X5325S8Z-T [RENESAS]

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC;
X5325S8Z-T
型号: X5325S8Z-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总20页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X5323, X5325  
®
(Replaces X25323, X25325)  
Data Sheet  
June 30, 2008  
FN8131.2  
CPU Supervisor with 32kBit SPI EEPROM  
Features  
These devices combine four popular functions, Power-on  
Reset Control, Watchdog Timer, Supply Voltage Supervision,  
and Block Lock Protect Serial EEPROM Memory in one  
package. This combination lowers system cost, reduces  
board space requirements, and increases reliability.  
• Selectable watchdog timer  
• Low VCC detection and reset assertion  
- Five standard reset threshold voltages  
- Re-program low VCC reset threshold voltage using  
special programming sequence  
Applying power to the device activates the power-on reset  
circuit which holds RESET/RESET active for a period of  
time. This allows the power supply and oscillator to stabilize  
before the processor can execute code.  
- Reset signal valid to VCC = 1V  
• Determine watchdog or low voltage reset with a volatile  
flag bit  
• Long battery life with low power consumption  
- <50µA max standby current, watchdog on  
- <1µA max standby current, watchdog off  
- <400µA max active current during read  
The Watchdog Timer provides an independent protection  
mechanism for microcontrollers. When the microcontroller  
fails to restart a timer within a selectable time out interval,  
the device activates the RESET/RESET signal. The user  
selects the interval from three preset values. Once selected,  
the interval does not change, even after cycling the power.  
• 32kbits of EEPROM  
• Built-in inadvertent write protection  
- Power-up/power-down protection circuitry  
- Protect 0, 1/4, 1/2 or all of EEPROM array with Block  
Lockprotection  
The device’s low VCC detection circuitry protects the user’s  
system from low voltage conditions, resetting the system  
when VCC falls below the minimum VCC trip point.  
RESET/RESET is asserted until VCC returns to proper  
operating level and stabilizes. Five industry standard VTRIP  
thresholds are available, however, Intersil’s unique circuits  
allow the threshold to be reprogrammed to meet custom  
requirements or to fine-tune the threshold for applications  
requiring higher precision.  
- In circuit programmable ROM mode  
• 2MHz SPI interface modes (0,0 and 1,1)  
• Minimize EEPROM programming time  
- 32-byte page write mode  
- Self-timed write cycle  
- 5ms write cycle time (typical)  
• 2.7V to 5.5V and 4.5V to 5.5V power supply  
operation  
• Available packages  
- 14 Ld TSSOP, 8 Ld SOIC, 8 Ld PDIP  
• Pb-free (RoHS compliant)  
Block Diagram  
WATCHDOG TRANSITION  
DETECTOR  
WATCHDOG  
TIMER RESET  
WP  
PROTECT LOGIC  
RESET/RESET  
X5323 = RESET  
SI  
DATA  
REGISTER  
STATUS  
REGISTER  
SO  
RESET AND  
WATCHDOG  
TIMEBASE  
COMMAND  
DECODE AND  
CONTROL  
LOGIC  
X5325 = RESET  
SCK  
8kBITS  
8kBITS  
CS/WDI  
V
THRESHOLD  
RESET LOGIC  
CC  
16kBITS  
POWER-ON AND  
LOW VOLTAGE  
RESET  
V
+
-
CC  
GENERATION  
V
TRIP  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2005, 2008. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
X5323, X5325  
Ordering Information  
PART NUMBER  
PART NUMBER  
RESET  
RESET  
PART  
PART  
MARKING  
V
CC RANGE  
(V)  
TEMP  
(ACTIVE LOW)  
MARKING  
(ACTIVE HIGH)  
V
TRIP RANGE RANGE (°C)  
PACKAGE  
8 Ld PDIP  
8 Ld PDIP** (Pb-free)  
X5323P-4.5A  
X5323P AL  
X5325P-4.5A  
X5325P AL  
X5325P ZAL  
X5325P AM  
X5325P ZAM  
X5325 AL  
4.5 to 5.5  
4.5 to 4.75  
0 to +70  
0 to +70  
X5323PZ-4.5A (Note) X5323P ZAL X5325PZ-4.5A  
X5323PI-4.5A X5323P AM X5325PI-4.5A  
X5323PIZ-4.5A (Note) X5323P ZAM X5325PIZ-4.5A  
X5323S8-4.5A X5323 AL X5325S8-4.5A  
X5323S8Z-4.5A (Note) X5323 ZAL  
-40 to +85 8 Ld PDIP  
-40 to +85 8 Ld PDIP** (Pb-free)  
0 to +70  
0 to +70  
8 Ld SOIC  
X5325S8Z-4.5A (Note) X5325 ZAL  
8 Ld SOIC (Pb-free)  
X5323S8I-4.5A*  
X5323 AM  
X5325S8I-4.5A  
X5325 AM  
-40 to +85 8 Ld SOIC  
X5323S8IZ-4.5A*  
(Note)  
X5323 ZAM X5325S8IZ-4.5A  
(Note)  
X5325 ZAM  
-40 to +85 8 Ld SOIC (Pb-free)  
X5323V14-4.5A  
X5323 VAL  
X5325V14-4.5A  
X5325 VAL  
0 to +70  
0 to +70  
14 Ld TSSOP  
X5323V14Z-4.5A  
(Note)  
X5323 VZAL X5325V14Z-4.5A  
(Note)  
X5325 VZAL  
14 Ld TSSOP  
(Pb-free)  
X5323V14I-4.5A  
X5323 VAM X5325V14I-4.5A  
X5325 VAM  
-40 to +85 14 Ld TSSOP  
X5323V14IZ-4.5A  
(Note)  
X5323 VZAM X5325V14IZ-4.5A  
(Note)  
X5325 VZAM  
-40 to +85 14 Ld TSSOP  
(Pb-free)  
X5323P  
X5323P  
X5325P  
X5325P  
4.5 to 5.5  
4.25 to 4.5  
0 to +70  
0 to +70  
8 Ld PDIP  
X5323PZ (Note)  
X5323PI  
X5323P Z  
X5323P I  
X5323P ZI  
X5323  
X5325PZ  
X5325P Z  
X5325P I  
X5325P ZI  
X5325  
8 Ld PDIP** (Pb-free)  
X5325PI  
-40 to +85 8 Ld PDIP  
X5323PIZ (Note)  
X5323S8*  
X5325PIZ  
-40 to +85 8 Ld PDIP** (Pb-free)  
X5325S8*  
0 to +70  
0 to +70  
8 Ld SOIC  
X5323S8Z* (Note)  
X5323S8I*  
X5323 Z  
X5323 I  
X5325S8Z* (Note)  
X5325S8I*  
X5325 Z  
X5325 I  
8 Ld SOIC (Pb-free)  
-40 to +85 8 Ld SOIC  
X5323S8IZ* (Note)  
X5323V14*  
X5323 ZI  
X5323 V  
X5323 VZ  
X5325S8IZ* (Note)  
X5325V14*  
X5325 ZI  
X5325 V  
X5325 VZ  
-40 to +85 8 Ld SOIC (Pb-free)  
0 to +70  
0 to +70  
14 Ld TSSOP  
X5323V14Z* (Note)  
X5325V14Z* (Note)  
14 Ld TSSOP  
(Pb-free)  
X5323V14I*  
X5323 VI  
X5325V14I*  
X5325 VI  
-40 to +85 14 Ld TSSOP  
X5323V14IZ* (Note)  
X5323 VZI  
X5325V14IZ* (Note)  
X5325 VZI  
-40 to +85 14 Ld TSSOP  
(Pb-free)  
X5323P-2.7A  
X5323P AN  
X5325P-2.7A  
X5325P AN  
X5325P ZAN  
X5325P AP  
X5325P ZAP  
X5325 AN  
2.7 to 5.5  
2.85 to 3.0  
0 to +70  
0 to +70  
8 Ld PDIP  
X5323PZ-2.7A (Note) X5323P ZAN X5325PZ-2.7A  
X5323PI-2.7A X5323P AP X5325PI-2.7A  
X5323PIZ-2.7A (Note) X5323P ZAP X5325PIZ-2.7A  
8 Ld PDIP** (Pb-free)  
-40 to +85 8 Ld PDIP  
-40 to +85 8 Ld PDIP** (Pb-free)  
X5323S8-2.7A*  
X5323 AN  
X5325S8-2.7A  
0 to +70  
0 to +70  
8 Ld SOIC  
X5323S8Z-2.7A*  
(Note)  
X5323 ZAN  
X5325S8Z-2.7A (Note) X5325 ZAN  
8 Ld SOIC (Pb-free)  
X5323S8I-2.7A*  
X5323 AP  
X5325S8I-2.7A  
X5325 AP  
-40 to +85 8 Ld SOIC  
X5323S8IZ-2.7A*  
(Note)  
X5323 ZAP  
X5325S8IZ-2.7A  
(Note)  
X5325 ZAP  
-40 to +85 8 Ld SOIC (Pb-free)  
FN8131.2  
June 30, 2008  
2
X5323, X5325  
Ordering Information (Continued)  
PART NUMBER  
RESET  
(ACTIVE LOW)  
PART NUMBER  
RESET  
(ACTIVE HIGH)  
PART  
MARKING  
PART  
MARKING  
V
CC RANGE  
(V)  
TEMP  
V
TRIP RANGE RANGE (°C)  
PACKAGE  
X5323V14-2.7A  
X5323 VAN  
X5325V14-2.7A  
X5325 VAN  
2.7 to 5.5  
2.85 to 3.0  
0 to +70  
0 to +70  
14 Ld TSSOP  
X5323V14Z-2.7A  
(Note)  
X5323 VZAN X5325V14Z-2.7A  
(Note)  
X5325 VZAN  
14 Ld TSSOP  
(Pb-free)  
X5323V14I-2.7A  
X5323 VAP  
X5325V14I-2.7A  
X5325 VAP  
-40 to +85 14 Ld TSSOP  
X5323V14IZ-2.7A  
(Note)  
X5323 VZAP X5325V14IZ-2.7A  
(Note)  
X5325 VZAP  
-40 to +85 14 Ld TSSOP  
(Pb-free)  
X5323P-2.7  
X5323P F  
X5323P ZF  
X5323P G  
X5323P ZG  
X5323 F  
X5325P-2.7  
X5325P F  
X5325P ZF  
X5325P G  
X5325P ZG  
X5325 F  
2.7 to 5.5  
2.55 to 2.7  
0 to +70  
0 to +70  
8 Ld PDIP  
X5323PZ-2.7 (Note)  
X5323PI-2.7  
X5325PZ-2.7  
X5325PI-2.7  
X5325PIZ-2.7  
X5325S8-2.7*  
8 Ld PDIP** (Pb-free)  
-40 to +85 8 Ld PDIP  
X5323PIZ-2.7 (Note)  
X5323S8-2.7*  
-40 to +85 8 Ld PDIP** (Pb-free)  
0 to +70  
0 to +70  
8 Ld SOIC  
X5323S8Z-2.7* (Note) X5323 ZF  
X5323S8I-2.7* X5323 G  
X5323S8IZ-2.7* (Note) X5323 ZG  
X5325S8Z-2.7* (Note) X5325 ZF  
X5325S8I-2.7* X5325 G  
X5325S8IZ-2.7* (Note) X5325 ZG  
8 Ld SOIC (Pb-free)  
-40 to +85 8 Ld SOIC  
-40 to +85 8 Ld SOIC (Pb-free)  
X5323V14-2.7*  
X5323 VF  
X5325V14-2.7*  
X5325 VF  
0 to +70  
0 to +70  
14 Ld TSSOP  
X5323V14Z-2.7*  
(Note)  
X5323 VZF  
X5325V14Z-2.7*  
(Note)  
X5325 VZF  
14 Ld TSSOP  
(Pb-free)  
X5323V14I-2.7*  
X5323 VG  
X5325V14I-2.7*  
X5325 VG  
-40 to +85 14 Ld TSSOP  
X5323V14IZ-2.7*  
(Note)  
X5323 VZG  
X5325V14IZ-2.7*  
(Note)  
X5325 VZG  
-40 to +85 14 Ld TSSOP  
(Pb-free)  
*Add “-T1” for tape and reel. Please refer to TB347 for details on reel specifications.  
**Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.  
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100%  
matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-  
020.  
Pinouts  
X5323, X5325  
(8 LD SOIC, PDIP)  
TOP VIEW  
X5323, X5325  
(14 LD TSSOP)  
TOP VIEW  
1
2
14  
13  
12  
V
CS/WDI  
SO  
1
8
V
CC  
CS/WDI  
SO  
CC  
RESET/RESET  
2
3
7
6
RESET/RESET  
3
4
5
NC  
NC  
NC  
WP  
SCK  
SI  
11  
10  
9
NC  
NC  
WP  
V
SS  
4
5
NC  
SCK  
6
7
V
8
SI  
SS  
FN8131.2  
June 30, 2008  
3
X5323, X5325  
Pin Descriptions  
PIN NUMBER  
(SOIC/PDIP)  
PIN NUMBER  
TSSOP  
PIN NAME  
PIN FUNCTION  
1
1
CS/WDI  
Chip Select Input. CS HIGH, deselects the device and the SO output pin is at a high impedance  
state. Unless a nonvolatile write cycle is underway, the device will be in the stand-by power mode.  
CS LOW enables the device, placing it in the active power mode. Prior to the start of any operation  
after power-up, a HIGH to LOW transition on CS is required.  
Watchdog Input. A HIGH to LOW transition on the WDI pin restarts the watchdog timer. The  
absence of a HIGH to LOW transition within the watchdog time out period results in  
RESET/RESET going active.  
2
5
2
8
SO  
SI  
Serial Output. SO is a push/pull serial data output pin. A read cycle shifts data out on this pin. The  
falling edge of the serial clock (SCK) clocks the data out.  
Serial Input. SI is a serial data input pin. Input all opcodes, byte addresses, and memory data on this  
pin. The rising edge of the serial clock (SCK) latches the input data. Send all opcodes (Table 1),  
addresses and data MSB first.  
6
3
9
6
SCK  
WP  
Serial Clock. The serial clock controls the serial bus timing for data input and output. The rising edge  
of SCK latches in the opcode, address, or data bits present on the SI pin. The falling edge of SCK  
changes the data output on the SO pin.  
Write Protect. The WP pin works in conjunction with a nonvolatile WPEN bit to “lock” the setting  
of the watchdog timer control and the memory write protect bits.  
4
8
7
7
VSS  
VCC  
Ground  
14  
13  
Supply Voltage  
RESET/  
RESET  
Reset Output. RESET/RESET is an active LOW/HIGH, open drain output which goes active  
whenever VCC falls below the minimum VCC sense level. It will remain active until VCC rises above  
the minimum VCC sense level for 200ms. RESET/RESET goes active if the watchdog timer is  
enabled and CS remains either HIGH or LOW longer than the selectable watchdog time out  
period. A falling edge of CS will reset the watchdog timer. RESET/RESET goes active on power-  
up at about 1V and remains active for 200ms after the power supply stabilizes.  
3 to 5,10 to 12  
NC  
No internal connections  
FN8131.2  
June 30, 2008  
4
X5323, X5325  
To set the new VTRIP voltage, apply the desired VTRIP  
threshold to the VCC pin and tie the CS/WDI pin and the WP  
pin HIGH. RESET/RESET and SO pins are left  
Principles of Operation  
Power-on Reset  
Application of power to the X5323/X5325 activates a  
power-on reset circuit. This circuit goes active at about 1V  
and pulls the RESET/RESET pin active. This signal prevents  
the system microprocessor from starting to operate with  
insufficient voltage or prior to stabilization of the oscillator. As  
long as RESET/RESET pin is active, the device will not  
respond to any Read/Write instruction. When VCC exceeds  
the device VTRIP value for 200ms (nominal) the circuit  
releases RESET/RESET, allowing the processor to begin  
executing code.  
unconnected. Then apply the programming voltage VP to  
both SCK and SI and pulse CS/WDI LOW then HIGH.  
Remove VP and the sequence is complete.  
CS  
V
P
SCK  
SI  
V
P
Low Voltage Monitoring  
During operation, the X5323/X5325 monitors the VCC level  
and asserts RESET/RESET if supply voltage falls below a  
preset minimum VTRIP. The RESET/RESET signal prevents  
the microprocessor from operating in a power fail or  
brown-out condition. The RESET/RESET signal remains  
active until the voltage drops below 1V. It also remains active  
until VCC returns and exceeds VTRIP for 200ms.  
FIGURE 1. SET VTRIP VOLTAGE  
Resetting the V  
Voltage  
TRIP  
This procedure sets the VTRIP to a “native” voltage level. For  
example, if the current VTRIP is 4.4V and the VTRIP is reset,  
the new VTRIP is something less than 1.7V. This procedure  
must be used to set the voltage to a lower value.  
Watchdog Timer  
To reset the VTRIP voltage, apply a voltage between 2.7V  
and 5.5V to the VCC pin. Tie the CS/WDI pin, the WP pin,  
and the SCK pin HIGH. RESET/RESET and SO pins are left  
unconnected. Then apply the programming voltage VP to the  
SI pin ONLY and pulse CS/WDI LOW then HIGH. Remove  
VP and the sequence is complete.  
The watchdog timer circuit monitors the microprocessor  
activity by monitoring the WDI input. The microprocessor must  
toggle the CS/WDI pin periodically to prevent a  
RESET/RESET signal. The CS/WDI pin must be toggled  
from HIGH to LOW prior to the expiration of the watchdog  
time out period. The state of two nonvolatile control bits in  
the status register determine the watchdog timer period. The  
microprocessor can change these watchdog bits, or they  
may be “locked” by tying the WP pin LOW and setting the  
WPEN bit HIGH.  
CS  
V
CC  
SCK  
SI  
V
Threshold Reset Procedure  
CC  
V
P
The X5323/X5325 has a standard VCC threshold (VTRIP  
)
voltage. This value will not change over normal operating  
and storage conditions. However, in applications where the  
standard VTRIP is not exactly right, or for higher precision in  
the VTRIP value, the X5323/X5325 threshold may be  
adjusted.  
FIGURE 2. RESET VTRIP VOLTAGE  
Setting the V  
Voltage  
TRIP  
This procedure sets the VTRIP to a higher voltage value. For  
example, if the current VTRIP is 4.4V and the new VTRIP is  
4.6V, this procedure directly makes the change. If the new  
setting is lower than the current setting, then it is necessary  
to reset the trip point before setting the new value.  
FN8131.2  
June 30, 2008  
5
X5323, X5325  
V
PROGRAMMING  
TRIP  
EXECUTE  
RESET V  
TRIP  
SEQUENCE  
SET V = V APPLIED =  
CC  
CC  
DESIRED V  
TRIP  
EXECUTE  
SET V  
SEQUENCE  
NEW V APPLIED =  
CC  
NEW V APPLIED =  
CC  
TRIP  
OLD V APPLIED - ERROR  
CC  
OLD V APPLIED + ERROR  
CC  
EXECUTE  
APPLY 5V TO V  
CC  
RESET V  
TRIP  
SEQUENCE  
DECREMENT V  
CC  
(V = V - 10mV)  
CC  
CC  
NO  
RESET PIN  
GOES ACTIVE?  
YES  
ERROR EMAX  
ERROR EMAX  
MEASURED V  
DESIRED V  
-
TRIP  
TRIP  
ERROR < EMAX  
EMAX = MAXIMUM DESIRED ERROR  
DONE  
FIGURE 3. VTRIP PROGRAMMING SEQUENCE FLOW CHART  
V
P
NC  
NC  
4.7kΩ  
RESET  
4.7kΩ  
V
TRIP  
1
2
3
4
8
7
6
5
ADJ.  
NC  
X5323,  
X5325  
+
PROGRAM  
RESET V  
TRIP  
10kΩ  
10kΩ  
TEST V  
TRIP  
SET V  
TRIP  
FIGURE 4. SAMPLE VTRIP RESET CIRCUIT  
FN8131.2  
June 30, 2008  
6
X5323, X5325  
Status Register  
SPI Serial Memory  
The RDSR instruction provides access to the status register.  
The status register may be read at any time, even during a  
write cycle. The status register is formatted as follows:  
The memory portion of the device is a CMOS serial EEPROM  
array with Intersil’s block lock protection. The array is  
internally organized as x8. The device features a Serial  
Peripheral Interface (SPI) and software protocol allowing  
operation on a simple four-wire bus.  
7
6
5
4
3
2
1
0
WPEN  
FLB  
WD1  
WD0  
BL1  
BL0  
WEL  
WIP  
The device utilizes Intersil’s proprietary Direct Writecell,  
providing a minimum endurance of 100,000 cycles and a  
minimum data retention of 100 years.  
The Write-In-Progress (WIP) bit is a volatile, read only bit  
and indicates whether the device is busy with an internal  
nonvolatile write operation. The WIP bit is read using the  
RDSR instruction. When set to a “1”, a nonvolatile write  
operation is in progress. When set to a “0”, no write is in  
progress.  
The device is designed to interface directly with the  
synchronous Serial Peripheral Interface (SPI) of many  
popular microcontroller families. It contains an 8-bit  
instruction register that is accessed via the SI input, with  
data being clocked in on the rising edge of SCK. CS must be  
LOW during the entire operation.  
The Write Enable Latch (WEL) bit indicates the status of  
the write enable latch. When WEL = 1, the latch is set  
HIGH and when WEL = 0 the latch is reset LOW. The WEL  
bit is a volatile, read only bit. It can be set by the WREN  
instruction and can be reset by the WRDS instruction.  
All instructions (Table 1), addresses and data are transferred  
MSB first. Data input on the SI line is latched on the first  
rising edge of SCK after CS goes LOW. Data is output on the  
SO line by the falling edge of SCK. SCK is static, allowing  
the user to stop the clock and then start it again to resume  
operations where left off.  
The block lock bits, BL0 and BL1, set the level of block lock  
protection. These nonvolatile bits are programmed using the  
WRSR instruction and allow the user to protect one quarter,  
one half, all or none of the EEPROM array. Any portion of the  
array that is block lock protected can be read but not written. It  
will remain protected until the BL bits are altered to disable  
block lock protection of that portion of memory.  
Write Enable Latch  
The device contains a write enable latch. This latch must be  
SET before a write operation is initiated. The WREN  
instruction will set the latch and the WRDI instruction will  
reset the latch (Figure 3). This latch is automatically reset  
upon a power-up condition and after the completion of a  
valid write cycle.  
TABLE 1. INSTRUCTION SET  
INSTRUCTION NAME  
WREN  
INSTRUCTION FORMAT*  
0000 0110  
OPERATION  
Set the write enable latch (enable write operations)  
Set flag bit  
SFLB  
0000 0000  
WRDI/RFLB  
RSDR  
0000 0100  
Reset the write enable latch/reset flag bit  
Read status register  
0000 0101  
WRSR  
0000 0001  
Write status register (watchdog, block lock, WPEN and flag bits)  
Read data from memory array beginning at selected address  
Write data to memory array beginning at selected address  
READ  
0000 0011  
WRITE  
0000 0010  
NOTE: *Instructions are shown MSB in leftmost position. Instructions are transferred MSB first.  
TABLE 2. BLOCK PROTECT MATRIX  
WREN CMD  
STATUS REGISTER  
DEVICE PIN  
BLOCK  
Protected Block  
Protected  
BLOCK  
Unprotected Block  
Protected  
STATUS REGISTER  
WPEN, BL0, BL1 WD0, WD1  
Protected  
WEL  
WPEN  
WP  
X
0
1
1
1
X
1
0
X
0
Protected  
Writable  
Protected  
X
Protected  
Writable  
Writable  
1
Protected  
Writable  
Writable  
FN8131.2  
June 30, 2008  
7
X5323, X5325  
.
In Circuit Programmable ROM Mode  
STATUS  
This mechanism protects the block lock and watchdog bits  
from inadvertent corruption.  
REGISTER BITS  
ARRAY ADDRESSES PROTECTED  
X5323/X5325  
BL1  
0
BL0  
0
In the locked state (programmable ROM mode) the WP pin is  
LOW and the nonvolatile bit WPEN is “1”. This mode disables  
nonvolatile writes to the device’s status register.  
None (factory default)  
$0C00 to $0FFF  
0
1
1
0
$0800 to $0FFF  
Setting the WP pin LOW while WPEN is a “1” while an  
internal write cycle to the status register is in progress will  
not stop this write operation, but the operation disables  
subsequent write attempts to the status register.  
1
1
$0000 to $0FFF  
The watchdog timer bits, WD0 and WD1, select the  
watchdog time out period. These nonvolatile bits are  
programmed with the WRSR instruction.  
When WP is HIGH, all functions, including nonvolatile writes  
to the status register operate normally. Setting the WPEN bit  
in the status register to “0” blocks the WP pin function,  
allowing writes to the status register when WP is HIGH or  
LOW. Setting the WPEN bit to “1” while the WP pin is LOW  
activates the programmable ROM mode, thus requiring a  
change in the WP pin prior to subsequent status register  
changes. This allows manufacturing to install the device in a  
system with WP pin grounded and still be able to program  
the status register. Manufacturing can then load  
STATUS REGISTER BITS  
WATCHDOG TIME-OUT  
WD1  
WD0  
(TYPICAL)  
0
0
1
1
0
1
0
1
1.4s  
600ms  
200ms  
disabled (factory default)  
configuration data, manufacturing time and other parameters  
into the EEPROM, then set the portion of memory to be  
protected by setting the block lock bits, and finally set the  
“OTP mode” by setting the WPEN bit. Data changes now  
require a hardware change.  
The FLAG bit shows the status of a volatile latch that can be  
set and reset by the system using the SFLB and RFLB  
instructions. The flag bit is automatically reset upon  
power-up. This flag can be used by the system to determine  
whether a reset occurs as a result of a watchdog time out or  
power failure.  
Read Sequence  
When reading from the EEPROM memory array, CS is first  
pulled low to select the device. The 8-bit READ instruction is  
transmitted to the device, followed by the 16-bit address.  
After the READ opcode and address are sent, the data  
stored in the memory at the selected address is shifted out  
on the SO line. The data stored in memory at the next  
address can be read sequentially by continuing to provide  
clock pulses. The address is automatically incremented to  
the next higher address after each byte of data is shifted out.  
Note: The Watch Dog Timer is shipped disabled. (WD1 = 1,  
WD0 = 1. The factory default for Memory Block Protection is  
‘None’. (BL1 = 0, BL0 = 0).  
The nonvolatile WPEN bit is programmed using the WRSR  
instruction. This bit works in conjunction with the WP pin to  
provide an in-circuit programmable ROM function (Table 2). WP  
is LOW and WPEN bit programmed HIGH disables all status  
register write operations.  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30  
SCK  
SI  
16-BIT ADDRESS  
15 14 13  
INSTRUCTION  
3
2
1
0
DATA OUT  
HIGH IMPEDANCE  
SO  
7
6
5
4
3
2
1
0
MSB  
FIGURE 5. READ EEPROM ARRAY SEQUENCE  
FN8131.2  
June 30, 2008  
8
X5323, X5325  
When the highest address is reached, the address counter  
For the page write operation (byte or page write) to be  
completed, CS can only be brought HIGH after bit 0 of the  
last data byte to be written is clocked in. If it is brought HIGH  
at any other time, the write operation will not be completed  
(Figure 4).  
rolls over to address $0000 allowing the read cycle to be  
continued indefinitely. The read operation is terminated by  
taking CS high. Refer to the read EEPROM Array Sequence  
(Figure 1).  
To read the status register, the CS line is first pulled low to  
select the device followed by the 8-bit RDSR instruction.  
After the RDSR opcode is sent, the contents of the status  
register are shifted out on the SO line. Refer to the read  
status register sequence (Figure 2).  
To write to the status register, the WRSR instruction is  
followed by the data to be written (Figure 5). Data bits 0 and  
1 must be “0”.  
While the write is in progress following a status register or  
EEPROM Sequence, the status register may be read to  
check the WIP bit. During this time the WIP bit will be high.  
Write Sequence  
Prior to any attempt to write data into the device, the “Write  
Enable” Latch (WEL) must first be set by issuing the WREN  
instruction (Figure 3). CS is first taken LOW, then the WREN  
instruction is clocked into the device. After all eight bits of the  
instruction are transmitted, CS must then be taken HIGH. If  
the user continues the write operation without taking CS  
HIGH after issuing the WREN instruction, the write operation  
will be ignored.  
Operational Notes  
The device powers-up in the following state:  
• The device is in the low power standby state.  
• A HIGH to LOW transition on CS is required to enter an  
active state and receive an instruction.  
• SO pin is high impedance.  
• The write enable latch is reset.  
• The flag bit is reset.  
To write data to the EEPROM memory array, the user then  
issues the WRITE instruction followed by the 16-bit address  
and then the data to be written. Any unused address bits are  
specified to be “0’s”. The WRITE operation minimally takes  
32 clocks. CS must go low and remain low for the duration of  
the operation. If the address counter reaches the end of a  
page and the clock continues, the counter will roll back to the  
first address of the page and overwrite any data that may  
have been previously written.  
• Reset signal is active for tPURST  
.
Data Protection  
The following circuitry has been included to prevent  
inadvertent writes:  
• A WREN instruction must be issued to set the write enable  
latch.  
Note: When writing more than one page, you must wait one  
write cycle (10ms typical) when going from one page to  
another. This is required for the internal nonvolatile memory  
to be programmed correctly.  
• CS must come HIGH at the proper clock count in order to  
start a nonvolatile write cycle.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
SCK  
INSTRUCTION  
SI  
DATA OUT  
HIGH IMPEDANCE  
SO  
7
6
5
4
3
2
1
0
MSB  
FIGURE 6. READ STATUS REGISTER SEQUENCE  
FN8131.2  
June 30, 2008  
9
X5323, X5325  
Symbol Table  
CS  
WAVEFORM  
INPUTS  
OUTPUTS  
0
1
2
3
4
5
6
7
Must be  
steady  
Will be  
steady  
SCK  
SI  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
HIGH IMPEDANCE  
SO  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
FIGURE 7. WRITE ENABLE LATCH SEQUENCE  
N/A  
Center Line  
is High  
Impedance  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
SCK  
INSTRUCTION  
16-BIT ADDRESS  
15 14 13  
DATA BYTE 1  
3
2
1
0
7
6
5
4
3
2
1
0
SI  
CS  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
SI  
DATA BYTE 2  
DATA BYTE 3  
DATA BYTE N  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
FIGURE 8. WRITE SEQUENCE  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCK  
INSTRUCTION  
DATA BYTE  
7
6
5
4
3
2
1
0
SI  
HIGH IMPEDANCE  
SO  
FIGURE 9. STATUS REGISTER WRITE SEQUENCE  
FN8131.2  
June 30, 2008  
10  
X5323, X5325  
Absolute Maximum Ratings  
Thermal Information  
Temperature Under Bias . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Voltage on any Pin with Respect to VSS . . . . . . . . . . . .-1.0V to +7V  
DC Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
*Pb-free PDIPs can be used for through hole wave solder  
processing only. They are not intended for use in Reflow solder  
processing applications.  
Operating Conditions  
Temperature Range (Industrial) . . . . . . . . . . . . . . . . .-40°C to +85°C  
Temperature Range (Commercial). . . . . . . . . . . . . . . . 0°C to +70°C  
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
DC Electrical Specifications Over the recommended operating conditions, unless otherwise specified  
PARAMETER  
SYMBOL  
ICC1  
ICC2  
ISB1  
ISB2  
ISB3  
ILI  
TEST CONDITIONS  
SCK = VCC x 0.1/VCC x 0.9 @ 2MHz, SO = Open  
SCK = VCC x 0.1/VCC x 0.9 @ 2MHz, SO = Open  
CS = VCC, VIN = VSS or VCC, VCC = 5.5V  
CS = VCC, VIN = VSS or VCC, VCC = 5.5V  
CS = VCC, VIN = VSS or VCC, VCC =3.6V  
VIN = VSS to VCC  
MIN  
TYP  
MAX  
UNIT  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
V
V
CC Write Current (active)  
5
VCC Read Current (active)  
0.4  
V
V
CC Standby Current WDT = OFF  
CC Standby Current WDT = ON  
1
50  
VCC Standby Current WDT = ON  
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
20  
0.1  
0.1  
10  
ILO  
VOUT = VSS to VCC  
10  
VIL  
-0.5  
VCC x 0.3  
(Note 1)  
Input HIGH Voltage  
VIH  
VCC x 0.7  
VCC + 0.5  
V
(Note 1)  
Output LOW Voltage  
Output LOW Voltage  
Output LOW Voltage  
Output HIGH Voltage  
Output HIGH Voltage  
Output HIGH Voltage  
Reset Output LOW Voltage  
VOL1  
VOL2  
VOL3  
VOH1  
VOH2  
VOH3  
VOLS  
VCC > 3.3V, IOL = 2.1mA  
2V < VCC 3.3V, IOL = 1mA  
VCC 2V, IOL = 0.5mA  
VCC > 3.3V, IOH = -1.0mA  
2V < VCC 3.3V, IOH = -0.4mA  
VCC 2V, IOH = -0.25mA  
IOL = 1mA  
0.4  
0.4  
0.4  
V
V
V
V
V
V
V
VCC - 0.8  
VCC - 0.4  
VCC - 0.2  
0.4  
Capacitance  
TA = +25°C, f = 1MHz, VCC = 5V  
SYMBOL  
TEST  
CONDITIONS  
VOUT = 0V  
VIN = 0V  
MAX  
UNIT  
pF  
C
OUT (Note 2) Output Capacitance (SO, RESET/RESET)  
IN (Note 2) Input Capacitance (SCK, SI, CS, WP)  
NOTES:  
8
6
C
pF  
1. VIL min and VIH max are for reference only and are not tested.  
2. This parameter is periodically sampled and not 100% tested.  
FN8131.2  
June 30, 2008  
11  
X5323, X5325  
Equivalent AC Load Circuit at 5V V  
AC Test Conditions  
CC  
Input pulse levels  
VCC x 0.1 to VCC x 0.9  
10ns  
5V  
5V  
Input rise and fall times  
Input and output timing level  
4.6kΩ  
VCC x 0.5  
2.06kΩ  
OUTPUT  
3.03kΩ  
RESET/RESET  
30pF  
100pF  
AC Electrical Specifications  
Input pulse levels = VCC x 0.1 to VCC x 0.9; input rise and fall times = 10ns; input and ouput timing  
level = VCC x 0.5. Over recommended operating conditions, unless otherwise specified.  
2.7 TO 5.5V  
PARAMETER  
SYMBOL  
MIN  
MAX  
UNIT  
SERIAL INPUT TIMING  
Clock Frequency  
Cycle Time  
fSCK  
tCYC  
tLEAD  
tLAG  
0
2
MHz  
ns  
500  
250  
250  
200  
250  
50  
CS Lead Time  
ns  
CS Lag Time  
ns  
Clock HIGH Time  
Clock LOW Time  
Data Set-up Time  
Data Hold Time  
Input Rise Time  
Input Fall Time  
tWH  
ns  
tWL  
ns  
tSU  
ns  
tH  
50  
ns  
t
RI (Note 3)  
100  
100  
ns  
tFI (Note 3)  
tCS  
ns  
CS Deselect Time  
Write Cycle Time  
500  
ns  
t
WC (Note 4)  
10  
ms  
Serial Input Timing  
t
CS  
CS  
t
t
LAG  
LEAD  
SCK  
t
t
t
t
FI  
SU  
H
RI  
SI  
MSB IN  
LSB IN  
HIGH IMPEDANCE  
SO  
FN8131.2  
June 30, 2008  
12  
X5323, X5325  
Serial Output Timing  
2.7 TO 5.5V  
MAX  
PARAMETER  
SYMBOL  
fSCK  
tDIS  
MIN  
UNIT  
MHz  
ns  
Clock Frequency  
Output Disable Time  
Output Valid From Clock Low  
Output Hold Time  
Output Rise Time  
Output Fall Time  
NOTES:  
0
2
250  
250  
tV  
ns  
tHO  
0
ns  
tRO (Note 3)  
100  
100  
ns  
t
FO (Note 3)  
ns  
3. This parameter is periodically sampled and not 100% tested.  
4. tWC is the time from the rising edge of CS after a valid write sequence has been sent to the end of the self-timed internal nonvolatile write cycle.  
Serial Output Timing  
CS  
t
t
t
LAG  
CYC  
WH  
SCK  
SO  
SI  
t
t
t
t
DIS  
V
HO  
WL  
MSB OUT  
MSB–1 OUT  
LSB OUT  
ADDR  
LSB IN  
Power-Up and Power-Down Timing  
V
V
TRIP  
TRIP  
V
CC  
t
PURST  
0V  
t
t
F
PURST  
t
RPD  
t
R
RESET (X5323)  
RESET (X5323)  
FN8131.2  
June 30, 2008  
13  
X5323, X5325  
RESET Output Timing  
SYMBOL  
PARAMETER  
MIN  
4.5  
TYP  
4.63  
4.38  
2.92  
2.63  
20  
MAX  
4.75  
4.5  
UNIT  
V
VTRIP  
Reset Trip Point Voltage, X5323-4.5A, X5323-4.5A  
Reset Trip Point Voltage, X5323, X5325  
4.25  
2.85  
2.55  
V
Reset Trip Point Voltage, X5323-2.7A, X5325-2.7A  
Reset Trip Point Voltage, X5323-2.7, X5325-2.7  
VTRIP Hysteresis (HIGH to LOW vs LOW to HIGH VTRIP Voltage)  
Power-up Reset Time-Out  
3.0  
V
2.7  
V
VTH  
mV  
ms  
ns  
µs  
µs  
V
tPURST  
100  
200  
280  
500  
t
RPD (Note 5) VCC Detect To Reset/Output  
tF (Note 5) VCC Fall Time  
100  
100  
1
tR (Note 5) VCC Rise Time  
VRVALID  
NOTE:  
Reset Valid VCC  
5. This parameter is periodically sampled and not 100% tested.  
CS/WDI vs RESET/RESET Timing  
CS/WDI  
t
CST  
RESET  
t
t
t
t
RST  
WDO  
RST  
WDO  
RESET  
RESET/RESET Output Timing  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tWDO  
Watchdog Time-Out Period  
WD1 = 1, WD0 = 0  
100  
450  
1
200  
600  
1.4  
300  
800  
2
ms  
ms  
s
WD1 = 0, WD0 = 1  
WD1 = 0, WD0 = 0  
tCST  
tRST  
CS Pulse Width to Reset the Watchdog  
Reset Time-Out  
400  
100  
ns  
ms  
200  
300  
FN8131.2  
June 30, 2008  
14  
X5323, X5325  
V
Set Conditions  
TRIP  
t
THD  
V
V
CC  
TRIP  
t
TSU  
t
RP  
t
t
VPH  
t
P
VPS  
CS  
t
t
t
VPO  
VPH  
VPS  
V
P
SCK  
SI  
V
t
P
VPO  
V
Reset Conditions  
TRIP  
V
*
CC  
t
RP  
t
t
VP1  
t
P
VPS  
CS  
t
t
t
VPS  
VPO  
VPH  
V
CC  
V
SCK  
SI  
t
P
VPO  
*V > PROGRAMMED V  
CC  
TRIP  
V
Programming Specifications VCC = 1.7 to 5.5V; Temperature = 0°C to +70°C.  
TRIP  
PARAMETER  
DESCRIPTION  
MIN  
1
MAX  
UNIT  
µs  
tVPS  
tVPH  
tP  
SCK VTRIP Program Voltage Set-up Time  
SCK VTRIP Program Voltage Hold Time  
VTRIP Program Pulse Width  
1
µs  
1
µs  
tTSU  
tTHD  
VTRIP Level Set-up Time  
10  
10  
µs  
VTRIP Level Hold (Stable) Time  
ms  
FN8131.2  
June 30, 2008  
15  
X5323, X5325  
V
Programming Specifications VCC = 1.7 to 5.5V; Temperature = 0°C to +70°C. (Continued)  
TRIP  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
ms  
ms  
ms  
V
tWC  
tRP  
tVPO  
VP  
VTRAN  
Vta1  
VTRIP Write Cycle Time  
10  
VTRIP Program Cycle Recovery Period (Between Successive Programming Cycles)  
SCK VTRIP Program Voltage Off-Time Before Next Cycle  
10  
0
Programming Voltage  
15  
18  
5.0  
VTRIP Programed Voltage Range  
1.7  
-0.1  
-25  
-25  
-25  
V
Initial VTRIP Program Voltage Accuracy (VCC Applied-VTRIP) (Programmed at +25°C)  
Subsequent VTRIP Program Voltage Accuracy [(VCC Applied-Vta1)-VTRIP] (Programmed at +25°C)  
VTRIP Program Voltage Repeatability (Successive Program Operations; Programmed at +25°C)  
VTRIP Program Variation After Programming (0°C to +75°C; Programmed at +25°C)  
+0.4  
+25  
+25  
+25  
V
Vta2  
mV  
mV  
mV  
Vtr  
Vtv  
NOTE:  
6. VTRIP programming parameters are periodically sampled and are not 100% tested.  
Typical Performance Curves  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
18  
WATCHDOG TIMER ON (V = 5V)  
CC  
16  
14  
12  
10  
8
-40°C  
WATCHDOG TIMER ON (V = 5V)  
+25°C  
CC  
+90°C  
6
4
2
WATCHDOG TIMER OFF (V = 3V, 5V)  
CC  
0
-40  
25  
90  
1.7  
2.4  
3.1  
3.8  
4.5  
5.2  
TEMPERATURE (°C)  
VOLTAGE (V)  
FIGURE 10. V SUPPLY CURRENT vs TEMPERATURE (I  
)
FIGURE 11. T vs VOLTAGE/TEMPERATURE (WD1, 0 = 1, 1)  
WDO  
CC  
SB  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
5.025  
5.000  
V
= 5V  
TRIP  
-40°C  
4.975  
3.525  
3.500  
3.475  
2.525  
2.500  
2.475  
+25°C  
+90°C  
V
= 3.5V  
= 2.5V  
TRIP  
V
TRIP  
0.45  
1.7  
0
25  
85  
2.4  
3.1  
VOLTAGE (V)  
vs VOLTAGE/TEMPERATURE (WD1, 0 = 1, 0)  
WDO  
3.8  
4.5  
5.2  
TEMPERATURE (°C)  
FIGURE 12. V  
vs TEMPERATURE (PROGRAMMED AT +25°C)  
FIGURE 13. T  
TRIP  
FN8131.2  
June 30, 2008  
16  
X5323, X5325  
Typical Performance Curves  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
-40°C  
+25°C  
+90°C  
-40  
25  
90  
1.7  
2.4  
3.1  
3.8  
4.5  
5.2  
VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 14. T  
vs TEMPERATURE  
FIGURE 15. T  
vs VOLTAGE/TEMPERATURE (WD1, 0 0 = 0, 1)  
WDO  
PURST  
FN8131.2  
June 30, 2008  
17  
X5323, X5325  
Plastic Dual-In-Line Packages (PDIP)  
E
N
1
D
PIN #1  
INDEX  
A2  
A
E1  
SEATING  
PLANE  
L
c
A1  
NOTE 5  
2
N/2  
eA  
eB  
e
b
b2  
MDP0031  
PLASTIC DUAL-IN-LINE PACKAGE  
INCHES  
SYMBOL  
PDIP8  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.375  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
8
PDIP14  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.750  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
14  
PDIP16  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.750  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
16  
PDIP18  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.890  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
18  
PDIP20  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
1.020  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
MIN  
±0.005  
±0.002  
b2  
c
+0.010/-0.015  
+0.004/-0.002  
±0.010  
D
1
2
E
+0.015/-0.010  
±0.005  
E1  
e
Basic  
eA  
eB  
L
Basic  
±0.025  
±0.010  
N
Reference  
Rev. C 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.010” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions E and eA are measured with the leads constrained perpendicular to the seating plane.  
4. Dimension eB is measured with the lead tips unconstrained.  
5. 8 and 16 lead packages have half end-leads as shown.  
FN8131.2  
June 30, 2008  
18  
X5323, X5325  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
(SOL-20)  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN8131.2  
June 30, 2008  
19  
X5323, X5325  
Thin Shrink Small Outline Plastic Packages (TSSOP)  
M14.173  
N
14 LEAD THIN SHRINK SMALL OUTLINE PLASTIC  
PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
E
E1  
-B-  
INCHES  
MIN  
MILLIMETERS  
GAUGE  
PLANE  
SYMBOL  
MAX  
0.047  
0.006  
0.041  
0.0118  
0.0079  
0.199  
0.177  
MIN  
-
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
5.05  
4.50  
NOTES  
A
A1  
A2  
b
-
-
1
2
3
0.002  
0.031  
0.0075  
0.0035  
0.195  
0.169  
0.05  
0.80  
0.19  
0.09  
4.95  
4.30  
-
L
0.25  
0.010  
-
0.05(0.002)  
SEATING PLANE  
A
9
-A-  
D
c
-
D
3
-C-  
α
E1  
e
4
A2  
e
A1  
0.026 BSC  
0.65 BSC  
-
c
b
0.10(0.004)  
E
0.246  
0.256  
6.25  
0.45  
6.50  
0.75  
-
0.10(0.004) M  
C
A M B S  
L
0.0177  
0.0295  
6
N
14  
14  
7
NOTES:  
0o  
8o  
0o  
8o  
-
α
1. These package dimensions are within allowable dimensions of  
JEDEC MO-153-AC, Issue E.  
Rev. 2 4/06  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.15mm (0.006 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable dambar  
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimen-  
sion at maximum material condition. Minimum space between protru-  
sion and adjacent lead is 0.07mm (0.0027 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact. (Angles in degrees)  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8131.2  
June 30, 2008  
20  

相关型号:

X5325V14

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325V14-1.8

SPI Serial EEPROM with Supervisory Features
ETC

X5325V14-2.7

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325V14-2.7A

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325V14-2.7A

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO14, PLASTIC, TSSOP-14
RENESAS

X5325V14-2.7A

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO14, PLASTIC, TSSOP-14
XICOR

X5325V14-2.7A-T1

IC,SERIAL EEPROM,4KX8,CMOS,TSSOP,14PIN,PLASTIC
RENESAS

X5325V14-4.5A

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325V14I

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325V14I

X5325V14I
RENESAS

X5325V14I-2.7

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5325V14I-2.7

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO14, PLASTIC, TSSOP-14
RENESAS