X5325S8Z-2.7A-T1 [RENESAS]

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC;
X5325S8Z-2.7A-T1
型号: X5325S8Z-2.7A-T1
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 光电二极管 内存集成电路
文件: 总21页 (文件大小:359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X5323, X5325  
®
(Replaces X25323, X25325)  
Data Sheet  
October 27, 2005  
FN8131.1  
DESCRIPTION  
CPU Supervisor with 32Kb SPI EEPROM  
These devices combine four popular functions, Power-on  
Reset Control, Watchdog Timer, Supply Voltage  
Supervision, and Block Lock Protect Serial EEPROM  
Memory in one package. This combination lowers  
system cost, reduces board space requirements, and  
increases reliability.  
FEATURES  
• Selectable watchdog timer  
• Low V detection and reset assertion  
CC  
—Five standard reset threshold voltages  
—Re-program low V reset threshold voltage  
CC  
using special programming sequence  
Applying power to the device activates the power-on  
reset circuit which holds RESET/RESET active for a  
period of time. This allows the power supply and oscilla-  
tor to stabilize before the processor can execute code.  
—Reset signal valid to V = 1V  
CC  
• Determine watchdog or low voltage reset with a  
volatile flag bit  
• Long battery life with low power consumption  
—<50µA max standby current, watchdog on  
—<1µA max standby current, watchdog off  
—<400µA max active current during read  
• 32Kbits of EEPROM  
The Watchdog Timer provides an independent protec-  
tion mechanism for microcontrollers. When the micro-  
controller fails to restart a timer within a selectable  
time out interval, the device activates the  
RESET/RESET signal. The user selects the interval  
from three preset values. Once selected, the interval  
does not change, even after cycling the power.  
• Built-in inadvertent write protection  
—Power-up/power-down protection circuitry  
—Protect 0, 1/4, 1/2 or all of EEPROM array with  
Block Lock protection  
The device’s low V  
detection circuitry protects the  
CC  
—In circuit programmable ROM mode  
• 2MHz SPI interface modes (0,0 & 1,1)  
• Minimize EEPROM programming time  
—32-byte page write mode  
user’s system from low voltage conditions, resetting the  
system when V falls below the minimum V trip  
CC  
CC  
point. RESET/RESET is asserted until V  
returns to  
CC  
proper operating level and stabilizes. Five industry stan-  
dard V thresholds are available, however, Intersil’s  
—Self-timed write cycle  
TRIP  
—5ms write cycle time (typical)  
• 2.7V to 5.5V and 4.5V to 5.5V power supply  
operation  
unique circuits allow the threshold to be reprogrammed  
to meet custom requirements or to fine-tune the thresh-  
old for applications requiring higher precision.  
• Available packages  
—14 Ld TSSOP, 8 Ld SOIC, 8 Ld PDIP  
• Pb-free plus anneal available (RoHS compliant)  
BLOCK DIAGRAM  
Watchdog Transition  
Detector  
Watchdog  
Timer Reset  
WP  
Protect Logic  
RESET/RESET  
X5323 = RESET  
SI  
Data  
Register  
Status  
Register  
SO  
Command  
Decode &  
Control  
Reset &  
Watchdog  
Timebase  
X5325 = RESET  
SCK  
8Kbits  
8Kbits  
CS/WDI  
Logic  
VCC Threshold  
Reset Logic  
16Kbits  
Power-on and  
Low Voltage  
Reset  
V
+
-
CC  
Generation  
V
TRIP  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2005. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
X5323, X5325  
Ordering Information  
PART NUMBER  
PART NUMBER  
RESET  
RESET  
PART  
PART  
V
CC RANGE  
(V)  
TEMP  
(ACTIVE LOW)  
MARKING  
(ACTIVE HIGH)  
MARKNIG  
V
TRIP RANGE RANGE (°C)  
PACKAGE  
8 Ld PDIP  
8 Ld PDIP (Pb-free)  
X5323P-4.5A  
X5323P AL  
X5325P-4.5A  
X5325P AL  
X5325P Z AL  
X5325P AM  
X5325P Z AM  
X5325 AL  
4.5-5.5  
4.5-4.75  
0 to 70  
0 to 70  
X5323PZ-4.5A (Note) X5323P Z AL X5325PZ-4.5A  
X5323PI-4.5A X5323P AM X5325PI-4.5A  
X5323PIZ-4.5A (Note) X5323P Z AM X5325PIZ-4.5A  
X5323S8-4.5A X5323 AL X5325S8-4.5A  
-40 to 85 8 Ld PDIP  
-40 to 85 8 Ld PDIP (Pb-free)  
0 to 70  
0 to 70  
8 Ld SOIC  
X5323S8Z-4.5A (Note) X5323 Z AL X5325S8Z-4.5A (Note) X5325 Z AL  
8 Ld SOIC (Pb-free)  
X5323S8I-4.5A*  
X5323 AM  
X5325S8I-4.5A  
X5325 AM  
-40 to 85 8 Ld SOIC  
X5323S8IZ-4.5A*  
(Note)  
X5323 Z AM X5325S8IZ-4.5A  
(Note)  
X5325 Z AM  
-40 to 85 8 Ld SOIC (Pb-free)  
X5323V14-4.5A  
X5325V14-4.5A  
0 to 70  
0 to 70  
14 Ld TSSOP  
X5323V14Z-4.5A  
(Note)  
X5323V Z AL X5325V14Z-4.5A  
(Note)  
X5325V Z AL  
X5325V Z AM  
14 Ld TSSOP  
(Pb-free)  
X5323V14I-4.5A  
X5325V14I-4.5A  
-40 to 85 14 Ld TSSOP  
X5323V14IZ-4.5A  
(Note)  
X5323V Z AM X5325V14IZ-4.5A  
(Note)  
-40 to 85 14 Ld TSSOP  
(Pb-free)  
X5323P  
X5323P  
X5325P  
X5325P  
4.5-5.5  
4.25-4.5  
0 to 70  
0 to 70  
8 Ld PDIP  
X5323PZ (Note)  
X5323PI  
X5323P Z  
X5323P I  
X5323P Z I  
X5323  
X5325PZ  
X5325P Z  
X5325P I  
X5325P Z I  
X5325  
8 Ld PDIP (Pb-free)  
X5325PI  
-40 to 85 8 Ld PDIP  
X5323PIZ (Note)  
X5323S8*  
X5325PIZ  
-40 to 85 8 Ld PDIP (Pb-free)  
X5325S8*  
0 to 70  
0 to 70  
8 Ld SOIC  
X5323S8Z* (Note)  
X5323S8I*  
X5323 Z  
X5323 I  
X5325S8Z* (Note)  
X5325S8I*  
X5325 Z  
X5325 I  
8 Ld SOIC (Pb-free)  
-40 to 85 8 Ld SOIC  
X5323S8IZ* (Note)  
X5323V14*  
X5323 Z I  
X5323V  
X5325S8IZ* (Note)  
X5325V14*  
X5325 Z I  
-40 to 85 8 Ld SOIC (Pb-free)  
0 to 70  
0 to 70  
14 Ld TSSOP  
X5323V14Z* (Note)  
X5323V Z  
X5325V14Z* (Note)  
X5325V Z  
14 Ld TSSOP  
(Pb-free)  
X5323V14I*  
X5325V14I*  
-40 to 85 14 Ld TSSOP  
X5323V14IZ* (Note)  
X5323V Z I  
X5323P AN  
X5325V14IZ* (Note)  
X5325V Z I  
-40 to 85 14 Ld TSSOP  
(Pb-free)  
X5323P-2.7A  
X5325P-2.7A  
X5325P AN  
X5325P Z AN  
X5325P AP  
X5325P Z AP  
X5325 AN  
2.7-5.5  
2.85-3.0  
0 to 70  
0 to 70  
8 Ld PDIP  
X5323PZ-2.7A (Note) X5323P Z AN X5325PZ-2.7A  
X5323PI-2.7A X5323P AP X5325PI-2.7A  
X5323PIZ-2.7A (Note) X5323P Z AP X5325PIZ-2.7A  
8 Ld PDIP (Pb-free)  
-40 to 85 8 Ld PDIP  
-40 to 85 8 Ld PDIP (Pb-free)  
X5323S8-2.7A*  
X5323 AN  
X5325S8-2.7A  
0 to 70  
0 to 70  
8 Ld SOIC  
X5323S8Z-2.7A*  
(Note)  
X5323 Z AN X5325S8Z-2.7A (Note) X5325 Z AN  
8 Ld SOIC (Pb-free)  
X5323S8I-2.7A*  
X5323 AP  
X5325S8I-2.7A  
X5325 AP  
-40 to 85 8 Ld SOIC  
X5323S8IZ-2.7A*  
(Note)  
X5323 Z AP X5325S8IZ-2.7A  
(Note)  
X5325 Z AP  
-40 to 85 8 Ld SOIC (Pb-free)  
FN8131.1  
2
October 27, 2005  
X5323, X5325  
Ordering Information (Continued)  
PART NUMBER  
PART NUMBER  
RESET  
PART  
RESET  
PART  
V
CC RANGE  
(V)  
TEMP  
(ACTIVE LOW)  
MARKING  
(ACTIVE HIGH)  
MARKNIG  
V
TRIP RANGE RANGE (°C)  
PACKAGE  
X5323V14-2.7A  
X5323V AN  
X5325V14-2.7A  
2.7-5.5  
2.85-3.0  
0 to 70  
0 to 70  
14 Ld TSSOP  
X5323V14Z-2.7A  
(Note)  
X5323V Z AN X5325V14Z-2.7A  
(Note)  
X5325V Z AN  
14 Ld TSSOP  
(Pb-free)  
X5323V14I-2.7A  
X5325V14I-2.7A  
-40 to 85 14 Ld TSSOP  
X5323V14IZ-2.7A  
(Note)  
X5323V Z AP X5325V14IZ-2.7A  
(Note)  
X5325V Z AP  
-40 to 85 14 Ld TSSOP  
(Pb-free)  
X5323P-2.7  
X5323P F  
X5323P Z F X5325PZ-2.7  
X5323P G X5325PI-2.7  
X5323P Z G X5325PIZ-2.7  
X5323 F X5325S8-2.7*  
X5325P-2.7  
X5325P F  
X5325P Z F  
X5325P G  
X5325P Z G  
X5325 F  
2.7-5.5  
2.55-2.7  
0 to 70  
0 to 70  
8 Ld PDIP  
X5323PZ-2.7 (Note)  
X5323PI-2.7  
8 Ld PDIP (Pb-free)  
-40 to 85 8 Ld PDIP  
X5323PIZ-2.7 (Note)  
X5323S8-2.7*  
-40 to 85 8 Ld PDIP (Pb-free)  
0 to 70  
0 to 70  
8 Ld SOIC  
X5323S8Z-2.7* (Note) X5323 Z F  
X5323S8I-2.7* X5323 G  
X5325S8Z-2.7* (Note) X5325 Z F  
X5325S8I-2.7* X5325 G  
X5325S8IZ-2.7* (Note) X5325 Z G  
8 Ld SOIC (Pb-free)  
-40 to 85 8 Ld SOIC  
X5323S8IZ-2.7* (Note) X5323 Z G  
X5323V14-2.7*  
-40 to 85 8 Ld SOIC (Pb-free)  
X5325V14-2.7*  
X5325V F  
0 to 70  
0 to 70  
14 Ld TSSOP  
X5323V14Z-2.7*  
(Note)  
X5323V Z F X5325V14Z-2.7*  
(Note)  
X5325V Z F  
14 Ld TSSOP  
(Pb-free)  
X5323V14I-2.7*  
X5325V14I-2.7*  
-40 to 85 14 Ld TSSOP  
X5323V14IZ-2.7*  
(Note)  
X5323V Z G X5325V14IZ-2.7*  
(Note)  
X5325V Z G  
-40 to 85 14 Ld TSSOP  
(Pb-free)  
*Add "-T1" suffix for tape and reel.  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN8131.1  
3
October 27, 2005  
X5323, X5325  
PIN CONFIGURATION  
14 Ld TSSOP  
8 Ld SOIC/PDIP  
1
VCC  
CS/WDT  
14  
13  
12  
SO  
NC  
2
3
4
5
RESET/RESET  
V
1
8
CS/WDT  
SO  
CC  
X5323/25  
NC  
NC  
2
3
7
6
RESET/RESET  
X5323/25  
NC  
NC  
11  
10  
9
WP  
SCK  
SI  
NC  
V
SS  
4
5
WP  
VSS  
SCK  
6
7
SI  
8
PIN DESCRIPTION  
Pin  
Pin  
(SOIC/PDIP) TSSOP  
Name  
Function  
1
1
CS/WDI Chip Select Input. CS HIGH, deselects the device and the SO output pin is at a  
high impedance state. Unless a nonvolatile write cycle is underway, the  
device will be in the standby power mode. CS LOW enables the device, placing  
it in the active power mode. Prior to the start of any operation after power-up, a  
HIGH to LOW transition on CS is required.  
Watchdog Input. A HIGH to LOW transition on the WDI pin restarts the watch-  
dog timer. The absence of a HIGH to LOW transition within the watchdog time  
out period results in RESET/RESET going active.  
2
5
2
8
SO  
SI  
Serial Output. SO is a push/pull serial data output pin. A read cycle shifts data out  
on this pin. The falling edge of the serial clock (SCK) clocks the data out.  
Serial Input. SI is a serial data input pin. Input all opcodes, byte addresses, and  
memory data on this pin. The rising edge of the serial clock (SCK) latches the input  
data. Send all opcodes (Table 1), addresses and data MSB first.  
6
3
9
6
SCK  
WP  
Serial Clock. The serial clock controls the serial bus timing for data input and  
output. The rising edge of SCK latches in the opcode, address, or data bits present  
on the SI pin. The falling edge of SCK changes the data output on the SO pin.  
Write Protect. The WP pin works in conjunction with a nonvolatile WPEN bit to  
“lock” the setting of the watchdog timer control and the memory write protect bits.  
4
8
7
7
VSS  
VCC  
Ground  
14  
13  
Supply Voltage  
RESET/ Reset Output. RESET/RESET is an active LOW/HIGH, open drain output which  
RESET  
goes active whenever VCC falls below the minimum VCC sense level. It will re-  
main active until VCC rises above the minimum VCC sense level for 200ms. RE-  
SET/RESET goes active if the watchdog timer is enabled and CS  
remains either HIGH or LOW longer than the selectable watchdog time out  
period. A falling edge of CS will reset the watchdog timer. RESET/RESET goes  
active on power-up at about 1V and remains active for 200ms after the power  
supply stabilizes.  
3-5,10-12  
NC  
No internal connections  
FN8131.1  
October 27, 2005  
4
X5323, X5325  
PRINCIPLES OF OPERATION  
Power-on Reset  
To set the new V  
voltage, apply the desired V  
TRIP TRIP  
threshold to the Vcc pin and tie the CS/WDI pin and  
the WP pin HIGH. RESET/RESET and SO pins are  
left unconnected. Then apply the programming voltage  
Application of power to the X5323/X5325 activates a  
power-on reset circuit. This circuit goes active at about  
1V and pulls the RESET/RESET pin active. This signal  
prevents the system microprocessor from starting to  
operate with insufficient voltage or prior to stabilization  
of the oscillator. As long as RESET/RESET pin is  
active, the device will not respond to any Read/Write  
V to both SCK and SI and pulse CS/WDI LOW then  
P
HIGH. Remove V and the sequence is complete.  
P
Figure 1. Set V  
Voltage  
TRIP  
CS  
instruction. When V exceeds the device V  
value  
releases  
CC  
TRIP  
VP  
for  
200ms  
(nominal)  
the  
circuit  
RESET/RESET, allowing the processor to begin exe-  
cuting code.  
SCK  
VP  
Low Voltage Monitoring  
SI  
During operation, the X5323/X5325 monitors the V  
CC  
level and asserts RESET/RESET if supply voltage  
falls below preset minimum The  
RESET/RESET signal prevents the microprocessor  
from operating in a power fail or brownout condition.  
The RESET/RESET signal remains active until the  
voltage drops below 1V. It also remains active until  
a
V
.
TRIP  
Resetting the V  
Voltage  
TRIP  
This procedure sets the V  
level. For example, if the current V  
to a “native” voltage  
TRIP  
is 4.4V and the  
TRIP  
V
is reset, the new V  
is something less than  
TRIP  
TRIP  
1.7V. This procedure must be used to set the voltage  
to a lower value.  
V
returns and exceeds V  
for 200ms.  
CC  
TRIP  
Watchdog Timer  
To reset the V  
voltage, apply a voltage between  
TRIP  
2.7 and 5.5V to the V  
WP pin, and the SCK pin HIGH. RESET/RESET and  
SO pins are left unconnected. Then apply the pro-  
pin. Tie the CS/WDI pin, the  
The watchdog timer circuit monitors the microprocessor  
activity by monitoring the WDI input. The microprocessor  
must toggle the CS/WDI pin periodically to prevent a  
RESET/RESET signal. The CS/WDI pin must be tog-  
gled from HIGH to LOW prior to the expiration of the  
watchdog time out period. The state of two nonvolatile  
control bits in the status register determine the watch-  
dog timer period. The microprocessor can change  
these watchdog bits, or they may be “locked” by tying  
the WP pin LOW and setting the WPEN bit HIGH.  
CC  
gramming voltage V to the SI pin ONLY and pulse  
P
CS/WDI LOW then HIGH. Remove V and the  
sequence is complete.  
P
Figure 2. Reset V  
Voltage  
TRIP  
CS  
V
Threshold Reset Procedure  
CC  
VCC  
SCK  
The X5323/X5325 has a standard V  
threshold  
CC  
(V  
) voltage. This value will not change over normal  
TRIP  
VP  
operating and storage conditions. However, in applica-  
tions where the standard V is not exactly right, or  
for higher precision in the  
TRIP  
SI  
V
value, the  
TRIP  
X5323/X5325 threshold may be adjusted.  
Setting the V  
Voltage  
TRIP  
This procedure sets the V  
to a higher voltage  
TRIP  
value. For example, if the current V  
is 4.4V and  
TRIP  
the new V  
is 4.6V, this procedure directly makes  
TRIP  
the change. If the new setting is lower than the current  
setting, then it is necessary to reset the trip point  
before setting the new value.  
FN8131.1  
5
October 27, 2005  
X5323, X5325  
Figure 3. V  
Programming Sequence Flow Chart  
TRIP  
VTRIP Programming  
Execute  
Reset VTRIP  
Sequence  
Set VCC = VCC Applied =  
Desired VTRIP  
Execute  
Set VTRIP  
Sequence  
New VCC Applied =  
New VCC Applied =  
Old VCC Applied - Error  
Old VCC Applied + Error  
Execute  
Reset VTRIP  
Sequence  
Apply 5V to VCC  
Decrement VCC  
(VCC = VCC - 10mV)  
NO  
RESET pin  
goes active?  
YES  
Error Emax  
Error Emax  
Measured VTRIP  
Desired VTRIP  
-
Error < Emax  
DONE  
Emax = Maximum Desired Error  
Figure 4. Sample V  
Reset Circuit  
TRIP  
VP  
4.7K  
NC  
NC  
4.7K  
RESET  
1
2
3
4
8
7
6
5
NC  
X5323/25  
VTRIP  
Adj.  
+
Program  
Reset VTRIP  
Test VTRIP  
Set VTRIP  
10K  
10K  
FN8131.1  
October 27, 2005  
6
X5323, X5325  
SPI SERIAL MEMORY  
Write Enable Latch  
The device contains a write enable latch. This latch  
must be SET before a write operation is initiated. The  
WREN instruction will set the latch and the WRDI  
instruction will reset the latch (Figure 3). This latch is  
automatically reset upon a power-up condition and  
after the completion of a valid write cycle.  
The memory portion of the device is a CMOS serial  
EEPROM array with Intersil’s block lock protection. The  
array is internally organized as x 8. The device features  
a Serial Peripheral Interface (SPI) and software proto-  
col allowing operation on a simple four-wire bus.  
The device utilizes Intersil’s proprietary Direct Write  
cell, providing a minimum endurance of 100,000  
cycles and a minimum data retention of 100 years.  
Status Register  
The RDSR instruction provides access to the status  
register. The status register may be read at any time,  
even during a write cycle. The status register is format-  
ted as follows:  
The device is designed to interface directly with the  
synchronous Serial Peripheral Interface (SPI) of many  
popular microcontroller families. It contains an 8-bit  
instruction register that is accessed via the SI input,  
with data being clocked in on the rising edge of SCK.  
CS must be LOW during the entire operation.  
7
6
5
4
3
2
1
0
WPEN FLB WD1 WD0 BL1 BL0 WEL WIP  
All instructions (Table 1), addresses and data are trans-  
ferred MSB first. Data input on the SI line is latched on  
the first rising edge of SCK after CS goes LOW. Data is  
output on the SO line by the falling edge of SCK. SCK is  
static, allowing the user to stop the clock and then start  
it again to resume operations where left off.  
The Write-In-Progress (WIP) bit is a volatile, read only  
bit and indicates whether the device is busy with an  
internal nonvolatile write operation. The WIP bit is read  
using the RDSR instruction. When set to a “1”, a non-  
volatile write operation is in progress. When set to a  
“0”, no write is in progress.  
Table 1. Instruction Set  
Instruction Name Instruction Format*  
Operation  
WREN  
SFLB  
0000 0110  
0000 0000  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
Set the write enable latch (enable write operations)  
Set flag bit  
WRDI/RFLB  
RSDR  
Reset the write enable latch/reset flag bit  
Read status register  
WRSR  
Write status register (watchdog, block lock, WPEN & flag bits)  
Read data from memory array beginning at selected address  
Write data to memory array beginning at selected address  
READ  
WRITE  
Note: *Instructions are shown MSB in leftmost position. Instructions are transferred MSB first.  
Table 2. Block Protect Matrix  
WREN CMD Status Register Device Pin  
Block  
Block  
Status Register  
WPEN, BL0, BL1  
WD0, WD1  
WEL  
WPEN  
WP#  
Protected Block Unprotected Block  
0
1
1
1
X
1
0
X
X
0
X
1
Protected  
Protected  
Protected  
Protected  
Protected  
Writable  
Writable  
Writable  
Protected  
Protected  
Writable  
Writable  
FN8131.1  
October 27, 2005  
7
X5323, X5325  
The Write Enable Latch (WEL) bit indicates the sta-  
The watchdog timer bits, WD0 and WD1, select the  
watchdog time out period. These nonvolatile bits are  
programmed with the WRSR instruction.  
tus of the write enable latch. When WEL = 1, the  
latch is set HIGH and when WEL = 0 the latch is reset  
LOW. The WEL bit is a volatile, read only bit. It can  
be set by the WREN instruction and can be reset by  
the WRDS instruction.  
Status Register Bits  
Watchdog Time Out  
WD1  
WD0  
(Typical)  
The block lock bits, BL0 and BL1, set the level of block  
lock protection. These nonvolatile bits are programmed  
using the WRSR instruction and allow the user to protect  
one quarter, one half, all or none of the EEPROM array.  
Any portion of the array that is block lock protected can  
be read but not written. It will remain protected until the  
BL bits are altered to disable block lock protection of that  
portion of memory.  
0
0
1
1
0
1
0
1
1.4 seconds  
600 milliseconds  
200 milliseconds  
disabled (factory default)  
The FLAG bit shows the status of a volatile latch that  
can be set and reset by the system using the SFLB  
and RFLB instructions. The flag bit is automatically  
reset upon power-up. This flag can be used by the  
system to determine whether a reset occurs as a  
result of a watchdog time out or power failure.  
Status  
Register Bits  
Array Addresses Protected  
X5323/X5325  
BL1  
BL0  
0
0
1
1
0
1
0
1
None (factory default)  
$0C00-$0FFF  
Notes: 1. The Watch Dog Timer is shipped disabled. (WD1 = 1,  
WD0 = 1)  
2. The factory default for Memory Block Protection is  
‘None’. (BL1 = 0, BL0 = 0)  
$0800-$0FFF  
$0000-$0FFF  
Figure 5. Read EEPROM Array Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30  
SCK  
SI  
Instruction  
16 Bit Address  
15 14 13  
3
2
1
0
Data Out  
High Impedance  
7
6
5
4
3
2
1
0
SO  
MSB  
FN8131.1  
8
October 27, 2005  
X5323, X5325  
In Circuit Programmable ROM Mode  
Write Sequence  
This mechanism protects the block lock and watchdog  
bits from inadvertent corruption.  
Prior to any attempt to write data into the device, the  
“Write Enable” Latch (WEL) must first be set by issuing  
the WREN instruction (Figure 3). CS is first taken LOW,  
then the WREN instruction is clocked into the device.  
After all eight bits of the instruction are transmitted, CS  
must then be taken HIGH. If the user continues the  
write operation without taking CS HIGH after issuing the  
WREN instruction, the write operation will be ignored.  
In the locked state (programmable ROM mode) the WP pin  
is LOW and the nonvolatile bit WPEN is “1”. This mode  
disables nonvolatile writes to the device’s status register.  
Setting the WP pin LOW while WPEN is a “1” while an  
internal write cycle to the status register is in progress  
will not stop this write operation, but the operation dis-  
ables subsequent write attempts to the status register.  
To write data to the EEPROM memory array, the user  
then issues the WRITE instruction followed by the 16  
bit address and then the data to be written. Any  
unused address bits are specified to be “0’s”. The  
WRITE operation minimally takes 32 clocks. CS must  
go low and remain low for the duration of the opera-  
tion. If the address counter reaches the end of a page  
and the clock continues, the counter will roll back to  
the first address of the page and overwrite any data  
that may have been previously written.  
When WP is HIGH, all functions, including nonvolatile  
writes to the status register operate normally. Setting  
the WPEN bit in the status register to “0” blocks the  
WP pin function, allowing writes to the status register  
when WP is HIGH or LOW. Setting the WPEN bit to  
“1” while the WP pin is LOW activates the programma-  
ble ROM mode, thus requiring a change in the WP pin  
prior to subsequent status register changes. This  
allows manufacturing to install the device in a system  
with WP pin grounded and still be able to program the  
status register. Manufacturing can then load configura-  
tion data, manufacturing time and other parameters  
into the EEPROM, then set the portion of memory to  
be protected by setting the block lock bits, and finally  
set the “OTP mode” by setting the WPEN bit. Data  
changes now require a hardware change.  
For the page write operation (byte or page write) to be  
completed, CS can only be brought HIGH after bit 0 of  
the last data byte to be written is clocked in. If it is  
brought HIGH at any other time, the write operation  
will not be completed (Figure 4).  
To write to the status register, the WRSR instruction is  
followed by the data to be written (Figure 5). Data bits  
0 and 1 must be “0”.  
Read Sequence  
While the write is in progress following a status regis-  
ter or EEPROM Sequence, the status register may be  
read to check the WIP bit. During this time the WIP bit  
will be high.  
When reading from the EEPROM memory array, CS is  
first pulled low to select the device. The 8-bit READ  
instruction is transmitted to the device, followed by the  
16-bit address. After the READ opcode and address  
are sent, the data stored in the memory at the selected  
address is shifted out on the SO line. The data stored  
in memory at the next address can be read sequen-  
tially by continuing to provide clock pulses. The  
address is automatically incremented to the next  
higher address after each byte of data is shifted out.  
When the highest address is reached, the address  
counter rolls over to address $0000 allowing the read  
cycle to be continued indefinitely. The read operation  
is terminated by taking CS high. Refer to the read  
EEPROM Array Sequence (Figure 1).  
OPERATIONAL NOTES  
The device powers-up in the following state:  
– The device is in the low power standby state.  
– A HIGH to LOW transition on CS is required to enter  
an active state and receive an instruction.  
– SO pin is high impedance.  
– The write enable latch is reset.  
– The flag bit is reset.  
– Reset signal is active for t  
.
PURST  
To read the status register, the CS line is first pulled low  
to select the device followed by the 8-bit RDSR instruc-  
tion. After the RDSR opcode is sent, the contents of the  
status register are shifted out on the SO line. Refer to  
the read status register sequence (Figure 2).  
Data Protection  
The following circuitry has been included to prevent  
inadvertent writes:  
– A WREN instruction must be issued to set the write  
enable latch.  
– CS must come HIGH at the proper clock count in  
order to start a nonvolatile write cycle.  
FN8131.1  
9
October 27, 2005  
X5323, X5325  
Figure 6. Read Status Register Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
SCK  
Instruction  
SI  
Data Out  
High Impedance  
SO  
7
6
5
4
3
2
1
0
MSB  
Figure 7. Write Enable Latch Sequence  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
High Impedance  
SO  
Figure 8. Write Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
SCK  
Instruction  
16 Bit Address  
15 14 13  
Data Byte 1  
3
2
1
0
7
6
5
4
3
2
1
0
SI  
CS  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
SI  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
FN8131.1  
10  
October 27, 2005  
X5323, X5325  
Figure 9. Status Register Write Sequence  
CS  
0
1
2
3
4
5
6
7
8
7
9
6
10 11 12 13 14 15  
SCK  
Instruction  
Data Byte  
5
4
3
2
1
0
SI  
High Impedance  
SO  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
FN8131.1  
11  
October 27, 2005  
X5323, X5325  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias ................... -65°C to+135°C  
Storage temperature ........................ -65°C to+150°C  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; the functional operation of the  
device (at these or any other conditions above those  
listed in the operational sections of this specification) is  
not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
Voltage on any pin with respect to V .... -1.0V to +7V  
SS  
D.C. output current...............................................5mA  
Lead temperature (soldering, 10s) .................... 300°C  
RECOMMENDED OPERATING CONDITIONS  
Temperature  
Commercial  
Industrial  
Min.  
0°C  
Max.  
70°C  
Device Option  
-2.7 or -2.7A  
Supply Voltage  
2.7V to 5.5V  
4.5V-5.5V  
-40°C  
+85°C  
Blank or -4.5A  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
ICC1  
VCC write current (active)  
5
mA  
SCK = VCC x 0.1/VCC x 0.9 @ 2MHz,  
SO = Open  
ICC2  
ISB1  
ISB2  
ISB3  
VCC read current (active)  
0.4  
1
mA  
µA  
µA  
µA  
SCK = VCC x 0.1/VCC x 0.9 @ 2MHz,  
SO = Open  
VCC standby current  
WDT = OFF  
CS = VCC, VIN = VSS or VCC  
VCC = 5.5V  
,
,
,
VCC standby current  
WDT = ON  
50  
20  
CS = VCC, VIN = VSS or VCC  
VCC = 5.5V  
VCC standby current  
WDT = ON  
CS = VCC, VIN = VSS or VCC  
V
CC =3.6V  
ILI  
Input leakage current  
Output leakage current  
Input LOW voltage  
0.1  
0.1  
10  
10  
µA  
µA  
V
VIN = VSS to VCC  
ILO  
VOUT = VSS to VCC  
(1)  
VIL  
-0.5  
VCC x 0.3  
VCC + 0.5  
0.4  
(1)  
VIH  
Input HIGH voltage  
VCC x 0.7  
V
VOL1  
VOL2  
VOL3  
VOH1  
VOH2  
VOH3  
VOLS  
Output LOW voltage  
Output LOW voltage  
Output LOW voltage  
Output HIGH voltage  
Output HIGH voltage  
Output HIGH voltage  
Reset output LOW voltage  
V
VCC > 3.3V, IOL = 2.1mA  
0.4  
V
2V < VCC 3.3V, IOL = 1mA  
VCC 2V, IOL = 0.5mA  
0.4  
V
VCC - 0.8  
VCC - 0.4  
VCC - 0.2  
V
VCC > 3.3V, IOH = -1.0mA  
2V < VCC 3.3V, IOH = -0.4mA  
VCC 2V, IOH = -0.25mA  
V
V
0.4  
V
IOL = 1mA  
CAPACITANCE T = +25°C, f = 1MHz, V = 5V  
A
CC  
Symbol  
Test  
Max.  
Unit  
Conditions  
VOUT = 0V  
VIN = 0V  
(2)  
COUT  
Output capacitance (SO, RESET/RESET)  
Input capacitance (SCK, SI, CS, WP)  
8
6
pF  
pF  
(2)  
CIN  
Notes: (1) VIL min. and VIH max. are for reference only and are not tested.  
(2) This parameter is periodically sampled and not 100% tested.  
FN8131.1  
October 27, 2005  
12  
X5323, X5325  
EQUIVALENT A.C. LOAD CIRCUIT AT 5V V  
A.C. TEST CONDITIONS  
CC  
Input pulse levels  
VCC x 0.1 to VCC x 0.9  
10ns  
5V  
5V  
Input rise and fall times  
Input and output timing level  
V
CC x0.5  
4.6kΩ  
2.06kΩ  
Output  
3.03kΩ  
RESET/RESET  
30pF  
100pF  
A.C. CHARACTERISTICS (Over recommended operating conditions, unless otherwise specified)  
Serial Input Timing  
2.7–5.5V  
Symbol  
fSCK  
tCYC  
tLEAD  
tLAG  
tWH  
Parameter  
Min.  
0
Max.  
Unit  
MHz  
ns  
Clock frequency  
Cycle time  
2
500  
250  
250  
200  
250  
50  
CS lead time  
ns  
CS lag time  
ns  
Clock HIGH time  
Clock LOW time  
Data setup time  
Data hold time  
Input rise time  
Input fall time  
CS deselect time  
Write cycle time  
ns  
tWL  
ns  
tSU  
ns  
tH  
50  
ns  
(3)  
tRI  
100  
100  
ns  
(3)  
tFI  
ns  
tCS  
500  
ns  
(4)  
tWC  
10  
ms  
FN8131.1  
October 27, 2005  
13  
X5323, X5325  
Serial Input Timing  
tCS  
CS  
tLEAD  
tLAG  
SCK  
tSU  
tH  
tRI  
tFI  
SI  
MSB IN  
LSB IN  
High Impedance  
SO  
Serial Output Timing  
Symbol  
2.7-5.5V  
Max.  
Parameter  
Min.  
Unit  
MHz  
ns  
fSCK  
tDIS  
tV  
Clock frequency  
Output disable time  
0
2
250  
250  
Output valid from clock low  
Output hold time  
ns  
tHO  
0
ns  
(3)  
tRO  
Output rise time  
100  
100  
ns  
(3)  
tFO  
Output fall time  
ns  
Notes: (3) This parameter is periodically sampled and not 100% tested.  
(4) tWC is the time from the rising edge of CS after a valid write sequence has been sent to the end of the self-timed internal nonvolatile  
write cycle.  
Serial Output Timing  
CS  
SCK  
SO  
tCYC  
tWH  
tLAG  
tV  
tHO  
tWL  
tDIS  
MSB Out  
MSB–1 Out  
LSB Out  
ADDR  
LSB IN  
SI  
FN8131.1  
14  
October 27, 2005  
X5323, X5325  
Power-Up and Power-Down Timing  
VTRIP  
VTRIP  
VCC  
tPURST  
0 Volts  
tPURST  
tF  
tRPD  
tR  
RESET (X5323)  
RESET (X5323)  
RESET Output Timing  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VTRIP  
Reset trip point voltage, X5323-4.5A, X5323-4.5A  
Reset trip point voltage, X5323, X5325  
Reset trip point voltage, X5323-2.7A, X5325-2.7A  
Reset trip point voltage, X5323-2.7, X5325-2.7  
4.5  
4.63  
4.38  
2.92  
2.63  
4.75  
4.5  
3.0  
4.25  
2.85  
2.55  
V
2.7  
VTH  
VTRIP hysteresis (HIGH to LOW vs. LOW to HIGH VTRIP voltage)  
20  
mV  
ms  
ns  
µs  
µs  
V
tPURST  
Power-up reset time out  
VCC detect to reset/output  
VCC fall time  
100  
200  
280  
500  
(5)  
tRPD  
(5)  
tF  
100  
100  
1
(5)  
tR  
VCC rise time  
VRVALID  
Reset valid VCC  
Note: (5) This parameter is periodically sampled and not 100% tested.  
CS/WDI vs. RESET/RESET Timing  
CS/WDI  
tCST  
RESET  
tWDO  
tRST  
tWDO  
tRST  
RESET  
FN8131.1  
15  
October 27, 2005  
X5323, X5325  
RESET/RESET Output Timing  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
tWDO  
Watchdog time out period,  
WD1 = 1, WD0 = 0  
100  
450  
1
200  
600  
1.4  
300  
800  
2
ms  
ms  
sec  
WD1 = 0, WD0 = 1  
WD1 = 0, WD0 = 0  
tCST  
tRST  
CS pulse width to reset the watchdog  
Reset time out  
400  
100  
ns  
200  
300  
ms  
V
Set Conditions  
TRIP  
tTHD  
VCC  
VTRIP  
tTSU  
tRP  
tP  
tVPH  
tVPS  
CS  
tVPO  
tVPH  
tVPS  
VP  
SCK  
VP  
tVPO  
SI  
V
Reset Conditions  
TRIP  
VCC  
*
tRP  
tP  
tVP1  
tVPS  
CS  
tVPS  
tVPO  
tVPH  
VCC  
SCK  
SI  
VP  
tVPO  
*VCC > Programmed VTRIP  
FN8131.1  
October 27, 2005  
16  
X5323, X5325  
V
Programming Specifications V = 1.7–5.5V; Temperature = 0°C to 70°C  
CC  
TRIP  
Parameter  
tVPS  
tVPH  
tP  
Description  
SCK VTRIP program voltage setup time  
Min. Max. Unit  
1
1
µs  
µs  
µs  
µs  
ms  
ms  
ms  
ms  
V
SCK VTRIP program voltage hold time  
VTRIP program pulse width  
1
tTSU  
tTHD  
tWC  
VTRIP level setup time  
10  
10  
VTRIP level hold (stable) time  
VTRIP write cycle time  
10  
tRP  
VTRIP program cycle recovery period (between successive programming cycles)  
SCK VTRIP program voltage off time before next cycle  
Programming voltage  
10  
0
tVPO  
VP  
VTRAN  
Vta1  
15  
18  
5.0  
VTRIP programed voltage range  
1.7  
-0.1  
-25  
V
Initial VTRIP program voltage accuracy (VCC applied-VTRIP) (programmed at 25°C)  
+0.4  
+25  
V
Vta2  
Subsequent VTRIP program voltage accuracy [(VCC applied-Vta1)-VTRIP  
]
mV  
(programmed at 25°C)  
Vtr  
VTRIP program voltage repeatability (successive program operations) (programmed  
at 25°C)  
-25  
-25  
+25  
+25  
mV  
mV  
Vtv  
VTRIP program variation after programming (0–75°C). (programmed at 25°C)  
VTRIP programming parameters are periodically sampled and are not 100% tested.  
FN8131.1  
17  
October 27, 2005  
X5323, X5325  
TYPICAL PERFORMANCE  
V
Supply Current vs. Temperature (I  
)
t vs. Voltage/Temperature (WD1,0 = 1, 1)  
WDO  
CC  
SB  
1.9  
1.8  
18  
Watchdog Timer On (VCC = 5V)  
16  
1.7  
1.6  
1.5  
1.4  
-40°C  
14  
12  
25°C  
Watchdog Timer On (VCC = 5V)  
10  
8
90°C  
1.3  
1.2  
1.1  
1
6
4
Watchdog Timer Off (VCC= 3V, 5V)  
2
0
1.7  
2.4  
3.1  
3.8  
4.5  
5.2  
-40  
25  
90  
Voltage  
Temp (°C)  
t
vs. Voltage/Temperature (WD1, 0 = 1, 0)  
V
vs. Temperature (programmed at 25°C)  
WDO  
TRIP  
0.8  
5.025  
V
TRIP = 5V  
0.75  
5.000  
-40°C  
0.7  
0.65  
4.975  
3.525  
3.500  
25°C  
V
TRIP = 3.5V  
90°C  
0.6  
3.475  
0.55  
0.5  
2.525  
2.500  
2.475  
VTRIP = 2.5V  
0.45  
1.7  
2.4  
3.1  
Voltage  
3.8  
4.5  
5.2  
0
25  
85  
Temperature  
t
vs. Temperature  
t
vs. Voltage/Temperature (WD1, 0 0 = 0, 1)  
WDO  
PURST  
205  
200  
205  
200  
195  
190  
185  
180  
175  
170  
165  
-40°C  
195  
190  
185  
180  
175  
25°C  
90°C  
170  
165  
160  
160  
1.7  
2.4  
3.1  
3.8  
4.5  
5.2  
-40  
25  
90  
Voltage  
Degrees °C  
FN8131.1  
October 27, 2005  
18  
X5323, X5325  
PACKAGING INFORMATION  
8-Lead Plastic Small Outline Gull Wing Package Type S  
0.150 (3.80) 0.228 (5.80)  
0.158 (4.00) 0.244 (6.20)  
Pin 1 Index  
Pin 1  
0.014 (0.35)  
0.019 (0.49)  
0.188 (4.78)  
0.197 (5.00)  
(4X) 7°  
0.053 (1.35)  
0.069 (1.75)  
0.004 (0.19)  
0.050 (1.27)  
0.010 (0.25)  
0.010 (0.25)  
0.020 (0.50)  
0.050"Typical  
X 45°  
0.050"  
Typical  
0° - 8°  
0.0075 (0.19)  
0.010 (0.25)  
0.250"  
0.016 (0.410)  
0.037 (0.937)  
0.030"  
Typical  
8 Places  
FOOTPRINT  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
FN8131.1  
19  
October 27, 2005  
X5323, X5325  
PACKAGING INFORMATION  
8-Lead Plastic Dual In-Line Package Type P  
0.430 (10.92)  
0.360 (9.14)  
0.260 (6.60)  
0.240 (6.10)  
Pin 1 Index  
Pin 1  
0.060 (1.52)  
0.020 (0.51)  
0.300  
(7.62) Ref.  
Half Shoulder Width On  
All End Pins Optional  
0.145 (3.68)  
0.128 (3.25)  
Seating  
Plane  
0.025 (0.64)  
0.015 (0.38)  
0.065 (1.65)  
0.150 (3.81)  
0.125 (3.18)  
0.045 (1.14)  
0.110 (2.79)  
0.090 (2.29)  
0.020 (0.51)  
0.016 (0.41)  
0.325 (8.25)  
0.300 (7.62)  
.073 (1.84)  
Max.  
0°  
Typ. 0.010 (0.25)  
15°  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH  
FN8131.1  
20  
October 27, 2005  
X5323, X5325  
PACKAGING INFORMATION  
14-Lead Plastic, TSSOP, Package Type V  
.025 (.65) BSC  
.169 (4.3)  
.177 (4.5)  
.252 (6.4) BSC  
.193 (4.9)  
.200 (5.1)  
.047 (1.20)  
.0075 (.19)  
.0118 (.30)  
.002 (.05)  
.006 (.15)  
.010 (.25)  
Gage Plane  
0° - 8°  
Seating Plane  
.019 (.50)  
.029 (.75)  
Detail A (20X)  
.031 (.80)  
.041 (1.05)  
See Detail “A”  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8131.1  
21  
October 27, 2005  

相关型号:

X5325S8Z-4.5A

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325S8Z-4.5A-T1

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC
RENESAS

X5325S8Z-T

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC
RENESAS

X5325V14

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325V14-1.8

SPI Serial EEPROM with Supervisory Features
ETC

X5325V14-2.7

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325V14-2.7A

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325V14-2.7A

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO14, PLASTIC, TSSOP-14
RENESAS

X5325V14-2.7A

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO14, PLASTIC, TSSOP-14
XICOR

X5325V14-2.7A-T1

IC,SERIAL EEPROM,4KX8,CMOS,TSSOP,14PIN,PLASTIC
RENESAS

X5325V14-4.5A

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325V14I

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL