X5325S8T1 [XICOR]

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO8, PLASTIC, SOIC-8;
X5325S8T1
型号: X5325S8T1
厂家: XICOR INC.    XICOR INC.
描述:

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO8, PLASTIC, SOIC-8

光电二极管
文件: 总21页 (文件大小:202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Replaces X25323/X25325  
X5323/X5325  
CPU Supervisor with 32Kb SPI EEPROM  
FEATURES  
• Selectable watchdog timer  
• Low V detection and reset assertion  
DESCRIPTION  
These devices combine four popular functions, Power-on  
Reset Control, Watchdog Timer, Supply Voltage  
Supervision, and Block Lock Protect Serial EEPROM  
Memory in one package. This combination lowers  
system cost, reduces board space requirements, and  
increases reliability.  
CC  
—Five standard reset threshold voltages  
—Re-program low V reset threshold voltage  
CC  
using special programming sequence  
—Reset signal valid to V = 1V  
CC  
• Determine watchdog or low voltage reset with a  
volatile flag bit  
Applying power to the device activates the power on  
reset circuit which holds RESET/RESET active for a  
period of time. This allows the power supply and oscilla-  
tor to stabilize before the processor can execute code.  
• Long battery life with low power consumption  
—<50µA max standby current, watchdog on  
—<1µA max standby current, watchdog off  
—<400µA max active current during read  
• 32Kbits of EEPROM  
• Built-in inadvertent write protection  
Power-up/power-down protection circuitry  
—Protect 0, 1/4, 1/2 or all of EEPROM array with  
Block Lockprotection  
—In circuit programmable ROM mode  
• 2MHz SPI interface modes (0,0 & 1,1)  
• Minimize EEPROM programming time  
—32-byte page write mode  
The Watchdog Timer provides an independent protec-  
tion mechanism for microcontrollers. When the micro-  
controller fails to restart a timer within a selectable  
time out interval, the device activates the RESET/  
RESET signal. The user selects the interval from three  
preset values. Once selected, the interval does not  
change, even after cycling the power.  
The device’s low V  
detection circuitry protects the  
CC  
user’s system from low voltage conditions, resetting the  
system when V falls below the minimum V trip  
CC  
CC  
—Self-timed write cycle  
point. RESET/RESET is asserted until V  
returns to  
CC  
—5ms write cycle time (typical)  
• 2.7V to 5.5V and 4.5V to 5.5V power supply  
operation  
• Available packages  
—14-lead TSSOP, 8-lead SOIC  
proper operating level and stabilizes. Five industry stan-  
dard V thresholds are available, however, Xicor’s  
TRIP  
unique circuits allow the threshold to be reprogrammed  
to meet custom requirements or to fine-tune the thresh-  
old for applications requiring higher precision.  
BLOCK DIAGRAM  
Watchdog Transition  
Detector  
Watchdog  
Timer Reset  
WP  
Protect Logic  
RESET/RESET  
SI  
Data  
Register  
Status  
Register  
SO  
X5323 = RESET  
X5325 = RESET  
Command  
Decode &  
Control  
Reset &  
Watchdog  
Timebase  
SCK  
8Kbits  
8Kbits  
CS/WDI  
Logic  
V
Threshold  
Reset Logic  
CC  
16Kbits  
Power On and  
Low Voltage  
Reset  
V
+
-
CC  
Generation  
V
TRIP  
Characteristics subject to change without notice. 1 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
PIN CONFIGURATION  
14-Lead TSSOP  
8-Lead SOIC/PDIP  
1
V
CS/WDT  
SO  
14  
CC  
2
RESET/RESET  
13  
V
1
8
CS/WDT  
SO  
CC  
NC  
X5323/25  
3
4
5
12  
NC  
NC  
2
3
7
6
RESET/RESET  
X5323/25  
NC  
NC  
WP  
11  
10  
9
WP  
SCK  
SI  
NC  
V
SS  
4
5
SCK  
6
7
V
SS  
SI  
8
PIN DESCRIPTION  
Pin  
Pin  
(SOIC/PDIP) TSSOP  
Name  
Function  
1
1
CS/WDI Chip Select Input. CS HIGH, deselects the device and the SO output pin is at  
a high impedance state. Unless a nonvolatile write cycle is underway, the  
device will be in the standby power mode. CS LOW enables the device, placing  
it in the active power mode. Prior to the start of any operation after power up, a  
HIGH to LOW transition on CS is required.  
Watchdog Input. A HIGH to LOW transition on the WDI pin restarts the watch-  
dog timer. The absence of a HIGH to LOW transition within the watchdog time  
out period results in RESET/RESET going active.  
2
5
2
8
SO  
SI  
Serial Output. SO is a push/pull serial data output pin.A read cycle shifts data out  
on this pin.The falling edge of the serial clock (SCK) clocks the data out.  
Serial Input. SI is a serial data input pin. Input all opcodes, byte addresses, and  
