3  
mA 32kHz.  
mA 5.5MHz.  
mA 10MHz.  
mA 20MHz.  
DD  
ADC  
Notes:  
1. Typical conditions are defined as VDD = 3.3V and +30°C.  
2. Standard temperature is defined as TA = 0°C to +70°C; these values not tested in production for worst case  
behavior, but are derived from product characterization and provided for design guidance only.  
3. Extended temperature is defined as TA = –40°C to +105°C; these values not tested in production for worst case  
behavior, but are derived from product characterization and provided for design guidance only.  
4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply  
current. This bandgap current is only added once, regardless of how many peripherals are using it.  
PS022829-0814  
P R E L I M I N A R Y  
DC Characteristics  
Z8 Encore! XP® F082A Series  
Product Specification  
230  
Table 132. Power Consumption (Continued)  
V
= 2.7 V to 3.6 V  
DD  
Maximum Maximum  
Typical Std Temp Ext Temp Units Conditions  
1
2
3
Symbol Parameter  
ADC Internal Ref-  
I
0
µA See Note 4.  
DD  
ADCRef erence Supply Cur-  
rent  
I
Comparator sup-  
ply Current  
150  
3
180  
5
190  
5
µA See Note 4.  
DD  
CMP  
I
LPO Low-Power Opera-  
tional Amplifier  
µA Driving a high-impedance load.  
DD  
Supply Current  
I
I
TS Temperature Sen-  
sor Supply Current  
60  
µA See Note 4.  
DD  
BG Band Gap Supply  
Current  
320  
480  
500  
µA For 20-/28-pin devices.  
For 8-pin devices.  
DD  
Notes:  
1. Typical conditions are defined as VDD = 3.3V and +30°C.  
2. Standard temperature is defined as TA = 0°C to +70°C; these values not tested in production for worst case  
behavior, but are derived from product characterization and provided for design guidance only.  
3. Extended temperature is defined as TA = –40°C to +105°C; these values not tested in production for worst case  
behavior, but are derived from product characterization and provided for design guidance only.  
4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply  
current. This bandgap current is only added once, regardless of how many peripherals are using it.  
PS022829-0814  
P R E L I M I N A R Y  
DC Characteristics  
Z8 Encore! XP® F082A Series  
Product Specification  
231  
Figure 33 displays the typical current consumption while operating with all peripherals  
disabled, at 30 ºC, versus the system clock frequency.  
Typical Supply Current - Active Mode  
10  
8
6
VDD = 3.60V / 30C  
VDD = 3.30V / 30C  
VDD = 2.70V / 30C  
4
2
0
0
5
10  
15  
20  
Freq (MHz)  
Figure 33. Typical Active Mode I Versus System Clock Frequency  
DD  
PS022829-0814  
P R E L I M I N A R Y  
DC Characteristics  
Z8 Encore! XP® F082A Series  
Product Specification  
232  
AC Characteristics  
The section provides information about the AC characteristics and timing. All AC timing  
information assumes a standard load of 50pF on all outputs.  
Table 133. AC Characteristics  
V
= 2.7V to 3.6V  
DD  
T = –40°C to +105°C  
A
(unless otherwise  
stated)  
Symbol Parameter  
Minimum  
Maximum Units Conditions  
F
System Clock Frequency  
20.0  
20.0  
20.0  
MHz Read-only from Flash mem-  
ory  
SYSCLK  
0.032768  
MHz Program or erasure of the  
Flash memory  
F
Crystal Oscillator Frequency  
MHz System clock frequencies  
below the crystal oscillator  
minimum require an exter-  
nal clock driver  
XTAL  
T
T
T
T
T
System Clock Period  
50  
20  
20  
30  
30  
3
ns  
ns  
ns  
ns  
ns  
T
T
T
T
T
= 1/F  
sysclk  
XIN  
CLK  
CLK  
CLK  
CLK  
CLK  
System Clock High Time  
System Clock Low Time  
System Clock Rise Time  
System Clock Fall Time  
= 50 ns  
= 50 ns  
= 50 ns  
= 50 ns  
XINH  
XINL  
XINR  
XINF  
3
Table 134. Internal Precision Oscillator Electrical Characteristics  
= 2.7V to 3.6V  
V
DD  
T = –40°C to +105°C  
A
(unless otherwise stated)  
Symbol Parameter  
Minimum  
Typical Maximum Units Conditions  
F
F
F
T
Internal Precision Oscillator Fre-  
quency (High Speed)  
5.53  
32.7  
+1  
MHz  
kHz  
%
V
= 3.3V  
DD  
IPO  
T = 30°C  
A
Internal Precision Oscillator Fre-  
quency (Low Speed)  
V
= 3.3V  
DD  
IPO  
T = 30°C  
A
Internal Precision Oscillator Error  
+4  
IPO  
Internal Precision Oscillator  
Startup Time  
3
µs  
IPOST  
PS022829-0814  
P R E L I M I N A R Y  
AC Characteristics  
Z8 Encore! XP® F082A Series  
Product Specification  
233  
On-Chip Peripheral AC and DC Electrical Characteristics  
Table 135 tabulates the electrical characteristics of the POR and VBO blocks.  
Table 135. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing  
T = –40°C to +105°C  
A
1
Symbol Parameter  
Minimum Typical  
Maximum Units Conditions  
V
Power-On Reset Voltage Thresh-  
old  
2.20  
2.45  
2.40  
50  
2.70  
V
V
= V  
POR  
DD  
POR  
V
Voltage Brown-Out Reset Voltage  
Threshold  
2.15  
2.65  
V
V
= V  
VBO  
DD  
VBO  
V
to V  
hysteresis  
VBO  
75  
mV  
V
POR  
Starting V voltage to ensure  
V
SS  
DD  
valid Power-On Reset.  
T
Power-On Reset Analog Delay  
70  
µs  
V
> V  
;
POR  
ANA  
DD  
T
Digital  
POR  
Reset delay  
follows T  
ANA  
T
Power-On Reset Digital Delay  
Power-On Reset Digital Delay  
16  
µs 66 Internal  
Precision  
POR  
Oscillator  
cycles + IPO  
startup time  
(T  
)
IPOST  
T
T
T
T
1
16  
1
ms 5000 Internal  
Precision  
POR  
SMR  
SMR  
VBO  
Oscillator  
cycles  
Stop Mode Recovery with crystal  
oscillator disabled  
µs 66 Internal  
Precision  
Oscillator  
cycles  
Stop Mode Recovery with crystal  
oscillator enabled  
ms 5000 Internal  
Precision  
Oscillator  
cycles  
Voltage Brown-Out Pulse Rejec-  
tion Period  
10  
µs Period of time  
in which V  
<
DD  
V
without  
VBO  
