LE79555-1BVCT [MICROSEMI]

SLIC, PQFP44,;
LE79555-1BVCT
型号: LE79555-1BVCT
厂家: Microsemi    Microsemi
描述:

SLIC, PQFP44,

文件: 总25页 (文件大小:651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Le79555  
Subscriber Line Interface Circuit  
VE580 Series  
APPLICATIONS  
DESCRIPTION  
The Le79555 device, part of Legerity’s VoiceEdge™ family  
VE580 series of devices, was designed for high-density POTS  
applications requiring a power saving, small footprint SLIC  
device. The new SLIC device fulfills today's requirements for  
POTS linecard markets requiring a balance of high-  
performance cost-effective silicon components. The Le79555  
device delivers economical linecard solutions by offering power  
and space savings to linecard designers. The on-chip  
switching regulator allows for power dissipation to be  
minimized for the entire system. Another benefit is that the  
device is offered in a reduced footprint package type, a 44-pin  
TQFP. This small footprint saves designers board space, thus  
increasing the density or number of lines on the board.  
„ Ideal for high-density, low-power linecard applications  
FEATURES  
„ Control states: Active, Reverse Polarity, Tip Open,  
Ringing, Standby, and Open Circuit  
„ Low Standby power  
„ –40 to –58 V battery operation  
„ On-hook transmission  
„ Two-wire impedance set by single external impedance  
„ Programmable constant-current feed  
„ Low Off-Hook Active Overhead Voltage  
„ Programmable loop-detect threshold  
„ Ground-start detector  
Legerity offers a range of compatible SLAC™ devices  
providing a complete line circuit that can be optimized for  
varying requirements. The SLIC device is designed to operate  
with a range of SLAC devices from low cost, non-  
programmable to more advanced, highly programmable  
options viable for a range of applications.  
„ Programmable ring-trip detect threshold  
„ No –5 V supply required  
„ Three on-chip relay drivers and relay snubbers, one  
ringing and two general purpose  
„ Tip Open state for ground-start lines  
„ On-chip switching regulator for Low power dissipation  
„ Supports 30 mA for Active, Norma,l and Reverse  
Polarity operation  
RELATED LITERATURE  
„ 080125 SLIC Switcher Circuit Application Note  
„ 080725 Le79555 Switching Regulator Applications  
„ 080753 Le58QL02/021/031 QLSLAC™ Data Sheet  
„ 080754 Le58QL061/063 QLSLAC™ Data Sheet  
ORDERING INFORMATION  
Standard Packages  
Device  
Performance Grade/Package  
Packing2  
BLOCK DIAGRAM  
Le79555-1VC  
Le79555-1QC  
52 dB Pol. Rev., 44-pin TQFP  
52 dB Pol. Rev., 32-pin QFN  
Tray  
Ring Relay Driver  
Relay Driver  
RINGOUT  
RYOUT1  
RYOUT2  
Le79555-2VC  
Le79555-2QC  
63 dB Pol. Rev., 44-pin TQFP  
63 dB Pol. Rev., 32-pin QFN  
Tray  
Tray  
Tray  
A(TIP)  
Le79555-3VC  
Le79555-3QC  
52 dB No Pol. Rev., 44-pin TQFP  
52 dB No Pol. Rev., 32-pin QFN  
Relay Driver  
Le79555-4VC  
Le79555-4QC  
63 dB No Pol. Rev., 44-pin TQFP  
63 dB No Pol. Rev., 32-pin QFN  
HPA  
C1  
C2  
C3  
Green Packages1  
D1  
D2  
Input Decoder  
and Control  
Device  
Le79555-1BVC  
Le79555-1FQC 52 dB Pol. Rev., 32-pin QFN  
Performance Grade/Package  
52 dB Pol. Rev., 44-pin TQFP  
Packing2  
HPB  
DET  
Two Wire  
Interface  
Ground  
Detector  
Tray  
VTX  
RSN  
Signal  
Transmission  
Le79555-2BVC  
Le79555-2FQC 63 dB Pol. Rev., 32-pin QFN  
Le79555-3BVC 52 dB No Pol. Rev., 44-pin TQFP  
Le79555-3FQC 52 dB No Pol. Rev., 32-pin QFN  
Le79555-4BVC 63 dB No Pol. Rev., 44-pin TQFP  
Le79555-4FQC 63 dB No Pol. Rev., 32-pin QFN  
63 dB Pol. Rev., 44-pin TQFP  
Tray  
Tray  
Tray  
B(RING)  
Off-Hook  
Detector  
RD  
RDC  
CAS  
VDC  
Power Feed  
Controller  
VREG  
DA  
Ring-Trip  
Detector  
DB  
1. The green package meets RoHS Directive 2002/95/EC of the  
European Council to minimize the environmental impact of  
electrical equipment.  
L
VBAT  
BGND  
Switching Regulator  
2. For delivery using a tape and reel packing system, add a "T" suffix  
to the OPN (Ordering Part Number) when placing an order.  
Document ID# 080686 Date:  
Aug 29, 2005  
1
Rev:  
E
Version:  
Distribution:  
Public Document  
TABLE OF CONTENTS  
Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Block Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Ground Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Signal Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Power Feed Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Switching Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Input Decoder and Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Off-Hook Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Ring-Trip Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Ring Relay Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Relay Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Transmission Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Longitudinal Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Idle Channel Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Insertion Loss and Balance Return Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Line Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Power Supply Rejection Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Supply Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
RFI Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Receive Summing Node (RSN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Logic Output DET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Ring-Trip Detector Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Loop Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Relay Driver Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
DC Feed Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Test Circuit Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
APPLICATION CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Line card Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
44-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
32-Pin QFN (8x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Revision C1 to C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Revision C2 to D1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Revision D1 to E1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2
Le79555 VE580 Series Data Sheet  
PRODUCT DESCRIPTION  
The Le79555 device is designed for short loop and long loop high-density POTS applications requiring a power saving, small  
footprint SLIC. The Le79555 device boasts increased power savings over Legerity's other POTS solutions by using an internal  
switching regulator for each channel to enhance system power management. The switching regulator eliminates the need for a  
second voltage supply, commonly required for SLIC devices in POTS applications. Such elimination passes on board space and  
cost savings to the designers. Thus, the smaller footprint and added features of the Le79555 device allows customers to amortize  
the cost of common hardware across more channels and increase the line density per board. Additionally, the Le79555 device  
gives line card designers a simple control interface that supports six control states: Active, Ringing, Standby, Disconnect, Reverse  
Polarity, and Tip Open. The Le79555 device is a low cost, high performance device providing key features required for POTS  
markets worldwide, including: low power dissipation and ground key detection, as well as all of the features offered currently by  
Legerity's Transformer SLIC family, Le7920/22.  
BLOCK DESCRIPTIONS  
Two-Wire Interface  
The two-wire interface provides DC current and sends voice signals to a telephone apparatus connected to the line card with a  
two-wire line. The two-wire interface also receives the returning voice signals from the telephone.  
Ground Detector  
The ground detector block performs ground start and ground key detection, as well as automatically detects a ring-ground fault.  
Therefore, when the longitudinal current is greater than the ground key detector threshold, IGK, in either Active, Standby, or Tip  
Open, the DET will go low. Note that when the device is in Active or Standby, DET may be an indication of off-hook, ground fault,  
or both.  
Signal Transmission  
The RSN input current controls the receive current sent to the two-wire interface. The AC line voltage is sensed by differential  
amplifiers between the A and HPA leads, and between HPB and B leads. The outputs of these amplifiers are equal to the AC  
metallic components of the line voltages. The transmission circuit also contains a longitudinal feedback circuit to shunt  
longitudinal signals to a DC bias voltage. The longitudinal feedback does not affect metallic signals.  
Power Feed Controller  
The power feed controller has three sections: (1) the battery feed circuit, (2) the reverse polarity circuit, and (3) the bias circuit.  
The battery feed circuit regulates the amount of DC current and voltage supplied to the telephone over a wide range of loop  
resistance. The reverse polarity circuit provides the capability to reverse the loop current for pay telephone key pad disable and  
other applications. The bias circuit provides a reference voltage, which is offset from the subscriber line voltage. The reference  
voltage controls the switched mode regulator, which minimizes SLIC power consumption by providing the minimum supply  
voltage needed by the line drivers for proper operation.  
Switching Regulator  
A switching regulator function is implemented on the chip with a few external components. The power feed controller generates  
a reference voltage which is the minimum voltage required to feed the output line amplifiers. The efficiency of the switching  
regulator (>80%) minimizes both the on-chip power dissipation and the system power dissipation. This is particularly important  
for short loops operating at high currents which otherwise cause high power dissipation.  
Input Decoder and Control  
The input decoder and control block provides a means for a microprocessor or SLAC IC to control such system functions as line  
activate, on-hook transmission, ringing, and reverse polarity. The input decoder and control block has TTL-compatible inputs,  
which set the operating states of the SLIC. It also provides the supervision signal sent back to the controller.  
Off-Hook Detector  
The most important loop monitoring function is off-hook detection. The two-wire interface produces a current equal in magnitude  
to the loop current divided by a constant, and sends it out on the RD pin. An external resistor and capacitor (RD and CD) connect  
the RD pin to ground. The value of the voltage across resistor RD is proportional to the current leaving the RD pin times the value  
of RD. The DET pin will show a logic Low when this voltage rises above a threshold.  
Le79555 VE580 Series Data Sheet  
3
Ring-Trip Detector  
During the Ringing state, the DA pin is more positive than the DB pin, and the DET pin will show high to indicate the on hook.  
When an off hook condition occurs, the DB pin becomes more positive than the DA pin, and the DET pin will go low to indicate  
an off-hook.  
Ring Relay Driver  
The ring relay driver is active only in the Ringing state.  
Relay Driver  
A relay driver is activated by logic Low at either input pin, D1, or D2. D1 controls relay driver RYOUT1; D2 controls relay driver  
RYOUT2.  
4
Le79555 VE580 Series Data Sheet  
CONNECTION DIAGRAMS  
44 43 42 41 40 39 38 37  
36 35 34  
RYOUT1  
RYOUT2  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
DA  
N/C  
RD  
L
3
VBAT  
CHS  
QBAT  
CHCLK  
N/C  
4
N/C  
HPB  
N/C  
HPA  
N/C  
VTX  
N/C  
RSVD  
5
44-Pin TQFP  
6
7
8
D2  
9
D1  
10  
11  
C1  
12 13 14 15 16 17 18 19  
20 21 22  
32 31  
1
30 29  
28 27  
26 25  
24  
RYOUT2  
L
DA  
2
23  
N/C  
3
4
22  
21  
VBAT  
CHS  
RD  
HPB  
32-Pin QFN  
5
6
20  
19  
QBAT  
HPA  
VTX  
CHCLK  
18  
D2  
D1  
RSVD  
RSN  
7
8
17  
Exposed Pad  
9
10  
11 12  
13 14  
15 16  
Note:  
1. Pin 1 is marked for orientation.  
2. N/C = No Connect  
3. RSVD = Reserved  
4. There is VBAT potential on the exposed pad. Do not connect to GND pin.  
Le79555 VE580 Series Data Sheet  
5
PIN DESCRIPTIONS  
Pin Name  
Type  
Description  
AGND/  
DGND  
Ground  
Analog and digital ground.  
A(TIP)  
BGND  
B(RING)  
C3–C1  
CAS  
Output  
Ground  
Output  
Input  
Capacitor  
Input  
Output of A(TIP) power amplifier.  
Battery (power) ground.  
Output of B(RING) power amplifier.  
SLIC control pins. C3 is MSB and C1 is LSB.  
Anti-Saturation pin for capacitor to filter reference voltage when operating in anti-saturation region.  