memory data on this pin.The rising edge of the serial clock (SCK) latches the input  
data. Send all opcodes (Table 1), addresses and data MSB first.  
6
3
9
6
SCK  
WP  
Serial Clock. The serial clock controls the serial bus timing for data input and  
output.The rising edge of SCK latches in the opcode, address, or data bits present  
on the SI pin.The falling edge of SCK changes the data output on the SO pin.  
Write Protect. The WP pin works in conjunction with a nonvolatile WPEN bit to  
“lock” the setting of the watchdog timer control and the memory write protect bits.  
4
8
7
7
V
Ground  
SS  
14  
13  
V
Supply Voltage  
CC  
RESET/ Reset Output. RESET/RESET is an active LOW/HIGH, open drain output  
which goes active whenever V falls below the minimum V sense level. It  
RESET  
CC  
CC  
will remain active until V rises above the minimum V sense level for  
CC  
CC  
200ms. RESET/RESET goes active if the watchdog timer is enabled and CS  
remains either HIGH or LOW longer than the selectable watchdog time out  
period. A falling edge of CS will reset the watchdog timer. RESET/RESET goes  
active on power up at about 1V and remains active for 200ms after the power  
supply stabilizes.  
3-5,10-12  
NC  
No internal connections  
Characteristics subject to change without notice. 2 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
PRINCIPLES OF OPERATION  
Power On Reset  
change. If the new setting is lower than the current set-  
ting, then it is necessary to reset the trip point before  
setting the new value.  
Application of power to the X5323/X5325 activates a  
power on reset circuit. This circuit goes active at about  
1V and pulls the RESET/RESET pin active. This signal  
prevents the system microprocessor from starting to  
operate with insufficient voltage or prior to stabilization  
of the oscillator. As long as RESET/RESET pin is active,  
the device will not respond to any Read/Write instruc-  
To set the new V  
threshold to the Vcc pin and tie the CS/WDI pin and the  
WP pin HIGH. RESET/RESET and SO pins are left  
unconnected. Then apply the programming voltage V  
to both SCK and SI and pulse CS/WDI LOW then  
HIGH. Remove V and the sequence is complete.  
voltage, apply the desired V  
TRIP  
TRIP  
P
P
tion. When V  
exceeds the device V  
value for  
CC  
TRIP  
Figure 1. Set V  
Voltage  
TRIP  
200ms (nominal) the circuit releases RESET/RESET,  
allowing the processor to begin executing code.  
CS  
Low Voltage Monitoring  
V
P
During operation, the X5323/X5325 monitors the V  
CC  
SCK  
SI  
level and asserts RESET/RESET if supply voltage falls  
below a preset minimum V . The RESET/RESET  
TRIP  
V
P
signal prevents the microprocessor from operating in a  
power fail or brownout condition. The RESET/RESET  
signal remains active until the voltage drops below 1V.  
It also remains active until V  
returns and exceeds  
CC  
Resetting the V  
Voltage  
V
for 200ms.  
TRIP  
TRIP  
This procedure sets the V  
level. For example, if the current V  
to a “native” voltage  
TRIP  
Watchdog Timer  
is 4.4V and the  
TRIP  
V
is reset, the new V  
is something less than  
The watchdog timer circuit monitors the microprocessor  
activity by monitoring the WDI input. The microprocessor  
must toggle the CS/WDI pin periodically to prevent a  
RESET/RESET signal. The CS/WDI pin must be tog-  
gled from HIGH to LOW prior to the expiration of the  
watchdog time out period. The state of two nonvolatile  
control bits in the status register determine the watch-  
dog timer period. The microprocessor can change these  
watchdog bits, or they may be “locked” by tying the WP  
pin LOW and setting the WPEN bit HIGH.  
TRIP  
TRIP  
1.7V. This procedure must be used to set the voltage to  
a lower value.  
To reset the V  
2.7 and 5.5V to the V  
WP pin, and the SCK pin HIGH. RESET/RESET and  
SO pins are left unconnected. Then apply the program-  
ming voltage V to the SI pin ONLY and pulse CS/WDI  
voltage, apply a voltage between  
TRIP  
pin. Tie the CS/WDI pin, the  
CC  
P
LOW then HIGH. Remove V and the sequence is  
complete.  
P
V
Threshold Reset Procedure  
CC  
Figure 2. Reset V  
Voltage  
TRIP  
The X5323/X5325 has a standard V  
threshold  
CC  
(V  
) voltage. This value will not change over normal  
TRIP  
operating and storage conditions. However, in applica-  
CS  
tions where the standard V  
for higher precision in the V  
is not exactly right, or  
value, the X5323/  
TRIP  
V
TRIP  
CC  
SCK  
X5325 threshold may be adjusted.  
V
P
Setting the V Voltage  
TRIP  
SI  
This procedure sets the V  
to a higher voltage  
TRIP  
value. For example, if the current V  
is 4.4V and the  
TRIP  
new V  
is 4.6V, this procedure directly makes the  
TRIP  
Characteristics subject to change without notice. 3 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
Figure 3. V  
Programming Sequence Flow Chart  
TRIP  
V
Programming  
TRIP  
Execute  
Reset V  
TRIP  
Sequence  
Set V  
= V  
Applied =  
TRIP  
CC  
CC  
Desired V  
Execute  
Set V  
Sequence  
New V  
Applied =  
New V  
Applied =  
Applied - Error  
CC  
CC  
TRIP  
Old V  
Old V  
Applied + Error  
CC  
CC  
Execute  
Apply 5V to V  
CC  
CC  
Reset V  
TRIP  
Sequence  
Decrement V  
(V  
= V  
- 10mV)  
CC  
CC  
NO  
RESET pin  
goes active?  
YES  
Error Emax  
Error Emax  
Measured V  
Desired V  
-
TRIP  
TRIP  
Error < Emax  
DONE  
Emax = Maximum Desired Error  
Characteristics subject to change without notice. 4 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
Figure 4. Sample V  
Reset Circuit  
TRIP  
V
P
4.7K  
NC  
NC  
4.7K  
RESET  
1
2
3
4
8
7
6
5
NC  
X5323/25  
V
TRIP  
+
Adj.  
Program  
Reset V  
TRIP  
10K  
10K  
Test V  
TRIP  
Set V  
TRIP  
SPI SERIAL MEMORY  
Write Enable Latch  
The device contains a write enable latch. This latch  
must be SET before a write operation is initiated. The  
WREN instruction will set the latch and the WRDI  
instruction will reset the latch (Figure 3). This latch is  
automatically reset upon a power-up condition and  
after the completion of a valid write cycle.  
The memory portion of the device is a CMOS serial  
EEPROM array with Xicor’s block lock protection. The  
array is internally organized as x 8.The device features  
a Serial Peripheral Interface (SPI) and software proto-  
col allowing operation on a simple four-wire bus.  
The device utilizes Xicor’s proprietary Direct Write™  
cell, providing a minimum endurance of 100,000 cycles  
and a minimum data retention of 100 years.  
Status Register  
The RDSR instruction provides access to the status reg-  
ister. The status register may be read at any time, even  
during a write cycle. The status register is formatted as  
follows:  
The device is designed to interface directly with the  
synchronous Serial Peripheral Interface (SPI) of many  
popular microcontroller families. It contains an 8-bit  
instruction register that is accessed via the SI input,  
with data being clocked in on the rising edge of SCK.  
CS must be LOW during the entire operation.  
7
6
5
4
3
2
1
0
WPEN FLB WD1 WD0 BL1 BL0 WEL WIP  
All instructions (Table 1), addresses and data are trans-  
ferred MSB first. Data input on the SI line is latched on  
the first rising edge of SCK after CS goes LOW. Data is  
output on the SO line by the falling edge of SCK. SCK is  
static, allowing the user to stop the clock and then start it  
again to resume operations where left off.  
The Write-In-Progress (WIP) bit is a volatile, read only  
bit and indicates whether the device is busy with an  
internal nonvolatile write operation. The WIP bit is read  
using the RDSR instruction. When set to a “1”, a non-  
volatile write operation is in progress. When set to a  
“0”, no write is in progress.  
Table 1. Instruction Set  
Instruction Name Instruction Format*  
Operation  
WREN  
SFLB  
0000 0110  
0000 0000  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
Set the write enable latch (enable write operations)  
Set flag bit  
WRDI/RFLB  
RSDR  
Reset the write enable latch/reset flag bit  
Read status register  
WRSR  
Write status register (watchdog, block lock, WPEN & flag bits)  
Read data from memory array beginning at selected address  
Write data to memory array beginning at selected address  
READ  
WRITE  
Note: *Instructions are shown MSB in leftmost position. Instructions are transferred MSB first.  
Characteristics subject to change without notice. 5 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
Table 2. Block Protect Matrix  
WREN CMD Status Register Device Pin  
Block  
Block  
Status Register  
WPEN, BL0, BL1  
WD0, WD1  
WEL  
WPEN  
WP#  
Protected Block Unprotected Block  
0
1
1
1
X
1
0
X
X
0
Protected  
Protected  
Protected  
Protected  
Protected  
Writable  
Writable  
Writable  
Protected  
Protected  
Writable  
Writable  
X
1
The Write Enable Latch (WEL) bit indicates the status  
of the write enable latch. When WEL = 1, the latch is  
set HIGH and when WEL = 0 the latch is reset LOW.  
The WEL bit is a volatile, read only bit. It can be set by  
the WREN instruction and can be reset by the WRDS  
instruction.  
The FLAG bit shows the status of a volatile latch that  
can be set and reset by the system using the SFLB  
and RFLB instructions. The flag bit is automatically  
reset upon power up. This flag can be used by the sys-  
tem to determine whether a reset occurs as a result of  
a watchdog time out or power failure.  
Notes: 1. The Watch Dog Timer is shipped disabled. (WD1 = 1,  
WD0 = 1)  
The block lock bits, BL0 and BL1, set the level of block  
lock protection. These nonvolatile bits are programmed  
using the WRSR instruction and allow the user to protect  
one quarter, one half, all or none of the EEPROM array.  
Any portion of the array that is block lock protected can be  
read but not written. It will remain protected until the BL  
bits are altered to disable block lock protection of that  
portion of memory.  
2. The factory default for Memory Block Protection is  
‘None’. (BL1 = 0), BL0 = 0)  
The nonvolatile WPEN bit is programmed using the  
WRSR instruction. This bit works in conjunction with the  
WP pin to provide an in-circuit programmable ROM func-  
tion (Table 2). WP is LOW and WPEN bit programmed  
HIGH disables all status register write operations.  
Status  
Register Bits  
Array Addresses Protected  
X5323/X5325  
In Circuit Programmable ROM Mode  
BL1  
BL0  
This mechanism protects the block lock and watchdog  
bits from inadvertent corruption.  
0
0
1
1
0
1
0
1
None (factory default)  
$0C00–$0FFF  
In the locked state (programmable ROM mode) the WP  
pin is LOW and the nonvolatile bit WPEN is “1”. This  
mode disables nonvolatile writes to the device’s status  
register.  
$0800–$0FFF  
$0000–$0FFF  
The watchdog timer bits, WD0 and WD1, select the  
watchdog time out period. These nonvolatile bits are  
programmed with the WRSR instruction.  
Status Register Bits  
Watchdog Time Out  
WD1  
WD0  
(Typical)  
0
0
1
1
0
1
0
1
1.4 seconds  
600 milliseconds  
200 milliseconds  
disabled (factory default)  
Characteristics subject to change without notice. 6 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
Figure 5. Read EEPROM Array Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30  
SCK  
SI  
Instruction  
16 Bit Address  
15 14 13  
3
2
1
0
Data Out  
High Impedance  
7
6
5
4
3
2
1
0
SO  
MSB  
Setting the WP pin LOW while WPEN is a “1” while an  
internal write cycle to the status register is in progress  
will not stop this write operation, but the operation dis-  
ables subsequent write attempts to the status register.  
higher address after each byte of data is shifted out.  
When the highest address is reached, the address  
counter rolls over to address $0000 allowing the read  
cycle to be continued indefinitely. The read operation is  
terminated by taking CS high. Refer to the read  
EEPROM Array Sequence (Figure 1).  
When WP is HIGH, all functions, including nonvolatile  
writes to the status register operate normally. Setting  
the WPEN bit in the status register to “0” blocks the WP  
pin function, allowing writes to the status register when  
WP is HIGH or LOW. Setting the WPEN bit to “1” while  
the WP pin is LOW activates the programmable ROM  
mode, thus requiring a change in the WP pin prior to  
subsequent status register changes. This allows manu-  
facturing to install the device in a system with WP pin  
grounded and still be able to program the status regis-  
ter. Manufacturing can then load configuration data,  
manufacturing time and other parameters into the  
EEPROM, then set the portion of memory to be pro-  
tected by setting the block lock bits, and finally set the  
“OTP mode” by setting the WPEN bit. Data changes  
now require a hardware change.  
To read the status register, the CS line is first pulled low  
to select the device followed by the 8-bit RDSR instruc-  
tion. After the RDSR opcode is sent, the contents of the  
status register are shifted out on the SO line. Refer to  
the read status register sequence (Figure 2).  
Write Sequence  
Prior to any attempt to write data into the device, the  
“Write Enable” Latch (WEL) must first be set by issuing  
the WREN instruction (Figure 3). CS is first taken LOW,  
then the WREN instruction is clocked into the device.  
After all eight bits of the instruction are transmitted, CS  
must then be taken HIGH. If the user continues the write  
operation without taking CS HIGH after issuing the  
WREN instruction, the write operation will be ignored.  