generating a  
Reset.  
Note: Data in the typical column is from characterization at 3.3V and 30°C. These values are provided for design guid-  
ance only and are not tested in production.  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
234  
Table 135. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing  
T = –40°C to +105°C  
A
1
Symbol Parameter  
Minimum Typical  
Maximum Units Conditions  
T
Time for V to transition from  
0.10  
100  
ms  
RAMP  
DD  
V
to V  
to ensure valid Reset  
SS  
POR  
T
Stop Mode Recovery pin pulse  
rejection period  
20  
ns For any SMR  
pin or for the  
Reset pin  
SMP  
when it is  
asserted in  
Stop Mode.  
Note: Data in the typical column is from characterization at 3.3V and 30°C. These values are provided for design guid-  
ance only and are not tested in production.  
Table 136. Flash Memory Electrical Characteristics and Timing  
V
= 2.7 V to 3.6 V  
DD  
T = –40°C to +105°C  
A
(unless otherwise stated)  
Parameter  
Minimum  
100  
Typical Maximum Units Notes  
Flash Byte Read Time  
Flash Byte Program Time  
Flash Page Erase Time  
Flash Mass Erase Time  
40  
ns  
µs  
20  
10  
200  
ms  
ms  
Writes to Single Address  
Before Next Erase  
2
Flash Row Program Time  
8
ms Cumulative program time for  
single row cannot exceed limit  
before next erase. This  
parameter is only an issue  
when bypassing the Flash  
Controller.  
Data Retention  
Endurance  
100  
years 25°C  
10,000  
cycles Program/erase cycles  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
235  
Table 137. Watchdog Timer Electrical Characteristics and Timing  
= 2.7 V to 3.6 V  
V
DD  
T = –40°C to +105°C  
A
(unless otherwise stated)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
F
F
T
WDT Oscillator Frequency  
WDT Oscillator Error  
10  
kHz  
%
WDT  
+50  
WDT  
WDT Calibrated Time-out  
0.98  
0.70  
0.50  
1
1
1
1.02  
s
V
= 3.3V;  
WDTCAL  
DD  
T = 30°C  
A
1.30  
1.50  
s
s
V
= 2.7 V to 3.6 V  
DD  
T = 0°C to 70°C  
A
V
= 2.7 V to 3.6 V  
DD  
T = –40°C to +105°C  
A
Table 138. Non-Volatile Data Storage  
= 2.7 V to 3.6 V  
V
DD  
T = –40°C to +105°C  
A
Parameter  
Minimum  
34  
Typical Maximum Units Notes  
NVDS Byte Read Time  
NVDS Byte Program Time  
Data Retention  
519  
39.7  
µs With system clock at 20MHz  
ms With system clock at 20MHz  
years 25°C  
0.171  
100  
Endurance  
160,000  
cycles Cumulative write cycles for  
entire memory  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
236  
Table 139. Analog-to-Digital Converter Electrical Characteristics and Timing  
= 3.0 V to 3.6 V  
V
DD  
T = 0°C to +70°C  
A
(unless otherwise stated)  
Symbol Parameter  
Minimum  
10  
Typical Maximum Units Conditions  
Resolution  
bits  
3
Differential Nonlinearity  
(DNL)  
–1.0  
1.0  
LSB External V  
= 2.0 V;   
= 2.0 V;   
REF  
R 3.0 k  
S
3
Integral Nonlinearity (INL)  
–3.0  
3.0  
LSB External V  
REF  
R 3.0 k  
S
3
3
Offset Error with Calibra-  
tion  
+1  
+3  
LSB  
LSB  
V
Absolute Accuracy with  
Calibration  
V
V
V
Internal Reference Volt-  
age  
1.0  
2.0  
1.1  
2.2  
1.2  
2.4  
REFSEL=01  
REFSEL=10  
REF  
REF  
REF  
Internal Reference Varia-  
tion with Temperature  
+1.0  
+0.5  
850  
%
Temperature variation  
with V = 3.0  
DD  
Internal Reference Volt-  
%
Supply voltage varia-  
age Variation with V  
tion with T = 30°C  
DD  
A
R
Reference Buffer Output  
Impedance  
W
When the internal ref-  
erence is buffered and  
driven out to the VREF  
pin (REFOUT = 1)  
RE-  
FOUT  
Single-Shot Conversion  
Time  
5129  
Sys- All measurements but  
tem temperature sensor  
clock  
cycles  
10258  
Temperature sensor  
measurement  
Notes:  
1. Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.  
2. Devices are factory calibrated at V  
conditions.  
= 3.3V and T = +30°C, so the ADC is maximally accurate under these  
DD  
A
3. LSBs are defined assuming 10-bit resolution.  
4. This is the maximum recommended resistance seen by the ADC input pin.  
5. The input impedance is inversely proportional to the system clock frequency.  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
237  
Table 139. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)  
V
= 3.0 V to 3.6 V  
DD  
T = 0°C to +70°C  
A
(unless otherwise stated)  
Symbol Parameter  
Continuous Conversion  
Minimum  
Typical Maximum Units Conditions  
256  
Sys- All measurements but  
Time  
tem temperature sensor  
clock  
cycles  
512  
10  
Temperature sensor  
measurement  
Signal Input Bandwidth  
Analog Source  
kHz As defined by -3 dB  
point  
R
10  
kIn unbuffered mode  
kIn buffered modes  
kIn unbuffered mode at  
S
4
Impedance  
500  
Zin  
Vin  
Input Impedance  
150  
5
20MHz  
10  
0
MIn buffered modes  
Input Voltage Range  
V
V
V
Unbuffered Mode  
DD  
0.3  
V
–1.1  
Buffered Modes  
DD  
These values define  
the range over which  
the ADC performs  
within spec; exceeding  
these values does not  
cause damage or insta-  
bility; see DC Charac-  
teristics for absolute  
pin voltage limits.  
Notes:  
1. Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.  
2. Devices are factory calibrated at V  
conditions.  
= 3.3V and T = +30°C, so the ADC is maximally accurate under these  
DD  
A
3. LSBs are defined assuming 10-bit resolution.  
4. This is the maximum recommended resistance seen by the ADC input pin.  
5. The input impedance is inversely proportional to the system clock frequency.  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
238  
Table 140. Low Power Operational Amplifier Electrical Characteristics  
= 2.7 V to 3.6 V  
V
DD  
T = –40°C to +105°C  
A
