LE79489-2DJCT [ZARLINK]

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32;
LE79489-2DJCT
型号: LE79489-2DJCT
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32

文件: 总18页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Le79489  
Subscriber Line Interface Circuit  
Ve580 Series  
DISTINCTIVE CHARACTERISTICS  
„ Ideal for low power sensitive applications  
„ Low standby power (normal and reverse)  
„ Automatic on-chip battery switching  
„ On-chip thermal management  
„ On-chip thermal shutdown  
„ –20 V to –60 V battery operation  
„ Programmable current limit  
„ On-chip ring and test relay drivers and relay snubber  
circuits  
„ Polarity reversal (full transmission)  
„ Loop and ground-key detector  
„ Comparator for ring-trip detection  
„ Ground-start capability  
„ On-hook transmission  
„ Programmable resistive feed  
„ Programmable loop-detect threshold  
„ Selectable overhead for metering applications  
„ Two-wire impedance set by single external impedance  
BLOCK DIAGRAM  
TMG  
DA  
DB  
TESTOUT  
Test Relay  
Driver  
RINGOUT  
Ring Relay  
A(TIP)  
HPA  
Driver  
C1  
Ring-Trip  
C2  
C3  
C4  
Comparator  
Input  
Decoder  
and  
Two-Wire  
Interface  
Ground-Key  
Detector  
E1  
Control  
HPB  
Loop Detector  
DET  
RD  
VTX  
RSN  
Signal  
Transmission  
B(RING)  
VBAT2  
Power-Feed  
Controller  
RDC  
CAS  
OVH  
RFA  
Switch Control  
VBAT1  
BGND  
VCC  
AGND/DGND  
BSWOUT  
BSWEN BSWTH  
Document ID# 080201 Date: Sep 19, 2007  
Rev:  
G
Version:  
3
Distribution:  
Public Document  
Le79489  
Data Sheet  
ORDERING INFORMATION  
Standard Products  
Zarlink standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a com-  
bination of the elements below.  
Le79489*  
D
J
C
TEMPERATURE RANGE  
C = Commercial (0°C to 70°C)*  
PACKAGE TYPE  
J = 32-pin Plastic Leaded Chip Carrier (PL 032)  
PACKAGING  
D = Green package  
PERFORMANCE GRADE OPTION  
Blank = No performance grade option  
–2 = 60 dB Longitudinal Balance, Polarity Reversal  
–3 = 52 dB Longitudinal Balance, No Polarity Reversal  
DEVICE NUMBER/DESCRIPTION  
Le79489  
Subscriber Line Interface Circuit  
Valid Combinations  
Valid Combinations  
(Blank)  
–2  
–3  
DJC1, 2  
Valid Combinations list configurations planned to be  
Le79489*  
supported in volume for this device. Contact Zarlink  
sales to confirm availability of specific valid  
combinations and to obtain additional data on  
Zarlink’s standard military–grade products.  
1. For delivery using a tape and reel packing system, add a "T"  
suffix to the OPN (Ordering Part Number) when placing an  
order.  
2. The green package meets RoHS Directive 2002/95/EC of  
the European Council to minimize the environmental impact  
of electrical equipment.  
*Zarlink reserves the right to fulfill all orders for this device with parts marked with the "Am" part number prefix, until such time as  
all inventory bearing this mark has been depleted. It should be noted that parts marked with either the "Am" or the "Le" part number  
prefix are equivalent devices in terms of form, fit, and function. The only difference between the two is in the part number prefix appearing  
on the topside mark.  
2
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
CONNECTION DIAGRAMS  
Top View  
4
3
2
1
32 31 30  
29  
28  
DA  
RD  
TESTOUT  
5
6
7
BSWOUT  
TMG  
27  
26  
25  
24  
23  
HPB  
HPA  
NC  
8
9
VBAT1  
32-Pin PLCC  
C4  
VTX  
10  
BSWEN  
C1  
RSVD  
11  
12  
13  
RSN  
E1  
DET  
22  
21  
AGND/DGND  
14 15 16 17 18 19 20  
Notes:  
1. Pin 1 is marked for orientation.  
2. NC = No Connect  
3. RSVD = Reserved. Do not connect to this pin.  
3
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
PIN DESCRIPTIONS  
Pin Names  
AGND/DGND  
A(TIP)  
Type  
Gnd  
Description  
Analog and Digital ground.  
Output  
Gnd  
Output of A(TIP) power amplifier.  
Battery (power) ground.  
BGND  
B(RING)  
BSWEN  
Output  
Output of B(RING) power amplifier.  
Battery Switch Control. Internally connected to automatic battery switch circuitry. BSWEN can be  
overridden by external logic. BSWEN Low connects VBAT1 to VBAT2. BSWEN High disconnects  
VBAT1 from VBAT2.  
BSWOUT  
BSWTH  
Output  
Input  
Buffered Output. Internally connected to battery switch circuitry. The output is open-collector with a  
built-in pull-up resistor. BSWOUT Low indicates VBAT1 is connected to VBAT2. BSWOUT High  
indicates VBAT1 is disconnected from VBAT2. This output is valid only in the Active states.  
Input for setting automatic battery switch threshold. Normally tied to Battery 2. Tie to ground for  
manual switching.  
C3–C1  
C4  
Input  
Input  
Decoder. TTL compatible. C3 is MSB and C1 is LSB.  
Test Relay Input – Active Low. 1 = Off. 0 = On.  
CAS  
DA  
Capacitor  
Input  
Anti-sat pin for capacitor to filter reference voltage when operating in anti-sat region.  
Ring-trip negative. Negative input to ring-trip comparator.  
Ring-trip positive. Positive input to ring-trip comparator.  
DB  
Input  
Output  
Switchhook detector. When enabled, a logic Low indicates the selected detector is tripped. The detector  
is selected by the logic inputs (C3–C1). The output is open-collector with a built-in 15 kpull-up  
resistor.  
DET  
E1  
Input  
Ground-Key Detect Select. E1 = 1 selects the hook switch detector. E1 = 0 selects the ground-key  
detector. In the Tip Open state, ground key is selected independent of E1.  
HPA  
HPB  
NC  
Capacitor  
Capacitor  
High-Pass Filter Capacitor. A(TIP) side of high-pass filter capacitor.  
High-Pass Filter Capacitor. B(RING) side of high-pass filter capacitor.  
No connect. This pin not internally connected.  
OVH  
Input  
Overhead Control. Logic High enables minimized nonmetering overhead. Logic Low enables 2.2 V  
metering DC overhead. TTL-compatible.  
RD  
Resistor  
Resistor  
Detector resistor. Detector threshold set and filter pin.  
RDC  
DC feed resistor. Connection point for the DC feed current programming network. The other end of the  
network connects to the receiver summing node (RSN). Connection point for the DC feed current  
programming network. The other end of the network connects to RSN. V  
polarity and positive for reverse polarity.  
is negative for normal  
RDC  
RFA  
Resistive feed adjust. Adjust the DC feed resistance gain coefficient, GDC, with external resistor  
connected to ground.  
RINGOUT  
RSN  
Output  
Input  
Ring Relay Driver. Open-collector driver with emitter internally connected to BGND.  
Receive Summing Node. The metallic current (AC and DC) between A(TIP) and B(RING) is equal to  
500 times the current into this pin. The networks that program receive gain, two-wire impedance, and  
feed current all connect to this node.  
RSVD  
TESTOUT  
TMG  
Output  
Reserved. These pins are reserved for Zarlink use. Make no connection to these pins.  
Test Relay Driver. Open collector driver with emitter internally connected to AGND.  
Thermal Management. External resistor connects this pin to VBAT2 to offload power dissipation from  
SLIC. Functions during normal polarity, Active state.  