Read Sequence  
To write data to the EEPROM memory array, the user  
then issues the WRITE instruction followed by the 16  
bit address and then the data to be written. Any  
unused address bits are specified to be “0’s”. The  
WRITE operation minimally takes 32 clocks. CS must  
go low and remain low for the duration of the operation.  
If the address counter reaches the end of a page and  
the clock continues, the counter will roll back to the first  
address of the page and overwrite any data that may  
have been previously written.  
When reading from the EEPROM memory array, CS is  
first pulled low to select the device. The 8-bit READ  
instruction is transmitted to the device, followed by the  
16-bit address. After the READ opcode and address  
are sent, the data stored in the memory at the selected  
address is shifted out on the SO line. The data stored  
in memory at the next address can be read sequen-  
tially by continuing to provide clock pulses. The  
address is automatically incremented to the next  
Characteristics subject to change without notice. 7 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
For the page write operation (byte or page write) to be  
completed, CS can only be brought HIGH after bit 0 of  
the last data byte to be written is clocked in. If it is  
brought HIGH at any other time, the write operation will  
not be completed (Figure 4).  
– SO pin is high impedance.  
– The write enable latch is reset.  
– The flag bit is reset.  
– Reset signal is active for t  
.
PURST  
To write to the status register, the WRSR instruction is  
followed by the data to be written (Figure 5). Data bits  
0 and 1 must be “0”.  
Data Protection  
The following circuitry has been included to prevent  
inadvertent writes:  
While the write is in progress following a status register  
or EEPROM Sequence, the status register may be  
read to check the WIP bit. During this time the WIP bit  
will be high.  
– A WREN instruction must be issued to set the write  
enable latch.  
– CS must come HIGH at the proper clock count in  
order to start a nonvolatile write cycle.  
OPERATIONAL NOTES  
The device powers-up in the following state:  
– The device is in the low power standby state.  
– A HIGH to LOW transition on CS is required to enter  
an active state and receive an instruction.  
Figure 6. Read Status Register Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
SCK  
Instruction  
SI  
Data Out  
High Impedance  
SO  
7
6
5
4
3
2
1
0
MSB  
Figure 7. Write Enable Latch Sequence  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
High Impedance  
SO  
Characteristics subject to change without notice. 8 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
Figure 8. Write Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
SCK  
Instruction  
16 Bit Address  
15 14 13  
Data Byte 1  
3
2
1
0
7
6
5
4
3
2
1
0
SI  
CS  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
SI  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Figure 9. Status Register Write Sequence  
CS  
0
1
2
3
4
5
6
7
8
7
9
10 11 12 13 14 15  
SCK  
Instruction  
Data Byte  
6
5
4
3
2
1
0
SI  
High Impedance  
SO  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
Characteristics subject to change without notice. 9 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias ...................–65°C to +135°C  
Storage temperature ........................–65°C to +150°C  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; the functional operation of  
the device (at these or any other conditions above those  
listed in the operational sections of this specification) is  
not implied. Exposure to absolute maximum rating con-  
ditions for extended periods may affect device reliability.  
Voltage on any pin with respect to V ....1.0V to +7V  
SS  
D.C. output current ............................................... 5mA  
Lead temperature (soldering, 10 seconds).........300°C  
RECOMMENDED OPERATING CONDITIONS  
Temperature  
Commercial  
Industrial  
Min.  
0°C  
Max.  
70°C  
Device Option  
–2.7 or -2.7A  
Supply Voltage  
2.7V to 5.5V  
4.5V–5.5V  
–40°C  
+85°C  
Blank or -4.5A  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
I
V
V
V
write current (active)  
5
mA  
SCK = V x 0.1/V x 0.9 @ 2MHz,  
CC CC  
CC1  
CC  
CC  
CC  
SO = Open  
I
read current (active)  
0.4  
1
mA  
µA  
µA  
µA  
SCK = V x 0.1/V x 0.9 @ 2MHz,  
CC CC  
SO = Open  
CC2  
I
I
I
standby current  
CS = V , V = V or V  
,
,
,
SB1  
SB2  
SB3  
CC IN  
SS  
CC  
CC  
CC  
WDT = OFF  
V