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
Av  
Open loop voltage gain  
80  
500  
50  
dB  
GBW  
PM  
Gain/Bandwidth product  
Phase Margin  
kHz  
deg Assuming 13pF load  
capacitance.  
V
Input Offset Voltage  
+1  
1
+4  
10  
mV  
osLPO  
V
Input Offset Voltage (Tem-  
perature Drift)  
V/C  
osLPO  
V
V
Input Voltage Range  
Output Voltage Range  
0.3  
0.3  
V
V
–1  
V
IN  
DD  
DD  
–1  
V
I
= 45µA.  
OUT  
OUT  
Table 141. Comparator Electrical Characteristics  
= 2.7 V to 3.6 V  
V
DD  
T = –40°C to +105°C  
A
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
V
Input DC Offset  
5
+5  
+3  
200  
4
mV  
%
OS  
Programmable Internal  
Reference Voltage  
20- and 28-pin devices.  
8-pin devices.  
CREF  
%
T
Propagation Delay  
Input Hysteresis  
ns  
mV  
V
PROP  
V
V
HYS  
IN  
Input Voltage Range  
V
V
–1  
DD  
SS  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
239  
Table 142. Temperature Sensor Electrical Characteristics  
= 2.7 V to 3.6 V  
V
DD  
Symbol Parameter  
Temperature Error  
Minimum Typical Maximum Units Conditions  
T
+0.5  
+2  
+5  
+7  
°C Over the range +20°C  
AERR  
to +30°C (as mea-  
1
sured by ADC).  
+1  
°C Over the range +0°C  
to +70°C (as mea-  
sured by ADC).  
+2  
°C Over the range +0°C  
to +105°C (as mea-  
sured by ADC).  
+7  
°C Over the range –40°C  
to +105°C (as mea-  
sured by ADC).  
t
Wakeup Time  
80  
100  
s Time required for Tem-  
perature Sensor to  
stabilize after  
WAKE  
enabling.  
Note: Devices are factory calibrated at for maximal accuracy between +20°C and +30°C, so the sensor is maximally  
accurate in that range. User recalibration for a different temperature range is possible and increases accuracy  
near the new calibration point.  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
240  
General Purpose I/O Port Input Data Sample Timing  
Figure 34 displays timing of the GPIO Port input sampling. The input value on a GPIO  
port pin is sampled on the rising edge of the system clock. The Port value is available to  
the eZ8 CPU on the second rising clock edge following the change of the Port value.  
TCLK  
System  
Clock  
Port Value  
Changes to 0  
Port Pin  
Input Value  
Port Input Data  
Register Latch  
0 Latched  
Into Port Input  
Data Register  
Port Input Data Register  
Value 0 Read  
by eZ8  
Port Input Data  
Read on Data Bus  
Figure 34. Port Input Sample Timing  
Table 143. GPIO Port Input Timing  
Delay (ns)  
Parameter Abbreviation  
Minimum  
Maximum  
T
T
T
Port Input Transition to X Rise Setup Time (not pictured)  
5
0
S_PORT  
H_PORT  
SMR  
IN  
X
Rise to Port Input Transition Hold Time (not pictured)  
IN  
GPIO Port Pin Pulse Width to ensure Stop Mode Recovery (for  
GPIO port pins enabled as SMR sources)  
1 s  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
241  
General Purpose I/O Port Output Timing  
Figure 35 and Table 144 provide timing information for GPIO port pins.  
TCLK  
X
IN  
T1  
T2  
Port Output  
Figure 35. GPIO Port Output Timing  
Table 144. GPIO Port Output Timing  
Delay (ns)  
Parameter  
GPIO port pins  
Abbreviation  
Minimum  
Maximum  
T
T
X
X
Rise to Port Output Valid Delay  
Rise to Port Output Hold Time  
2
15  
1
2
IN  
IN  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
242  
On-Chip Debugger Timing  
Figure 36 and Table 145 provide timing information for the DBG pin. The DBG pin tim-  
ing specifications assume a 4 ns maximum rise and fall time.  
TCLK  
X
IN  
T1  
T2  
T4  
DBG  
(Output)  
Output Data  
T3  
DBG  
(Input)  
Input Data  
Figure 36. On-Chip Debugger Timing  
Table 145. On-Chip Debugger Timing  
Delay (ns)  
Parameter Abbreviation  
DBG  
Minimum  
Maximum  
T
T
T
T
X
X
Rise to DBG Valid Delay  
2
5
5
15  
1
2
3
4
IN  
IN  
Rise to DBG Output Hold Time  
DBG to X Rise Input Setup Time  
IN  
DBG to X Rise Input Hold Time  
IN  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
243  
UART Timing  
Figure 37 and Table 146 provide timing information for UART pins for the case where  
CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the Transmit  
Data Register has been loaded with data prior to CTS assertion.  
CTS  
(Input)  
T3  
DE  
(Output)  
T1  
TXD  
bit 7 parity  
stop  
start  
bit 0  
bit 1  
(Output)  
T2  
end of  
stop bit(s)  
Figure 37. UART Timing With CTS  
Table 146. UART Timing With CTS  
Delay (ns)  
Parameter Abbreviation  
UART  
Minimum  
Maximum  
T
CTS Fall to DE output delay  
2 * X period 2 * X period +  
1
IN  
IN  
1 bit time  
T
T
DE assertion to TXD falling edge (start bit) delay  
End of Stop Bit(s) to DE deassertion delay  
± 5  
± 5  
2
3
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
244  
Figure 38 and Table 147 provide timing information for UART pins for the case where  
CTS is not used for flow control. DE asserts after the Transmit Data Register has been  
written. DE remains asserted for multiple characters as long as the Transmit Data Register  
is written with the next character before the current character has completed.  
T2  
DE  
(Output)  
TXD  
(Output)  
start  
bit0  
bit 1  
bit 7 parity  
stop  
T1  
end of  
stop bit(s)  
Figure 38. UART Timing Without CTS  
Table 147. UART Timing Without CTS  
Delay (ns)  
Parameter Abbreviation  
UART  
Minimum  
Maximum  
T
T
DE assertion to TXD falling edge (start bit) delay  
1 * X period  
1 bit time  
1
2
IN  
End of Stop Bit(s) to DE deassertion delay (Tx  
Data Register is empty)  
± 5  
PS022829-0814  
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical  
Z8 Encore! XP® F082A Series  
Product Specification  
245  
Packaging  
Zilog’s Product Line of MCUs includes the Z8F011A, Z8F012A, Z8F021A, Z8F022A,  
Z8F041A, Z8F042A, Z8F081A and Z8F082A devices, which are available in the follow-  
ing packages:  
8-pin Plastic Dual-Inline Package (PDIP)  
8-Pin Quad Flat No-Lead Package (QFN)/MLF-S1  
8-pin Small Outline Integrated Circuit Package (SOIC)  
20-pin Small Outline Integrated Circuit Package (SOIC)  
20-pin Small Shrink Outline Package (SSOP)  
20-pin Plastic Dual-Inline Package (PDIP)  
28-pin Small Outline Integrated Circuit Package (SOIC)  
28-pin Small Shrink Outline Package (SSOP)  
28-pin Plastic Dual-Inline Package (PDIP)  
Current diagrams for each of these packages are published in Zilog’s Packaging Product  
Specification (PS0072), which is available free for download from the Zilog website.  
1. The footprint of the QFN)/MLF-S package is identical to that of the 8-pin SOIC package, but with a lower profile.  
PS022829-0814  
P R E L I M I N A R Y  
Packaging  
Z8 Encore! XP® F082A Series  
Product Specification  
246  
Ordering Information  
Order your F082A Series products from Zilog using the part numbers shown in Table 148.  
For more information about ordering, please consult your local Zilog sales office. The  
Sales Location page on the Zilog website lists all regional offices.  
Table 148. Z8 Encore! XP F082A Series Ordering Matrix  
Z8 Encore! XP F082A Series with 8KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0°C to 70°C  
Z8F082APB020SG  
Z8F082AQB020SG  
Z8F082ASB020SG  
Z8F082ASH020SG  
Z8F082AHH020SG  
Z8F082APH020SG  
Z8F082ASJ020SG  
Z8F082AHJ020SG  
Z8F082APJ020SG  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
0
0
0
0
0
0
0
0
0
6
6
6
14  
14  
14  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
17 20  
17 20  
17 20  
23 20  
23 20  
23 20  
Extended Temperature: –40°C to 105°C  
Z8F082APB020EG  
Z8F082AQB020EG  
Z8F082ASB020EG  
Z8F082ASH020EG  
Z8F082AHH020EG  
Z8F082APH020EG  
Z8F082ASJ020EG  
Z8F082AHJ020EG  
Z8F082APJ020EG  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
0
0
0
0
0
0
0
0
0
6
6
6
14  
14  
14  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
17 20  
17 20  
17 20  
23 20  
23 20  
23 20  
PS022829-0814  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F082A Series  
Product Specification  
247  
Table 148. Z8 Encore! XP F082A Series Ordering Matrix  
Z8 Encore! XP F082A Series with 8KB Flash  
Standard Temperature: 0°C to 70°C  
Z8F081APB020SG  
Z8F081AQB020SG  
Z8F081ASB020SG  
Z8F081ASH020SG  
Z8F081AHH020SG  
Z8F081APH020SG  
Z8F081ASJ020SG  
Z8F081AHJ020SG  
Z8F081APJ020SG  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
0
0
0
0
0
0
0
0
0
6
6
6
13  
13  
13  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
17 19  
17 19  
17 19  
25 19  
25 19  
25 19  
Extended Temperature: –40°C to 105°C  
Z8F081APB020EG  
Z8F081AQB020EG  
Z8F081ASB020EG  
Z8F081ASH020EG  
Z8F081AHH020EG  
Z8F081APH020EG  
Z8F081ASJ020EG  
Z8F081AHJ020EG  
Z8F081APJ020EG  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
8KB 1KB  
0
0
0
0
0
0
0
0
0
6
6
6
13  
13  
13  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
17 19  
17 19  
17 19  
25 19  
25 19  
25 19  
PS022829-0814  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F082A Series  
Product Specification  
248  
Table 148. Z8 Encore! XP F082A Series Ordering Matrix  
Z8 Encore! XP F082A Series with 4 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0°C to 70°C  
Z8F042APB020SG  
Z8F042AQB020SG  
Z8F042ASB020SG  
Z8F042ASH020SG  
Z8F042AHH020SG  
Z8F042APH020SG  
Z8F042ASJ020SG  
Z8F042AHJ020SG  
Z8F042APJ020SG  
4 KB 1KB 128 B  
4 KB 1KB 128 B  
4 KB 1KB 128 B  
6
6
6
14  
14  
14  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
4 KB 1KB 128 B 17 20  
4 KB 1KB 128 B 17 20  
4 KB 1KB 128 B 17 20  
4 KB 1KB 128 B 23 20  
4 KB 1KB 128 B 23 20  
4 KB 1KB 128 B 23 20  
Extended Temperature: –40°C to 105°C  
Z8F042APB020EG  
Z8F042AQB020EG  
Z8F042ASB020EG  
Z8F042ASH020EG  
Z8F042AHH020EG  
Z8F042APH020EG  
Z8F042ASJ020EG  
Z8F042AHJ020EG  
Z8F042APJ020EG  
4 KB 1KB 128 B  
4 KB 1KB 128 B  
4 KB 1KB 128 B  
6
6
6
14  
14  
14  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
4 KB 1KB 128 B 17 20  
4 KB 1KB 128 B 17 20  
4 KB 1KB 128 B 17 20  
4 KB 1KB 128 B 23 20  
4 KB 1KB 128 B 23 20  
4 KB 1KB 128 B 23 20  
PS022829-0814  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F082A Series  
Product Specification  
249  
Table 148. Z8 Encore! XP F082A Series Ordering Matrix  
Z8 Encore! XP F082A Series with 4 KB Flash  
Standard Temperature: 0°C to 70°C  
Z8F041APB020SG  
Z8F041AQB020SG  
Z8F041ASB020SG  
Z8F041ASH020SG  
Z8F041AHH020SG  
Z8F041APH020SG  
Z8F041ASJ020SG  
Z8F041AHJ020SG  
Z8F041APJ020SG  
4 KB 1KB 128 B  
6
6
6
13  
13  
13  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
4 KB 1KB 128 B  
4 KB 1KB 128 B  
4 KB 1KB 128 B 17 19  
4 KB 1KB 128 B 17 19  
4 KB 1KB 128 B 17 19  
4 KB 1KB 128 B 25 19  
4 KB 1KB 128 B 25 19  
4 KB 1KB 128 B 25 19  
Extended Temperature: –40°C to 105°C  
Z8F041APB020EG  
Z8F041AQB020EG  
Z8F041ASB020EG  
Z8F041ASH020EG  
Z8F041AHH020EG  
Z8F041APH020EG  
Z8F041ASJ020EG  
Z8F041AHJ020EG  
Z8F041APJ020EG  
4 KB 1KB 128 B  
4 KB 1KB 128 B  
4 KB 1KB 128 B  
6
6
6
13  
13  
13  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
4 KB 1KB 128 B 17 19  
4 KB 1KB 128 B 17 19  
4 KB 1KB 128 B 17 19  
4 KB 1KB 128 B 25 19  
4 KB 1KB 128 B 25 19  
4 KB 1KB 128 B 25 19  
PS022829-0814  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F082A Series  
Product Specification  
250  
Table 148. Z8 Encore! XP F082A Series Ordering Matrix  