VBAT1  
VBAT2  
VCC  
Battery  
Battery  
Power  
Output  
Most negative battery supply and substrate connection.  
Battery supply for output power amplifiers. Switched to VBAT1 by BSWEN.  
+5 V power supply.  
VTX  
Transmit Audio. This output is a 0.5066 unity gain version of the A(TIP) and B(RING) metallic voltage.  
VTX also sources the two-wire input impedance programming network.  
Exposed Pad  
Battery  
This must be electrically tied to VBAT1.  
4
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Commercial (C) Devices  
Ambient temperature . . . . . . . . . . . . . . . . –40°C to +85°C*  
Storage temperature. . . . . . . . . . . . . . . . . –55°C to +150°C  
With respect to AGND/DGND:  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.4 V to +7.0 V  
CC  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.75 V to 5.25 V  
CC  
BAT1  
BAT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40.5 V to –60 V  
BAT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –20 V to BAT1  
AGND/DGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V  
BGND with respect to GND . . . . . . .–100 mV to +100 mV  
Load resistance on VTX to GND . . . . . . . . . . . .20 kmin  
Continuous. . . . . . . . . . . . . . . . . . . . . . +0.4 V to –70 V  
10 ms . . . . . . . . . . . . . . . . . . . . . . . . . . +0.4 V to –75 V  
and BSWTH. . . . . . . . . . . . . . . . . . +0.4 V to V  
V
BAT2  
BAT1  
BGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +3 V to –3 V  
A(TIP) or B(RING) with respect to BGND:  
Continuous. . . . . . . . . . . . . . . . . . . . . . . .V  
to +1 V  
BAT1  
Operating ranges define those limits over which the functionality of  
the device is guaranteed by production testing.  
10 ms (f = 0.1 Hz) . . . . . . . . . . . . . . . . . . –70 V to +5 V  
1 µs (f = 0.1 Hz) . . . . . . . . . . . . . . . . . . . –80 V to +8 V  
250 ns (f = 0.1 Hz). . . . . . . . . . . . . . . . . –90 V to +12 V  
*Zarlink guarantees the performance of this device over  
commercial (0 to 70°C) and industrial (-40 to 85 °C) temperature  
ranges by conducting electrical characterization over each range  
and by conducting a production test with single insertion coupled  
to periodic sampling. These characterization and test procedures  
comply with section 4.6.2 of Bellcore TR-TSY-000357 Component  
Reliability Assurance Requirements for Telecommunications  
Equipment.  
Current from A(TIP) or B(RING). . . . . . . . . . . . . ±150 mA  
TESTOUT/RINGOUT/current . . . . . . . . . . . . . . . . . 80 mA  
TESTOUT/RINGOUT/voltage . . . . . . . . . . BGND to +7 V  
TESTOUT/RINGOUT/transient . . . . . . . . BGND to +10 V  
DA and DB inputs  
Voltage on ring-trip inputs. . . . . . . . . . . . .V  
to 0 V  
BAT1  
Current on ring-trip inputs. . . . . . . . . . . . . . . . . ±10 mA  
C4–C1, BSWEN, OVH, E1  
Input voltage . . . . . . . . . . . . . . . –0.4 V to V + 0.4 V  
CC  
Maximum power dissipation, continuous*  
T = 70°C, No heat sink (see note):  
A
In 32-pin PLCC package . . . . . . . . . . . . . . . . . . . .1.7 W  
Thermal data (θ  
)
JA  
In 32-pin PLCC package ..............................43°C/W typ  
ESD immunity (HBM) . . . . . . JESD22 Class 1C compliant  
* Thermal limiting circuitry on chip will shut down the circuit at a  
junction temperature of about 165°C. Continuous operation above  
145°C junction temperature may degrade device reliability.  
Stresses above those listed under Absolute Maximum Ratings may  
cause permanent device failure. Functionality at or above these lim-  
its is not implied. Exposure to Absolute Maximum Ratings for ex-  
tended periods may affect device reliability.  
Package Assembly  
Green package devices are assembled with enhanced,  
environmental compatible lead-free, halogen-free, and  
antimony-free materials. The leads possess a matte-tin  
plating which is compatible with conventional board assembly  
processes or newer lead-free board assembly processes.  
The peak soldering temperature should not exceed 245°C  
during printed circuit board  
5
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
ELECTRICAL CHARACTERISTICS  
Description  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
Transmission Performance  
2-wire return loss  
200 Hz to 3.4 kHz  
26  
dB  
4, 6  
4
(See Test Circuit D)  
Analog output (VTX) impedance  
Analog output (VTX) offset voltage  
Overload level, 2-wire  
3
20  
+50  
–50  
2.5  
mV  
Vpk  
Active state  
0 dBm  
+7 dBm  
2a, 3  
THD, Total Harmonic Distortion  
–64  
–55  
–50  
–40  
–36  
3
4
dB  
dB  
THD, open loop  
Longitudinal Capability (See Test Circuit C)  
Longitudinal to metallic L-T  
200 Hz to 1 kHz  
0 dBm, RLAC = 600 Ω  
Normal polarity  
–3*  
0°C to +70°C –2  
–40°C to +85°C –2  
–40°C to +85°C –2  
–3  
0°C to +70°C –2  
–40°C to +85°C –2  
–40°C to +85°C –2  
52  
60  
58  
54  
52  
54  
54  
54  
Normal polarity  
Normal polarity  
Reverse polarity  
8
7
Longitudinal to metallic L-T  
1 kHz to 3.4 kHz  
Normal polarity  
Normal polarity  
Normal polarity  
Reverse polarity  
200 Hz to 3.4 kHz  
Active state  
Longitudinal signal generation 4-L  
Longitudinal current per pin  
(A or B)  
Longitudinal impedance at A or B  
Longitudinal Induction  
40  
15  
dB  
mArms  
27  
25  
0 to 100 Hz  
/pin  
dBrnc  
4
4
23  
Idle Channel Noise  
C-message weighted noise  
Psophometric weighted noise  
RL = 600 Ω  
RL = 600 Ω  
+7  
–83  
+12  
–78  
dBrnC  
dBmp  
4, 8  
8
Insertion Loss (See Test Circuits A and B)  
Gain, 4- to 2-wire  
0 dBm, 1 kHz  
0°C to 70°C  
–0.15  
–0.20  
–6.05  
–6.10  
–0.35  
–6.25  
–0.10  
–0.10  
–0.35  
0
0
+0.15  
+0.20  
–5.75  
–5.70  
+0.35  
–5.55  
+0.10  
+0.10  
+0.35  
–40°C to 85°C  
4
Gain, 2- to 4-wire, 4-to-4-wire  
0 dBm, 1 kHz  
0°C to 70°C  
–40°C to 85°C  
–5.90  
–5.90  
4
4
4
Gain, 4- to 2-wire  
Open loop  
Open loop  
300 to 3.4 kHz, relative to 1 kHz  
+3 dBm to –55 dBm relative to 0 dBm  
0 dB to –15 dB  
dB  
µs  
Gain, 2- to 4-wire, 4- to 4-wire  
Gain over frequency  
Gain tracking  
Gain tracking open loop  
Group delay  
–5.90  
4
4
4, 6  
0 dBm, 1 kHz  
Note:  
* P.G. = Performance Grade  
6
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Description  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
Line Characteristics  
IL, Active  
Short loop  
Medium loop  
Long loop  
R
R
R
LDC = 250 Ω  
LDC = 700 Ω  
LDC = 2 kΩ  
44.2  
33.4  
17.2  
48.6  
37.1  
19.2  
54.0  
40.8  
21.2  
IL, Active  
Short loop  
Long loop  
RLDC = 250 Ω  
RLDC = 2 kΩ  
44.2  
16.0  
48.6  
18.0  
54.0  
20.0  
mA  
0.7 IL  
IL  
1.3 IL  
VBAT1 – 3 V  
IL = ----------------------------------  
RL + 400  
TA = 25°C  
IL, Accuracy, Standby state  
Current limited region  
RL = 0  
Active, A and B to GND  
18  
30  
IL, Loop current, Disconnect state  
ILLIM  
Vapparent  
100  
135  
µA  
mA  
95  
52  
4
Active, Normal  
Reverse Polarity  
OVH = 0  
40.3  
39.8  
37  
41.7  
41.7  
39  
V
V
AB, Open loop voltage  
BAT SW hysteresis  
mV  
V
1150  
BAT SW threshold  
(from VBAT1 to VBAT2  
BAT2  
+ 8.5  
)
IA, Leakage, Tip Open state  
IB, Current, Tip Open state  
VA, Active  
RL = 0  
B to GND  
RA to BAT1 = 7 k, RB to  
GND = 100 Ω  
100  
56  
µA  
mA  
V
18  
–7.5  
30  
–5  
4
Power Supply Rejection Ratio (Vripple = 100 mVrms), Active Normal State  
VCC  
VBAT1  
VBAT2  
50 Hz to 3.4 kHz  
50 Hz to 3.4 kHz  
50 Hz to 3.4 kHz  
30  
28  
35  
45  
50  
50  
14  
22  
29  
40  
3
4
dB  
VBAT1, Open loop, RLAC = 600 Ω  
(Anti-sat region)  
50 Hz  
8
100 Hz  
15  
20  
28  
4
4
200 Hz  
500 Hz to 3.4 kHz  
Effective internal resistance  
Device Power Dissipation  
Open loop, Disconnect state  
Open loop, Standby state  
Open loop, Active state  
Open loop, Active state  
Off hook, Standby state  
Off hook, Active state  
CAS pin to GND  
85  
170  
255  
kΩ  
35  
50  
150  
550  
1000  
70  
85  
250  
620  
1300  
OVH = 1  
OVH = 0  
RL = 600 Ω  
RL = 250 Ω  
RL = 700 Ω  
mW  
mA  
9
880  
800  
1200  
1000  
Supply Currents, Battery  
ICC  
,
Disconnect state  
Standby state  
Active state  
Disconnect state  
Standby state  
Active state  
2.5  
3.0  
6.3  
0.5  
0.7  
2.8  
4.5  
4.5  
9.5  
1.0  
1.5  
4.8  
Open Loop VCC supply current  
IBAT1  
,
Open Loop VBAT1 supply current  
7
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Description  
RFI Rejection  
RFI rejection  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
100 kHz to 30 MHz  
(See Figure E)  
0.7  
mVrms  
4
Logic Inputs (C4–C1, E1, BSWEN, OVH [–5, –6 only])  
VIH, Input High voltage  
C3  
C1, C2, C4, BSWEN, OVH, E1  
2.5  
2.0  
V
VIL, Input Low voltage  
IIH, Input High current C4–C1,  
OVH, E1  
0.8  
40  
–75  
IIH, Input High current, BSWEN  
IIL, Input Low current, except C1  
IIL, Input Low current, C1  
–75  
–400  
–600  
1200  
0.40  
+50  
µA  
–300  
Logic Output (DET, BSWOUT)  
VOL, Output Low voltage  
OH, Output High voltage  
IOUT = 0.3 mA  
IOUT = –0.05 mA  
V
V
2.4  
Ring-Trip Comparator Input (DA, DB)  
Bias current  
Offset voltage  
–500  
–50  
–50  
0
nA  
mV  
Source resistance = 2 MΩ  
5
Loop Detector  
IT, Loop-detect threshold tolerance  
Active state, Off-hook to On-hook  
R
D = 35.4 k, IT = 368/RD  
–15  
–20  
–15  
–20  
+15  
+20  
+15  
+20  
On-hook to Off-hook  
RD = 35.4 k, IT = 414/RD  
Standby state, Off-hook to On-hook  
%
RD = 35.4 k, IT = 425/RD  
On-hook to Off-hook  
RD = 35.4 k, IT = 471/RD  
Active state  
Standby state  
RL from BX to GND  
Active, Standby, and Tip Open states  
Loop-detect threshold hysteresis  
IGK, GND key-detector threshold  
1.3  
9
4
mA  
5
6
13  
Relay Driver Output (RINGOUT/TESTOUT)  
On voltage  
Off leakage  
Zener breakover  
Zener On voltage  
IOL = 40 mA  
+0.3  
+0.7  
100  
V
µA  
VOH = +5 V  
IZ = 100 µA  
IZ = 40 mA  
7.5  
7.9  
V
10  
8
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
RELAY DRIVER SCHEMATICS  
RINGOUT  
TESTOUT  
BGND  
BGND  
Notes:  
1. Unless otherwise specified, test conditions are VCC = +5 V, BAT1 = –50 V, BAT2 = –34 V, RL = 600 , RDC1 = RDC2 = 5.833 k, RTMG = 570  
, RD = 35.4 k, RFA = 0 , no fuse resistors, CHP = 0.22 µF, CDC = 0.5 µF, CCAS = 0.33 µF, CVBAT12 = 220 nF, D1 = D2 = 1N400x, OVH  
= 1, two-wire AC input impedance is a 600 resistance synthesized by the programming network shown below.  
VTX  
RT1 = 76 kΩ  
CT1 = 120 pF  
RT2 = 76 kΩ  
RSN  
RRX = 150 kΩ  
VRX  
2. a. Overload level exists when THD = 1%.  
b. Overload level exists when THD = 1.5%.  
3. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.  
4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.  
5. Tested with 0 source impedance. 2 Mis specified for system design only.  
6. Group delay can be greatly reduced by using a ZT network such as that shown in Note 1 above. The network reduces the group delay to  
less than 2 µs and increases 2WRL. The effect of group delay on linecard performance also may be compensated for by synthesizing  
complex impedance with the DSLAC™ or QSLAC™ device.  
7. Minimum current level is guaranteed not to cause a false Loop Detect. The SLIC must be functional in this condition.  
8. Four-wire performance is 5–9 dB better than the specified two-wire values.  
9. Open loop, Active state, Metering mode power dissipation may be reduced from a typical of 550 mW to a typical of 150 mW by connecting  
the DET pin to the OVH pin. This connection will force the SLIC into the nonmetering mode while on hook. With this connection, a me-  
tering signal sent after the SLIC goes on hook may be distorted on the 2W line because the SLIC is forced into the nonmetering mode. To  
eliminate this distortion, a delay can be added between the time the SLIC goes on hook and the time the SLIC switches to nonmetering  
mode by using an RC circuit for the DET pin to OVH pin connection.  
9
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
Table 1. SLIC Decoding  
DET Output  
E1 = 1  
State  
C3 C2 C1  
2-Wire Status  
Standby, Reverse Polarity  
Reserved  
E1 = 0  
GK  
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Loop detector  
X
X
Active, Reverse Polarity  
Tip Open  
Loop detector  
GK or loop detector  
Ring trip  
GK  
GK  
Disconnect  
Ring trip  
Ring trip  
GK  
Ringing  
Ring trip  
Active, Normal  
Standby, Normal  
Loop detector  
Loop detector  
GK  
Table 2. User-Programmable Components  
ZT = 253(Z2WIN – 2RF)  
ZT is connected between the VTX and RSN pins. The fuse resistors  
are RF, and Z2WIN is the desired two-wire AC input impedance.  
When computing ZT, the internal current amplifier pole and any  
external stray capacitance between VTX and RSN must be taken  
into account. The internal amplifier pole is:  
22 kHz RLAC  
-------------------------------------  
600 Ω ±10%  
Z
RX is connected from VRX to RSN. ZT is defined above, and G42L  
ZL  
G42L  
500(ZT)  
ZT + 253(ZL + 2RF)  
----------- ---------------------------------------------------  
ZRX  
=
is the desired receive gain. ZL is the 2-wire load impedance.  
RDC1, RDC2, and CDC form the network connected to the RDC pin.  
625(GFA)  
ILIMIT = ---------------------------------  
RDC1 + RDC2  
R
DC1 and RDC2 are approximately equal. ILIMIT is the desired loop  
current in the constant-current region.  
RDC1 + RDC2  
-------------------------------  
CDC = 1.5 ms •  
R
DC1 RDC2  
(RFA + 30.1 kΩ)  
-------------------------------------------  
GFA = 0.99 •  
(RFA + 32 kΩ)  
(RFA + 60 kΩ)  
-----------------------------------------  
RCL = 1.4 • (RDC1 + RDC2) •  
(RFA + 100 kΩ)  
RD and CD form the network connected from RD to AGND/DGND  
and IT is the threshold current between on hook and off hook in the  
Active state.  
365  
0.5 ms  
--------  
IT  
RD  
=
,
CD = ---------------  
RD  
C
CAS is the regulator filter capacitor and fc is the desired filter  
1
CCAS = -----------------------------  
cutoff frequency.  
3.4 105πfc  
Standby loop current (resistive region).  
VBAT1 – 3 V  
400 + RL  
IS tandby = ----------------------------------  
CBSWEN = 5 µmhos TD(ms)  
CBSWEN is connected from BSWEN to GND for automatic  
switching. TD is the delay in switching from BAT1 to BAT2. The  
delay from BAT2 to BAT1 is about 0.1 TD.  
10  
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
Table 2. User-Programmable Components (continued)  
The DC feed resistance can be adjusted with a resistance (RFA)  
from the RFA pin to ground.  
RDC1 + R  
DC2  
---------------------------------  
GDC  
RFEED = 2 RFUSE  
+
40 k+ RFA  
-------------------------------------  
GDC = 47.9  
120 k+ RFA  
Thermal Management Equations (Active, Normal, and Reverse Polarity States)  
RTMG is connected from TMG to VBAT2 and is used to limit  
power dissipation within the SLIC in Active states only.  
VBAT2 – 6 V  
----------------------------------  
ILOOPmax  
RTMG  
(OVH = 1)  
VBAT2 – 7.5 V  
---------------------------------------  
ILOOPmax  
RTMG  
(OVH = 0)  
Power dissipated in the thermal management resistor, RTMG  
,
( VBAT2 – 6 V – (IL RL))2(RTMG  
)
during the Active states.  
PRTMG = -------------------------------------------------------------------------------------------  
(RTMG + 40)2  
(OVH = 1)  
( VBAT2 – 7.5 V – (IL RL))2(RTMG  
)
PRTMG = ------------------------------------------------------------------------------------------------  
(RTMG + 40)2  
(OVH = 0)  
Power dissipated in the SLIC while in the Active states.  
PSLIC = ( VBAT2 IL ) – PRTMG – RL • (IL)2 + 0.22 W  
11  
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
DC FEED CHARACTERISTICS  
RDC = RDC1 + RDC2 = 11.67 kΩ,  
RFA = 0 Ω  
No fuse resistors  
OVH = 1  
BAT1 = –50 V  
60  
18.8 mA, 38.8 V  
3
41.5 V  
48.0 mA, 18.5 V  
VAB  
(Volts)  
2
1
0
50.0 mA  
60  
IL (mA)  
0
Notes:  
Graph is for illustration only.  
1. VAB = ILIMIT RCL – IL RCL  
RDC  
------------  
GDC  
2. VAB = 52 V – I  
L  
RDC  
------------------------  
VAB = 0.8 VBAT1 + 2.2 – I  
, OVH = 1  
L  
5 GDC  
3a.  
RDC  
-----------------------  
3b. VAB = 0.8 VBAT1 – 1.0 – I  
, OVH = 0  
L  
5 GDC  
a. Load Line (Typical)  
A
a
RSN  
RL  
IL  
SLIC  
RDC1  
b
CDC  
RDC2  
B
RDC  
Feed current programmed by RDC1 and RDC2  
b. Feed Programming  
Figure 1. DC Feed Characteristics  
12  
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
TEST CIRCUITS  
A(TIP)  
A(TIP)  
VTX  
VTX  
RL  
2
SLIC  
SLIC  
AGND  
RSN  
AGND  
RSN  
RT  
VAB  
RT  
VL  
VAB  
RL  
RL  
2
RRX  
RRX  
VRX  
B(RING)  
B(RING)  
IL2-4 = –20 log (VTX / VAB  
)
IL4-2 = –20 log (VAB / VRX)  
A. Two- to Four-Wire Insertion Loss  
B. Four- to Two-Wire Insertion Loss  
1
<< RL  
ωC  
A(TIP)  
RL  
VTX  
2
SLIC  
S1  
C
AGND  
RSN  
RT  
VL  
VAB  
VL  
S2  
RRX  
RL  
2
VRX  
B(RING)  
S2 Open, S1 Closed  
L-T Long. Bal. = 20 log (VAB / VL)  
S2 Closed, S1 Open  
4-L Long. Sig. Gen. = 20 log (VL / VRX  
)
L-4 Long. Bal. = 20 log (VTX / VL)  
C. Longitudinal Balance  
13  
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
TEST CIRCUITS (continued)  
ZD  
A(TIP)  
VTX  
SLIC  
RT1  
R
AGND  
VS  
VM  
CT1  
R
RT2  
ZIN  
RSN  
B(RING)  
RRX  
ZD is the specified nominal input impedance.  
Return loss = –20 log (2 VM / VS)  
D. Two-Wire Return Loss Test Circuit  
L1  
C1  
RF1  
A
B
CAX  
200 Ω  
50 Ω  
33 nF  
HF  
200 Ω  
50 Ω  
GEN  
CBX  
VTX  
C2  
RF2  
33 nF  
L2  
50 Ω  
SLIC Under Test  
1.5 Vrms  
80% Amplitude  
Modulated  
100 kHz to 30 MHz  
E. RFI Test Circuit  
14  
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
TEST CIRCUITS (continued)  
+5 V  
DA  
DB  
VCC  
RD  
CD  
2.2 nF  
(optional)  
A(TIP)  
A(TIP)  
HPA  
RD  
VTX  
VTX  
CHP  
RT  
RRX  
HPB  
B(RING)  
VRX  
RSN  
RDC  
B(RING)  
2.2 nF  
RDC2  
RDC1  
TESTOUT  
CDC  
RINGOUT  
BGND  
AGND/  
DGND  
RFA  
BSWOUT  
RFA  
BSWTH  
VBAT2  
OVH  
BSWEN  
C4  
BAT2  
BATTERY  
GROUND  
CVBAT12  
C3  
C2  
VBAT1  
TMG  
BAT1  
D1  
C1  
E1  
DET  
ANALOG  
GROUND  
RTMG  
(optional)  
CAS  
DIGITAL  
GROUND  
CCAS  
F. Le79489 Test Circuit  
15  
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
PHYSICAL DIMENSIONS  
32-Pin PLCC  
NOTES:  
1
2
3
Dimensioning and tolerancing conform to ASME Y14,5M-1994.  
32-Pin PLCC  
JEDEC # MS-016  
To be measured at seating plan - C - contact point.  
Min  
Nom  
--  
Max  
0.140  
0.095  
0.495  
0.453  
Symbol  
A
0.125  
0.075  
0.485  
0.447  
Dimensions “D1” and “E1” do not include mold protrusion.  
Allowable mold protrusion is 0.010 inch per side. Dimensions  
“D” and “E” include mold mismatch and determined at the  
parting line; that is “D1” and “E1” are measured at the extreme  
material condition at the upper or lower parting line.  
A1  
D
0.090  
0.490  
0.450  
0.205 REF  
0.590  
0.550  
0.255 REF  
--  
D1  
D2  
E
0.585  
0.547  
0.595  
0.553  
4
5
Exact shape of this feature is optional.  
E1  
E2  
Ԧ
Details of pin 1 identifier are optional but must be located  
within the zone indicated.  
0 deg  
10 deg  
6
7
8
Sum of DAM bar protrusions to be 0.007 max per lead.  
Controlling dimension : Inch.  
Reference document : JEDEC MS-016  
32-Pin PLCC  
Note:  
Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the  
device. Markings will vary with the mold tool used in manufacturing.  
16  
Zarlink Semiconductor Inc.  
Le79489  
Data Sheet  
REVISION SUMMARY  
Revision C to Revision D  
In the Electrical Characteristics table on page 8, some information was changed in the Test Conditions column  
in the Loop Detector section and the “Loop-detect threshold hysteresis” row was added to this section.  
Revision D to Revision E  
The physical dimensions (PL032) were added to the Physical Dimensions section.  
Updated the Pin Description table to correct inconsistencies.  
Revision E to Revision F  
Updated OPN (Ordering Part Number) throughout document.  
Absolute Maximum Ratings: Notes updated to standard.  
Operating Ranges: Temperature statement updated to standard.  
Updated "Sales Office Listing."  
Updated physical dimension drawings.  
Revision F1 to G1  
Removed non-green OPNs from Ordering Information.  
Removed all QFN package information throughout data sheet.  
In Electrical Characteristics, removed specifications for polarity grade options, 1 and 4 - 6  
Revision G1 to G2  
Added notes to Ordering Information on page 2.  
Revision G2 to G3  
Enhanced format of package drawing in Physical Dimensions  
Added new headers/footers due to Zarlink purchase of Legerity on August 3, 2007  
17  
Zarlink Semiconductor Inc.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are  
trademarks of Zarlink Semiconductor Inc.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

LE79489-2JC

SLIC, PQCC32, PLASTIC, LCC-32
MICROSEMI

LE79489-3DJC

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE79489-3DJC

SLIC, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79489-3DJCT

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE79489-3DJCT

SLIC, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79489-3JC

SLIC, PQCC32, PLASTIC, LCC-32
MICROSEMI

LE79489DJC

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE79489DJC

SLIC, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79489DJCT

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE79489DJCT

SLIC, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79555-1BVCT

SLIC, PQFP44,
MICROSEMI

LE79555-1FQCT

SLIC, PQCC32,
MICROSEMI