LE79489-3JC [MICROSEMI]

SLIC, PQCC32, PLASTIC, LCC-32;
LE79489-3JC
型号: LE79489-3JC
厂家: Microsemi    Microsemi
描述:

SLIC, PQCC32, PLASTIC, LCC-32

电信 电信集成电路
文件: 总19页 (文件大小:491K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Le79489  
Subscriber Line Interface Circuit  
DISTINCTIVE CHARACTERISTICS  
I Ideal for low power sensitive applications  
I Low standby power (normal and reverse)  
I Automatic on-chip battery switching  
I On-chip thermal management  
I Selectable overhead for metering applications  
I Two-wire impedance set by single external  
impedance  
I On-chip ring and test relay drivers and relay  
snubber circuits  
I On-chip thermal shutdown  
I Polarity reversal (full transmission)  
I Loop and ground-key detector  
I Comparator for ring-trip detection  
I Ground-start capability  
I –20 V to –60 V battery operation  
I Programmable current limit  
I Programmable resistive feed  
I Programmable loop-detect threshold  
I On-hook transmission  
BLOCK DIAGRAM  
TMG  
DA  
DB  
TESTOUT  
RINGOUT  
Test Relay  
Driver  
Ring Relay  
Driver  
A(TIP)  
HPA  
C1  
Ring-Trip  
Comparator  
C2  
C3  
C4  
Input  
Decoder  
and  
Two-Wire  
Interface  
Ground-Key  
Detector  
E1  
Control  
HPB  
Loop Detector  
DET  
RD  
VTX  
Signal  
B(RING)  
Transmission  
RSN  
Power-Feed  
Controller  
RDC  
CAS  
OVH  
RFA  
VBAT2  
Switch Control  
VBAT1  
BGND  
VCC  
AGND/DGND  
BSWOUT  
BSWEN BSWTH  
Document ID# 080201 Date: Jun 18, 2002  
Rev:  
F
Version:  
1
Distribution:  
Public Document  
ORDERING INFORMATION  
Standard Products  
Legerity standard products are available in several packages and operating ranges. The order number (Valid Combination) is  
formed by a combination of the elements below.  
Le79489*  
J
C
–1  
TEMPERATURE RANGE  
C = Commercial (0°C to 70°C)*  
PACKAGE TYPE  
J = 32-pin Plastic Leaded Chip Carrier (PL 032)  
PERFORMANCE GRADE OPTION  
–1 = 52 dB Longitudinal Balance, Polarity Reversal  
–2 = 60 dB Longitudinal Balance, Polarity Reversal  
–3 = 52 dB Longitudinal Balance, No Polarity Reversal  
–4 = 60 dB Longitudinal Balance, No Polarity Reversal  
–5 = 52 dB Longitudinal Balance, No Polarity Reversal, Metering  
–6 = 52 dB Longitudinal Balance, Polarity Reversal, Metering  
DEVICE NUMBER/DESCRIPTION  
Le79489  
Subscriber Line Interface Circuit  
Valid Combinations  
Valid Combinations  
–1  
–2  
–3  
–4  
–5  
–6  
Valid Combinations list configurations planned to  
be supported in volume for this device. Consult the  
local Legerity sales office to confirm availability of  
specific valid combinations and to check on newly  
released combinations, and to obtain additional  
data on Legerity’s standard military–grade  
products.  
Le79489*  
JC  
*Legerity reserves the right to fulfill all orders for this device with parts marked with the "Am" part number prefix, until such  
time as all inventory bearing this mark has been depleted. It should be noted that parts marked with either the "Am" or the  
"Le" part number prefix are equivalent devices in terms of form, fit, and function. The only difference between the two is in  
the part number prefix appearing on the topside mark.  
2
Le79489 Data Sheet  
CONNECTION DIAGRAM  
Top View  
4
3
2
1
32 31 30  
29  
28  
DA  
RD  
TESTOUT  
5
6
7
BSWOUT  
TMG  
27  
26  
25  
24  
23  
HPB  
HPA  
NC  
8
9
VBAT1  
32-Pin PLCC  
C4  
VTX  
10  
BSWEN  
C1  
RSVD  
11  
12  
13  
RSN  
E1  
22  
21  
DET  