(Chopper Clock) Input to switching regulator. f = 200 to 600 kHz.  
(Chopper Stabilization) Connection for external stabilization components.  
CHCLK  
CHS  
Input  
Relay Driver Control. D1 and D2 control the relay drivers RYOUT1 and RYOUT2. Logic Low on D1  
activates the RYOUT1 relay driver. Logic Low on D2 activates the RYOUT2 relay driver.  
D2–D1  
Input  
DA  
DB  
Input  
Input  
Negative input to ring-trip comparator.  
Positive input to ring-trip comparator.  
Hook-switch detector. A logic Low indicates that selected condition is detected. The detect condition is  
selected by the logic inputs (C3–C1). The output is open-collector with a built-in 15 kpull-up resistor.  
DET  
Output  
HPA  
HPB  
Capacitor  
Capacitor  
A (TIP) side of high-pass filter capacitor.  
B (RING) side of high-pass filter capacitor.  
(Switching Regulator Power Transistor) Connection point for filter inductor and anode of catch diode.  
This pin will have up to 60 V of pulse waveform on it, and it must be isolated from sensitive circuits.  
Care must be taken to keep the diode connections short because of the high currents and di/dt.  
L
Output  
N/C  
QBAT  
RD  
Battery  
Resistor  
No Connect. This pin is not internally connected.  
(Quiet Battery) Filtered battery supply for the signal-processing circuits.  
Detector threshold set and filter pin.  
Connection point for the DC feed current programming network. The other end of the network connects  
to the receiver summing node (RSN).  
Ring Relay Driver. Open-collector driver with emitter internally connected to BGND.  
RDC  
Resistor  
Output  
RINGOUT  
Receive Summing Node. In the Active, Reverse Polarity, and Tip Open states, the metallic current  
(both AC and DC) between A(TIP) and B(RING) is equal to 500 times the current into this pin. The  
networks which program receive gain, two-wire impedance, and feed resistance all connect to this  
node.  
RSN  
Input  
RYOUT1  
RYOUT2  
VBAT  
Output  
Output  
Battery  
Relay/Switch Driver. Open-collector driver with emitter internally connected to BGND.  
Relay/Switch Driver. Open-collector driver with emitter internally connected to BGND.  
Most negative battery.  
RSVD  
This is a reserved pin and must always be left open.  
Power  
Supply  
VCC  
VDC  
+5 V power supply.  
Output  
Output that is proportional to the line voltage: VDC = KDC VAB . KDC is the VDC scale factor.  
(Regulated Voltage) Provides internal negative power supply and connection point for inductor, filter  
capacitor, and chopper stabilization.  
VREG  
Input  
Transmit Audio. This output is a 0.50 gain version of the A(TIP) and B(RING) metallic voltage. VTX also  
sources the two-wire input impedance programming network.  
This must be connected to the most negative battery on the SLIC device pin side of DVBH shown on  
the test and application circuits.  
VTX  
Output  
Battery  
Exposed  
Pad  
6
Le79555 VE580 Series Data Sheet  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings  
Stresses greater than those listed under Absolute Maximum Ratings can cause permanent device failure. Functionality at or  
above these limits is not implied. Exposure to absolute maximum ratings for extended periods can effect device reliability.  
Storage temperature  
–55 to +150ºC  
–0.4 to +7.0 V  
V
with respect to AGND  
CC  
V
with respect to AGND:  
BAT  
Continuous  
10 ms  
BGND with respect to AGND  
A (TIP) or B (RING) to BGND:  
Continuous  
+0.4 to –70 V  
+0.4 to –75 V  
+3 to –3 V  
V
to +1 V  
BAT  
10 ms (f = 0.1 Hz)  
1 µs (f = 0.1 Hz)  
250 ns (f = 0.1 Hz)  
–70 to +5 V  
–80 to +8 V  
–90 to +12 V  
±150 mA  
50 mA  
BGND to +7 V  
BGND to +10 V  
Current from A (TIP) or B (RING)  
RINGOUT/RYOUT1,2 current  
RINGOUT/RYOUT1,2 voltage  
RINGOUT/RYOUT1,2 transient  
DA and DB inputs:  
Voltage on ring-trip inputs  
Current into ring-trip inputs  
C3–C1,D2–D1, CHCLK Input voltage  
Maximum power dissipation, continuous,  
V
to 0 V  
BAT  
±10 mA  
–0.4 to V  
+ 0.4 V  
CC  
T
= 70°C, No heat sink (See note)  
In 44-pin TQFP package  
In 32-pin QFN package  
A
1.4 W  
3.0 W  
θ
Thermal Data:  
JA  
In 44-pin TQFP package  
52°C/W typ  
In 32-pin QFN package  
25° C/W typ  
ESD Immunity (Human Body Model)  
JESD22 Class 1C compliant  
Notes:  
Thermal limiting circuitry on-chip will shut down the circuit at a junction temperature of about 165° C. Operation above 145° C junction temper-  
ature may degrade device reliability.  
The thermal performance of a thermally enhanced package is assured through optimized printed circuit board layout. Specified performance re-  
quires that the exposed thermal pad be soldered to an equally sized exposed copper surface, which, in turn, conducts heat through multiple vias  
to a large internal copper plane.  
Package Assembly  
The standard (non-green) package devices are assembled with industry-standard mold compounds, and the leads possess a tin/  
lead (Sn/Pb) plating. These packages are compatible with conventional SnPb eutectic solder board assembly processes. The  
peak soldering temperature should not exceed 225°C during printed circuit board assembly.  
The green package devices are assembled with enhanced environmental compatible lead (Pb), halogen, and antimony-free  
materials. The leads possess a matte-tin plating which is compatible with conventional board assembly processes or newer lead-  
free board assembly processes. The peak soldering temperature should not exceed 245°C during printed circuit board assembly.  
Refer to IPC/JEDEC J-Std-020B Table 5-2 for the recommended solder reflow temperature profile.  
Operating Ranges  
Legerity guarantees the performance of this device over commercial (0 to 70º C) and industrial (-40 to 85ºC) temperature ranges  
by conducting electrical characterization over each range and by conducting a production test with single insertion coupled to  
periodic sampling. These characterization and test procedures comply with section 4.6.2 of Bellcore GR-357-CORE Component  
Reliability Assurance Requirements for Telecommunications Equipment.  
Ambient temperature  
–40 to +85°C  
4.75 to 5.25 V  
V
CC  
V
–40 to –58 V  
0 V  
BAT  
AGND  
BGND with respect to AGND  
Load resistance on VTX to ground  
–100 to +100 mV  
20 kmin  
Le79555 VE580 Series Data Sheet  
7
SPECIFICATIONS  
Refer to Figure 9, on page 16 for the Le79555 test circuit specifications.  
Transmission Performance  
Description  
Two-wire return loss  
Analog output (VTX) impedance  
Analog (VTX) output offset voltage  
Overload level, 2-wire  
Test Conditions (See Note 1)  
200 Hz to 3.4 kHz  
Min  
26  
Typ  
Max  
Unit  
dB  
Note  
1, 4  
4
1
20  
+50  
–50  
2.5  
1.1  
mV  
Active state  
On hook, RLAC = 600 Ω  
2a  
2b  
Vpk  
Overload level  
0 dBm  
+7 dBm  
0dBm, RLAC = 600 Ω  
–64  
–55  
–50  
–40  
–36  
THD (Total Harmonic Distortion)  
THD, On hook  
5
5
dB  
Longitudinal Capability  
(See Figure 6.)  
Test Conditions  
(See Note 1)  
Perf.  
Description  
Grade  
Min  
Typ  
Max  
Unit  
Note  
Normal Polarity:  
0ºC to +70ºC  
-40ºC to +85ºC  
0ºC to +70ºC  
-40ºC to +85ºC  
Reverse Polarity:  
-40ºC to +85ºC  
0ºC to +70ºC  
-40ºC to +85ºC  
Normal Polarity:  
0ºC to +70ºC  
-40ºC to +85ºC  
0ºC to +70ºC  
-40ºC to +85ºC  
Reverse Polarity:  
-40ºC to +85ºC  
0ºC to +70ºC  
-40ºC to +85ºC  
200 Hz to 3.4 kHz  
Active state  
-2,-4  
-2,-4  
-1,-3  
-1,-3  
63  
58  
52  
50  
4
4
4
4
Longitudinal to metallic L-T, L-4  
200 Hz to 1 kHz  
-2  
-1  
-1  
54  
52  
50  
dB  
-2,-4  
-2,-4  
-1,-3  
-1,-3  
58  
53  
52  
50  
4
4
4
4
Longitudinal to metallic L-T, L-4  
1 kHz to 3.4 kHz  
-2  
-1  
-1  
53  
52  
50  
40  
17  
Longitudinal signal generation 4-L  
Longitudinal current per pin (A or B)  
Longitudinal impedance at A or B  
27  
25  
mArms  
/pin  
4, 8  
4
0 to 100 Hz  
Idle Channel Noise  
Description  
Test Conditions (See Note 1)  
Min  
Typ  
7
Max  
+10  
+12  
–80  
–78  
Unit  
Note  
R
R
R
R
= 600Ω, 0º to +70ºC  
L
C-message weighted noise  
dBrnC  
= 600Ω, –40º to +85ºC  
= 600Ω, 0º to +70ºC  
= 600, –40º to +85ºC  
L
L
L
4
–83  
Psophometric weighted noise  
dBmp  
8
Le79555 VE580 Series Data Sheet  
Insertion Loss and Balance Return Signal  
(See Figure 4 and Figure 5.)  
Description  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
3
3, 4  
3
0 dBm, 1 kHz  
0 dBm, 1 kHz  
0 dBm, 1 kHz  
0 dBm, 1 kHz  
On hook  
0º to +70 ºC  
40º to +85 ºC  
0º to +70 ºC  
–0.10  
–0.15  
–6.12  
–6.17  
–0.35  
–6.37  
+0.10  
+0.15  
–5.92  
–5.87  
+0.35  
–5.67  
Gain accuracy, 4- to 2-wire  
0
Gain accuracy  
2- to 4-wire, 4- to 4-wire  
–6.02  
–6.02  
40º to +85 ºC  
3, 4  
Gain accuracy, 4- to 2-wire  
Gain accuracy, 2- to 4-wire, 4- to 4-wire  
3,4  
On hook  
300 to 3.4 kHz  
dB  
–0.10  
–0.15  
–0.10  
–0.15  
+0.10  
+0.15  
+0.10  
+0.15  
3
relative to 1 kHz  
0º to +70 ºC  
40º to +85 ºC  
0º to +70 ºC  
Gain accuracy over frequency  
300 to 3.4 kHz  
relative to 1 kHz  
+3 dBm to –55 dBm  
relative to 0 dBm  
+3 dBm to –55 dBm  
relative to 0 dBm  
3, 4  
3, 4  
3, 4  
Gain tracking  
40º to +85 ºC  
0 dBm to –37 dBm  
+3 dBm to 0 dBm  
–0.15  
–0.35  
+0.15  
+0.35  
Gain tracking On hook  
3,4  
Line Characteristics  
Description  
IL, Short Loops, Active state  
Test Conditions (See Note 1)  
Min  
22.5  
20  
Typ  
24.5  
22.5  
Max  
26.5  
Unit  
Note  
R
= 2010 Ω  
IL, Long Loops, Active state  
IL, Standby state  
ILLIM  
L
RL = 2010 Ω  
TA = 25 ºC  
mA  
15  
RL = 600 (current limit)  
18  
30  
75  
Active, A and B to ground  
120  
V
DC  
-----------  
K
=
0.052  
42.75  
0.055  
44  
0.058  
DC  
K
DC (VDC Scaling)  
V
AB  
RL = 300 to 1500 Ω  
Active state  
RL = 0  
VAB, Open Circuit voltage  
V
I , Leakage, Tip Open state  
100  
56  
µA  
mA  
A
I , Current, Tip Open state  
B to GND  
15  
30  
–5  
B
RA to BAT = 7 k,  
RB to GND = 100 Ω  
V , Active state  
–7.5  
V
4
A
Power Supply Rejection Ratio  
Description  
Test Conditions (See Note 1)  
50 Hz to 3.4 kHz  
(VRIPPLE = 100 MV RMS)  
50 Hz to 3.4 kHz  
Off-hook constant current region  
(VRIPPLE = 500 MV PP)  
Min  
Typ  
Max  
Unit  
dB  
Note  
V
V
CC, ACTIVE STATE  
BAT, ACTIVE STATE  
30  
40  
5
4
28  
85  
50  
CAS pin to V  
Effective internal resistance  
170  
255  
kΩ  
BAT  
Le79555 VE580 Series Data Sheet  
9
Power Dissipation  
Description  
On-hook, Standby state  
Test Conditions (See Note 1)  
RL = Open  
Min  
Min  
Typ  
45  
Max  
70  
Unit  
Note  
Note  
RL = Open  
On-hook Active State  
Off-hook, Standby state  
Off-hook Active State  
130  
860  
350  
190  
1200  
400  
mW  
Supply Currents  
Description  
Test Conditions (See Note 1)  
Standby State  
Typ  
2.5  
Max  
3.2  
Unit  
Active/Polarity Reversed States  
Open Circuit, RL = Open  
4.55  
2.5  
6.0  
I
,
CC  
On-hook V  
supply current  
CC  
Ringing, RL = Open  
6.0  
0.65  
2.3  
mA  
Standby State  
Active/Polarity Reversed States  
Open Circuit, RL = Open  
0.9  
4.0  
I
,
BAT  
On-hook V  
supply current + V  
BAT  
REG  
0.5  
supply current  
Ringing, RL = Open  
1.5  
RFI Rejection  
Description  
Test Conditions (See Note 1)  
100 kHz to 30 MHz, (See Figure 8)  
Min  
Min  
Typ  
Max  
1.0  
Unit  
mVrms  
Note  
4
VAB, RMS  
Receive Summing Node (RSN)  
Description  
Test Conditions (See Note 1)  
IRSN = 0 mA  
Typ  
0
Max  
Unit  
V
Note  
RSN DC voltage  
4
RSN impedance  
200 Hz to 3.4 kHz  
10  
20  
Logic Inputs  
(C3-C1, D2-D1, and CHCLK)  
Description  
VIH, Input High voltage  
Test Conditions (See Note 1)  
Min  
2.0  
Typ  
Typ  
Max  
Unit  
Note  
Note  
V
VIL, Input Low voltage  
0.8  
40  
I
IH, Input High current  
–75  
µA  
IIL, Input Low current  
–400  
Logic Output DET  
Description  
Test Conditions (See Note 1)  
Min  
Max  
Unit  
I
I
= 0.3 mA  
V
V
OL, Output Low voltage  
0.40  
OUT  
V
= –0.1 mA  
OH, Output High voltage  
2.4  
OUT  
Ring-Trip Detector Input  
(DA, DB)  
Description  
Bias Current  
Offset voltage  
Test Conditions (See Note 1)  
Min  
–500  
–50  
Typ  
–50  
0
Max  
Unit  
nA  
mV  
Note  
Source resistance = 2 MΩ  
+50  
6
10  
Le79555 VE580 Series Data Sheet  
Loop Detector  
Description  
Test Conditions (See Note 1)  
= 35.4 kΩ  
Min  
9.4  
8.8  
Typ  
11.7  
10.4  
1.3  
Max  
14.0  
12.0  
Unit  
Note  
R
R
R
Off-hook threshold  
D
D
D
= 35.4 kΩ  
= 35.4 kΩ  
On-hook threshold  
Hysteresis  
mA  
RL from BX to GND  
Active, Standby, and Tip open  
IGK, Ground-key detector threshold  
5
9
13  
Relay Driver Output  
(RINGOUT, RYOUT1, RYOUT2)  
Description  
Test Conditions (See Note 1)  
IOL = 40 mA  
Min  
Typ  
+0.3  
Max  
+0.7  
100  
Unit  
V
Note  
On voltage  
V
OH = +5 V  
Off leakage  
µA  
IZ = 100 µA  
IZ = 30 mA  
Zener breakover  
Zener On voltage  
6
7.2  
8
V
Figure 1. Relay Driver Schematic  
RINGOUT,  
RYOUT1, RYOUT2  
BGND  
1. Unless otherwise noted, R = 600 . Also, refer to the Le79555 device test circuit in Figure 9, on page 16.  
L
2.  
a) Overload level is defined as THD = 1%.  
b) Overload level is defined as THD = 1.5%.  
3. Balance return signal is the signal generated at V by V . This specification assumes that the two-wire, AC-load impedance matches  
TX RX  
the programmed impedance.  
4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.  
5. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.  
6. Tested with 0 source impedance. 2 Mis specified for system design only.  
7. Group delay can be greatly reduced by using a ZT network such as that shown in Figure 7. The network reduces the group delay to less  
than 2 µs and increases 2WRL. The effect of group delay on line card performance also may be compensated for by synthesizing complex  
impedance with the QLSLAC™ device.  
8. Minimum current level guaranteed not to cause a false loop detect.  
Le79555 VE580 Series Data Sheet  
11  
Table 1. SLIC Device Decoding  
State  
C3  
0
0
0
0
1
1
1
1
C2  
0
0
1
1
0
0
1
1
C1  
0
1
0
1
0
1
0
1
Two-Wire Status  
DET Output  
0
1
2
3
4
5
6
7
Reserved  
Reserved  
X
X
Active Reverse Polarity (-1, 2 devices)  
Loop detector  
Ring Ground (see note)  
Ring trip  
Ring trip  
Loop detector  
Loop detector  
Tip Open  
Open Circuit  
Ringing  
Active  
Standby  
Note:  
Ring ground detection in Tip Open is automatic. If longitudinal current is greater than IGK in Active, Standby, or Tip Open, the DET will go low.  
Therefore, if in Active or Standby, DET may be an indication of off hook, ground fault, or both.  
Table 2. User-Programmable Components  
ZT is connected between the VTX and RSN pins. The fuse resistors are  
RF, and Z2WIN is the desired 2-wire AC input impedance. When  
computing ZT, the internal current amplifier pole and any external stray  
capacitance between VTX and RSN must be taken into account.  
ZT = 250(Z2WIN 2RF)  
ZL  
500ZT  
ZRX is connected from VRX to RSN. ZT is defined above, and G42L is the  
desired receive gain. ZL = Load Impedance, AD to BD.  
------------  
----------------------------------------------------  
ZRX  
=
G42L  
ZT + 250(ZL + 2RF)  
625  
RDC1 + RDC2 = ---------------  
ILOOP  
RDC1, RDC2, and CDC form the network connected to the RDC pin. RDC1  
and RDC2 are approximately equal. I  
is the desired loop current in  
LOOP  
RDC1 + RDC2  
-----------------------------------  
the constant-current region.  
CDC = 1.5 ms •  
R
DC1 RDC2  
414  
RD  
368  
RD  
0.5 ms  
RD  
R
D and CD form the network connected from RD to AGND/DGND and IT  
IT  
= ---------,  
IT = ---------,  
CD = ------------------  
OFF  
ON  
is the threshold current between on-hook and  
off-hook.  
(IThreshold on to off hook) (IThreshold off to on hook  
)
1
CCAS is the regulator filter capacitor and fc is the desired filter cut-off  
frequency.  
------------------------------------------  
=
CCAS  
170 kΩ • 2π • fc  
VBAT 3 V  
--------------------------------  
=
ISTANDBY  
Standby loop current (resistive region).  
400 + RL  
12  
Le79555 VE580 Series Data Sheet  
DC FEED CHARACTERISTICS  
Figure 2. Load Line (Typical)  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
2
1
6
4
2
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
Loop Current (mA)  
Regions:  
625  
RDC  
1. Constant current region:  
VAB = ILRL' = ----------- R L' , where RL' = RL + 2RF  
RDC = RDC1 + RDC2  
2. Battery tracking anti-sat:  
V
= |BAT| V  
7.2 V IL(R /210)  
Diode DC  
AB  
Figure 3. Feed Programming  
A (TIP)  
RSN  
IL  
RL  
SLIC  
RDC1  
CDC  
RDC2  
B (RING)  
RDC  
Le79555 VE580 Series Data Sheet  
13  
TEST CIRCUIT SCENARIOS  
Figure 4. Two-to-Four-Wire Insertion Loss  
A (TIP)  
VTX  
RL  
2
SLIC  
VAB  
RT  
VL  
AGND  
RSN  
RL  
2
RRX  
B (RING)  
IL2-4 = 20 log(V TX / VAB  
)
Figure 5. Four-to-Two-Wire Insertion Loss and Balance Return Signal  
A (TIP)  
VTX  
SLIC  
VAB  
RT  
RL  
AGND  
RSN  
RRX  
B (RING)  
VRX  
IL4-2 = 20 log(V AB / VRX  
)
BRS = 20 log(V TX / VRX  
)
Figure 6. Longitudinal Balance  
VTX  
A (TIP)  
1
<<  
RL  
RL  
2
ω
C
SLIC  
S1  
C
RT  
S2  
VL  
VAB  
AGND  
RL  
2
RRX  
B (RING)  
RSN  
VRX  
S2 Open, S1 Closed  
S2 Closed, S1Open  
L-T Long. Bal. = 20 log(V AB / VL)  
L-4 Long. Bal. = 20 log(V TX / VL)  
4-L Long. Sig. Gen. = 20 log(V L / VRX)  
14  
Le79555 VE580 Series Data Sheet  
Figure 7. Two-Wire Return Loss  
ZD = 600  
A (TIP)  
VTX  
RT1  
75 k  
75 k  
SLIC  
R
R
300  
VM  
VS  
AGND  
RSN  
CT1 = 180 pF  
RT2  
ZIN = 600  
300  
B (RING)  
ZD: The desired impedance;  
eg., the characteristic impedance of the line  
RRX = 150 k  
Return loss = –20 log (2V M / VS)  
Figure 8. RFI  
L1  
C1  
50  
200  
200  
A (TIP)  
RF1  
RF2  
CAX  
33 nF  
VAB  
B (RING)  
50  
HF  
GEN  
C2  
VTX  
CBX  
33 nF  
50  
L2  
SLIC device  
under test  
1.5 Vrms  
80% Amplitude  
Modulated  
100 kHz to 30 MHz  
Le79555 VE580 Series Data Sheet  
15  
Figure 9. Le79555 Engineering Test Circuit  
VCC  
+5 V  
DA  
DB  
DA  
DB  
VCC  
RD  
Le79555  
RD  
35.4 k  
CAX  
VTX  
RSN  
RDC  
VTX  
2.2 nF  
A (TIP)  
A (TIP)  
HPA  
R
150 kTΩ  
RRX  
CHP  
VRX  
220 nF  
150 k  
HPB  
RDC2  
13.02 k  
B (RING)  
B (RING)  
RDC1  
13.02 k  
VDC  
CBX  
2.2 nF  
CDC  
220 nF  
RINGOUT  
VDC  
RINGOUT  
RYOUT1  
RYOUT1  
RYOUT2  
AGND  
RYOUT2  
BATTERY  
GROUND  
D2  
D1  
C3  
C2  
C1  
D2  
BGND  
D1  
C3  
C2  
C1  
N/C  
RSVD  
QBAT  
DET  
ANALOG  
GROUND  
DET  
CAS  
CQB  
330 nF  
CCAS  
330 nF  
VBAT  
CHS  
BAT  
52 V  
DVBH  
CV1  
-
0.47 µF  
IN400x  
CHCLK  
CHCLK  
256 kHz  
CCH1  
CCH2  
15 nF  
560 pF  
RCH  
1.3 k  
VREG  
CFIL  
0.47 µF  
L1  
1mH  
Low ESR  
L
DCHCLK1  
MUR120  
16  
Le79555 VE580 Series Data Sheet  
APPLICATION CIRCUITS  
RING_SOURCE  
RSR  
400  
RSR3  
1.0 M  
DA  
RSR1  
909 k  
CSR2  
330 nF  
RSR4  
909 k  
RSR2  
1.0 M  
CSR1  
330 nF  
RS  
DB  
BGND  
+5 VA  
DA  
DB  
DA  
DB  
VCC  
U1  
Le79555  
RD  
35.7 k  
CD  
15 nF  
RD  
VIN #1  
CAX  
CIN  
A (TIP)  
F 50  
VTX  
2.2 nF  
100 nF  
U2  
EDF1DM  
A(TIP)  
HPA  
RTX1  
R
RR  
1
2
+
-
-
4
125 k  
CHP  
220 nF  
-
3
HPB  
B(RING)  
RF  
50  
RR  
B (RING)  
CBX  
2.2 nF  
U3  
P0640EA70  
RRX  
VOUT #1  
COUT  
124 k  
RINGOUT  
RSN  
RINGOUT  
RYOUT1  
100 nF  
RS  
RYOUT1  
RYOUT2  
RDC1  
13 k  
RDC2  
RYOUT2  
13 k  
RDC  
VDC  
BATTERY  
GROUND  
BGND  
CDC  
VDC  
220 nF  
N/C  
AGND  
RSVD  
QBAT  
ANALOG  
GROUND  
C7 #1  
C6 #1  
C5 #1  
C4 #1  
C3 #1  
CD1 #1  
D2  
D1  
C3  
C2  
C1  
CQB  
0.33 µF  
DVBH  
BAT  
VBAT  
CHS  
MUR120  
CV1  
DET  
0.47 µF  
CAS  
CCH1  
15 nF  
CCH2  
CCAS  
330 nF  
560 pF  
RCH  
1.3 k  
VREG  
CFIL  
0.47 µF  
L1  
1mH  
CHCLK  
Clock  
CHCLK  
L
DCHCLK1  
MUR120  
Note:  
1. Protection circuitry does not need to be battery tracking.  
2. For CHCLK operation between 190 kHz and 290 kHz, L1 is recommended to be 2 mH. For CHCLK operation between 290 kHz and 600  
kHz, L1 is recommended to be 1 mH.  
Le79555 VE580 Series Data Sheet  
17  
+5VD  
U4  
RPA  
10 k  
RPB  
10 kΩ  
Le58QL063  
VIN #1  
VOUT #1  
CD1 #1  
SPARE  
C3 #1  
VIN #1  
VOUT #1  
CD1 #1  
CD2 #1  
C3 #1  
DXA/DU  
DRA/DD  
TSCA  
DXA/DU  
DRA/DD  
To SLIC #1 (U1)  
TSCA  
DXB  
C4 #1  
C5 #1  
C4 #1  
C5 #1  
DXB  
C6 #1  
C6 #1  
C7 #1  
C7 #1  
DRB  
DRB  
VIN #2  
VOUT #2  
CD1 #2  
SPARE  
C3 #2  
C4 #2  
C5 #2  
C6 #2  
C7 #2  
VIN #3  
VOUT #3  
CD1 #3  
SPARE  
C3 #3  
C4 #3  
C5 #3  
C6 #3  
VIN #2  
VOUT #2  
CD1 #2  
CD2 #2  
C3 #2  
C4 #2  
C5 #2  
C6 #2  
C7 #2  
VIN #3  
VOUT #3  
CD1 #3  
CD2 #3  
C3 #3  
C4 #3  
C5 #3  
C6 #3  
TSCB  
TSCB  
FS/FSC  
FS/FSC  
PCLK/DCL  
MCLK/E1  
DCLK/S0  
CS/PG  
DIO/S1  
INT  
To SLIC #2  
PCLK/DCL  
MCLK/E1  
DCLK/S0  
CS/PG  
DIO/S1  
To SLIC #3  
INT  
C7 #3  
C7 #3  
RST  
RST  
VIN #4  
VOUT #4  
CD1 #4  
SPARE  
C3 #4  
VIN #4  
VOUT #4  
CD1 #4  
CD2 #4  
C3 #4  
To SLIC #4  
C4 #4  
C5 #4  
C6 #4  
C4 #4  
C5 #4  
C6 #4  
DIGITAL  
GROUND  
C7 #4  
C7 #4  
+5VD  
CHCLK  
+5V  
CHCLK  
ANALOG  
GROUND  
VCCA  
VREF  
VCCD  
DGND  
CREF  
0.1 µF  
AGND  
18  
Le79555 VE580 Series Data Sheet  
LINE CARD PARTS LIST  
The following list defines the parts and part values required to meet target specification limits for one channel.  
Item  
CCH2  
Quantity  
Type  
Capacitor (COG)  
Value  
560 pF  
Tol.  
5%  
Rating  
50 V  
Comments  
Note  
1
CAX, CBX  
CCH1  
CHP  
CDC  
CCAS  
CQB  
CV1  
2
1
1
1
1
1
1
1
1
1
1
Capacitor (X7R)  
Capacitor (X7R)  
Capacitor (X7R)  
Capacitor (X7R)  
Capacitor (X7R)  
Capacitor (X7R)  
Capacitor (X7R)  
Capacitor (Low ESR)  
Capacitor (X7R)  
Resistor Hybrid  
AXIAL/SMT  
2200 pF  
15 nF  
220 nF  
220 nF  
330 nF  
330 nF  
470 nF  
470 nF  
15 nF  
50  
20%  
10%  
20%  
20%  
20%  
20%  
20%  
20%  
10%  
1%  
100 V  
50 V  
100 V  
16 V  
100 V  
100 V  
100 V  
100 V  
16 V  
CFIL  
CD  
RF  
RCH  
1.3 k  
1%  
0.1 W  
0.1 W  
RDC1,  
2
SMT  
13.0 k  
1%  
RDC2  
RD  
RT  
RRX  
1
1
1
SMT  
SMT  
SMT  
35.7 k  
124 k  
124 k  
1%  
1%  
1%  
0.1 W  
0.1 W  
0.1 W  
DVBH  
,
MUR 120 (D0-41)  
DIODE  
1 A,  
100 V  
2
DCHCLK1  
Coiltronics SD25-102  
Inductor  
Sidactor P0640EA70  
Diode Bridge  
EDF1DM  
1
1
1
1.0 mH  
(20 > R > 5)  
100 mA  
L1  
U3  
U2  
U1  
U4  
1
1
Le79555  
Le58QL063  
C
CREF  
IN, COUT  
,
3
Capacitor (X7R)  
100 nF  
20%  
16 V  
RPA, RPB  
RSR2, RSR3  
2
2
2
2
1
SMT  
10 k  
1 M  
1%  
1%  
0.25 W  
0.25 W  
0.25 W  
100 V  
SMT  
RSR4, RSR1  
SMT  
909 k  
330 nF  
400  
1%  
CSR1, CSR2  
RSR  
Capacitor (X7R)  
Resistor Hybrid  
20%  
1%  
Le79555 VE580 Series Data Sheet  
19  
PHYSICAL DIMENSIONS  
44-Pin TQFP  
TQFP 044  
Dwg rev. AS; 08/00  
TQFP 044  
Note:  
BSC is an ANSI standard for basic centering. Dimensions are measured in millimeters.  
20  
Le79555 VE580 Series Data Sheet  
32-Pin QFN (8x8)  
32 Lead QFN with Chamfer  
32 LEAD QFN  
NOTES:  
Symbol  
Min  
0.80  
Nom  
0.90  
Max  
1.00  
1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
2. All dimensions are in millimeters.  
3. N is the total number of terminals.  
4. The Terminal #1 identifier and terminal numbering convention  
shall conform to JEP 95-1 and SSP-012. Details of the Terminal #1  
identifier are optional, but must be located within the zone  
indicated. The Terminal #1 identifier may be either a mold or  
marked feature.  
is in degrees.  
0.57 REF  
0.23  
0.28  
5.90  
5.90  
0.63  
0.05  
0.18  
5.70  
5.70  
0.43  
0.00  
8.00  
BSC  
5.80  
8.00 BSC  
5.80  
0.80 BSC  
5. Coplanarity applies to the exposed pad as well as the terminals.  
6. Reference Document: JEDEC MO-220.  
7. Lead width deviates from the JEDEC MO-220 standard.  
0.53  
32  
0.02  
REF  
0.20  
0.20  
0.10  
0.10  
Le79555 VE580 Series Data Sheet  
21  
REVISION HISTORY  
Revision A to B  
Updated document format.  
In the "Features" section, the following changes were made:  
Removed "(45 mW)" from Low standby power (since it’s already in the specification).  
Changed battery voltage range from 16 V to 58 V to 40 V to 58 V.  
Removed "(6.5 V)" from Low Off-Hook Active Overhead Voltage.  
In "Related Literature", added the "Introduction to the SLIC Family" application note.  
Added the 32-pin PLCC information to the Ordering Information and Absolute Maximum Ratings sections and added the  
connection diagram.  
Updated the Connection Diagram.  
Updated the Pin Description table to correct inconsistencies; added range for CHCLK.  
In the Electrical Characteristics table:  
Updated the information in the Line Characteristics section on the Long Loops row and the VDC Accuracy row.  
Deleted the Disconnect state information in the Power Dissipation and Supply Currents sections.  
In "Specifications", the following changes were made:  
Added a column for performance grade in the Longitudinal Capability and Insertion Loss and Balance Return Signal  
tables.  
Changed test circuit reference in the Longitudinal Capability table  
Updated the Insertion Loss and Balance Return Signal table.  
In the Line Characteristics table, IL Standby state test conditions, changed the equation to RL = 2.5 k.  
In the Line Characteristics table, added spec for Overhead Voltage.  
Made changes to test conditions for IL, Long Loops, Active State; KDC (VDC Accuracy); VAB, Open Circuit voltage in  
the Line Characteristics table.  
Added value for CHCLK in Note 1.  
In the "DC Feed Characteristics" section, revised equations in notes and updated DC Feed Characteristics graphic.  
Changed the equation for ZRX in the User-Programmables table  
Updated Engineering Test Circuit and Application Circuit graphics; added graphic for U4/Am79Q063  
Added Linecard Parts List page  
The physical dimension (PQT044) was added to the Physical Dimension section.  
Revision B to C  
Removed current gain feature from the "Features" section  
Updated "Related Literature" section to include the QLSLAC data sheets  
In the "Ordering Information" table, added dashes before performance grades  
Removed package graphic from "Ordering Information" section  
Added OPNs for the QFN package in "Ordering Information"; added note regarding markings on QFN packages  
Edited "Block Descriptions" section  
In "Connection Diagrams," added pinout diagram for 32-pin QFN package; added notes regarding exposed pad and RSVD  
pin  
In the "Pin Descriptions" table, the following edits were made:  
Updated the Pin Description table to correct inconsistencies  
Edited the description of the RSN pin  
Added range for CHCLK  
Made minor edits to RSVD description  
Added a sentence to the description for VDC  
Added a row to describe the exposed pad  
In "Electrical Characteristics", "Absolute Maximum Ratings" table, the following was added:  
Max power dissipation of 3.0 W for 32-pin QFN package  
Thermal data for 32-pin QFN package  
Added a note regarding maximum power dissipation values under the Absolute Maximum Ratings table  
22  
Le79555 VE580 Series Data Sheet  
In the "Operating Ranges" table, changed the ambient temperature range to 40º to 85º C  
In "Specifications," the following changes were made:  
"Transmission Performance" table, Overload level, edited test conditions; changed Min to 1.1; changed units to Vpk.  
"Transmission Performance" table, THD, On-hook, edited test conditions; changed units to dB  
"Longitudinal Capability" table, Longitudinal current per pin (A or B), added Note 4 to Note column  
"Insertion Loss and Balance Return Signal" table, Gain Accuracy, 2-to-4 and 4-to-4 wire, changed Max from -5.82 to -  
5.87  
"Insertion Loss and Balance Return Signal" table, deleted the Group delay row  
"Line Characteristics" table, changed KDC (VDC Accuracy) to KDC (VDC Scaling)  
"Line Characterisitcs" table, IL, Long Loops, Active state, edited the test conditions  
"Line Characterisitcs" table, KDC (VDC Scaling), edited the test conditions  
"Power Dissipation" table, changed the description "On-hook, Active, Polarity Reversal state" to "On-Hook Active state"  
"Power Dissipation" table, Changed Max value of Off-hook Active State from 380 mW to 400 mW  
"Supply Currents" table, added RL = Open to Open Circuit and Ringing test conditions; deleted references to Note 4  
"Power Dissipation" table, On-hook Standby and On-hook Active, added RL = Open to test conditions  
Changed "Power Supply Rejection Ratio" to "Power Supply Rejection Ratio at the Two-Wire Interface"  
"Power Dissipation" table, On-hook, Standby state, changed Max from 60 to 70  
"Logic Inputs" table, added CHCLK as an input  
"Logic Inputs" table, edited description of VIH, Input High Voltage  
"Logic Inputs" table, deleted row for VIH, C3, CHCLK  
"Logic Inputs" table, edited description of VIL  
"Logic Output DET" table, edited test conditions  
"Loop Detector" table, changed "On threshold" to "Off-hook threshold"  
"Loop Detector" table, changed "Off threshold" to "On-hook threshold"  
Extensively edited Note 1; removed Figure 2, "AC Input Impedance Programming Network"  
Made minor formatting edits to SLIC Device Decoding table  
In "User-Programmable Components", the following changes were made:  
Edited equations for ITON and ITOFF  
Edited equation for ZRX and CCAS  
.
In "DC Feed Characteristics", edited Note 2  
In "Test Circuit Scenarios", the following changes were made:  
Edited title of graphic "Four-to-Four-Wire Insertion Loss and Balance Return Signal"  
Modified Longitudinal Balance graphic  
Modified Two-Wire Return Loss graphic (changed CT1 from 120 pF to 180 pF)  
Modified RFI graphic  
Modified Le79555 test circuit graphic  
Modified Application Circuit graphic  
Added Note 2 to "Application Circuit" section  
Updated Linecard Parts List to reflect the updated application circuit  
Revision C1 to C2  
Formatting updates made  
Revision C2 to D1  
Added green package OPNs to Ordering Information, on page 1  
Added Package Assembly, on page 7  
Revision D1 to E1  
Added "Packing" column and Note 2 to Ordering Information, on page 1  
Updated 32QFN drawing in Physical Dimensions, on page 20  
Le79555 VE580 Series Data Sheet  
23  
The contents of this document are provided in connection with Legerity, Inc. products. Legerity makes no representations or warranties with respect to the accuracy  
or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No  
license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in Legerity's  
Standard Terms and Conditions of Sale, Legerity assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including,  
but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.  
Legerity's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other  
applications intended to support or sustain life, or in any other application in which the failure of Legerity's product could create a situation where personal injury,  
death, or severe property or environmental damage may occur. Legerity reserves the right to discontinue or make changes to its products at any time without notice.  
© 2005 Legerity, Inc.  
All rights reserved.  
Trademarks  
Legerity, the Legerity logo and combinations thereof, SLAC, QLSLAC, WinSLAC, and VoiceEdge are trademarks of Legerity, Inc.  
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
24  
Le79555 VE580 Series Data Sheet  
TM  
4509 Freidrich Lane  
Austin, Texas 78744-1812  
Telephone: (512) 228-5400  
Fax: (512) 228-5508  
North America Toll Free: (800) 432-4009  
To find the Legerity Sales Office nearest you, visit our website at:  
http://www.legerity.com/sales  
or email:  
sales@legerity.com  
To download or order data sheets, application notes, or evaluation tools, go to:  
www.legerity.com/support  
For all other technical inquiries, please contact Legerity Tech Support at:  
techsupport@legerity.com  
or call +1 512.228.5400.  

相关型号:

LE79555-1FQCT

SLIC, PQCC32,
MICROSEMI

LE79555-1QCT

SLIC, 8 X 8 MM, MO-220, QFN-32
MICROSEMI

LE79555-1VC

SLIC, PQFP44, MS-026, TQFP-44
MICROSEMI

LE79555-1VCT

SLIC, PQFP44, MS-026, TQFP-44
MICROSEMI

LE79555-2BVC

SLIC, CMOS, PQFP44, GREEN, MS-026ACB, TQFP-44
ZARLINK

LE79555-2BVC

SLIC, CMOS, PQFP44, GREEN, MS-026ACB, TQFP-44
MICROSEMI

LE79555-2BVCT

SLIC, CMOS, PQFP44, GREEN, MS-026ACB, TQFP-44
MICROSEMI

LE79555-2FQC

SLIC, CMOS, 8 X 8 MM, GREEN, MO-220, QFN-32
MICROSEMI

LE79555-2FQCT

SLIC, CMOS, 8 X 8 MM, GREEN, MO-220, QFN-32
ZARLINK

LE79555-2QC

SLIC, 8 X 8 MM, MO-220, QFN-32
MICROSEMI

LE79555-2QCT

SLIC, 8 X 8 MM, MO-220, QFN-32
MICROSEMI

LE79555-2VC

SLIC, PQFP44, MS-026, TQFP-44
MICROSEMI