Z8 Encore! XP F082A Series with 2 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0°C to 70°C  
Z8F022APB020SG  
Z8F022AQB020SG  
Z8F022ASB020SG  
Z8F022ASH020SG  
Z8F022AHH020SG  
Z8F022APH020SG  
Z8F022ASJ020SG  
Z8F022AHJ020SG  
Z8F022APJ020SG  
2 KB 512 B 64 B  
2 KB 512 B 64 B  
2 KB 512 B 64 B  
6
6
6
14  
14  
14  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
2 KB 512 B 64 B 17 20  
2 KB 512 B 64 B 17 20  
2 KB 512 B 64 B 17 20  
2 KB 512 B 64 B 23 20  
2 KB 512 B 64 B 23 20  
2 KB 512 B 64 B 23 20  
Extended Temperature: –40°C to 105°C  
Z8F022APB020EG  
Z8F022AQB020EG  
Z8F022ASB020EG  
Z8F022ASH020EG  
Z8F022AHH020EG  
Z8F022APH020EG  
Z8F022ASJ020EG  
Z8F022AHJ020EG  
Z8F022APJ020EG  
2 KB 512 B 64 B  
2 KB 512 B 64 B  
2 KB 512 B 64 B  
6
6
6
14  
14  
14  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
2 KB 512 B 64 B 17 20  
2 KB 512 B 64 B 17 20  
2 KB 512 B 64 B 17 20  
2 KB 512 B 64 B 23 20  
2 KB 512 B 64 B 23 20  
2 KB 512 B 64 B 23 20  
PS022829-0814  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F082A Series  
Product Specification  
251  
Table 148. Z8 Encore! XP F082A Series Ordering Matrix  
Z8 Encore! XP F082A Series with 2 KB Flash  
Standard Temperature: 0°C to 70°C  
Z8F021APB020SG  
Z8F021AQB020SG  
Z8F021ASB020SG  
Z8F021ASH020SG  
Z8F021AHH020SG  
Z8F021APH020SG  
Z8F021ASJ020SG  
Z8F021AHJ020SG  
Z8F021APJ020SG  
2 KB 512 B 64 B  
6
6
6
13  
13  
13  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
2 KB 512 B 64 B  
2 KB 512 B 64 B  
2 KB 512 B 64 B 17 19  
2 KB 512 B 64 B 17 19  
2 KB 512 B 64 B 17 19  
2 KB 512 B 64 B 25 19  
2 KB 512 B 64 B 25 19  
2 KB 512 B 64 B 25 19  
Extended Temperature: –40°C to 105°C  
Z8F021APB020EG  
Z8F021AQB020EG  
Z8F021ASB020EG  
Z8F021ASH020EG  
Z8F021AHH020EG  
Z8F021APH020EG  
Z8F021ASJ020EG  
Z8F021AHJ020EG  
Z8F021APJ020EG  
2 KB 512 B 64 B  
2 KB 512 B 64 B  
2 KB 512 B 64 B  
6
6
6
13  
13  
13  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
2 KB 512 B 64 B 17 19  
2 KB 512 B 64 B 17 19  
2 KB 512 B 64 B 17 19  
2 KB 512 B 64 B 25 19  
2 KB 512 B 64 B 25 19  
2 KB 512 B 64 B 25 19  
PS022829-0814  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F082A Series  
Product Specification  
252  
Table 148. Z8 Encore! XP F082A Series Ordering Matrix  
Z8 Encore! XP F082A Series with 1KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0°C to 70°C  
Z8F012APB020SG  
Z8F012AQB020SG  
Z8F012ASB020SG  
Z8F012ASH020SG  
Z8F012AHH020SG  
Z8F012APH020SG  
Z8F012ASJ020SG  
Z8F012AHJ020SG  
Z8F012APJ020SG  
1KB 256 B 16 B  
1KB 256 B 16 B  
1KB 256 B 16 B  
6
6
6
14  
14  
14  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
1KB 256 B 16 B 17 20  
1KB 256 B 16 B 17 20  
1KB 256 B 16 B 17 20  
1KB 256 B 16 B 23 20  
1KB 256 B 16 B 23 20  
1KB 256 B 16 B 23 20  
Extended Temperature: –40°C to 105°C  
Z8F012APB020EG  
Z8F012AQB020EG  
Z8F012ASB020EG  
Z8F012ASH020EG  
Z8F012AHH020EG  
Z8F012APH020EG  
Z8F012ASJ020EG  
Z8F012AHJ020EG  
Z8F012APJ020EG  
1KB 256 B 16 B  
1KB 256 B 16 B  
1KB 256 B 16 B  
6
6
6
14  
14  
14  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
1KB 256 B 16 B 17 20  
1KB 256 B 16 B 17 20  
1KB 256 B 16 B 17 20  
1KB 256 B 16 B 23 20  
1KB 256 B 16 B 23 20  
1KB 256 B 16 B 23 20  
PS022829-0814  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F082A Series  
Product Specification  
253  
Table 148. Z8 Encore! XP F082A Series Ordering Matrix  
Z8 Encore! XP F082A Series with 1KB Flash  
Standard Temperature: 0°C to 70°C  
Z8F011APB020SG  
Z8F011AQB020SG  
Z8F011ASB020SG  
Z8F011ASH020SG  
Z8F011AHH020SG  
Z8F011APH020SG  
Z8F011ASJ020SG  
Z8F011AHJ020SG  
Z8F011APJ020SG  
1KB 256 B 16 B  
6
6
6
13  
13  
13  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
1KB 256 B 16 B  
1KB 256 B 16 B  
1KB 256 B 16 B 17 19  
1KB 256 B 16 B 17 19  
1KB 256 B 16 B 17 19  
1KB 256 B 16 B 25 19  
1KB 256 B 16 B 25 19  
1KB 256 B 16 B 25 19  
Extended Temperature: –40°C to 105°C  
Z8F011APB020EG  
Z8F011AQB020EG  
Z8F011ASB020EG  
Z8F011ASH020EG  
Z8F011AHH020EG  
Z8F011APH020EG  
Z8F011ASJ020EG  
Z8F011AHJ020EG  
Z8F011APJ020EG  
1KB 256 B 16 B  
1KB 256 B 16 B  
1KB 256 B 16 B  
6
6
6
13  
13  
13  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
1KB 256 B 16 B 17 19  
1KB 256 B 16 B 17 19  
1KB 256 B 16 B 17 19  
1KB 256 B 16 B 25 19  
1KB 256 B 16 B 25 19  
1KB 256 B 16 B 25 19  
PS022829-0814  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F082A Series  
Product Specification  
254  
Table 148. Z8 Encore! XP F082A Series Ordering Matrix  
Z8 Encore! XP F082A Series Development Kit  
Z8F08A28100KITG  
Z8F04A28100KITG  
Z8F04A08100KITG  
ZUSBSC00100ZACG  
ZUSBOPTSC01ZACG  
ZENETSC0100ZACG  
Z8 Encore! XP F082A Series 28-Pin Development Kit  
Z8 Encore! XP F042A Series 28-Pin Development Kit  
Z8 Encore! XP F042A Series 8-Pin Development Kit  
USB Smart Cable Accessory Kit  
USB Opto-Isolated Smart Cable Accessory Kit  
Ethernet Smart Cable Accessory Kit  
PS022829-0814  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F082A Series  
Product Specification  
255  
Part Number Suffix Designations  
Zilog part numbers consist of a number of components, as indicated in the following  
example.  
Example. Part number Z8F042ASH020SG is an 8-bit Flash MCU with 4KB of Program  
Memory, equipped with advanced analog peripherals in a 20-pin SOIC package, operating  
within a 0ºC to +70ºC temperature range and built using lead-free solder.  
Z8  
F
04 2A  
S
H
020  
S
G
Environmental Flow  
G = Green Plastic Packaging Compound  
Temperature Range  
S = Standard, 0°C to 70°C  
E = Extended, –40°C to +105°C  
Speed  
020 = 20MHz  
Pin Count  
B = 8  
H = 20  
J = 28  
Package  
H = SSOP  
P = PDIP  
Q = QFN  
S = SOIC  
Device Type  
2A = Contains Advanced Analog Peripherals  
1A = Does Not Contain Advanced Analog Peripherals  
Memory Size  
08 = 8KB Flash, 1KB RAM, 0 B NVDS  
04 = 4KB Flash, 1KB RAM, 128 B NVDS  
02 = 2KB Flash, 512 B RAM, 64 B NVDS  
01 = 1KB Flash, 256 B RAM, 16 B NVDS  
Memory Type  
F = Flash  
Device Family  
Z8 = Zilog’s 8-Bit Microcontroller  
PS022829-0814  
P R E L I M I N A R Y  
Ordering Information  
Z8 Encore! XP® F082A Series  
Product Specification  
256  
Index  
b 206  
Numerics  
10-bit ADC 6  
baud rate generator, UART 110  
BCLR 209  
binary number suffix 207  
BIT 209  
bit 206  
A
absolute maximum ratings 226  
AC characteristics 232  
ADC 208  
clear 209  
manipulation instructions 209  
set 209  
set or clear 209  
swap 209  
architecture 124  
block diagram 125  
continuous conversion 127  
control register 134, 135  
control register definitions 133  
data high byte register 136  
data low bits register 137  
electrical characteristics and timing 236  
operation 125  
test and jump 211  
test and jump if non-zero 211  
test and jump if zero 211  
bit jump and test if non-zero 211  
bit swap 211  
block diagram 3  
block transfer instructions 209  
BRK 211  
BSET 209  
BSWAP 209, 211  
BTJ 211  
BTJNZ 211  
BTJZ 211  
single-shot conversion 126  
ADCCTL register 134, 135  
ADCDH register 136  
ADCDL register 137  
ADCX 208  
ADD 208  
add - extended addressing 208  
add with carry 208  
add with carry - extended addressing 208  
additional symbols 207  
address space 15  
ADDX 208  
analog signals 11  
analog-to-digital converter (ADC) 124  
AND 210  
ANDX 210  
arithmetic instructions 208  
assembly language programming 204  
assembly language syntax 205  
C
CALL procedure 211  
Capture Mode 87, 88  
Capture/Compare Mode 88  
cc 206  
CCF 209  
characteristics, electrical 226  
clear 210  
CLR 210  
COM 210  
compare 87  
compare - extended addressing 208  
Compare Mode 87  
compare with carry 208  
B
B 207  
PS022829-0814  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F082A Series  
Product Specification  
257  
compare with carry - extended addressing 208  
complement 210  
Watchdog Timer 235, 238  
enable interrupt 209  
complement carry flag 209  
condition code 206  
continuous conversion (ADC) 127  
Continuous Mode 87  
ER 206  
extended addressing register 206  
external pin reset 26  
eZ8 CPU features 4  
control register definition, UART 110  
Control Registers 15, 18  
Counter modes 87  
eZ8 CPU instruction classes 207  
eZ8 CPU instruction notation 206  
eZ8 CPU instruction set 204  
eZ8 CPU instruction summary 212  
CP 208  
CPC 208  
CPCX 208  
CPU and peripheral overview 4  
CPU control instructions 209  
CPX 208  
F
FCTL register 155, 161, 162  
features, Z8 Encore! 1  
first opcode map 224  
FLAGS 207  
Customer Feedback Form 265  
flags register 207  
flash  
D
DA 206, 208  
controller 6  
data memory 17  
DC characteristics 227  
debugger, on-chip 180  
DEC 208  
decimal adjust 208  
decrement 208  
option bit address space 162  
option bit configuration - reset 159  
program memory address 0000H 162  
program memory address 0001H 164  
flash memory 146  
arrangement 147  
decrement and jump non-zero 211  
decrement word 208  
DECW 208  
byte programming 151  
code protection 149  
configurations 146  
destination operand 207  
device, port availability 36  
DI 209  
direct address 206  
disable interrupts 209  
DJNZ 211  
control register definitions 153, 161  
controller bypass 152  
electrical characteristics and timing 234  
flash control register 155, 161, 162  
flash option bits 150  
flash status register 155  
flow chart 148  
dst 207  
frequency high and low byte registers 157  
mass erase 152  
E
operation 147  
operation timing 149  
page erase 152  
EI 209  
electrical characteristics 226  
ADC 236  
page select register 156, 157  
FPS register 156, 157  
FSTAT register 155  
flash memory and timing 234  
GPIO input data sample timing 240  
PS022829-0814  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F082A Series  
Product Specification  
258  
indirect register pair 206  
G
indirect working register 206  
indirect working register pair 206  
infrared encoder/decoder (IrDA) 120  
Instruction Set 204  
instruction set, eZ8 CPU 204  
instructions  
Gated Mode 88  
general-purpose I/O 36  
GPIO 6, 36  
alternate functions 37  
architecture 37  
control register definitions 44  
input data sample timing 240  
interrupts 44  
port A-C pull-up enable sub-registers 50, 51  
port A-H address registers 45  
port A-H alternate function sub-registers 47  
port A-H control registers 46  
port A-H data direction sub-registers 46  
port A-H high drive enable sub-registers 48  
port A-H input data registers 52  
port A-H output control sub-registers 47  
port A-H output data registers 52, 53  
port A-H stop mode recovery sub-registers 49  
port availability by device 36  
port input timing 240  
ADC 208  
ADCX 208  
ADD 208  
ADDX 208  
AND 210  
ANDX 210  
arithmetic 208  
BCLR 209  
BIT 209  
bit manipulation 209  
block transfer 209  
BRK 211  
BSET 209  
BSWAP 209, 211  
BTJ 211  
port output timing 241  
BTJNZ 211  
BTJZ 211  
CALL 211  
CCF 209  
CLR 210  
COM 210  
CP 208  
CPC 208  
H
H 207  
HALT 209  
Halt Mode 33, 209  
hexadecimal number prefix/suffix 207  
CPCX 208  
CPU control 209  
CPX 208  
DA 208  
DEC 208  
DECW 208  
DI 209  
DJNZ 211  
EI 209  
HALT 209  
INC 208  
INCW 208  
IRET 211  
JP 211  
I
I2C 6  
IM 206  
immediate data 206  
immediate operand prefix 207  
INC 208  
increment 208  
increment word 208  
INCW 208  
indexed 207  
indirect address prefix 207  
indirect register 206  
PS022829-0814  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F082A Series  
Product Specification  
259  
LD 210  
LDC 210  
LDCI 209, 210  
LDE 210  
architecture 55  
interrupt assertion types 58  
interrupt vectors and priority 58  
operation 57  
LDEI 209  
LDX 210  
LEA 210  
logical 210  
MULT 208  
NOP 209  
register definitions 60  
software interrupt assertion 59  
interrupt edge select register 67  
interrupt request 0 register 60  
interrupt request 1 register 61  
interrupt request 2 register 62  
interrupt return 211  
OR 210  
ORX 210  
POP 210  
interrupt vector listing 55  
interrupts  
POPX 210  
UART 108  
program control 211  
PUSH 210  
IR 206  
Ir 206  
PUSHX 210  
RCF 209, 210  
RET 211  
IrDA  
architecture 120  
block diagram 120  
RL 211  
RLC 211  
control register definitions 123  
operation 120  
rotate and shift 211  
RR 211  
RRC 211  
receiving data 122  
transmitting data 121  
IRET 211  
SBC 208  
SCF 209, 210  
SRA 211  
IRQ0 enable high and low bit registers 62  
IRQ1 enable high and low bit registers 64  
IRQ2 enable high and low bit registers 65  
IRR 206  
SRL 211  
SRP 210  
Irr 206  
STOP 210  
SUB 208  
SUBX 208  
SWAP 211  
TCM 209  
TCMX 209  
TM 209  
J
JP 211  
jump, conditional, relative, and relative conditional  
211  
TMX 209  
TRAP 211  
Watchdog Timer refresh 210  
XOR 210  
L
LD 210  
LDC 210  
LDCI 209, 210  
LDE 210  
LDEI 209, 210  
LDX 210  
XORX 210  
instructions, eZ8 classes of 207  
interrupt control register 69  
interrupt controller 55  
PS022829-0814  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F082A Series  
Product Specification  
260  
LEA 210  
b 206  
load 210  
load constant 209  
load constant to/from program memory 210  
load constant with auto-increment addresses 210  
load effective address 210  
cc 206  
DA 206  
ER 206  
IM 206  
IR 206  
Ir 206  
load external data 210  
load external data to/from data memory and auto-  
increment addresses 209  
load external to/from data memory and auto-incre-  
ment addresses 210  
IRR 206  
Irr 206  
p 206  
R 206  
load using extended addressing 210  
logical AND 210  
logical AND/extended addressing 210  
logical exclusive OR 210  
r 206  
RA 206  
RR 206  
rr 206  
logical exclusive OR/extended addressing 210  
logical instructions 210  
vector 207  
X 207  
logical OR 210  
notational shorthand 206  
logical OR/extended addressing 210  
low power modes 32  
O
OCD  
M
architecture 180  
master interrupt enable 57  
memory  
auto-baud detector/generator 183  
baud rate limits 184  
block diagram 180  
data 17  
program 15  
breakpoints 185  
mode  
commands 186  
Capture 87, 88  
Capture/Compare 88  
Continuous 87  
Counter 87  
control register 191  
data format 183  
DBG pin to RS-232 Interface 181  
debug mode 182  
Gated 88  
debugger break 211  
interface 181  
serial errors 184  
One-Shot 87  
PWM 87, 88  
modes 87  
status register 192  
MULT 208  
timing 242  
multiply 208  
multiprocessor mode, UART 105  
OCD commands  
execute instruction (12H) 190  
read data memory (0DH) 190  
read OCD control register (05H) 188  
read OCD revision (00H) 187  
read OCD status register (02H) 187  
read program counter (07H) 188  
N
NOP (no operation) 209  
notation  
PS022829-0814  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F082A Series  
Product Specification  
261  
read program memory (0BH) 189  
read program memory CRC (0EH) 190  
read register (09H) 189  
power supply signals 12  
Power-on and Voltage Brownout electrical charac-  
teristics and timing 233  
Power-On Reset (POR) 24  
program control instructions 211  
program counter 207  
program memory 15  
PUSH 210  
push using extended addressing 210  
PUSHX 210  
PWM mode 87, 88  
read runtime counter (03H) 187  
step instruction (10H) 190  
stuff instruction (11H) 190  
write data memory (0CH) 189  
write OCD control register (04H) 188  
write program counter (06H) 188  
write program memory (0AH) 189  
write register (08H) 188  
on-chip debugger (OCD) 180  
on-chip debugger signals 11  
on-chip oscillator 198  
PxADDR register 45  
PxCTL register 46  
One-Shot Mode 87  
opcode map  
R
abbreviations 223  
cell description 222  
first 224  
second after 1FH 225  
R 206  
r 206  
RA  
register address 206  
Operational Description 22, 32, 36, 55, 70, 93, 99,  
120, 124, 139, 140, 144, 146, 159, 176, 180, 193,  
198, 203  
OR 210  
ordering information 246  
ORX 210  
RCF 209, 210  
receive  
IrDA data 122  
receiving UART data-interrupt-driven method 104  
receiving UART data-polled method 103  
register 206  
oscillator signals 11  
ADC control (ADCCTL) 134, 135  
ADC data high byte (ADCDH) 136  
ADC data low bits (ADCDL) 137  
flash control (FCTL) 155, 161, 162  
flash high and low byte (FFREQH and FRE-  
EQL) 157  
P
p 206  
Packaging 245  
part selection guide 2  
PC 207  
peripheral AC and DC electrical characteristics 233  
pin characteristics 12  
Pin Descriptions 8  
flash page select (FPS) 156, 157  
flash status (FSTAT) 155  
GPIO port A-H address (PxADDR) 45  
GPIO port A-H alternate function sub-registers  
47  
polarity 206  
POP 210  
pop using extended addressing 210  
POPX 210  
GPIO port A-H control address (PxCTL) 46  
GPIO port A-H data direction sub-registers 46  
OCD control 191  
OCD status 192  
port availability, device 36  
port input timing (GPIO) 240  
port output timing, GPIO 241  
UARTx baud rate high byte (UxBRH) 117  
UARTx baud rate low byte (UxBRL) 117  
UARTx Control 0 (UxCTL0) 111, 117  
PS022829-0814  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F082A Series  
Product Specification  
262  
UARTx control 1 (UxCTL1) 112  
UARTx receive data (UxRXD) 116  
UARTx status 0 (UxSTAT0) 114  
UARTx status 1 (UxSTAT1) 115  
UARTx transmit data (UxTXD) 116  
Watchdog Timer control (WDTCTL) 30, 96,  
141, 196  
software trap 211  
source operand 207  
SP 207  
SRA 211  
src 207  
SRL 211  
SRP 210  
Watchdog Timer reload high byte (WDTH) 97  
Watchdog Timer reload low byte (WDTL) 98  
Watchdog Timer reload upper byte (WDTU)  
97  
stack pointer 207  
Stop 210  
Stop Mode 32  
stop mode 210  
register file 15  
Stop Mode Recovery  
sources 27  
using a GPIO port pin transition 28  
using Watchdog Timer time-out 28  
stop mode recovery  
sources 29  
register pair 206  
register pointer 207  
reset  
and stop mode characteristics 23  
and Stop Mode Recovery 22  
carry flag 209  
using a GPIO port pin transition 29  
SUB 208  
sources 24  
RET 211  
subtract 208  
return 211  
RL 211  
RLC 211  
rotate and shift instructions 211  
rotate left 211  
subtract - extended addressing 208  
subtract with carry 208  
subtract with carry - extended addressing 208  
SUBX 208  
SWAP 211  
rotate left through carry 211  
rotate right 211  
rotate right through carry 211  
RP 207  
swap nibbles 211  
symbols, additional 207  
RR 206, 211  
rr 206  
RRC 211  
T
TCM 209  
TCMX 209  
test complement under mask 209  
test complement under mask - extended addressing  
209  
S
SBC 208  
test under mask 209  
SCF 209, 210  
test under mask - extended addressing 209  
timer signals 10  
timers 70  
second opcode map after 1FH 225  
set carry flag 209, 210  
set register pointer 210  
shift right arithmetic 211  
shift right logical 211  
signal descriptions 10  
single-shot conversion (ADC) 126  
architecture 70  
block diagram 71  
Capture Mode 79, 80, 87, 88  
Capture/Compare Mode 83, 88  
Compare Mode 81, 87  
PS022829-0814  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F082A Series  
Product Specification  
263  
Continuous Mode 72, 87  
Counter Mode 73, 74  
Counter modes 87  
Gated Mode 82, 88  
One-Shot Mode 71, 87  
UxCTL0 register 111, 117  
UxCTL1 register 112  
UxRXD register 116  
UxSTAT0 register 114  
UxSTAT1 register 115  
UxTXD register 116  
operating mode 71  
PWM mode 76, 77, 87, 88  
reading the timer count values 84  
reload high and low byte registers 91  
timer control register definitions 85  
timer output signal operation 84  
V
vector 207  
Voltage Brownout reset (VBR) 25  
timers 0-3  
control registers 85, 86  
high and low byte registers 89, 92  
TM 209  
TMX 209  
transmit  
IrDA data 121  
transmitting UART data-polled method 101  
transmitting UART dat-interrupt-driven method  
W
Watchdog Timer  
approximate time-out delay 93  
approximate time-out delays 140  
CNTL 25  
control register 96  
electrical characteristics and timing 235, 238  
interrupt in normal operation 94  
interrupt in Stop Mode 94  
operation 140  
102  
TRAP 211  
refresh 94, 210  
U
reload unlock sequence 95  
reload upper, high and low registers 97  
reset 26  
reset in normal operation 95  
reset in Stop Mode 95  
time-out response 94  
UART 6  
architecture 99  
baud rate generator 110  
baud rates table 118  
control register definitions 110  
controller signals 10  
WDTCTL register 30, 96, 141, 196  
WDTH register 97  
interrupts 108  
multiprocessor mode 105  
receiving data using interrupt-driven method  
104  
receiving data using the polled method 103  
transmitting data using the interrupt-driven  
method 102  
WDTL register 98  
working register 206  
working register pair 206  
WTDU register 97  
transmitting data using the polled method 101  
x baud rate high and low registers 117  
x control 0 and control 1 registers 110  
x status 0 and status 1 registers 114, 115  
UxBRH register 117  
X
X 207  
XOR 210  
XORX 210  
UxBRL register 117  
PS022829-0814  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F082A Series  
Product Specification  
264  
Z
Z8 Encore!  
block diagram 3  
features 1  
part selection guide 2  
PS022829-0814  
P R E L I M I N A R Y  
Index  
Z8 Encore! XP® F082A Series  
Product Specification  
265  
Customer Support  
To share comments, get your technical questions answered, or report issues you may be  
experiencing with our products, please visit Zilog’s Technical Support page at   
http://support.zilog.com.  
To learn more about this product, find additional documentation, or to discover other fac-  
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://  
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.  
This publication is subject to replacement by a later edition. To determine whether a later  
edition exists, please visit the Zilog website at http://www.zilog.com.  
PS022829-0814  
P R E L I M I N A R Y  
Customer Support  

相关型号:

Z8F042ASJ020SC

Z8 Encore XP-R 4K Series High-Performance 8-Bit Microcontrollers
ZILOG

Z8F042ASJ020SG

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PDSO28, SOIC-28
IXYS

Z8F042ASJ020SG

High-Performance 8-Bit Microcontrollers
ZILOG

Z8F042ASJ020SG2156

IC MCU 8BIT 4KB FLASH 20SOIC
ZILOG

Z8F0430

High-Performance 8-Bit Microcontrollers
ZILOG

Z8F0430HH020EG

IC MCU 8BIT 4KB FLASH 20SSOP
ZILOG

Z8F0430HJ020EG

IC MCU 8BIT 4KB FLASH 28SSOP
ZILOG

Z8F0430HJ020SG

IC MCU 8BIT 4KB FLASH 28SSOP
ZILOG

Z8F0430PH020EG

IC MCU 8BIT 4KB FLASH 20DIP
ZILOG

Z8F0430PH020SG

IC MCU 8BIT 4KB FLASH 20DIP
ZILOG

Z8F0430PJ020EG

IC MCU 8BIT 4KB FLASH 28DIP
ZILOG

Z8F0430PJ020SG

IC MCU 8BIT 4KB FLASH 28DIP
ZILOG