AGND/DGND  
14 15 16 17 18 19 20  
Notes:  
1. Pin 1 is marked for orientation.  
2. NC = No Connect  
3. RSVD = Reserved. Do not connect to this pin.  
Le79489 Data Sheet  
3
PIN DESCRIPTIONS  
Pin Names  
AGND/DGND  
A(TIP)  
Type  
Description  
Gnd  
Analog and Digital ground.  
Output  
Gnd  
Output of A(TIP) power amplifier.  
Battery (power) ground.  
BGND  
B(RING)  
BSWEN  
Output  
Output of B(RING) power amplifier.  
Battery Switch Control. Internally connected to automatic battery switch circuitry. BSWEN  
can be overridden by external logic. BSWEN Low connects VBAT1 to VBAT2. BSWEN  
High disconnects VBAT1 from VBAT2.  
BSWOUT  
Output  
Buffered Output. Internally connected to battery switch circuitry. The output is open-  
collector with a built-in pull-up resistor. BSWOUT Low indicates VBAT1 is connected to  
VBAT2. BSWOUT High indicates VBAT1 is disconnected from VBAT2. This output is  
valid only in the Active states.  
BSWTH  
Input  
Input for setting automatic battery switch threshold. Normally tied to Battery 2. Tie to  
ground for manual switching.  
C3–C1  
C4  
Input  
Input  
Decoder. TTL compatible. C3 is MSB and C1 is LSB.  
Test Relay Input – Active Low. 1 = Off. 0 = On.  
CAS  
DA  
Capacitor  
Input  
Anti-sat pin for capacitor to filter reference voltage when operating in anti-sat region.  
Ring-trip negative. Negative input to ring-trip comparator.  
Ring-trip positive. Positive input to ring-trip comparator.  
DB  
Input  
DET  
Output  
Switchhook detector. When enabled, a logic Low indicates the selected detector is  
tripped. The detector is selected by the logic inputs (C3–C1). The output is open-collector  
with a built-in 15 kpull-up resistor.  
E1  
Input  
Ground-Key Detect Select. E1 = 1 selects the hook switch detector. E1 = 0 selects the  
ground-key detector. In the Tip Open state, ground key is selected independent of E1.  
HPA  
HPB  
NC  
Capacitor  
Capacitor  
High-Pass Filter Capacitor. A(TIP) side of high-pass filter capacitor.  
High-Pass Filter Capacitor. B(RING) side of high-pass filter capacitor.  
No connect. This pin not internally connected.  
OVH  
Input  
Overhead Control. Logic High enables minimized nonmetering overhead. Logic Low  
enables 2.2 V metering DC overhead. TTL-compatible.  
RD  
Resistor  
Resistor  
Detector resistor. Detector threshold set and filter pin.  
RDC  
DC feed resistor. Connection point for the DC feed current programming network. The  
other end of the network connects to the receiver summing node (RSN). Connection point  
for the DC feed current programming network. The other end of the network connects to  
RSN. VRDC is negative for normal polarity and positive for reverse polarity.  
RFA  
Resistive feed adjust. Adjust the DC feed resistance gain coefficient, GDC, with external  
resistor connected to ground.  
RINGOUT  
RSN  
Output  
Input  
Ring Relay Driver. Open-collector driver with emitter internally connected to BGND.  
Receive Summing Node. The metallic current (AC and DC) between A(TIP) and B(RING)  
is equal to 500 times the current into this pin. The networks that program receive gain,  
two-wire impedance, and feed current all connect to this node.  
RSVD  
TESTOUT  
TMG  
Output  
Reserved. These pins are reserved for Legerity use. Make no connection to these pins.  
Test Relay Driver. Open collector driver with emitter internally connected to AGND.  
Thermal Management. External resistor connects this pin to VBAT2 to offload power dis-  
sipation from SLIC. Functions during normal polarity, Active state.  
VBAT1  
VBAT2  
VCC  
Battery  
Battery  
Power  
Output  
Most negative battery supply and substrate connection.  
Battery supply for output power amplifiers. Switched to VBAT1 by BSWEN.  
+5 V power supply.  
VTX  
Transmit Audio. This output is a 0.5066 unity gain version of the A(TIP) and B(RING)  
metallic voltage. VTX also sources the two-wire input impedance programming network.  
4
Le79489 Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Storage temperature . . . . . . . . . . . . –55°C to +150°C  
With respect to AGND/DGND:  
OPERATING RANGES  
Commercial (C) Devices  
Ambient temperature. . . . . . . . . . . . . –40°C to +85°C*  
V
CC. . . . . . . . . . . . . . . . . . . . . . . . . . .–0.4 V to +7.0 V  
VBAT1  
Continuous . . . . . . . . . . . . . . . . . . +0.4 V to –70 V  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . 4.75 V to 5.25 V  
BAT1 . . . . . . . . . . . . . . . . . . . . . . . . .40.5 V to –60 V  
BAT2 . . . . . . . . . . . . . . . . . . . . . . . . . . .–20 V to BAT1  
AGND/DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V  
BGND with respect to GND . . . –100 mV to +100 mV  
Load resistance on VTX to GND. . . . . . . . . 20 kmin  
10 ms . . . . . . . . . . . . . . . . . . . . . . +0.4 V to –75 V  
VBAT2 and BSWTH. . . . . . . . . . . . . . . +0.4 V to VBAT1  
BGND. . . . . . . . . . . . . . . . . . . . . . . . . . . .+3 V to –3 V  
A(TIP) or B(RING) with respect to BGND:  
Continuous . . . . . . . . . . . . . . . . . . . .VBAT1 to +1 V  
10 ms (f = 0.1 Hz) . . . . . . . . . . . . . . .70 V to +5 V  
1 µs (f = 0.1 Hz) . . . . . . . . . . . . . . . .80 V to +8 V  
250 ns (f = 0.1 Hz) . . . . . . . . . . . . .90 V to +12 V  
Operating ranges define those limits over which the  
functionality of the device is guaranteed by production  
testing.  
* Legerity guarantees the performance of this device over  
commercial (0 to 70°C) and industrial (-40 to 85 °C)  
temperature ranges by conducting electrical characterization  
over each range and by conducting a production test with  
single insertion coupled to periodic sampling. These  
characterization and test procedures comply with section  
4.6.2 of Bellcore TR-TSY-000357 Component Reliability  
Assurance Requirements for Telecommunications  
Equipment.  
Current from A(TIP) or B(RING). . . . . . . . . . 150 mA  
TESTOUT/RINGOUT/current. . . . . . . . . . . . . . 80 mA  
TESTOUT/RINGOUT/voltage . . . . . . . BGND to +7 V  
TESTOUT/RINGOUT/transient . . . . . BGND to +10 V  
DA and DB inputs  
Voltage on ring-trip inputs. . . . . . . . . . VBAT1 to 0 V  
Current on ring-trip inputs. . . . . . . . . . . . . 10 mA  
C4–C1, BSWEN, OVH, E1  
Input voltage . . . . . . . . . . . . –0.4 V to VCC + 0.4 V  
Maximum power dissipation, continuous  
TA = 70°C, No heat sink (see note):  
In 32-pin PLCC package. . . . . . . . . . . . . . . . 1.7 W  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . .θJA  
In 32-pin PLCC package. . . . . . . . . . . .43°C/W typ  
ESD immunity/pin (HBM) . . . . . . . . . . . . . . . . . 1500 V  
Note: Thermal limiting circuitry on chip will shut down the  
circuit at a junction temperature of about 165°C. The device  
should never be exposed to this temperature. Operation  
above 145°C junction temperature may degrade device  
reliability. See the SLIC Packaging Considerations section for  
more information.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum  
Ratings for extended periods may affect device reliability.  
Le79489 Data Sheet  
5
ELECTRICAL CHARACTERISTICS  
Description  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
Transmission Performance  
2-wire return loss  
(See Test Circuit D)  
200 Hz to 3.4 kHz  
26  
dB  
4, 6  
4
Analog output (VTX) impedance  
Analog output (VTX) offset voltage  
Overload level, 2-wire  
3
20  
–50  
2.5  
7
+50  
mV  
Active state  
2a,  
3
Vpk  
Active state, OVH = 0  
–5, –6*  
–5, –6*  
Overload level  
Open loop, RLAC = 900 ,  
OVH = 0  
3.86  
2b,  
3
Vrms  
THD, Total Harmonic Distortion  
0 dBm  
–64  
–55  
–50  
–40  
–36  
3
4
+7 dBm  
dB  
THD, open loop  
0 dBm, RLAC = 600 Ω  
Longitudinal Capability (See Test Circuit C)  
Longitudinal to metallic L-T  
200 Hz to 1 kHz  
Normal and reverse polarity  
–1, –6*  
–3, –5  
52  
52  
60  
58  
54  
Normal polarity  
Normal polarity  
0°C to +70°C –2, –4  
Normal polarity –40°C to +85°C –2, –4  
Reverse polarity –40°C to +85°C –2  
dB  
8
7
Longitudinal to metallic L-T  
1 kHz to 3.4 kHz  
Normal and reverse polarity  
Normal polarity  
–1, –6*  
–3, –5  
52  
52  
54  
54  
54  
Normal polarity  
0°C to +70°C –2, –4  
Normal polarity –40°C to +85°C –2, –4  
Reverse polarity –40°C to +85°C –2  
Longitudinal signal generation 4-L 200 Hz to 3.4 kHz  
40  
15  
dB  
Longitudinal current per pin  
(A or B)  
Active state  
27  
25  
mArms  
Longitudinal impedance at A or B  
Longitudinal Induction  
0 to 100 Hz  
/pin  
4
4
23  
dBrnc  
Idle Channel Noise  
C-message weighted noise  
Psophometric weighted noise  
RL = 600 Ω  
RL = 600 Ω  
+7  
+12  
–78  
dBrnC  
dBmp  
4, 8  
8
–83  
Insertion Loss (See Test Circuits A and B)  
Gain, 4- to 2-wire  
0 dBm, 1 kHz  
0°C to 70°C  
–40°C to 85°C  
–0.15  
–0.20  
0
0
+0.15  
+0.20  
4
Gain, 2- to 4-wire, 4-to-4-wire  
0 dBm, 1 kHz  
0°C to 70°C  
–40°C to 85°C  
–6.05 –5.90 –5.75  
–6.10 –5.90 –5.70  
4
4
4
Gain, 4- to 2-wire  
Open loop  
Open loop  
–0.35  
+0.35  
dB  
µs  
Gain, 2- to 4-wire, 4- to 4-wire  
Gain over frequency  
Gain tracking  
–6.25 –5.90 –5.55  
300 to 3.4 kHz, relative to 1 kHz  
+3 dBm to –55 dBm relative to 0 dBm  
0 dB to –15 dB  
–0.10  
–0.10  
–0.35  
+0.10  
+0.10  
+0.35  
Gain tracking open loop  
Group delay  
4
0 dBm, 1 kHz  
4
4, 6  
Note:  
* P.G. = Performance Grade  
6
Le79489 Data Sheet  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Description  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
Line Characteristics  
IL, Active  
Short loop  
Medium loop  
Long loop  
R
R
R
LDC = 250 Ω  
LDC = 700 Ω  
LDC = 2 kΩ  
44.2  
33.4  
17.2  
48.6  
37.1  
19.2  
54.0  
40.8  
21.2  
IL, Active  
OVH = 0  
Short loop  
Medium loop  
Long loop  
RLDC = 250 Ω  
RLDC = 700 Ω  
RLDC = 2 kΩ  
44.2  
33.4  
16.0  
48.6  
37.1  
18.0  
54.0  
40.8  
20.0  
–5, –6*  
mA  
IL, Accuracy, Standby state  
0.7 IL  
IL  
1.3 IL  
VBAT1 3 V  
IL = ----------------------------------  
RL + 400  
TA = 25°C  
Current limited region  
RL = 0  
18  
30  
IL, Loop current, Disconnect state  
ILLIM  
100  
135  
µA  
Active, A and B to GND  
95  
52  
mA  
Vapparent  
4
VAB, Open loop voltage  
Active, Normal  
Reverse Polarity  
OVH = 0  
40.3  
39.8  
37  
41.7  
41.7  
39  
V
mV  
V
BAT SW hysteresis  
BAT SW threshold  
1150  
BAT2  
+ 8.5  
(from VBAT1 to VBAT2  
)
OVH = 0  
–5, –6*  
BAT2  
+ 11.7  
IA, Leakage, Tip Open state  
IB, Current, Tip Open state  
VA, Active  
RL = 0  
100  
56  
µA  
mA  
V
B to GND  
18  
30  
–5  
RA to BAT1 = 7 k, RB to  
GND = 100 Ω  
–7.5  
4
Power Supply Rejection Ratio (Vripple = 100 mVrms), Active Normal State  
VCC  
50 Hz to 3.4 kHz  
50 Hz to 3.4 kHz  
50 Hz to 3.4 kHz  
30  
28  
35  
45  
50  
50  
3
4
VBAT1  
VBAT2  
dB  
VBAT1, Open loop, RLAC = 600 Ω  
(Anti-sat region)  
50 Hz  
100 Hz  
200 Hz  
500 Hz to 3.4 kHz  
8
14  
22  
29  
40  
15  
20  
28  
4
4
Effective internal resistance  
Device Power Dissipation  
Open loop, Disconnect state  
Open loop, Standby state  
Open loop, Active state  
Open loop, Active state  
Off hook, Standby state  
Off hook, Active state  
85  
170  
255  
kΩ  
CAS pin to GND  
35  
50  
70  
85  
OVH = 1  
OVH = 0  
RL = 600 Ω  
150  
550  
1000  
250  
620  
1300  
mW  
9
RL = 250 Ω  
RL = 700 Ω  
880  
800  
1200  
1000  
Le79489 Data Sheet  
7
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Description  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
Supply Currents, Battery  
ICC  
,
Disconnect state  
Standby state  
Active state  
2.5  
3.0  
6.3  
4.5  
4.5  
9.5  
Open Loop VCC supply current  
mA  
mVrms  
V
IBAT1  
,
Disconnect state  
Standby state  
Active state  
0.5  
0.7  
2.8  
1.0  
1.5  
4.8  
Open Loop VBAT1 supply current  
RFI Rejection  
RFI rejection  
100 kHz to 30 MHz  
(See Figure E)  
0.7  
4
Logic Inputs (C4–C1, E1, BSWEN, OVH [–5, –6 only])  
VIH, Input High voltage  
C3  
C1, C2, C4, BSWEN, OVH, E1  
2.5  
2.0  
VIL, Input Low voltage  
0.8  
40  
IIH, Input High current C4–C1,  
OVH, E1  
–75  
IIH, Input High current, BSWEN  
IIL, Input Low current, except C1  
IIL, Input Low current, C1  
–75  
–400  
–600  
1200  
0.40  
+50  
µA  
V
–300  
Logic Output (DET, BSWOUT)  
VOL, Output Low voltage  
VOH, Output High voltage  
IOUT = 0.3 mA  
IOUT = –0.05 mA  
2.4  
Ring-Trip Comparator Input (DA, DB)  
Bias current  
–500  
–50  
–50  
0
nA  
Offset voltage  
Source resistance = 2 MΩ  
mV  
5
Loop Detector  
IT, Loop-detect threshold  
tolerance  
Active state, Off-hook to On-hook  
RD = 35.4 k, IT = 368/RD  
On-hook to Off-hook  
–15  
–20  
–15  
–20  
+15  
+20  
+15  
+20  
RD = 35.4 k, IT = 414/RD  
Standby state, Off-hook to On-hook  
RD = 35.4 k, IT = 425/RD  
On-hook to Off-hook  
%
RD = 35.4 k, IT = 471/RD  
Active state  
Loop-detect threshold hysteresis  
IGK, GND key-detector threshold  
1.3  
9
4
Standby state  
mA  
RL from BX to GND  
Active, Standby, and Tip Open states  
5
6
13  
Relay Driver Output (RINGOUT/TESTOUT)  
On voltage  
IOL = 40 mA  
+0.3  
+0.7  
100  
V
Off leakage  
VOH = +5 V  
IZ = 100 µA  
IZ = 40 mA  
µA  
Zener breakover  
Zener On voltage  
7.5  
7.9  
V
10  
8
Le79489 Data Sheet  
RELAY DRIVER SCHEMATICS  
RINGOUT  
TESTOUT  
BGND  
BGND  
Notes:  
1. Unless otherwise specified, test conditions are VCC = +5 V, BAT1 = –50 V, BAT2 = –34 V, RL = 600 , RDC1 = RDC2 = 5.833 k,  
RTMG = 570 , RD = 35.4 k, RFA = 0 , no fuse resistors, CHP = 0.22 µF, CDC = 0.5 µF, CCAS = 0.33 µF, CVBAT12 = 220 nF,  
D1 = D2 = 1N400x, OVH = 1, two-wire AC input impedance is a 600 resistance synthesized by the programming network  
shown below.  
VTX  
RT1 =76 kΩ  
CT1 =120 pF  
RT2 =76 kΩ  
RSN  
RRX = 150 kΩ  
VRX  
2. a. Overload level exists when THD = 1%.  
b. Overload level exists when THD = 1.5%.  
3. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.  
4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.  
5. Tested with 0 source impedance. 2 Mis specified for system design only.  
6. Group delay can be greatly reduced by using a ZT network such as that shown in Note 1 above. The network reduces the  
group delay to less than 2 µs and increases 2WRL. The effect of group delay on linecard performance also may be  
compensated for by synthesizing complex impedance with the DSLAC™ or QSLAC™ device.  
7. Minimum current level is guaranteed not to cause a false Loop Detect. The SLIC must be functional in this condition.  
8. Four-wire performance is 5–9 dB better than the specified two-wire values.  
9. Open loop, Active state, Metering mode power dissipation may be reduced from a typical of 550 mW to a typical of 150 mW  
by connecting the DET pin to the OVH pin. This connection will force the SLIC into the nonmetering mode while on hook. With  
this connection, a metering signal sent after the SLIC goes on hook may be distorted on the 2W line because the SLIC is  
forced into the nonmetering mode. To eliminate this distortion, a delay can be added between the time the SLIC goes on hook  
and the time the SLIC switches to nonmetering mode by using an RC circuit for the DET pin to OVH pin connection.  
Le79489 Data Sheet  
9
Table 1. SLIC Decoding  
DET Output  
E1 = 1  
State  
C3 C2 C1  
2-Wire Status  
Standby, Reverse Polarity  
Reserved  
E1 = 0  
GK  
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Loop detector  
X
X
Active, Reverse Polarity  
Tip Open  
Loop detector  
GK or loop detector  
Ring trip  
GK  
GK  
Disconnect  
Ring trip  
Ring trip  
GK  
Ringing  
Ring trip  
Active, Normal  
Standby, Normal  
Loop detector  
Loop detector  
GK  
Table 2. User-Programmable Components  
ZT = 253(Z2WIN 2RF)  
ZT is connected between the VTX and RSN pins. The fuse  
resistors are RF, and Z2WIN is the desired two-wire AC input  
impedance. When computing ZT, the internal current  
amplifier pole and any external stray capacitance between  
VTX and RSN must be taken into account. The internal  
amplifier pole is:  
22 kHz RLAC  
-------------------------------------  
600 10%  
Z
G
RX is connected from VRX to RSN. ZT is defined above, and  
42L is the desired receive gain. ZL is the 2-wire load  
impedance.  
ZL  
G42L  
500(ZT)  
ZT + 253(ZL + 2RF)  
----------- ---------------------------------------------------  
ZRX  
=
R
DC1, RDC2, and CDC form the network connected to the RDC  
625(GFA)  
ILIMIT = ---------------------------------  
pin. RDC1 and RDC2 are approximately equal. ILIMIT is the  
desired loop current in the constant-current region.  
R
DC1 + RDC2  
R
DC1 + RDC2  
DC1 RDC2  
-------------------------------  
CDC = 1.5 ms •  
R
(RFA + 30.1 kΩ)  
------------------------------------------  
GFA = 0.99 •  
(RFA + 32 kΩ)  
(RFA + 60 kΩ)  
-----------------------------------------  
RCL = 1.4 • (RDC1 + RDC2) •  
(RFA + 100 kΩ)  
RD and CD form the network connected from RD to AGND/  
DGND and IT is the threshold current between on hook and  
off hook in the Active state.  
365  
0.5 ms  
--------  
IT  
RD  
=
,
CD = ---------------  
RD  
C
CAS is the regulator filter capacitor and fc is the desired filter  
1
CCAS = -----------------------------  
3.4 105πfc  
cutoff frequency.  
Standby loop current (resistive region).  
VBAT1 3 V  
IS tandby = ----------------------------------  
400 + RL  
10  
Le79489 Data Sheet  
Table 2. User-Programmable Components (continued)  
CBSWEN = 5 µmhos TD(ms) CBSWEN is connected from BSWEN to GND for automatic  
switching. TD is the delay in switching from BAT1 to BAT2.  
The delay from BAT2 to BAT1 is about 0.1 TD.  
The DC feed resistance can be adjusted with a resistance  
(RFA) from the RFA pin to ground.  
R
DC1 + RDC2  
---------------------------------  
GDC  
RFEED = 2 RFUSE  
+
40 k+ RFA  
------------------------------------  
GDC = 47.9  
120 k+ RFA  
Thermal Management Equations (Active, Normal, and Reverse Polarity States)  
RTMG is connected from TMG to VBAT2 and is used to limit  
power dissipation within the SLIC in Active states only.  
VBAT2 6 V  
----------------------------------  
ILOOPmax  
RTMG  
(OVH = 1)  
(OVH = 0)  
VBAT2 7.5 V  
---------------------------------------  
ILOOPmax  
RTMG  
Power dissipated in the thermal management resistor, RTMG  
during the Active states.  
,
( VBAT2 6 V (IL RL))2(RTMG  
)
PRTMG = -------------------------------------------------------------------------------------------  
(RTMG + 40)2  
(OVH = 1)  
( VBAT2 7.5 V (IL RL))2(RTMG  
)
PRTMG = ------------------------------------------------------------------------------------------------  
(RTMG + 40)2  
(OVH = 0)  
Power dissipated in the SLIC while in the Active states.  
PSLIC = ( VBAT2 IL ) PRTMG RL • (IL)2 + 0.22 W  
Le79489 Data Sheet  
11  
DC FEED CHARACTERISTICS  
RDC = RDC1 + RDC2 = 11.67 k,  
RFA = 0 Ω  
No fuse resistors  
18.8 mA, 38.8 V  
OVH = 1  
BAT1 = –50 V  
60  
3
41.5 V  
48.0 mA, 18.5 V  
VAB  
(Volts)  
2
1
0
50.0 mA  
60  
IL (mA)  
0
Notes:  
Graph is for illustration only.  
1. VAB = ILIMIT RCL IL RCL  
RDC  
------------  
2. VAB = 52 V IL  
GDC  
RDC  
------------------------  
VAB = 0.8 VBAT1 + 2.2 IL  
, OVH = 1  
5 GDC  
3a.  
RDC  
------------------------  
3b. VAB = 0.8 VBAT1 1.0 IL  
, OVH = 0  
5 GDC  
a. Load Line (Typical)  
A
a
RSN  
RL  
IL  
SLIC  
RDC1  
b
CDC  
RDC2  
B
RDC  
Feed current programmed by RDC1 and RDC2  
b. Feed Programming  
Figure 1. DC Feed Characteristics  
12  
Le79489 Data Sheet  
TEST CIRCUITS  
A(TIP)  
A(TIP)  
VTX  
VTX  
RL  
2
SLIC  
SLIC  
AGND  
AGND  
RT  
VAB  
RT  
VL  
VAB  
RL  
RL  
2
RRX  
RRX  
RSN  
RSN  
VRX  
B(RING)  
IL2-4 = –20 log (VTX / VAB  
B(RING)  
)
IL4-2 = –20 log (VAB / VRX)  
A. Two- to Four-Wire Insertion Loss  
B. Four- to Two-Wire Insertion Loss  
1
<< RL  
ωC  
A(TIP)  
RL  
2
VTX  
SLIC  
AGND  
S1  
C
RT  
VL  
VAB  
VL  
S2  
RRX  
RL  
2
RSN  
VRX  
B(RING)  
S2 Open, S1 Closed  
S2 Closed, S1 Open  
L-T Long. Bal. = 20 log (VAB / VL)  
L-4 Long. Bal. = 20 log (VTX / VL)  
4-L Long. Sig. Gen. = 20 log (VL / VRX)  
C. Longitudinal Balance  
Le79489 Data Sheet  
13  
TEST CIRCUITS (continued)  
ZD  
A(TIP)  
VTX  
SLIC  
RT1  
R
AGND  
VS  
VM  
CT1  
R
RT2  
ZIN  
RSN  
B(RING)  
RRX  
ZD is the specified nominal input impedance.  
Return loss = –20 log (2 VM / VS)  
D. Two-Wire Return Loss Test Circuit  
L1  
C1  
RF1  
A
CAX  
33 nF  
200 Ω  
200 Ω  
50 Ω  
HF  
GEN  
50 Ω  
B
CBX  
VTX  
C2  
RF2  
33 nF  
L2  
50 Ω  
SLIC Under Test  
1.5 Vrms  
80% Amplitude  
Modulated  
100 kHz to 30 MHz  
E. RFI Test Circuit  
14  
Le79489 Data Sheet  
TEST CIRCUITS (continued)  
+5 V  
DA  
DB  
VCC  
RD  
CD  
(optional)  
2.2 nF  
A(TIP)  
A(TIP)  
HPA  
RD  
VTX  
VTX  
CHP  
RT  
RRX  
HPB  
VRX  
RSN  
RDC  
B(RING)  
2.2 nF  
B(RING)  
RDC2  
RDC1  
TESTOUT  
CDC  
RINGOUT  
BGND  
AGND/  
DGND  
RFA  
BSWOUT  
RFA  
BSWTH  
VBAT2  
OVH  
BSWEN  
C4  
BAT2  
BATTERY  
GROUND  
C
VBAT12  
C3  
C2  
VBAT1  
TMG  
BAT1  
D1  
C1  
E1  
ANALOG  
GROUND  
RTMG  
(optional)  
DET  
CAS  
DIGITAL  
GROUND  
CCAS  
F. Le79489 Test Circuit  
Le79489 Data Sheet  
15  
PHYSICAL DIMENSIONS  
32-Pin PLCC  
16  
Le79489 Data Sheet  
REVISION SUMMARY  
Revision C to Revision D  
In the Electrical Characteristics table on page 8, some information was changed in the Test Conditions column  
in the Loop Detector section and the “Loop-detect threshold hysteresis” row was added to this section.  
Revision D to Revision E  
The physical dimensions (PL032) were added to the Physical Dimensions section.  
Updated the Pin Description table to correct inconsistencies.  
Revision E to Revision F  
Updated OPN (Ordering Part Number) throughout document.  
Absolute Maximum Ratings: Notes updated to standard.  
Operating Ranges: Temperature statement updated to standard.  
Updated "Sales Office Listing."  
Updated physical dimension drawings.  
17  
Le79489 Data Sheet  
The contents of this document are provided in connection with Legerity, Inc. products. Legerity makes no representations or warranties with respect to the accuracy or completeness of the  
contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel  
or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in Legerity's Standard Terms and Conditions of Sale, Legerity assumes no liability whatsoever,  
and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any  
intellectual property right.  
Legerity's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support  
or sustain life, or in any other application in which the failure of Legerity's product could create a situation where personal injury, death, or severe property or environmental damage may occur.  
Legerity reserves the right to discontinue or make changes to its products at any time without notice.  
© 2002 Legerity, Inc.  
All rights reserved.  
Trademarks  
Legerity, the Legerity logo and combinations thereof, and QSLAC, DSLAC, are trademarks of Legerity, Inc.  
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
P.O. Box 18200  
Austin, Texas 78760-8200  
Telephone: (512) 228-5400  
Fax: (512) 228-5508  
North America Toll Free: (800) 432-4009  
To contact the Legerity Sales Office  
nearest you, or to download or order  
product literature, visit our website at  
www.legerity.com.  
To order literature in North America,  
call:  
(800) 572-4859  
or email:  
americalit@legerity.com  
To order literature in Europe or Asia,  
call:  
44-0-1179-341607  
or email:  
Europe — eurolit@legerity.com  
Asia — asialit@legerity.com  

相关型号:

LE79489DJC

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE79489DJC

SLIC, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79489DJCT

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE79489DJCT

SLIC, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79555-1BVCT

SLIC, PQFP44,
MICROSEMI

LE79555-1FQCT

SLIC, PQCC32,
MICROSEMI

LE79555-1QCT

SLIC, 8 X 8 MM, MO-220, QFN-32
MICROSEMI

LE79555-1VC

SLIC, PQFP44, MS-026, TQFP-44
MICROSEMI

LE79555-1VCT

SLIC, PQFP44, MS-026, TQFP-44
MICROSEMI

LE79555-2BVC

SLIC, CMOS, PQFP44, GREEN, MS-026ACB, TQFP-44
ZARLINK

LE79555-2BVC

SLIC, CMOS, PQFP44, GREEN, MS-026ACB, TQFP-44
MICROSEMI

LE79555-2BVCT

SLIC, CMOS, PQFP44, GREEN, MS-026ACB, TQFP-44
MICROSEMI