= 5.5V  
CC  
V
standby current  
50  
20  
CS = V , V = V or V  
CC IN SS  
CC  
WDT = ON  
V
= 5.5V  
CC  
V
standby current  
CS = V , V = V or V  
CC IN SS  
CC  
WDT = ON  
V
V
V
=3.6V  
CC  
I
Input leakage current  
Output leakage current  
Input LOW voltage  
Input HIGH voltage  
Output LOW voltage  
Output LOW voltage  
Output LOW voltage  
Output HIGH voltage  
Output HIGH voltage  
Output HIGH voltage  
Reset output LOW voltage  
0.1  
0.1  
10  
10  
µA  
µA  
V
= V to V  
SS CC  
LI  
IN  
I
= V to V  
SS CC  
LO  
OUT  
(1)  
IL  
V
–0.5  
V
x 0.3  
CC  
(1)  
IH  
V
V
x 0.7  
V
+ 0.5  
V
CC  
CC  
V
V
V
0.4  
V
V
> 3.3V, I = 2.1mA  
OL1  
OL2  
OL3  
OH1  
OH2  
OH3  
OLS  
CC OL  
0.4  
0.4  
V
2V < VCC 3.3V, I = 1mA  
OL  
V
VCC 2V, I = 0.5mA  
OL  
V
V
V
V
V
V
V
– 0.8  
– 0.4  
– 0.2  
V
V
> 3.3V, I  
= –1.0mA  
CC  
CC  
CC  
CC  
OH  
V
2V < VCC 3.3V, I  
= –0.4mA  
OH  
V
VCC 2V, I  
= –0.25mA  
OH  
0.4  
V
I
= 1mA  
OL  
Characteristics subject to change without notice. 10 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
CAPACITANCE T = +25°C, f = 1MHz, V  
= 5V  
A
CC  
Symbol  
Test  
Max.  
Unit  
pF  
Conditions  
= 0V  
(2)  
OUT  
C
Output capacitance (SO, RESET/RESET)  
Input capacitance (SCK, SI, CS, WP)  
8
6
V
OUT  
(2)  
IN  
C
pF  
V
= 0V  
IN  
Notes: (1) V min. and V max. are for reference only and are not tested.  
IL  
IH  
(2) This parameter is periodically sampled and not 100% tested.  
EQUIVALENT A.C. LOAD CIRCUIT AT 5V V  
A.C. TEST CONDITIONS  
CC  
Input pulse levels  
V
x 0.1 to V x 0.9  
CC  
CC  
5V  
5V  
Input rise and fall times  
10ns  
Input and output timing level  
V
x0.5  
4.6KΩ  
CC  
2.06KΩ  
Output  
3.03KΩ  
RESET/RESET  
30pF  
100pF  
A.C. CHARACTERISTICS (Over recommended operating conditions, unless otherwise specified)  
Serial Input Timing  
2.7–5.5V  
Symbol  
Parameter  
Min.  
0
Max.  
Unit  
MHz  
ns  
f
Clock frequency  
Cycle time  
2
SCK  
CYC  
t
500  
250  
250  
200  
250  
50  
t
CS lead time  
ns  
LEAD  
t
CS lag time  
ns  
LAG  
t
Clock HIGH time  
Clock LOW time  
Data setup time  
Data hold time  
Input rise time  
Input fall time  
CS deselect time  
Write cycle time  
ns  
WH  
t
ns  
WL  
t
ns  
SU  
t
50  
ns  
H
(3)  
t
t
100  
100  
ns  
RI  
(3)  
ns  
FI  
t
500  
ns  
CS  
(4)  
WC  
t
10  
ms  
Characteristics subject to change without notice. 11 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
Serial Input Timing  
t
CS  
CS  
t
t
LAG  
LEAD  
SCK  
t
t
t
t
FI  
SU  
H
RI  
SI  
MSB IN  
LSB IN  
High Impedance  
SO  
Serial Output Timing  
Symbol  
2.7–5.5V  
Parameter  
Min.  
Max.  
2
Unit  
MHz  
ns  
f
Clock frequency  
0
SCK  
t
Output disable time  
250  
250  
DIS  
t
Output valid from clock low  
Output hold time  
ns  
V
t
0
ns  
HO  
(3)  
t
t
Output rise time  
100  
100  
ns  
RO  
(3)  
Output fall time  
ns  
FO  
Notes: (3) This parameter is periodically sampled and not 100% tested.  
(4) t is the time from the rising edge of CS after a valid write sequence has been sent to the end of the self-timed internal nonvolatile  
WC  
write cycle.  
Serial Output Timing  
CS  
SCK  
SO  
t
t
t
LAG  
CYC  
WH  
t
t
t
t
DIS  
V
HO  
WL  
MSB Out  
MSB–1 Out  
LSB Out  
ADDR  
LSB IN  
SI  
Characteristics subject to change without notice. 12 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
Power-Up and Power-Down Timing  
V
V
TRIP  
TRIP  
V
CC  
t
PURST  
0 Volts  
t
t
F
PURST  
t
RPD  
t
R
RESET (X5323)  
RESET (X5323)  
RESET Output Timing  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
V
Reset trip point voltage, X5323-4.5A, X5323-4.5A  
Reset trip point voltage, X5323, X5325  
Reset trip point voltage, X5323-2.7A, X5325-2.7A  
Reset trip point voltage, X5323-2.7, X5325-2.7  
4.5  
4.63  
4.38  
2.92  
2.63  
4.75  
4.5  
3.0  
2.7  
TRIP  
4.25  
2.85  
2.55  
V
V
V
hysteresis (HIGH to LOW vs. LOW to HIGH V voltage)  
TRIP  
20  
mV  
ms  
ns  
µs  
µs  
V
TH  
TRIP  
t
Power-up reset time out  
100  
200  
280  
500  
PURST  
(5)  
RPD  
t
V
V
V
detect to reset/output  
fall time  
CC  
CC  
CC  
(5)  
t
100  
100  
1
F
(5)  
t
rise time  
R
V
Reset valid V  
CC  
RVALID  
Note: (5) This parameter is periodically sampled and not 100% tested.  
CS/WDI vs. RESET/RESET Timing  
CS/WDI  
t
CST  
RESET  
RESET  
t
t
RST  
t
t
RST  
WDO  
WDO  
Characteristics subject to change without notice. 13 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
RESET/RESET Output Timing  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
t
Watchdog time out period,  
WD1 = 1, WD0 = 0  
WD1 = 0, WD0 = 1  
WD1 = 0, WD0 = 0  
WDO  
100  
450  
1
200  
600  
1.4  
300  
800  
2
ms  
ms  
sec  
t
CS pulse width to reset the watchdog  
Reset time out  
400  
100  
ns  
CST  
t
200  
300  
ms  
RST  
V
Set Conditions  
TRIP  
t
THD  
V
V
CC  
TRIP  
t
TSU  
t
RP  
t
t
VPH  
t
P
VPS  
CS  
t
t
t
VPO  
VPH  
VPS  
V
P
SCK  
V
t
P
VPO  
SI  
V
Reset Conditions  
TRIP  
V
*
CC  
t
RP  
t
t
VP1  
t
P
VPS  
t
CS  
t
t
VPS  
VPO  
VPH  
V
CC  
V
SCK  
SI  
t
P
VPO  
*V  
> Programmed V  
TRIP  
CC  
Characteristics subject to change without notice. 14 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
V
Programming Specifications V = 1.7–5.5V; Temperature = 0°C to 70°C  
CC  
TRIP  
Parameter  
Description  
program voltage setup time  
Min. Max. Unit  
t
SCK V  
SCK V  
1
1
µs  
µs  
µs  
µs  
ms  
ms  
ms  
ms  
V
VPS  
VPH  
TRIP  
t
program voltage hold time  
TRIP  
t
V
V
V
V
V
program pulse width  
1
P
TRIP  
TRIP  
TRIP  
TRIP  
TRIP  
t
level setup time  
10  
10  
TSU  
THD  
t
level hold (stable) time  
t
write cycle time  
10  
WC  
t
program cycle recovery period (between successive programming cycles)  
10  
0
RP  
t
SCK V  
program voltage off time before next cycle  
VPO  
TRIP  
V
Programming voltage  
programed voltage range  
15  
18  
5.0  
P
V
V
1.7  
-0.1  
-25  
V
TRAN  
TRIP  
V
V
Initial V  
program voltage accuracy (V applied—V ) (programmed at 25°C)  
TRIP  
+0.4  
+25  
V
ta1  
TRIP  
CC  
Subsequent V  
(programmed at 25°C)  
program voltage accuracy [(V applied—V )–V )  
TRIP  
mV  
ta2  
TRIP  
CC  
ta1  
V
V
program voltage repeatability (successive program operations) (programmed  
-25  
-25  
+25  
+25  
mV  
mV  
tr  
TRIP  
at 25°C)  
V
V
TRIP  
program variation after programming (0–75°C). (programmed at 25°C)  
tv  
V
programming parameters are periodically sampled and are not 100% tested.  
TRIP  
Characteristics subject to change without notice. 15 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
TYPICAL PERFORMANCE  
V
Supply Current vs. Temperature (I  
)
t
vs. Voltage/Temperature (WD1,0 = 1, 1)  
CC  
SB  
WDO  
1.9  
18  
Watchdog Timer On (V  
= 5V)  
1.8  
1.7  
1.6  
1.5  
1.4  
CC  
16  
14  
12  
10  
8
–40°C  
25°C  
Watchdog Timer On (V  
= 5V)  
CC  
90°C  
1.3  
1.2  
1.1  
1
6
4
Watchdog Timer Off (V = 3V, 5V)  
CC  
2
0
1.7  
2.4  
3.1  
3.8  
4.5  
5.2  
–40  
25  
90  
Voltage  
Temp (°C)  
t
vs. Voltage/Temperature (WD1, 0 = 1, 0)  
V
vs. Temperature (programmed at 25°C)  
WDO  
TRIP  
0.8  
5.025  
V
= 5V  
TRIP  
0.75  
5.000  
–40°C  
0.7  
0.65  
4.975  
3.525  
3.500  
25°C  
V
V
= 3.5V  
= 2.5V  
TRIP  
TRIP  
90°C  
0.6  
3.475  
0.55  
0.5  
2.525  
2.500  
2.475  
0.45  
1.7  
2.4  
3.1  
Voltage  
3.8  
4.5  
5.2  
0
25  
85  
Temperature  
t
vs. Temperature  
t
vs. Voltage/Temperature (WD1, 0 0 = 0, 1)  
PURST  
WDO  
205  
200  
205  
200  
195  
190  
185  
180  
175  
170  
165  
–40°C  
25°C  
195  
190  
185  
180  
175  
90°C  
170  
165  
160  
160  
1.7  
2.4  
3.1  
3.8  
4.5  
5.2  
–40  
25  
Degrees °C  
90  
Voltage  
Characteristics subject to change without notice. 16 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
PACKAGING INFORMATION  
8-Lead Plastic Small Outline Gull Wing Package Type S  
0.150 (3.80) 0.228 (5.80)  
0.158 (4.00) 0.244 (6.20)  
Pin 1 Index  
Pin 1  
0.014 (0.35)  
0.019 (0.49)  
0.188 (4.78)  
0.197 (5.00)  
(4X) 7°  
0.053 (1.35)  
0.069 (1.75)  
0.004 (0.19)  
0.010 (0.25)  
0.050 (1.27)  
0.010 (0.25)  
0.050"Typical  
X 45°  
0.020 (0.50)  
0.050"  
Typical  
0° - 8°  
0.0075 (0.19)  
0.010 (0.25)  
0.250"  
0.016 (0.410)  
0.037 (0.937)  
0.030"  
Typical  
8 Places  
FOOTPRINT  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
Characteristics subject to change without notice. 17 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
PACKAGING INFORMATION  
8-Lead Plastic Dual In-Line Package Type P  
0.430 (10.92)  
0.360 (9.14)  
0.260 (6.60)  
0.240 (6.10)  
Pin 1 Index  
Pin 1  
0.060 (1.52)  
0.020 (0.51)  
0.300  
(7.62) Ref.  
Half Shoulder Width On  
All End Pins Optional  
0.145 (3.68)  
0.128 (3.25)  
Seating  
Plane  
0.025 (0.64)  
0.015 (0.38)  
0.065 (1.65)  
0.150 (3.81)  
0.125 (3.18)  
0.045 (1.14)  
0.110 (2.79)  
0.090 (2.29)  
0.020 (0.51)  
0.016 (0.41)  
0.325 (8.25)  
0.300 (7.62)  
.073 (1.84)  
Max.  
0°  
Typ. 0.010 (0.25)  
15°  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH  
Characteristics subject to change without notice. 18 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
PACKAGING INFORMATION  
14-Lead Plastic, TSSOP, Package Type V  
.025 (.65) BSC  
.169 (4.3)  
.177 (4.5)  
.252 (6.4) BSC  
.193 (4.9)  
.200 (5.1)  
.047 (1.20)  
.0075 (.19)  
.0118 (.30)  
.002 (.05)  
.006 (.15)  
.010 (.25)  
Gage Plane  
0° - 8°  
Seating Plane  
.019 (.50)  
.029 (.75)  
Detail A (20X)  
.031 (.80)  
.041 (1.05)  
See Detail “A”  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
Characteristics subject to change without notice. 19 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
Ordering Information  
V
V
Operating  
Temperature Range  
Part Number RESET Part Number RESET  
CC  
TRIP  
Range  
Range  
Package  
8-Pin PDIP  
8L SOIC  
(Active LOW)  
X5323P-4.5A  
X5323S8-4.5A  
X5323S8I-4.5A  
X5323P  
(Active HIGH)  
X5325P-4.5A  
X5325S8-4.5A  
X5325S8I-4.5A  
X5325P  
4.5-5.5V  
4.5-4.75  
0–70°C  
0–70°C  
-40–85°C  
0–70°C  
0–70°C  
-40–85°C  
0–70°C  
0–70°C  
-40–85°C  
0–70°C  
0–70°C  
0–70°C  
-40–85°C  
4.5-5.5V  
4.25-4.5  
8-Pin PDIP  
8L SOIC  
X5323S8  
X5325S8  
X5323S8I  
X5325S8I  
14L TSSOP  
8L SOIC  
X5323V14  
X5325V14  
2.7-5.5V  
2.7-5.5V  
2.85-3.0  
2.55-2.7  
X5323S8-2.7A  
X5323S8I-2.7A  
X5323V14-2.7A  
X5323S8-2.7  
X5323V14-2.7  
X5323V14I-2.7  
X5325S8-2.7A  
X5325S8I-2.7A  
X5325V14-2.7A  
X5325S8-2.7  
X5325V14-2.7  
X5325V14I-2.7  
14L TSSOP  
8L SOIC  
14L TSSOP  
Part Mark Information  
X5323/25 W  
P = 8-Pin DIP  
Blank = 8-Lead SOIC  
V = 14 Lead TSSOP  
X
Blank = 5V ±10%, 0°C to +70°C, V  
= 4.25-4.5  
TRIP  
AL= 5V±10%, 0°C to +70°C, V  
= 4.5-4.75  
TRIP  
I = 5V ±10%, –40°C to +85°C, V  
= 4.25-4.5  
TRIP  
AM = 5V ±10%, –40°C to +85°C, V  
= 4.5-4.75  
TRIP  
F = 2.7V to 5.5V, 0°C to +70°C, V  
= 2.55-2.7  
TRIP  
AN = 2.7V to 5.5V, 0°C to +70°C, V  
= 2.85-3.0  
TRIP  
G = 2.7V to 5.5V, 40°C to +85°C, V  
= 2.55-2.7  
TRIP  
AP = 2.7V to 5.5V, 40°C to +85°C, V  
= 2.85-3.0  
TRIP  
Characteristics subject to change without notice. 20 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  
X5323/X5325  
LIMITED WARRANTY  
©Xicor, Inc. 2001 Patents Pending  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty,  
express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement.  
Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices  
at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, or licenses are implied.  
COPYRIGHTS ANDTRADEMARKS  
Xicor, Inc., the Xicor logo, E2POT, XDCP, XBGA, AUTOSTORE, Direct Write cell, Concurrent Read-Write, PASS, MPS, PushPOT, Block Lock, IdentiPROM,  
E2KEY, X24C16, SecureFlash, and SerialFlash are all trademarks or registered trademarks of Xicor, Inc. All other brand and product names mentioned herein are  
used for identification purposes only, and are trademarks or registered trademarks of their respective holders.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846;  
4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967; 4,883,976; 4,980,859; 5,012,132; 5,003,197; 5,023,694; 5,084,667; 5,153,880; 5,153,691;  
5,161,137; 5,219,774; 5,270,927; 5,324,676; 5,434,396; 5,544,103; 5,587,573; 5,835,409; 5,977,585. Foreign patents and additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection  
and correction, redundancy and back-up features to prevent such an occurrence.  
Xicor’s products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to  
perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
Characteristics subject to change without notice. 21 of 21  
REV 1.1.2 11/13/01  
www.xicor.com  

相关型号:

X5325S8Z

CPU Supervisor with 32Kb SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5325S8Z-2.7

CPU Supervisor with 32Kb SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5325S8Z-2.7-T

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5325S8Z-2.7-T1

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5325S8Z-2.7A

CPU Supervisor with 32Kb SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5325S8Z-2.7A-T1

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5325S8Z-4.5A

CPU Supervisor with 32Kb SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5325S8Z-4.5A-T1

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5325S8Z-T

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5325V14

CPU Supervisor with 32Kb SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5325V14-1.8

SPI Serial EEPROM with Supervisory Features

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

X5325V14-2.7

CPU Supervisor with 32Kb SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL