W83977AF-A [WINBOND]

WINBOND I/O; WINBOND I / O
W83977AF-A
型号: W83977AF-A
厂家: WINBOND    WINBOND
描述:

WINBOND I/O
WINBOND I / O

文件: 总182页 (文件大小:1188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WINBOND I/O  
W83977F-A/W83977G-A  
&
W83977AF-A/W83977AG-A  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
W83977F/ AF Data Sheet Revision History  
PAGES  
DATES  
VERSION VERSION  
ON WEB  
MAIN CONTENTS  
1
2
n.a.  
01/20/97  
01/27/97  
0.50  
First publication  
2,3,6,8,9,10,  
0.51  
0.52  
Spec. Correction; typo correction  
122,126,128-  
132,134,138,168  
3
117-125,127  
01/30/97  
Register Correction; pages  
rearranging.  
4
5
6
7
8
9,10,120-122  
127,135,136,169  
VIII,IX,166-169  
P118  
02/13/97  
03/03/97  
05/24/97  
7/15/97  
0.53  
0.54  
0.55  
0.56  
0.57  
Spec. Correction; typo correction  
Spec. Correction; typo correction  
Add section 15.0; pages rearranging.  
CR24: Pin 22ÆPin1  
53,54,58,61,62,  
63,65,124,125  
11/17/97  
Register Correction  
9
1,3,11,52,91,105, 03/10/98  
109,110,111,113,  
114,115,119,124,  
130,131,148  
0.58  
0.6  
Typo correction and data calibrated  
Add lead-free package version  
10 n.a.  
05/02/06  
Publication Release Date: May 2006  
Revision 0.60  
-I -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Table of Contents-  
1. GENERAL DESCRIPTION ................................................................................................................ 1  
2. FEATURES........................................................................................................................................ 2  
3. PIN CONFIGURATION...................................................................................................................... 5  
4. PIN DESCRIPTION ........................................................................................................................... 6  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Host Interface.......................................................................................................................... 6  
Advanced Power Management............................................................................................... 8  
Serial Port Interface ................................................................................................................ 9  
Infrared Interface................................................................................................................... 10  
Multi-Mode Parallel Port........................................................................................................ 11  
FDC Interface........................................................................................................................ 15  
KBC Interface........................................................................................................................ 16  
RTC Interface........................................................................................................................ 16  
POWER PINS ....................................................................................................................... 16  
5. FDC FUNCTIONAL DESCRIPTION................................................................................................ 17  
5.1 W83977F/G and W83977AF/AG FDC.................................................................................. 17  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
AT interface............................................................................................................................17  
FIFO (Data) ............................................................................................................................17  
Data Separator .......................................................................................................................18  
Write Precompensation ..........................................................................................................18  
Perpendicular Recording Mode ..............................................................................................18  
FDC Core ...............................................................................................................................19  
FDC Commands.....................................................................................................................19  
5.2  
Register Descriptions............................................................................................................ 27  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
5.2.9  
Status Register A (SA Register) (Read base address + 0).....................................................28  
Status Register B (SB Register) (Read base address + 1).....................................................30  
Digital Output Register (DO Register) (Write base address + 2) ............................................31  
Tape Drive Register (TD Register) (Read base address + 3).................................................31  
Main Status Register (MS Register) (Read base address + 4)...............................................33  
Data Rate Register (DR Register) (Write base address + 4)..................................................33  
FIFO Register (R/W base address + 5)..................................................................................34  
Digital Input Register (DI Register) (Read base address + 7).................................................36  
Configuration Control Register (CC Register) (Write base address + 7) ................................38  
6. UART PORT .................................................................................................................................... 39  
6.1  
6.2  
Universal Asynchronous Receiver/Transmitter (UART A, UART B) .................................... 39  
Register Address................................................................................................................... 39  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
UART Control Register (UCR) (Read/Write) ..........................................................................39  
UART Status Register (USR) (Read/Write)............................................................................41  
Handshake Control Register (HCR) (Read/Write) ..................................................................42  
Handshake Status Register (HSR) (Read/Write)....................................................................43  
UART FIFO Control Register (UFR) (Write only)....................................................................44  
-II  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
6.2.6  
6.2.7  
6.2.8  
6.2.9  
Interrupt Status Register (ISR) (Read only)............................................................................45  
Interrupt Control Register (ICR) (Read/Write).........................................................................46  
Programmable Baud Generator (BLL/BHL) (Read/Write).......................................................46  
User-defined Register (UDR) (Read/Write) ............................................................................47  
7. INFRARED (IR) PORT..................................................................................................................... 48  
7.1  
7.2  
IR Register Description......................................................................................................... 48  
Set0-Legacy/Advanced IR Control and Status Registers..................................................... 49  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.2.8  
Set0.Reg0 - Receiver/Transmitter Buffer Registers (RBR/TBR) (Read/Write) .......................49  
Set0.Reg1 - Interrupt Control Register (ICR)..........................................................................50  
Set0.Reg2 - Interrupt Status Register/IR FIFO Control Register (ISR/UFR) ..........................51  
Set0.Reg3 - IR Control Register/Set Select Register (UCR/SSR):.........................................55  
Set0.Reg4 - Handshake Control Register (HCR) ...................................................................55  
Set0.Reg5 - IR Status Register (USR) ...................................................................................57  
Set0.Reg6 - Reserved............................................................................................................57  
Set0.Reg7 - User Defined Register (UDR/AUDR)..................................................................57  
7.3  
7.4  
Set1 - Legacy Baud Rate Divisor Register ........................................................................... 59  
7.3.1  
7.3.2  
Set1.Reg0~1 - Baud Rate Divisor Latch (BLL/BHL) ...............................................................59  
Set1.Reg 2~7 .........................................................................................................................59  
Set2 - Interrupt Status or IR FIFO Control Register (ISR/UFR)............................................ 59  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
Reg0, 1 - Advanced Baud Rate Divisor Latch (ABLL/ABHL)..................................................60  
Reg2 - Advanced IR Control Register 1 (ADCR1)..................................................................60  
Reg3 - Sets Select Register (SSR).........................................................................................61  
Reg4 - Advanced IR Control Register 2 (ADCR2)..................................................................61  
Reg6 - Transmitter FIFO Depth (TXFDTH) (Read Only) ........................................................63  
Reg7 - Receiver FIFO Depth (RXFDTH) (Read Only)............................................................63  
7.5  
7.6  
Set3 - Version ID and Mapped Control Registers................................................................. 63  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
Reg0 - Advanced IR ID (AUID)...............................................................................................63  
Reg1 - Mapped IR Control Register (MP_UCR).....................................................................64  
Reg2 - Mapped IR FIFO Control Register (MP_UFR) ............................................................64  
Reg3 - Sets Select Register (SSR).........................................................................................64  
Set4 - TX/RX/Timer counter registers and IR control registers. ........................................... 64  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
Set4.Reg0, 1 - Timer Value Register (TMRL/TMRH) .............................................................64  
Set4.Reg2 - Infrared Mode Select (IR_MSL)..........................................................................65  
Set4.Reg3 - Set Select Register (SSR)..................................................................................65  
Set4.Reg4, 5 - Transmitter Frame Length (TFRLL/TFRLH) ...................................................65  
Set4.Reg6, 7 - Receiver Frame Length (RFRLL/RFRLH) ......................................................66  
7.7  
Set 5 - Flow control and IR control and Frame Status FIFO registers.................................. 66  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.7.5  
Set5.Reg0, 1 - Flow Control Baud Rate Divisor Latch Register (FCDLL/ FCDHL) .................66  
Set5.Reg2 - Flow Control Mode Operation (FC_MD) .............................................................67  
Set5.Reg3 - Sets Select Register (SSR) ................................................................................68  
Set5.Reg4 - Infrared Configure Register 1 (IRCFG1).............................................................68  
Set5.Reg5 - Frame Status FIFO Register (FS_FO) ...............................................................69  
Publication Release Date: May 2006  
-III -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.7.6  
Set5.Reg6, 7 - Receiver Frame Length FIFO (RFLFL/RFLFH) or Lost Frame Number  
(LST_NU).............................................................................................................................................69  
7.8  
7.9  
Set6 - IR Physical Layer Control Registers .......................................................................... 70  
7.8.1  
7.8.2  
7.8.3  
7.8.4  
7.8.5  
Set6.Reg0 - Infrared Configure Register 2 (IR_CFG2)...........................................................70  
Set6.Reg1 - MIR (1.152M/0.576M bps) Pulse Width..............................................................71  
Set6.Reg2 - SIR Pulse Width .................................................................................................72  
Set6.Reg3 - Set Select Register.............................................................................................72  
Set6.Reg4 - High Speed Infrared Beginning Flag Number (HIR_FNU) .................................72  
Set7 - Remote control and IR module selection registers .................................................... 73  
7.9.1  
7.9.2  
7.9.3  
7.9.4  
7.9.5  
7.9.6  
7.9.7  
7.9.8  
Set7.Reg0 - Remote Infrared Receiver Control (RIR_RXC)...................................................73  
Set7.Reg1 - Remote Infrared Transmitter Control (RIR_TXC) ...............................................75  
Set7.Reg2 - Remote Infrared Config Register (RIR_CFG).....................................................76  
Set7.Reg3 - Sets Select Register (SSR) ................................................................................77  
Set7.Reg4 - Infrared Module (Front End) Select 1 (IRM_SL1) ...............................................77  
Set7.Reg5 - Infrared Module (Front End) Select 2 (IRM_SL2) ...............................................78  
Set7.Reg6 - Infrared Module (Front End) Select 3 (IRM_SL3) ...............................................78  
Set7.Reg7 - Infrared Module Control Register (IRM_CR).......................................................79  
8. PARALLEL PORT............................................................................................................................ 81  
8.1  
8.2  
Printer Interface Logic........................................................................................................... 81  
Enhanced Parallel Port (EPP)............................................................................................... 82  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
8.2.8  
Data Swapper.........................................................................................................................82  
Printer Status Buffer ...............................................................................................................83  
Printer Control Latch and Printer Control Swapper.................................................................84  
EPP Address Port...................................................................................................................84  
EPP Data Port 0-3..................................................................................................................85  
Bit Map of Parallel Port and EPP Registers............................................................................85  
EPP Pin Descriptions .............................................................................................................86  
EPP Operation .......................................................................................................................86  
8.3  
Extended Capabilities Parallel (ECP) Port............................................................................ 87  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.3.6  
8.3.7  
8.3.8  
8.3.9  
ECP Register and Mode Definitions .......................................................................................87  
Data and ecpAFifo Port ..........................................................................................................88  
Device Status Register (DSR) ................................................................................................88  
Device Control Register (DCR)...............................................................................................89  
cFifo (Parallel Port Data FIFO) Mode = 010 ...........................................................................89  
ecpDFifo (ECP Data FIFO) Mode = 011.................................................................................90  
tFifo (Test FIFO Mode) Mode = 110.......................................................................................90  
cnfgA (Configuration Register A) Mode = 111........................................................................90  
cnfgB (Configuration Register B) Mode = 111........................................................................90  
8.3.10 ecr (Extended Control Register) Mode = all............................................................................91  
8.3.11 Bit Map of ECP Port Registers ...............................................................................................92  
8.3.12 ECP Pin Descriptions .............................................................................................................93  
8.3.13 ECP Operation .......................................................................................................................93  
8.3.14 FIFO Operation ......................................................................................................................94  
8.3.15 DMA Transfers .......................................................................................................................94  
8.3.16 Programmed I/O (NON-DMA) Mode.......................................................................................94  
-IV  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.4  
8.5  
Extension FDD Mode (EXTFDD).......................................................................................... 95  
Extension 2FDD Mode (EXT2FDD)...................................................................................... 95  
9. REAL-TIME CLOCK (RTC) AND "ON-NOW" CONTROL............................................................... 96  
9.1  
9.2  
9.3  
REGISTER ADDRESS MAP................................................................................................. 96  
Update Cycle......................................................................................................................... 98  
REGISTERS ......................................................................................................................... 99  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
Register 0Ah...........................................................................................................................99  
Register 0Bh (Read/Write) ...................................................................................................100  
Register 0Ch (Read only) .....................................................................................................101  
Register D (Read only).........................................................................................................102  
9.4  
9.5  
9.6  
9.7  
"On-Now" Control................................................................................................................ 102  
Power-On Events................................................................................................................ 102  
Power-Off Events................................................................................................................ 102  
Registers............................................................................................................................. 103  
9.7.1  
9.7.2  
9.7.3  
9.7.4  
On-Now”” Register 1 (Bank2 Register 49h)..........................................................................103  
On-Now_ Register 2 (Bank2 Register 4Ah)..........................................................................104  
"On-Now" Register 3 (Bank2 Register 4Bh) .........................................................................105  
"On-Now" Register 4 (Bank2 Register 4Ch) .........................................................................106  
10.KEYBOARD CONTROLLER ......................................................................................................... 107  
10.1 Output Buffer....................................................................................................................... 108  
10.2 Input Buffer.......................................................................................................................... 108  
10.3 Status Register.................................................................................................................... 108  
10.4 Commands.......................................................................................................................... 109  
10.5 HARDWARE GATEA20/KEYBOARD RESET CONTROL LOGIC..................................... 110  
10.5.1 KB Control Register (Logic Device 5, CR-F0).......................................................................110  
10.5.2 Port 92 Control Register (Default Value = 0x24) ..................................................................111  
11.GENERAL PURPOSE I/O ............................................................................................................. 112  
11.1 Basic I/O functions .............................................................................................................. 113  
11.2 Alternate I/O Functions ....................................................................................................... 115  
11.2.1 Interrupt Steering..................................................................................................................115  
11.2.2 Watch Dog Timer Output......................................................................................................115  
11.2.3 Power LED ...........................................................................................................................116  
11.2.4 General Purpose Address Decoder......................................................................................116  
11.2.5 General Purpose Write Strobe..............................................................................................116  
12.PLUG AND PLAY CONFIGURATION........................................................................................... 117  
12.1 Comply PnP ........................................................................................................................ 117  
12.1.1 Wait for Key State.................................................................................................................117  
12.1.2 Sleep State...........................................................................................................................118  
12.1.3 Isolation State.......................................................................................................................118  
12.1.4 Configure State.....................................................................................................................118  
12.2 Compatible PnP .................................................................................................................. 118  
Publication Release Date: May 2006  
-V -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
12.2.1 Extended Function Registers................................................................................................118  
12.2.2 Extended Functions Enable Registers (EFERs)...................................................................119  
12.2.3 Extended Function Index Registers (EFIRs), Extended Function Data Registers (EFDRs) .119  
13.CONFIGURATION REGISTER ..................................................................................................... 120  
13.1 Chip (Global) Control Register............................................................................................ 120  
13.2 Logical Device 0 (FDC)....................................................................................................... 125  
13.3 Logical Device 1 (Parallel Port)........................................................................................... 128  
13.4 Logical Device 2 (UART A)¢).............................................................................................. 130  
13.5 Logical Device 3 (UART B)................................................................................................. 131  
13.6 Logical Device 4 (Real Time Clock).................................................................................... 132  
13.7 Logical Device 5 (KBC)....................................................................................................... 133  
13.8 Logical Device 6 (IR)........................................................................................................... 134  
13.9 Logical Device 7 (Auxiliary I/O Part I) ................................................................................. 136  
13.10 Logical Device 8 (Auxiliary I/O Part II) ................................................................................ 139  
14.SPECIFICATIONS......................................................................................................................... 144  
14.1 Absolute Maximum Ratings ................................................................................................ 144  
14.2 DC CHARACTERISTICS.................................................................................................... 144  
14.3 AC Characteristics .............................................................................................................. 148  
14.3.1 FDC: Data rate = 1 MB, 500 KB, 300 KB, 250 KB/sec. ........................................................148  
14.3.2 UART/Parallel Port ...............................................................................................................150  
14.3.3 Parallel Port Mode Parameters.............................................................................................150  
14.3.4 EPP Data or Address Read Cycle Timing Parameters.........................................................151  
14.3.5 EPP Data or Address Write Cycle Timing Parameters.........................................................152  
14.3.6 Parallel Port FIFO Timing Parameters..................................................................................153  
14.3.7 ECP Parallel Port Forward Timing Parameters ....................................................................153  
14.3.8 ECP Parallel Port Reverse Timing Parameters ....................................................................153  
14.3.9 KBC Timing Parameters.......................................................................................................154  
14.3.10 GPIO, ACPI, ROM Interface Timing Parameters..................................................................155  
15.TIMING WAVEFORMS.................................................................................................................. 156  
15.1 FDC..................................................................................................................................... 156  
15.2 UART/Parallel ..................................................................................................................... 157  
15.2.1 Modem Control Timing .........................................................................................................158  
15.3 Parallel Port......................................................................................................................... 159  
15.3.1 Parallel Port Timing ..............................................................................................................159  
15.3.2 EPP Data or Address Read Cycle (EPP Version 1.9) ..........................................................160  
15.3.3 EPP Data or Address Write Cycle (EPP Version 1.9)...........................................................161  
15.3.4 EPP Data or Address Read Cycle (EPP Version 1.7) ..........................................................162  
15.3.5 EPP Data or Address Write Cycle (EPP Version 1.7)...........................................................163  
15.3.6 Parallel Port FIFO Timing.....................................................................................................163  
15.3.7 ECP Parallel Port Forward Timing........................................................................................164  
15.3.8 ECP Parallel Port Reverse Timing........................................................................................164  
15.4 KBC..................................................................................................................................... 165  
-VI  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.4.1 Write Cycle Timing ...............................................................................................................165  
15.4.2 Read Cycle Timing ...............................................................................................................165  
15.4.3 Send Data to K/B..................................................................................................................165  
15.4.4 Receive Data from K/B.........................................................................................................166  
15.4.5 Input Clock ...........................................................................................................................166  
15.4.6 Send Data to Mouse.............................................................................................................166  
15.4.7 Receive Data from Mouse....................................................................................................166  
15.5 GPIO Write Timing Diagram ............................................................................................... 167  
15.6 Master Reset (MR) Timing.................................................................................................. 167  
15.7 ACPI.................................................................................................................................... 167  
15.7.1 PANSW Trigger and PSCTRL Timing ..........................................................................167  
15.7.2 RIA, RIB , KLCK, MCLK, PWAKIN1, PWAKIN2 Trigger and PSCTRL Timing.............168  
15.7.3 PHRI Trigger and PSCTRL Timing ...............................................................................168  
16.APPLICATION CIRCUITS ............................................................................................................. 169  
16.1 Parallel Port Extension FDD ............................................................................................... 169  
16.2 Parallel Port Extension 2FDD ............................................................................................. 170  
16.3 Four FDD Mode .................................................................................................................. 170  
17.ORDERING INFORMATION ......................................................................................................... 171  
18.HOW TO READ THE TOP MARKING........................................................................................... 172  
19.PACKAGE DIMENSIONS.............................................................................................................. 173  
Publication Release Date: May 2006  
-VII -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
1. GENERAL DESCRIPTION  
This data sheet covers two products: W83977F/G, and W83977AF/AG whose pin assignment, and  
most of the functions are the same. W83977AF/AG is an advanced version of W83977F/G featuring  
the FIR function.  
W83977F/G, W83977AF/AG are evolving products from Winbond’s most popular I/O chip W83877F --  
- which integrates the disk drive adapter, serial port (UART), IrDA 1.0 SIR, parallel port, configurable  
plug-and-play registers in one chip --- plus additional powerful features: ACPI, 8042 keyboard  
controller with PS/2 mouse support, Real Time Clock, 14 general purpose I/O ports, full 16-bit address  
decoding, TV remote IR (Consumer IR, supporting NEC, RC-5, extended RC-5, and RECS-80  
protocols). In addition, W83977AF/AG provides the functions of IrDA 1.1 (MIR for 1.152M bps or FIR  
for 4M bps).  
The disk drive adapter functions of W83977F/G, W83977AF/AG include a floppy disk drive controller  
compatible with the industry standard 82077/ 765, data separator, write pre-compensation circuit,  
decode logic, data rate selection, clock generator, drive interface control logic, and interrupt/ DMA  
logic. The wide range of functions integrated onto the W83977F/G, W83977AF/AG greatly reduces the  
number of components required for interfacing with floppy disk drives. The W83977F/G,  
W83977AF/AG supports up to four 360K, 720K, 1.2M, 1.44M, or 2.88M disk drives and data transfer  
rates of 250 Kb/s, 300 Kb/s, 500 Kb/s,1 Mb/s, and 2 Mb/s.  
The W83977F/G, W83977AF/AG provide two high-speed serial communication ports (UARTs), one of  
which supports serial Infrared communication. Each UART includes a 16-byte send/receive FIFO, a  
programmable baud rate generator, complete modem control capability, and a processor interrupt  
system. Both UARTs provide legacy speed with baud rate 115.2k and provide advanced speed with  
baud rate 230k, 460k, and 921k bps which support higher speed modems. W83977AF/AG alone  
provides independent 3rd UART (32-byte FIFO) dedicated for IR function.  
The W83977F/G, W83977AF/AG supports one PC-compatible printer port (SPP), Bi-directional Printer  
port (BPP) and also Enhanced Parallel Port (EPP) and Extended Capabilities Port (ECP). Through  
the printer port interface pins, also available are: Extension FDD Mode and Extension 2FDD Mode  
allowing one or two external floppy disk drives to be connected.  
The configuration registers support mode selection, function enable/disable, and power down function  
selection. Furthermore, the configurable PnP features are compatible with the plug-and-play feature  
demand of Windows 95TM, which makes system resource allocation more efficient than ever.  
W83977F/G, W83977AF/AG provides functions that comply with ACPI (Advanced Configuration and  
Power Interface), which includes support of legacy and ACPI power management through SMI or SCI  
function pins. W83977F/G, W83977AF/AG also has auto power management to reduce power  
consumption.  
The keyboard controller is based on 8042 compatible instruction set with a 2K Byte programmable  
ROM and a 256-Byte RAM bank. Keyboard BIOS firmware is available with optional AMIKEYTM -2,  
Phoenix MultiKey/42TM, or customer code.  
The W83977F/G, W83977AF/AG provides a set of flexible I/O control functions to the system designer  
through a set of General Purpose I/O ports. These GPIO ports may serve as simple I/O or may be  
individually configured to provide a pre-defined alternate function.  
W83977F/G, W83977AF/AG is made to fully comply with MicrosoftTM PC97 Hardware Design  
Guide. IRQs, DMAs, and I/O space resource are flexible to adjust to meet ISA PnP requirement. Full  
16-bit address decoding is also provided. Moreover W83977F/G, W83977AF/AG is made to meet the  
specification of PC97‘s requirement in the power management: ACPI and DPM (Device Power  
Management).  
Publication Release Date: May 2006  
-1 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
2. FEATURES  
General  
y
y
y
y
y
y
y
Plug & Play 1.0A Compliant  
Support 13 IRQs, 4 DMA channels, full 16-bit addresses decoding  
Capable of ISA Bus IRQ Sharing  
Compliant with Microsoft PC97 Hardware Design Guide  
Support DPM (Device Power Management), ACPI  
Programmable configuration settings  
24 or 14.318 Mhz clock input  
FDC  
y
y
y
y
y
y
y
y
y
Compatible with IBM PC AT disk drive systems  
Variable write pre-compensation with track selectable capability  
Support vertical recording format  
DMA enable logic  
16-byte data FIFOs  
Support floppy disk drives and tape drives  
Detects all overrun and underrun conditions  
Built-in address mark detection circuit to simplify the read electronics  
FDD anti-virus functions with software write protect and FDD write enable signal (write data  
signal was forced to be inactive)  
y
y
y
y
Support up to four 3.5-inch or 5.25-inch floppy disk drives  
Completely compatible with industry standard 82077  
360K/720K/1.2M/1.44M/2.88M format; 250K, 300K, 500K, 1M, 2M bps data transfer rate  
Support 3-mode FDD, and its Win95 driver  
UART  
y
y
y
y
Two high-speed 16550 compatible UARTs with 16-byte send/receive FIFOs  
3rd UART with 32-byte send/receive FIFO is supported for IR function [W83977AF/AG only]  
MIDI compatible  
Fully programmable serial-interface characteristics:  
--- 5, 6, 7 or 8-bit characters  
--- Even, odd or no parity bit generation/detection  
--- 1, 1.5 or 2 stop bits generation  
y
Internal diagnostic capabilities:  
--- Loop-back controls for communications link fault isolation  
--- Break, parity, overrun, framing error simulation  
Programmable baud generator allows division of 1.8461 Mhz and 24 Mhz by 1 to (216-1)  
Maximum baud rate up to 921k bps for 14.769 Mhz and 1.5M bps for 24 Mhz  
y
y
-2  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Infrared  
y
y
y
Support IrDA version 1.0 SIR protocol with maximum baud rate up to 115.2K bps  
Support SHARP ASK-IR protocol with maximum baud rate up to 57,600 bps  
Support IrDA version 1.1 MIR (1.152M bps) and FIR (4M bps) protocol [W83977AF/AG only]  
--- Single DMA channel for transmitter or receiver  
--- 3rd UART with 32-byte FIFO is supported in both TX/RX transmission [W83977AF/AG only]  
--- 8-byte status FIFO is supported to store received frame status (such as overrun CRC error,  
etc.)  
y
Support auto-config SIR and FIR [W83977AF/AG only]  
Parallel Port  
y
y
y
y
y
Compatible with IBM parallel port  
Support PS/2 compatible bi-directional parallel port  
Support Enhanced Parallel Port (EPP) Compatible with IEEE 1284 specification  
Support Extended Capabilities Port (ECP) Compatible with IEEE 1284 specification  
Extension FDD mode supports disk drive B; and Extension 2FDD mode supports disk drives A  
and B through parallel port  
y
Enhanced printer port back-drive current protection  
Advanced Power Management (APM) Controlling  
y
y
Power turned on when RTC reaches a preset date and time  
Power turned on when a ring pulse or pulse train is detected on the PHRI, or when a high to low  
transition on PWAKIN1, or PWAKIN2 input signals  
y
y
y
Power turned on when PANSW input signal indicates a switch on event  
Power turned off when PANSW input signal indicates a switch off event  
Power turned off when a fail-safe event occurs (power-save mode detected but system is hung  
up)  
y
Power turned off when software issues a power off command  
Keyboard Controller  
y
y
y
y
y
y
y
y
y
y
8042 based with optional F/W from AMIKKEYTM-2, Phoenix MultiKey/42TM or customer code  
with 2K bytes of programmable ROM, and 256 bytes of RAM  
Asynchronous Access to Two Data Registers and One status Register  
Software compatibility with the 8042 and PC87911 microcontrollers  
Support PS/2 mouse  
Support port 92  
Support both interrupt and polling modes  
Fast Gate A20 and Hardware Keyboard Reset  
8 Bit Timer/ Counter; support binary and BCD arithmetic  
6, 8, 12, or 16 Mhz operating frequency (16 Mhz available only if input clock rate = 14.318 Mhz)  
Publication Release Date: May 2006  
-3 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Real Time Clock  
y
27 bytes of clock, On-Now, and control/status register (14 bytes in Bank 0 and 13 bytes in Bank  
2); 242 bytes of general purpose RAM  
y
y
y
y
y
y
y
BCD or Binary representation of time, calendar, and alarm registers  
Counts seconds, minutes, hours, days of week, days of month, month, year, and century  
12-hour/ 24-hour clock with AM/PM in 12-hour mode  
Daylight saving time option; automatic leap-year adjustment  
Dedicated alarm (Alarm B) for On-Now function  
Programmable delay-time between panel switch off and power supply control  
Software control power-off; various and maskable events to activate system Power-On  
y
System Management Interrupt ( SMI) for panel switch power-off event  
General Purpose I/O Ports  
y
y
14 programmable general purpose I/O ports; 6 dedicate, 8 optional  
General purpose I/O ports can serve as simple I/O ports, interrupt steering inputs, watching dog  
timer output, power LED output, infrared I/O pins, general purpose address decoder, KBC control  
I/O pins.  
Package  
128-pin PQFP  
y
-4  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
3. PIN CONFIGURATION  
/
/
P
S
C
T
P
A
N
S
/
P
S
H
M R  
L
W
,
I
G
P
2
I
I
I I  
,
,
,
R R R I  
I I I I I I I  
G
G
G
P
2
K /  
M
C
L
/
Q Q Q R R R R R R R R  
1 1 1 Q Q Q Q Q Q Q Q  
2 1 0 1 3 4 5 6 7 8 9  
A V A A A  
A
V
S
B
A
P P  
V
R
C
R
I
1
S 1 1 1  
1 A A A A A A A A A  
A
1 C  
S 4 3 2 1 C 0 9 8 7 6 5 4 3 2 1  
2
2
2
L I  
K B  
5
3
0
0
1
K
A
6
6
1 1  
0 0 0 9 8  
2 1  
1
9
9
7
9
9
9
8 8  
9 8  
8
8 8  
8 8  
8 7 7  
7 7  
7 6  
7
5
7 7  
7
7 6  
6
6
5
9
9
6
9
9 9  
8
8
7
1
6 5  
4 3  
0 9  
6
5 4 3 2  
0
7
4
3 2 1 0 9 8  
2 1  
8 7  
0
64  
103  
104  
IRQ14/GP14  
IRQ15/GP15  
VBAT  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
XTAL1  
VSS  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
IOR  
IOW  
AEN  
XTAL2  
MDATA  
KDATA  
IOCHRDY  
KBLOCK/GP13  
KBRST/GP12  
GA20/GP11  
VCC  
D0  
D1  
D2  
D3  
DCDB  
SOUTB  
SINB  
D4  
D5  
VCC  
D6  
DTRB/ENCPNP  
RTSB/PENPLL  
D7  
MR  
DSRB  
CTSB  
DCDA  
DACK0/GP16  
VSS  
DRQ0/GP17  
DACK1  
SOUTA/PENKRC  
SINA  
123  
124  
125  
126  
127  
DRQ1  
DTRA/PNPCSV  
RTSA/HEFRAS  
DSRA  
DACK2  
DRQ2  
DACK3  
DRQ3  
TC  
CTSA  
CIRRX/GP24  
IRRXH/IRSL0  
128  
2
0
2
3
1 1 1 1 1 1  
2 2 2 2 2 2  
2 3 3 3  
3
3
3
1 1 1 1  
2
3
8
3
7
4
/
7
3
1 2 3  
5 6  
9
4
8 9  
3
6 7 8 9  
2
8
1
5
6 7  
1 2  
4 5  
0 1  
5
4
6
0
2 3  
P
S
P
D
0
D
R
V
D
E
N
/
/
P
D
1
/
I
R
I
D
R
V
D
/
/
/
/
V
C
C
/
P P  
P
P P  
/
/ /  
/
/
/
V
C
L
K
I
/
/
/
W
/
/
B
P
E
L
M
O
B
I
D
C 7 6  
K
S I  
R
T
X
W
S D  
M
O
A
A D  
D D D D  
E A  
S
W
D
S
A
S
D H R  
T
D
S
B
U
S
Y
N
D
E
X
L
E
T I  
C
T
4
3 2  
N R F T R  
D
S 5  
S E P R  
D
E
I
I
K
R
R D B X  
A
A
K
0
A
T
A
N E  
N
P
N T  
C
H
G
D
1
0
,
G
P
1
0
Publication Release Date: May 2006  
Revision 0.60  
-5 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
4. PIN DESCRIPTION  
Note: Please refer to Section 11.2 DC CHARACTERISTICS for details.  
I/O6t - TTL level bi-directional pin with 6 mA source-sink capability  
I/O8t - TTL level bi-directional pin with 8 mA source-sink capability  
I/O8 - CMOS level bi-directional pin with 8 mA source-sink capability  
I/O12t - TTL level bi-directional pin with 12 mA source-sink capability  
I/O12 - CMOS level bi-directional pin with 12 mA source-sink capability  
I/O16u - CMOS level bi-directional pin with 16 mA source-sink capability with internal pull-up resistor  
I/OD16u - CMOS level bi-directional pin open drain output with 16 mA sink capability with internal pull-  
up resistor  
I/O24t - TTL level bi-directional pin with 24 mA source-sink capability  
OUT8t - TTL level output pin with 8 mA source-sink capability  
OUT12t - TTL level output pin with 12 mA source-sink capability  
OD12 - Open-drain output pin with 12 mA sink capability  
OD24 - Open-drain output pin with 24 mA sink capability  
INt - TTL level input pin  
INc - CMOS level input pin  
INcu - CMOS level input pin with internal pull-up resitor  
INcs - CMOS level Schmitt-triggered input pin  
INts - TTL level Schmitt-triggered input pin  
INtsu - TTL level Schmitt-triggered input pin with internal pull-up resistor  
4.1 Host Interface  
SYMBOL  
A0A10  
PIN  
I/O  
FUNCTION  
System address bus bits 0-10  
74-84  
IN  
t
A11-A14  
A15  
86-89  
91  
IN  
IN  
System address bus bits 11-14  
System address bus bit 15  
System data bus bits 0-5  
System data bus bits 6-7  
CPU I/O read signal  
t
t
109-114  
116-117  
105  
I/O  
I/O  
D0D5  
D6D7  
12t  
12t  
IN  
ts  
IN  
ts  
IOR  
106  
CPU I/O write signal  
IOW  
AEN  
107  
108  
IN  
t
System address bus enable  
IOCHRDY  
OD  
In EPP Mode, this pin is the IO Channel Ready output to extend the  
host read/write cycle.  
24  
MR  
118  
IN  
ts  
Master Reset. Active high. MR is low during normal operations.  
-6  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Host Interface, continued.  
SYMBOL  
PIN  
I/O  
FUNCTION  
119  
IN  
ts  
CR2C bit5, 4= 00 (default): DMA Channel 0 Acknowledge signal.  
DACK0  
CR2C bit5, 4= 01: General purpose I/O port 1 bit 6. It can be  
configured as a watchdog timer output.  
I/O  
GP16 (WDTO)  
12t  
P15  
CR2C bit5, 4= 10: Keyboard P15 I/O port.  
I/O  
12t  
RTSC  
CR2C bit5, 4= 11: RTS output of UART C. [W83977AF only]  
OUT  
OUT  
12t  
12t  
DRQ0  
121  
122  
CR2C bit7, 6= 00 (default): DMA Channel 0 request signal.  
GP17  
(PLEDO)  
CR2C bit7, 6= 01: General purpose I/O port 1, bit 7. It can be  
configured as power LED output.  
I/O  
12t  
P14  
CR2C bit7, 6= 10: Keyboard P14 I/O port.  
I/O  
12t  
DTRC  
CR2C bit7, 6= 11: DTR output of UART C. [W83977AF only]  
DMA Channel 1 Acknowledge signal  
OUT  
12t  
12t  
12t  
12t  
IN  
ts  
DACK1  
DRQ1  
123  
124  
OUT  
IN  
DMA Channel 1 request signal  
DMA Channel 2 Acknowledge signal  
ts  
DACK2  
DRQ2  
125  
126  
OUT  
IN  
DMA Channel 2 request signal  
DMA Channel 3 Acknowledge signal  
ts  
DACK3  
DRQ3  
127  
128  
OUT  
IN  
DMA Channel 3 request signal  
TC  
Terminal Count. When active, this pin indicates termination of a DMA  
transfer.  
ts  
IRQ1  
99  
98  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Interrupt request 1  
12t  
12t  
12t  
12t  
12t  
12t  
12t  
12t  
12t  
12t  
12t  
IRQ3  
Interrupt request 3  
IRQ4  
97  
Interrupt request 4  
IRQ5  
96  
Interrupt request 5  
IRQ6  
95  
Interrupt request 6  
IRQ7  
94  
Interrupt request 7  
IRQ8/ nIRQ8  
IRQ9  
93  
Interrupt request 8; default is nIRQ8 for RTC  
Interrupt request 9  
92  
IRQ10  
IRQ11  
IRQ12  
100  
101  
102  
Interrupt request 10  
Interrupt request 11  
Interrupt request 12  
Publication Release Date: May 2006  
-7 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Host Interface, continued.  
SYMBOL  
IRQ14  
PIN  
I/O  
FUNCTION  
103  
OUT  
CR2C bit1, 0= 00 (default): Interrupt request 14  
12t  
GP14  
CR2C bit1, 0= 01: General purpose I/O port 1, bit 4. It can be configured  
as a general purpose address decode output.  
I/O  
12t  
( GPACS)  
PLED  
CR2C bit1, 0= 10: Power LED output.  
OUT  
OUT  
OUT  
12t  
12t  
12t  
CR2C bit1, 0= 11: IR module select signal 1. [W83977AF only]  
IRSL1  
IRQ15  
GP15  
104  
CR2C bit3, 2= 00 (default): Interrupt request 15  
CR2C bit3, 2= 01: General purpose I/O port 1, bit 5. It can be configured  
as a general purpose address write enable output.  
I/O  
12t  
( GPAWE)  
WDT  
CR2C bit3, 2= 10: Watch-Dog timer output.  
OUT  
OUT  
IN  
12t  
12t  
t
CR2C bit3, 2= 11: IR module select signal 2. [W83977AF only]  
IRSL2  
CLKIN  
1
14.318/ 24 Mhz clock input, selectable through bit 5 of CR24.  
4.2 Advanced Power Management  
SYMBOL  
PHRI  
PIN  
I/O  
IN  
FUNCTION  
69  
CR2B bit2, 1=00 (default): Advanced Power Management (APM) phone  
ring indicator. Detection of an active PHRI pulse or pulse train activates  
t
the PSCTL signal.  
CR2B bit2, 1=01: General purpose I/O port 2, bit 0. It can be configured  
as keyboard reset (Keyboard P20).  
GP20  
(KBRST)  
I/O  
12t  
POFIRQ  
70  
OUT  
CR2B bit4, 3=00 (default): Advanced Power Management (APM) power  
off interrupt request.  
12t  
GP21 (P13)  
CR2B bit4, 3=01: General purpose I/O port 2, bit 1. It can be configured  
as Keyboard P13 I/O port.  
I/O  
I/O  
12t  
12t  
P16  
RIC  
CR2B bit4, 3=10: Keyboard P16 I/O port.  
CR2B bit4, 3=11: RI input of UART C. [W83977AF only]  
IN  
t
VSB  
71  
72  
-
Advanced Power Management (APM) standby current source  
OUT  
CR2B bit5=0 (default): On/Off control for Advanced Power Management  
(APM). This signal tells the main power supply whether power should be  
turned on.  
12t  
PSCTL  
CR2B bit5=1: General purpose I/O port 2, bit 2. It can be configured as  
Keyboard P14 I/O port.  
GP22 (P14)  
PANSW  
I/O  
12t  
73  
IN  
CR2B bit7, 6=00 (default): On/Off switch for Advanced Power  
Management (APM). This signal indicates a request to switch the power  
on or off. When the VDD of the chip is disrupted, a high to low transition  
on this pin indicates a switch on request. When VDD returns, a high to  
low transition on this pin indicates a switch off request.  
t
-8  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Advanced Power Management, continued.  
SYMBOL  
PIN  
I/O  
I/O  
FUNCTION  
CR2B bit7, 6=01: General purpose I/O port 2, bit 3. It can be configured  
as Keyboard P15 I/O port.  
GP23 (P15)  
12t  
DCDC  
IN  
t
CR2B bit7, 6=11: DCD input of UART C. [W83977AF only]  
4.3 Serial Port Interface  
SYMBOL  
CTSA  
PIN  
41  
I/O  
FUNCTION  
IN  
t
Clear To Send is the modem control input.  
48  
The function of these pins can be tested by reading Bit 4 of the  
handshake status register.  
CTSB  
42  
49  
IN  
t
Data Set Ready. An active low signal indicates the modem or data set is  
ready to establish a communication link and transfer data to the UART.  
DSRA  
DSRB  
43  
50  
44  
I/O  
UART A Request To Send. An active low signal informs the modem or  
data set that the controller is ready to send data.  
8t  
8t  
8t  
RTSA  
During power-on reset, this pin is pulled down internally and is defined  
as HEFRAS, which provides the power-on value for CR26 bit 6  
(HEFRAS). A 4.7 kΩ is recommended if intends to pull up. (select 370H  
as configuration I/O port address)  
HEFRAS  
I/O  
I/O  
UART B Request To Send. An active low signal informs the modem or  
data set that the controller is ready to send data.  
RTSB  
During power-on reset, this pin is pulled down internally and is defined  
nPENPLL  
as n , which provides the power-on value for CR24 bit 5 (ENPLL)  
PENPLL  
and bit 6. A 4.7 kΩ is recommended if intends to pull up. (PLL is  
disabled)  
UART A Data Terminal Ready. An active low signal informs the modem  
or data set that the controller is ready to communicate.  
DTRA  
During power-on reset, this pin is pulled down internally and is defined  
as PNPCSV , which provides the power-on value for CR24 bit 0  
PNPCSV  
(PNPCSV ). A 4.7 kΩ is recommended if intends to pull up. (clear the  
default value of FDC, UARTs, and PTR)  
51  
I/O  
UART B Data Terminal Ready. An active low signal informs the modem  
or data set that controller is ready to communicate.  
8t  
DTRB  
During power-on reset, this pin is pulled down internally and is defined  
as ENCPNP, which provides the power-on value for CR24 bit 1  
ENCPNP  
(ENPNP). A 4.7 kΩ is recommended if intends to pull up. (enable  
comply PnP mode)  
45, 52  
IN  
t
SINA  
SINB  
Serial Input. Used to receive serial data through the communication link.  
Publication Release Date: May 2006  
-9 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Serial Port Interface, continued.  
SYMBOL  
SOUTA  
PIN  
I/O  
I/O  
FUNCTION  
46  
UART A Serial Output. Used to transmit serial data out to the  
communication link.  
8t  
During power-on reset, this pin is pulled down internally and is  
defined as PENKRC, which provides the power-on value for  
CR24 bit 2 (ENKBRTC). A 4.7 kΩ is recommended if intends to  
pull up. (enable KBC and RTC)  
PENKRC  
SOUTB  
53  
I/O8t  
INt  
UART B Serial Output. Used to transmit serial data out to the  
communication link.  
47  
54  
65  
66  
Data Carrier Detect. An active low signal indicates the modem or  
data set has detected a data carrier.  
DCDA  
DCDB  
INt  
Ring Indicator. An active low signal indicates that a ring signal is  
being received from the modem or data set.  
RIA  
RIB  
4.4 Infrared Interface  
SYMBOL  
PIN  
I/O  
IN  
FUNCTION  
IRRX (SINC)  
37  
Infrared Receiver input. It functions as SIN input if UART C is  
configured as a simple serial port. [W83977AF only]  
cs  
IRTX  
(SOUTC)  
38  
39  
OUT  
Infrared Transmitter Output. It functions as SOUT output if UART C is  
configured as a simple serial port. [W83977AF only]  
12t  
12t  
IRRXH  
I/O  
CR2A bit3, 2=00 (default): High speed IR receiving terminal.  
CR2A bit3, 2=01: IR module select 0.  
12t  
IRSL0  
OUT  
I/O  
GP25 (GA20)  
CR2A bit3, 2=10: General purpose I/O port 2, bit 5. It can be configured  
as GATE A20 (Keyboard P21).  
12t  
CTSC  
CR2A bit3, 2=11: CTS input of UART C. [W83977AF only]  
IN  
t
CIRRX  
40  
IN  
t
CR2A bit5, 4=00 (default): Consumer IR receiving terminal.  
GP24 (P16)  
CR2A bit5, 4=01: General purpose I/O port 2, bit 4. It can be configured  
as Keyboard P16 I/O port.  
I/O  
12t  
CR2A bit5, 4=10: Keyboard P13 I/O  
P13  
I/O  
12t  
-10  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
4.5 Multi-Mode Parallel Port  
The following pins have alternate functions, which are controlled by CR28 and L3-CRF0.  
SYMBOL  
SLCT  
PIN  
I/O  
FUNCTION  
18  
IN  
t
PRINTER MODE: SLCT  
An active high input on this pin indicates that the printer is selected. This  
pin is pulled high internally. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
OD  
OD  
12  
EXTENSION FDD MODE: WE2  
This pin is for Extension FDD B; its function is the same as the  
of FDC.  
pin  
WE  
12  
EXTENSION 2FDD MODE: WE2  
This pin is for Extension FDD A and B; its function is the same as the  
WE pin of FDC.  
PE  
19  
IN  
t
PRINTER MODE: PE  
An active high input on this pin indicates that the printer has detected the  
end of the paper. This pin is pulled high internally. Refer to description  
of the parallel port for definition of this pin in ECP and EPP mode.  
OD  
OD  
12  
EXTENSION FDD MODE: WD2  
This pin is for Extension FDD B; its function is the same as the WD pin  
of FDC.  
12  
EXTENSION 2FDD MODE: WD2  
This pin is for Extension FDD A and B; its function is the same as the  
WD pin of FDC.  
BUSY  
21  
IN  
t
PRINTER MODE: BUSY  
An active high input indicates that the printer is not ready to receive data.  
This pin is pulled high internally. Refer to description of the parallel port  
for definition of this pin in ECP and EPP mode.  
OD  
OD  
12  
EXTENSION FDD MODE: MOB2  
This pin is for Extension FDD B; the function of this pin is the same as  
the MOB pin of FDC.  
12  
EXTENSION 2FDD MODE: MOB2  
This pin is for Extension FDD A and B; the function of this pin is the  
same as the MOB pin of FDC.  
Publication Release Date: May 2006  
-11 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Multi-Mode Parallel Port, continued.  
SYMBOL  
ACK  
PIN  
I/O  
FUNCTION  
22  
IN  
t
PRINTER MODE: ACK  
An active low input on this pin indicates that the printer has received  
data and is ready to accept more data. This pin is pulled high internally.  
Refer to description of the parallel port for definition of this pin in ECP  
and EPP mode.  
OD  
OD  
12  
EXTENSION FDD MODE: DSB2  
This pin is for the Extension FDD B; its functions is the same as the  
DSB pin of FDC.  
12  
EXTENSION 2FDD MODE: DSB2  
This pin is for Extension FDD A and B; it functions is the same as the  
DSB pin of FDC.  
34  
IN  
t
PRINTER MODE: ERR  
ERR  
An active low input on this pin indicates that the printer has encountered  
an error condition. This pin is pulled high internally. Refer to description  
of the parallel port for definition of this pin in ECP and EPP mode.  
OD  
OD  
OD  
12  
12  
12  
EXTENSION FDD MODE: HEAD2  
This pin is for Extension FDD B; its function is the same as the  
HEADpin of FDC.  
EXTENSION 2FDD MODE: HEAD2  
This pin is for Extension FDD A and B; its function is the same as the  
HEAD pin of FDC.  
32  
SLIN  
PRINTER MODE: SLIN  
Output line for detection of printer selection. This pin is pulled high  
internally. Refer to description of the parallel port for definition of this pin  
in ECP and EPP mode.  
OD  
OD  
OD  
12  
12  
12  
EXTENSION FDD MODE: STEP2  
This pin is for Extension FDD B; its function is the same as the STEP  
pin of FDC.  
EXTENSION 2FDD MODE: STEP2  
This pin is for Extension FDD A and B; its function is the same as the  
STEP pin of FDC.  
33  
PRINTER MODE: INIT  
INIT  
Output line for the printer initialization. This pin is pulled high internally.  
Refer to description of the parallel port for definition of this pin in ECP  
and EPP mode.  
EXTENSION FDD MODE: DIR2  
OD  
OD  
12  
This pin is for Extension FDD B; its function is the same as the DIR pin  
of FDC.  
EXTENSION 2FDD MODE: DIR2  
12  
This pin is for Extension FDD A and B; its function is the same as the  
DIR pin of FDC.  
-12  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Multi-Mode Parallel Port, continued.  
SYMBOL  
AFD  
PIN  
I/O  
FUNCTION  
35  
OD  
12  
PRINTER MODE: AFD  
An active low output from this pin causes the printer to auto feed a line  
after a line is printed. This pin is pulled high internally. Refer to  
description of the parallel port for definition of this pin in ECP and EPP  
mode.  
EXTENSION FDD MODE: DRVDEN0  
OD  
12  
This pin is for Extension FDD B; its function is the same as the  
DRVDEN0 pin of FDC.  
EXTENSION 2FDD MODE: DRVDEN0  
OD  
OD  
12  
This pin is for Extension FDD A and B; its function is the same as the  
DRVDEN0 pin of FDC.  
36  
31  
12  
STB  
PD0  
PRINTER MODE: STB  
An active low output is used to latch the parallel data into the printer. This  
pin is pulled high internally. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: This pin is a tri-state output.  
-
-
I/O  
PRINTER MODE: PD0  
24t  
Parallel port data bus bit 0. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: INDEX2  
This pin is for Extension FDD B; the function of this pin is the same as the  
IN  
t
INDEX pin of FDC. It is pulled high internally.  
EXTENSION 2FDD MODE: INDEX2  
IN  
t
This pin is for Extension FDD A and B; the function of this pin is the same  
as the INDEX pin of FDC. It is pulled high internally.  
PRINTER MODE: PD1  
PD1  
30  
I/O  
24t  
Parallel port data bus bit 1. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode. .  
IN  
t
EXTENSION FDD MODE: TRAK02  
This pin is for Extension FDD B; the function of this pin is the same as the  
TRAK0 pin of FDC. It is pulled high internally..  
IN  
t
EXTENSION. 2FDD MODE: TRAK02  
This pin is for Extension FDD A and B; the function of this pin is the same  
as the TRAK0 pin of FDC. It is pulled high internally.  
PRINTER MODE: PD2  
PD2  
29  
I/O  
24t  
Parallel port data bus bit 2. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode..  
IN  
t
EXTENSION FDD MODE: WP2  
This pin is for Extension FDD B; the function of this pin is the same as the  
pin of FDC. It is pulled high internally.  
WP  
IN  
t
EXTENSION. 2FDD MODE: WP2  
This pin is for Extension FDD A and B; the function of this pin is the same  
as the WP pin of FDC. It is pulled high internally.  
Publication Release Date: May 2006  
-13 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Multi-Mode Parallel Port, continued.  
SYMBOL  
PD3  
PIN  
I/O  
I/O  
FUNCTION  
28  
PRINTER MODE: PD3  
24t  
Parallel port data bus bit 3. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
IN  
t
t
EXTENSION FDD MODE: RDATA2  
This pin is for Extension FDD B; the function of this pin is the same as the  
RDATA pin of FDC. It is pulled high internally.  
IN  
EXTENSION 2FDD MODE: RDATA2  
This pin is for Extension FDD A and B; this function of this pin is the same  
as the RDATA pin of FDC. It is pulled high internally.  
PRINTER MODE: PD4  
PD4  
27  
I/O  
24t  
Parallel port data bus bit 4. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: DSKCHG2  
This pin is for Extension FDD B; the function of this pin is the same as the  
IN  
t
DSKCHG pin of FDC. It is pulled high internally.  
EXTENSION 2FDD MODE: DSKCHG2  
IN  
t
This pin is for Extension FDD A and B; this function of this pin is the same  
as the  
pin of FDC. It is pulled high internally.  
DSKCHG  
PD5  
PD6  
26  
24  
I/O  
PRINTER MODE: PD5  
24t  
Parallel port data bus bit 5. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: This pin is a tri-state output.  
-
-
I/O  
PRINTER MODE: PD6  
24t  
Parallel port data bus bit 6. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION. 2FDD MODE: MOA2  
OD  
24  
This pin is for Extension FDD A; its function is the same as the MOA pin  
of FDC.  
PD7  
23  
I/O  
PRINTER MODE: PD7  
24t  
Parallel port data bus bit 7. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: This pin is a tri-state output.  
-
EXTENSION 2FDD MODE: DSA2  
OD  
24  
This pin is for Extension FDD A; its function is the same as the DSA pin  
of FDC.  
-14  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
4.6 FDC Interface  
SYMBOL  
PIN  
I/O  
FUNCTION  
DRVDEN0  
2
OD  
Drive Density Select bit 0.  
Drive Density Select bit 1.  
24  
24  
DRVDEN1  
3
OD  
GP10  
(IRQIN1)  
Alternate Function 1: General purpose I/O port 1, bit 0. It can be configured  
as an interrupt channel.  
P12  
Alternate Function 2: Keyboard P12 I/O port.  
DSRC  
HEAD  
Alternate Function 3: DSR input of UART C [W83977AF only]  
5
OD  
Head select. This open drain output determines which disk drive head is  
active.  
24  
Logic 1 = side 0; Logic 0 = side 1  
Write enable. An open drain output.  
9
OD  
OD  
24  
WE  
WD  
10  
Write data. This logic low open drain writes precompensation serial data to  
the selected FDD. An open drain output.  
24  
11  
12  
OD  
Step output pulses. This active low open drain output produces a pulse to  
move the head to another track.  
24  
24  
STEP  
DIR  
OD  
Direction of the head step motor. An open drain output.  
Logic 1 = outward motion; Logic 0 = inward motion  
13  
14  
15  
16  
4
OD  
OD  
OD  
OD  
Motor B On. When set to 0, this pin enables disk drive 1. This is an open  
drain output.  
24  
24  
24  
24  
cs  
MOB  
Drive Select A. When set to 0, this pin enables disk drive A. This is an open  
drain output.  
DSA  
Drive Select B. When set to 0, this pin enables disk drive B. This is an open  
drain output.  
DSB  
Motor A On. When set to 0, this pin enables disk drive 0. This is an open  
drain output.  
MOA  
IN  
Diskette change. This signal is active low at power on and when the diskette  
is removed. This input pin is pulled up internally by a 1 Kresistor, which can  
can be disabled by bit 7 of L0-CRF0 (FIPURDWN).  
DSKCHG  
6
7
IN  
IN  
The read data input signal from the FDD. This input pin is pulled up internally  
by a 1 Kresistor, which can be disabled by bit 7 of L0-CRF0 (FIPURDWN).  
cs  
RDATA  
WP  
Write protected. This active low Schmitt input from the disk drive indicates  
that the diskette is write-protected. This input pin is pulled up internally by a 1  
Kresistor, which can be disabled by bit 7 of L0-CRF0 (FIPURDWN).  
cs  
8
IN  
Track 0. This Schmitt-triggered input from the disk drive is active low when  
the head is positioned over the outermost track. This input pin is pulled up  
internally by a 1 Kresistor, which can be disabled by bit 7 of L0-CRF0  
(FIPURDWN).  
cs  
cs  
TRAK0  
INDEX  
17  
IN  
This Schmitt-triggered input from the disk drive is active low when the head is  
positioned over the beginning of a track marked by an index hole. This input  
pin is pulled up internally by a 1 Kresistor, which can be disabled by bit 7 of  
L0-CRF0 (FIPURDWN).  
Publication Release Date: May 2006  
-15 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
4.7 KBC Interface  
SYMBOL  
KDATA  
PIN  
59  
I/O  
I/OD  
FUNCTION  
Keyboard Data  
PS2 Mouse Data  
Keyboard Clock  
PS2 Mouse Clock  
16u  
16u  
16u  
16u  
12t  
MDATA  
KCLK  
MCLK  
GA20  
60  
67  
68  
56  
I/OD  
I/OD  
I/OD  
OUT  
CR2A bit6= 0 (default): Keyboard GATE A20 (P21) Output.  
GP11  
(IRQIN2)  
CR2A bit6= 1: General purpose I/O port 1, bit 1. It can be  
configured as an interrupt channel.  
I/O  
12t  
KBRST  
57  
58  
OUT  
CR2A bit7= 0 (default): Keyboard Reset (P20) Output.  
12t  
GP12  
(WDTO,  
IRRX)  
CR2A bit7= 1: General purpose I/O port 1, bit 2. It can be  
configured as watchdog timer output or IRRX (SINC if UART C is  
used as a simple serial port [W83977AF only] ) input.  
I/O  
12t  
KBLOCK  
IN  
CR2B bit0= 0 (default): Keyboard KINH (P17) Input.  
16tu  
GP13  
(PLEDO,  
IRTX)  
CR2B bit0= 1: General purpose I/O port 1, bit 3. It can be  
configured as watchdog timer output or IRTX (SOUTC if UART C  
is used as a simple serial port [W83977AF only] ) output.  
I/O  
16tu  
4.8 RTC Interface  
SYMBOL  
VBAT  
PIN  
64  
I/O  
FUNCTION  
RTC battery voltage input  
XTAL1  
XTAL2  
63  
IN  
RTC 32.768Khz Clock Input  
C
61  
O
8t  
RTC 32.768Khz Clock Output  
4.9 POWER PINS  
VCC  
20,55,  
85,115  
25,62,  
90,120  
+5V power supply for the digital circuitry  
Ground  
GND  
-16  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
5. FDC FUNCTIONAL DESCRIPTION  
5.1 W83977F/G and W83977AF/AG FDC  
The floppy disk controller of the W83977F/G, W83977AF/AG integrates all of the logic required for  
floppy disk control. The FDC implements a PC/AT or PS/2 solution. All programmable options default  
to compatible values. The FIFO provides better system performance in multi-master systems. The  
digital data separator supports up to 2 M bits/sec data rate.  
The FDC includes the following blocks: AT interface, Precompensation, Data Rate Selection, Digital  
Data Separator, FIFO, and FDC Core.  
5.1.1  
AT interface  
The interface consists of the standard asynchronous signals: RD , WR, A0-A3, IRQ, DMA control,  
and a data bus. The address lines select between the configuration registers, the FIFO and  
control/status registers. This interface can be switched between PC/AT, Model 30, or PS/2 normal  
modes. The PS/2 register sets are a superset of the registers found in a PC/AT.  
5.1.2  
FIFO (Data)  
The FIFO is 16 bytes in size and has programmable threshold values. All command parameter  
information and disk data transfers go through the FIFO. Data transfers are governed by the RQM and  
DIO bits in the Main Status Register.  
The FIFO defaults to disabled mode after any form of reset. This maintains PC/AT hardware  
compatibility. The default values can be changed through the CONFIGURE command. The advantage  
of the FIFO is that it allows the system a larger DMA latency without causing disk errors. The following  
tables give several examples of the delays with a FIFO. The data are based upon the following  
formula:  
THRESHOLD # × (1/DATA/RATE) *8 - 1.5 μS = DELAY  
FIFO THRESHOLD  
MAXIMUM DELAY TO SERVICING AT 500K BPS  
Data Rate  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
1 × 16 μS - 1.5 μS = 14.5 μS  
2 × 16 μS - 1.5 μS = 30.5 μS  
8 × 16 μS - 1.5 μS = 6.5 μS  
15 × 16 μS - 1.5 μS = 238.5 μS  
FIFO THRESHOLD  
MAXIMUM DELAY TO SERVICING AT 1M BPS  
Data Rate  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
1 × 8 μS - 1.5 μS = 6.5 μS  
2 × 8 μS - 1.5 μS = 14.5 μS  
8 × 8 μS - 1.5 μS = 62.5 μS  
15 × 8 μS - 1.5 μS = 118.5 μS  
Publication Release Date: May 2006  
Revision 0.60  
-17 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
At the start of a command the FIFO is always disabled and command parameters must be sent based  
upon the RQM and DIO bit settings in the main status register. When the FDC enters the command  
execution phase, it clears the FIFO of any data to ensure that invalid data are not transferred.  
An overrun and underrun will terminate the current command and the data transfer. Disk writes will  
complete the current sector by generating a 00 pattern and valid CRC. Reads require the host to  
remove the remaining data so that the result phase may be entered.  
DMA transfers are enabled with the SPECIFY command and are initiated by the FDC by activating the  
DRQ pin during a data transfer command. The FIFO is enabled directly by asserting DACK and  
addresses need not be valid.  
Note that if the DMA controller is programmed to function in verify mode a pseudo read is performed  
by the FDC based only on DACK . This mode is only available when the FDC has been configured  
into byte mode (FIFO disabled) and is programmed to do a read. With the FIFO enabled the above  
operation is performed by using the new VERIFY command. No DMA operation is needed.¡@  
5.1.3  
Data Separator  
The function of the data separator is to lock onto the incoming serial read data. When a lock is  
achieved the serial front end logic of the chip is provided with a clock which is synchronized to the  
read data. The synchronized clock, called the Data Window, is used to internally sample the serial  
data portion of the bit cell, and the alternate state samples the clock portion. Serial to parallel  
conversion logic separates the read data into clock and data bytes.  
The Digital Data Separator (DDS) has three parts: control logic, error adjustment, and speed tracking.  
The DDS circuit cycles once every 12 clock cycles ideally. Any data pulse input will be synchronized  
and then adjusted by immediate error adjustment. The control logic will generate RDD and RWD for  
every pulse input. During any cycle where no data pulse is present, the DDS cycles are based on  
speed. A digital integrator is used to keep track of the speed changes in the input data stream.  
5.1.4  
Write Precompensation  
The write precompensation logic is used to minimize bit shifts in the RDDATA stream from the disk  
drive. Shifting of bits is a known phenomenon in magnetic media and is dependent on the disk media  
and the floppy drive.  
The FDC monitors the bit stream that is being sent to the drive. The data patterns that require  
precompensation are well known. Depending upon the pattern, the bit is shifted either early or late  
relative to the surrounding bits.  
5.1.5  
Perpendicular Recording Mode  
The FDC is also capable of interfacing directly to perpendicular recording floppy drives. Perpendicular  
recording differs from the traditional longitudinal method in that the magnetic bits are oriented  
vertically. This scheme packs more data bits into the same area.  
FDCs with perpendicular recording drives can read standard 3.5" floppy disks and can read and write  
perpendicular media. Some manufacturers offer drives that can read and write standard and  
perpendicular media in a perpendicular media drive.  
A single command puts the FDC into perpendicular mode. All other commands operate as they  
normally do. The perpendicular mode requires a 1 Mbps data rate for the FDC. At this data rate the  
FIFO eases the host interface bottleneck due to the speed of data transfer to or from the disk.  
-18  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
5.1.6  
FDC Core  
The W83977F/G, W83977AF/AG FDC is capable of performing twenty commands. Each command is  
initiated by a multi-byte transfer from the microprocessor. The result can also be a multi-byte transfer  
back to the microprocessor. Each command consists of three phases: command, execution, and  
result.  
Command  
The microprocessor issues all required information to the controller to perform a specific operation.  
Execution  
The controller performs the specified operation.  
Result  
After the operation is completed, status information and other housekeeping information is provided to  
the microprocessor.  
5.1.7  
FDC Commands  
Command Symbol Descriptions:  
C:  
Cylinder number 0 - 256  
Data Pattern  
D:  
DIR:  
Step Direction  
DIR = 0, step out  
DIR = 1, step in  
Disk Drive Select 0  
Disk Drive Select 1  
Data Length  
DS0:  
DS1:  
DTL:  
EC:  
Enable Count  
EOT:  
EFIFO:  
EIS:  
End of Track  
Enable FIFO  
Enable Implied Seek  
End of track  
EOT:  
FIFOTHR: FIFO Threshold  
GAP:  
GPL:  
H:  
Gap length selection  
Gap Length  
Head number  
HDS:  
HLT:  
HUT:  
LOCK:  
MFM:  
MT:  
Head number select  
Head Load Time  
Head Unload Time  
Lock EFIFO, FIFOTHR, PTRTRK bits prevent affected by software reset  
MFM or FM Mode  
Multitrack  
N:  
The number of data bytes written in a sector  
New Cylinder Number  
NCN:  
Publication Release Date: May 2006  
Revision 0.60  
-19 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
ND:  
Non-DMA Mode  
Overwritten  
OW:  
PCN:  
Present Cylinder Number  
Polling Disable  
POLL:  
PRETRK: Precompensation Start Track Number  
R:  
Record  
RCN:  
R/W:  
SC:  
Relative Cylinder Number  
Read/Write  
Sector/per cylinder  
Skip deleted data address mark  
Step Rate Time  
SK:  
SRT:  
ST0:  
ST1:  
ST2:  
ST3:  
WG:  
Status Register 0  
Status Register 1  
Status Register 2  
Status Register 3  
Write gate alters timing of WE  
(1) Read Data  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
D7  
D6 D5 D4  
D3  
0
D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
0
0
1
1
0
Command codes  
0
0
0
0
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
R
R
R
Sector ID information after  
command execution  
-20  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
(2) Read Deleted Data  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
0
0
1
0
1
0
0
Command codes  
0
0
0
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: May 2006  
Revision 0.60  
-21 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
(3) Read A Track  
PHASE R/W  
Command  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
W
0
0
MFM  
0
0
0
0
0
0
0
0
1
0
Command codes  
W
W
W
W
W
W
W
W
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
Execution  
Result  
Data transfer between the  
FDD and system; FDD  
reads contents of all  
cylinders from index hole to  
EOT  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
(4) Read ID  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
MFM  
0
0
0
0
0
1
0
0
1
0
Command codes  
W
0
HDS DS1 DS0  
Execution  
Result  
The first correct ID  
information on the cylinder  
is stored in Data Register  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
Disk status after the  
command has been  
completed  
R
R
-22  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
(5) Verify  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
EC  
1
0
0
0
1
1
0
Command codes  
W
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL/SC -------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
Execution  
Result  
No data transfer takes  
place  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
(6) Version  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command code  
Command  
Result  
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
R
Enhanced controller  
Publication Release Date: May 2006  
Revision 0.60  
-23 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
(7) Write Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command codes  
Command  
MT MFM  
0
0
0
0
0
0
1
0
1
W
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior to  
Command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
Command execution  
Sector ID information after  
Command execution  
(8) Write Deleted Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM  
0
0
0
0
1
0
0
1
Command codes  
W
0
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior to  
command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
-24  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
(9) Format A Track  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
W
R
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command codes  
Command  
0
0
MFM  
0
0
0
0
0
1
0
1
0
1
HDS DS1 DS0  
---------------------- N ------------------------  
--------------------- SC -----------------------  
--------------------- GPL ---------------------  
---------------------- D ------------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
Bytes/Sector  
Sectors/Cylinder  
Gap 3  
Filler Byte  
Execution  
for Each  
Sector  
Input Sector Parameters  
Repeat:  
Result  
Status information after  
command execution  
R
R
R
R
R
R
(10) Recalibrate  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
0
0
0
0
0
0
0
0
0
1
1
1
Command codes  
0
0
DS1 DS0  
Execution  
Head retracted to Track 0  
Interrupt  
(11) Sense Interrupt Status  
PHASE  
Command  
Result  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
0
0
0
0
1
0
0
0
Command code  
R
---------------- ST0 -------------------------  
Status information at the end of  
each seek operation  
R
---------------- PCN -------------------------  
(12) Specify  
PHASE  
R/W  
W
D7  
D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
0
1
1
Command codes  
W
| ---------SRT ----------- | --------- HUT ---------- |  
|------------ HLT ----------------------------------| ND  
W
Publication Release Date: May 2006  
Revision 0.60  
-25 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
(13) Seek  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command codes  
Command  
0
0
0
0
0
0
0
0
1
0
1
1
1
W
HDS DS1 DS0  
W
-------------------- NCN -----------------------  
Execution  
R
Head positioned over proper  
cylinder on diskette  
(14) Configure  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
1
0
0
0
0
0
1
0
1
0
Configure information  
W
0
0
W
0
EIS EFIFO POLL | ------ FIFOTHR ----|  
W
| --------------------PRETRK ----------------------- |  
Execution  
Internal registers written  
(15) Relative Seek  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
1
DIR  
0
0
0
0
0
1
0
1
1
1
Command codes  
W
0
HDS DS1 DS0  
W
| -------------------- RCN ---------------------------- |  
(16) Dumpreg  
PHASE  
Command  
Result  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
W
R
R
R
R
R
R
R
R
R
R
0
0
0
0
1
1
1
0
Registers placed in FIFO  
----------------------- PCN-Drive 0--------------------  
----------------------- PCN-Drive 1 -------------------  
----------------------- PCN-Drive 2--------------------  
----------------------- PCN-Drive 3 -------------------  
--------SRT ------------------ | --------- HUT --------  
----------- HLT -----------------------------------| ND  
------------------------ SC/EOT ----------------------  
LOCK 0 D3 D2 D1 D0 GAP WG  
0 EIS EFIFO POLL | ------ FIFOTHR --------  
-----------------------PRETRK -------------------------  
-26  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
(17) Perpendicular Mode  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command Code  
Command  
0
0
0
1
0
0
1
0
W
OW  
0
D3  
D2 D1 D0 GAP WG  
(18) Lock  
PHASE  
Command  
Result  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command Code  
LOCK 0  
0
0
1
0
0
1
0
0
0
0
R
0
0
LOCK  
0
(19) Sense Drive Status  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command Code  
Command  
W
W
R
0
0
0
0
0
0
0
0
0
1
0
0
0
HDS DS1 DS0  
Result  
---------------- ST3 -------------------------  
Status information about disk  
drive  
(20) Invalid  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
------------- Invalid Codes -----------------  
Invalid codes (no operation-  
FDC goes to standby state)  
Result  
R
-------------------- ST0 ----------------------  
ST0 = 80H  
5.2 Register Descriptions  
There are several status, data, and control registers in W83977F/G, W83977AF/AG. These registers  
are defined below:  
ADDRESS  
OFFSET  
REGISTER  
READ  
WRITE  
base address + 0  
base address + 1  
base address + 2  
base address + 3  
base address + 4  
base address + 5  
base address + 7  
SA REGISTER  
SB REGISTER  
DO REGISTER  
TD REGISTER  
TD REGISTER  
MS REGISTER  
DR REGISTER  
DT (FIFO) REGISTER  
DI REGISTER  
DT (FIFO) REGISTER  
CC REGISTER  
Publication Release Date: May 2006  
Revision 0.60  
-27 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
5.2.1  
Status Register A (SA Register) (Read base address + 0)  
This register is used to monitor several disk interface pins in PS/2 and Model 30 modes. In PS/2  
mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DIR  
WP  
INDEX  
HEAD  
TRAK0  
STEP  
DRV2  
INIT PENDING  
INIT PENDING (Bit 7):  
This bit indicates the value of the floppy disk interrupt output.  
DRV2 (Bit 6):  
0
1
A second drive has been installed  
A second drive has not been installed  
STEP (Bit 5):  
This bit indicates the complement of STEP output.  
TRAK0 (Bit 4):  
This bit indicates the value of TRAK0 input.  
HEAD (Bit 3):  
This bit indicates the complement of HEAD output.  
0
1
side 0  
side 1  
INDEX (Bit 2):  
This bit indicates the value of INDEX output.  
WP  
(Bit 1):  
0disk is write-protected  
1disk is not write-protected  
DIR (Bit 0)  
This bit indicates the direction of head movement.  
0
1
outward direction  
inward direction  
-28  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DIR  
WP  
INDEX  
HEAD  
TRAK0  
STEP F/F  
DRQ  
INIT PENDING  
INIT PENDING (Bit 7):  
This bit indicates the value of the floppy disk interrupt output.  
DRQ (Bit 6):  
This bit indicates the value of DRQ output pin.  
STEP F/F (Bit 5):  
This bit indicates the complement of latched STEP output.  
TRAK0 (Bit 4):  
This bit indicates the complement of TRAK0 input.  
HEAD (Bit 3):  
This bit indicates the value of HEAD output.  
0
1
side 1  
side 0  
INDEX (Bit 2):  
This bit indicates the complement of INDEX output.  
WP (Bit 1):  
0
1
disk is not write-protected  
disk is write-protected  
DIR (Bit 0)  
This bit indicates the direction of head movement.  
0
1
inward direction  
outward direction  
Publication Release Date: May 2006  
Revision 0.60  
-29 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
5.2.2  
Status Register B (SB Register) (Read base address + 1)  
This register is used to monitor several disk interface pins in PS/2 and Model 30 modes. In PS/2  
mode, the bit definitions for this register are as follows:  
2
1
7
1
6
5
4
3
0
1
MOT EN A  
MOT EN B  
WE  
RDATA Toggle  
WDATA Toggle  
Drive SEL0  
Drive SEL0 (Bit 5):  
This bit indicates the status of DO REGISTER bit 0 (drive select bit 0).  
WDATA Toggle (Bit 4):  
This bit changes state at every rising edge of the WD output pin.  
RDATA Toggle (Bit 3):  
This bit changes state at every rising edge of the RDATA output pin.  
WE (Bit 2):  
This bit indicates the complement of the WE output pin.  
MOT EN B (Bit 1)  
This bit indicates the complement of the MOB output pin.  
MOT EN A (Bit 0)  
This bit indicates the complement of the MOA output pin.  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DSC  
DSD  
WE F/F  
RDATA F/F  
WD F/F  
DSA  
DSB  
DRV2  
DRV2 (Bit 7):  
0
1
A second drive has been installed  
A second drive has not been installed  
DSB (Bit 6):  
-30  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
This bit indicates the status of DSB output pin.  
DSA (Bit 5):  
This bit indicates the status of DSA output pin.  
WD F/F(Bit 4):  
This bit indicates the complement of the latched WD output pin at every rising edge of the WD output  
pin.  
RDATA F/F(Bit 3):  
This bit indicates the complement of the latched RDATA output pin .  
WE F/F (Bit 2):  
This bit indicates the complement of latched WE output pin.  
DSD (Bit 1):  
0
1
Drive D has been selected  
Drive D has not been selected  
DSC (Bit 0):  
0
1
Drive C has been selected  
Drive C has not been selected  
5.2.3  
Digital Output Register (DO Register) (Write base address + 2)  
The Digital Output Register is a write-only register controlling drive motors, drive selection, DRQ/IRQ  
enable, and FDC resetting. All the bits in this register are cleared by the MR pin. The bit definitions are  
as follows:  
7
6
3
1-0  
5
4
2
Drive Select: 00 select drive A  
01 select drive B  
10 select drive C  
11 select drive D  
Floppy Disk Controller Reset  
Active low resets FDC  
DMA and INT Enable  
Active high enable DRQ/IRQ  
Motor Enable A. Motor A on when active high  
Motor Enable B. Motor B on when active high  
Motor Enable C. Motor C on when active high  
Motor Enable D. Motor D on when active high  
5.2.4  
Tape Drive Register (TD Register) (Read base address + 3)  
This register is used to assign a particular drive number to the tape drive support mode of the data  
separator. This register also holds the media ID, drive type, and floppy boot drive information of the  
floppy disk drive. In normal floppy mode, this register includes only bit 0 and 1. The bit definitions are  
as follows:  
Publication Release Date: May 2006  
-31 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
2
1
7
6
5
4
3
0
X
X
X
X
X
X
Tape sel 0  
Tape sel 1  
If three mode FDD function is enabled (EN3MODE = 1 in Logical Device 0 CRF0 bit:0), the bit  
definitions are as follows:  
2
1
7
6
5
4
3
0
Tape Sel 0  
Tape Sel 1  
Floppy boot drive 0  
Floppy boot drive 1  
Drive type ID0  
Drive type ID1  
Media ID0  
Media ID1  
Media ID1 Media ID0 (Bit 7, 6):  
These two bits are read only. These two bits reflect the value of Logical Device 0 CRF1 bit 4,5.  
Drive type ID1 Drive type ID0 (Bit 5, 4):  
These two bits reflect two of the bits of Logical Device 0 CRF2. Which two bits are reflected depends  
on the last drive selected in the DO REGISTER.  
Floppy Boot drive 1, 0 (Bit 3, 2):  
These two bits reflect the value of Logical Device 0 CRF1 bit 7,6.  
Tape Sel 1, Tape Sel 0 (Bit 1, 0):  
These two bits assign a logical drive number to the tape drive. Drive 0 is not available as a tape drive  
and is reserved as the floppy disk boot drive.  
TAPE SEL 1  
TAPE SEL 0  
DRIVE SELECTED  
0
0
1
1
0
1
0
1
None  
1
2
3
-32  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
5.2.5  
Main Status Register (MS Register) (Read base address + 4)  
The Main Status Register is used to control the flow of data between the microprocessor and the  
controller. The bit definitions for this register are as follows:  
6
0
7
5
4
3
2
1
FDD 0 Busy, (D0B = 1), FDD number 0 is in the SEEK mode.  
FDD 1 Busy, (D1B = 1), FDD number 1 is in the SEEK mode.  
FDD 2 Busy, (D2B = 1), FDD number 2 is in the SEEK mode.  
FDD 3 Busy, (D3B = 1), FDD number 3 is in the SEEK mode.  
FDC Busy, (CB). A read or write command is in the process when CB = HIGH.  
Non-DMA mode, the FDC is in the non-DMA mode, this bit is set only during the  
execution phase in non-DMA mode.  
Transition to LOW state indicates execution phase has ended.  
DATA INPUT/OUTPUT, (DIO). If DIO= HIGH then transfer is from Data Register to the processor.  
If DIO = LOW then transfer is from processor to Data Register.  
Request for Master (RQM). A high on this bit indicates Data Register is ready to send or receive data to or from the processor.  
5.2.6  
Data Rate Register (DR Register) (Write base address + 4)  
The Data Rate Register is used to set the transfer rate and write precompensation. The data rate of  
the FDC is programmed by the CC REGISTER for PC-AT and PS/2 Model 30 and PS/2 mode, and  
not by the DR REGISTER. The real data rate is determined by the most recent write to either of the  
DR REGISTER or CC REGISTER.  
1
7
6
5
0
4
3
2
0
DRATE0  
DRATE1  
PRECOMP0  
PRECOMP1  
PRECOMP2  
POWER DOWN  
S/W RESET  
S/W RESET (Bit 7):  
This bit is the software reset bit.  
POWER-DOWN (Bit 6):  
0
1
FDC in normal mode  
FDC in power-down mode  
PRECOMP2 PRECOMP1 PRECOMP0 (Bit 4, 3, 2):  
These three bits select the value of write precompensation. The following tables show the  
precompensation values for the combination of these bits.  
Publication Release Date: May 2006  
-33 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
PRECOMP  
PRECOMPENSATION DELAY  
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
250K - 1 Mbps  
2 Mbps Tape drive  
Default Delays  
20.8 nS  
Default Delays  
41.67 nS  
83.34 nS  
41.17 nS  
125.00 nS  
62.5nS  
166.67 nS  
83.3 nS  
208.33 nS  
104.2 nS  
250.00 nS  
125.00 nS  
0.00 nS (disabled)  
0.00 nS (disabled)  
DATA RATE  
250 KB/S  
300 KB/S  
500 KB/S  
1 MB/S  
DEFAULT PRECOMPENSATION DELAYS  
125 nS  
125 nS  
125 nS  
41.67nS  
20.8 nS  
2 MB/S  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC and reduced write current control.  
00 500 KB/S (MFM), 250 KB/S (FM), RWC = 1  
01 300 KB/S (MFM), 150 KB/S (FM), RWC = 0  
10 250 KB/S (MFM), 125 KB/S (FM), RWC = 0  
11 1 MB/S (MFM), Illegal (FM), RWC = 1  
The 2 MB/S data rate for Tape drive is only supported by setting 01 to DRATE1 and DRATE0 bits, as  
well as setting 10 to DRT1 and DRT0 bits which are two of the Configure Register CRF4 or CRF5 bits  
in logic device 0. Please refer to the function description of CRF4 or CRF5 and data rate table for  
individual data rates setting.  
5.2.7  
FIFO Register (R/W base address + 5)  
The Data Register consists of four status registers in a stack with only one register presented to the  
data bus at a time. This register stores data, commands, and parameters and provides diskette-drive  
status information. Data bytes are passed through the data register to program or obtain results after  
a command. In the W83977F/ AF, this register defaults to FIFO disabled mode after reset. The FIFO  
can change its value and enable its operation through the CONFIGURE command.  
-34  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Status Register 0 (ST0)  
7-6  
5
3
2
1-0  
4
US1, US0 Drive Select:  
00 Drive A selected  
01 Drive B selected  
10 Drive C selected  
11 Drive D selected  
HD Head address:  
1 Head selected  
0 Head selected  
NR Not Ready:  
1 Drive is not ready  
0 Drive is ready  
EC Equipment Check:  
1 When a fault signal is received from the FDD or the track  
0 signal fails to occur after 77 step pulses  
0 No error  
SE Seek end:  
1 seek end  
0 seek error  
IC Interrupt Code:  
00 Normal termination of command  
01 Abnormal termination of command  
10 Invalid command issue  
11 Abnormal termination because the ready signal from FDD changed state during command executio  
Status Register 1 (ST1)  
7
6
5
4
3
2
1
0
Missing Address Mark. 1 When the FDC cannot detect the data address mark  
or the data address mark has been deleted.  
NW (Not Writable). 1 If a write Protect signal is detected from the diskette drive during  
execution of write data.  
ND (No DATA). 1 If specified sector cannot be found during execution of a read, write or verifly data.  
Not used. This bit is always 0.  
OR (Over Rum). 1 If the FDC is not serviced by the host system within a certain time interval during data transfer.  
DE (data Error).1 When the FDC detects a CRC error in either the ID field or the data field.  
Not used. This bit is always 0.  
EN (End of track). 1 When the FDC tries to access a sector beyond the final sector of a cylinder.  
Status Register 2 (ST2)  
7
1
0
4
3
2
6
5
MD (Missing Address Mark in Data Field).  
1 If the FDC cannot find a data address mark  
(or the address mark has been deleted)  
when reading data from the media  
0 No error  
BC (Bad Cylinder)  
1 Bad Cylinder  
0 No error  
SN (Scan Not satisfied)  
1 During execution of the Scan command  
0 No error  
SH (Scan Equal Hit)  
1 During execution of the Scan command, if the equal condition is satisfied  
0 No error  
WC (Wrong Cylinder)  
1 Indicates wrong Cylinder  
DD (Data error in the Data field)  
1 If the FDC detects a CRC error in the data field  
0 No error  
CM (Control Mark)  
1 During execution of the read data or scan command  
0 No error  
Not used. This bit is always 0  
Publication Release Date: May 2006  
-35 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Status Register 3 (ST3)  
6
4
2
1
0
7
5
3
US0 Unit Select 0  
US1 Unit Select 1  
HD Head Address  
TS Two-Side  
TO Track 0  
RY Ready  
WP Write Protected  
FT Fault  
5.2.8  
Digital Input Register (DI Register) (Read base address + 7)  
The Digital Input Register is an 8-bit read-only register used for diagnostic purposes. In a PC/XT or AT  
only Bit 7 is checked by the BIOS. When the register is read, Bit 7 shows the complement of  
DSKCHG , while other bits of the data bus remain in tri-state. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
x x x  
x x x  
x
Reserved for the hard disk controller  
x
During a read of this register, these bits are in tri-stat  
DSKCHG  
In the PS/2 mode, the bit definitions are as follows:  
7
6
1
5
4
3
1
2
0
1
1
1
HIGH DENS  
DRATE0  
DRATE1  
DSKCHG  
DSKCHG (Bit 7):  
This bit indicates the complement of the DSKCHG input.  
Bit 6-3: These bits are always a logic 1 during a read.  
DRATE1 DRATE0 (Bit 2, 1):  
These two bits select the data rate of the FDC. Refer to the DR register bits 1 and 0 for the settings  
corresponding to the individual data rates.  
HIGH DENS (Bit 0):  
0
1
500 KB/S or 1 MB/S data rate (high density FDD)  
250 KB/S or 300 KB/S data rate  
-36  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
7
6
0
5
0
4
3
2
0
1
0
DRATE0  
DRATE1  
NOPREC  
DMAEN  
DSKCHG  
DSKCHG (Bit 7):  
This bit indicates the status of DSKCHG input.  
Bit 6-4: These bits are always a logic 1 during a read.  
DMAEN (Bit 3):  
This bit indicates the value of DO REGISTER bit 3.  
NOPREC (Bit 2):  
This bit indicates the value of CC REGISTER NOPREC bit.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
Publication Release Date: May 2006  
Revision 0.60  
-37 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
5.2.9  
Configuration Control Register (CC Register) (Write base address + 7)  
This register is used to control the data rate. In the PC/AT and PS/2 mode, the bit definitions are as  
follows:  
4
2
3
1
6
5
0
7
x
x
x
x
x
x
DRATE0  
DRATE1  
X: Reserved  
Bit 7-2: Reserved. These bits should be set to 0.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
2
1
7
6
5
4
3
0
X
X
X
X
X
DRATE0  
DRATE1  
NOPREC  
X: Reserved  
Bit 7-3: Reserved. These bits should be set to 0.  
NOPREC (Bit 2):  
This bit indicates no precompensation. It has no function and can be set by software.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
-38  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
6. UART PORT  
6.1 Universal Asynchronous Receiver/Transmitter (UART A, UART B)  
The UARTs are used to convert parallel data into serial format on the transmit side and convert serial  
data to parallel format on the receiver side. The serial format, in order of transmission and reception,  
is a start bit, followed by five to eight data bits, a parity bit (if programmed) and one, one and half (five-  
bit format only) or two stop bits. The UARTs are capable of handling divisors of 1 to 65535 and  
producing a 16x clock for driving the internal transmitter logic. Provisions are also included to use this  
16x clock to drive the receiver logic. The UARTs also support the MIDI data rate. Furthermore, the  
UARTs also include complete modem control capability and a processor interrupt system that may be  
software trailed to the computing time required to handle the communication link. The UARTs have a  
FIFO mode to reduce the number of interrupts presented to the CPU. In each UART, there are 16-  
byte FIFOs for both receive and transmit mode.  
6.2 Register Address  
6.2.1  
UART Control Register (UCR) (Read/Write)  
The UART Control Register controls and defines the protocol for asynchronous data communications,  
including data length, stop bit, parity, and baud rate selection.  
5
4
2
7
6
3
0
1
Data length select bit 0 (DLS0)  
Data length select bit 1(DLS1)  
Multiple stop bits enable (MSBE)  
Parity bit enable (PBE)  
Even parity enable (EPE)  
Parity bit fixed enable (PBFE)  
Set silence enable (SSE)  
Baudrate divisor latch access bit (BDLAB)  
Bit 7: BDLAB. When this bit is set to a logical 1, designers can access the divisor (in 16-bit binary  
format) from the divisor latches of the baudrate generator during a read or write operation.  
When this bit is reset, the Receiver Buffer Register, the Transmitter Buffer Register, or the  
Interrupt Control Register can be accessed.  
Bit 6: SSE. A logical 1 forces the Serial Output (SOUT) to a silent state (a logical 0). Only IRTX is  
affected by this bit; the transmitter is not affected.  
Bit 5: PBFE. When PBE and PBFE of UCR are both set to a logical 1,  
(1) if EPE is logical 1, the parity bit is fixed as logical 0 to transmit and check.  
(2) if EPE is logical 0, the parity bit is fixed as logical 1 to transmit and check.  
Publication Release Date: May 2006  
-39 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
TABLE 6-1 UART Register Bit Map  
BIT NUMBER  
REGISTER  
0
1
2
3
4
5
6
7
ADDRESS BASE  
+ 0  
Receiver  
Buffer  
Register  
RBR RX Data RX Data RX Data RX Data RX Data RX Data RX Data RX Data  
BDLAB =  
0
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
(Read Only)  
+ 0  
Transmitter TBR TX Data TX Data  
Buffer  
Register  
TX Data  
Bit 2  
TX Data  
Bit 3  
TX Data TX Data TX Data  
TX Data  
Bit 7  
BDLAB =  
0
Bit 0  
Bit 1  
Bit 4  
Bit 5  
Bit 6  
(Write Only)  
+ 1  
Interrupt  
Control  
Register  
ICR RBR Data  
Ready  
TBR  
Empty  
Interrupt  
Enable  
USR  
HSR  
0
0
0
0
Interrupt Interrupt  
Enable  
BDLAB =  
0
Interrupt  
Enable  
Enable  
(EUSRI)  
(EHSRI)  
(ERDRI) (ETBREI)  
+ 2  
+ 2  
Interrupt  
Status  
Register  
ISR  
"0" if  
Interrupt  
Pending  
Interrupt  
Status  
Interrupt  
Status  
Interrupt  
Status  
0
0
FIFOs  
Enabled  
**  
FIFOs  
Enabled  
**  
Bit (0)  
Bit (1)  
Bit (2)**  
(Read Only)  
UART FIFO UFR  
Control  
Register  
FIFO  
Enable  
RCVR  
FIFO  
Reset  
XMIT  
FIFO  
Reset  
DMA  
Mode  
Select  
Reserved Reversed  
RX  
Interrupt  
Active  
Level  
RX  
Interrupt  
Active  
Level  
(Write Only)  
(LSB)  
(MSB)  
+ 3  
UART  
Control  
Register  
UCR  
Data  
Length  
Select  
Bit 0  
Data  
Length  
Select  
Bit 1  
Multiple  
Stop Bits  
Enable  
Parity  
Bit  
Enable  
Even  
Parity  
Enable  
Parity  
Bit Fixed  
Enable  
Set  
Silence  
Enable  
Baudrate  
Divisor  
Latch  
Access Bit  
(BDLAB)  
(MSBE)  
(PBE)  
(EPE)  
PBFE)  
(SSE)  
(DLS0)  
(DLS1)  
+ 4  
+ 5  
+ 6  
Handshake HCR  
Control  
Register  
Data  
Terminal  
Ready  
(DTR)  
Request Loopback  
IRQ  
Internal  
0
0
0
to  
RI  
Enable Loopback  
Enable  
Send  
(RTS)  
Input  
UART Status USR RBR Data Overrun Parity Bit No Stop  
Silent  
Byte  
Detected  
(SBD)  
TBR  
Empty  
TSR  
Empty  
RX FIFO  
Error  
Indication  
(RFEI) **  
Register  
Ready  
Error  
Error  
Bit  
Error  
(NSER)  
(RDR)  
(OER)  
(PBER)  
(TBRE)  
(TSRE)  
Handshake HSR  
Status  
Register  
CTS  
DSR  
RI Falling  
Edge  
DCD  
Toggling  
Clear  
to Send  
Data Set  
Ready  
Ring  
Indicator  
Data  
Carrier  
Detect  
(DCD)  
Toggling Toggling  
(TCTS)  
(TDSR)  
(FERI)  
(TDCD)  
(CTS)  
(DSR)  
(RI)  
+ 7  
+ 0  
User Defined UDR  
Register  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Baudrate  
Divisor Latch  
Low  
BLL  
Bit 0  
Bit 8  
Bit 1  
Bit 9  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
BDLAB =  
1
+ 1  
Baudrate  
Divisor Latch  
High  
BHL  
Bit 10  
Bit 11  
Bit 12  
Bit 13  
Bit 14  
Bit 15  
BDLAB =  
1
*: Bit 0 is the least significant bit. The least significant bit is the first bit serially transmitted or received.  
**: These bits are always 0 in 16450 Mode.  
-40  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 4: EPE. This bit describes the number of logic 1's in the data word bits and parity bit only when bit  
3 is programmed. When this bit is set, an even number of logic 1's are sent or checked. When  
the bit is reset, an odd number of logic 1's are sent or checked.  
Bit 3: PBE. When this bit is set, the position between the last data bit and the stop bit of the SOUT will  
be stuffed with the parity bit at the transmitter. For the receiver, the parity bit in the same  
position as the transmitter will be detected.  
Bit 2: MSBE. This bit defines the number of stop bits in each serial character that is transmitted or  
received.  
(1) If MSBE is set to a logical 0, one stop bit is sent and checked.  
(2) If MSBE is set to a logical 1, and data length is 5 bits, one and a half stop bits are sent and  
checked.  
(3) If MSBE is set to a logical 1, and data length is 6, 7, or 8 bits, two stop bits are sent and  
checked.  
Bits 0 and 1: DLS0, DLS1. These two bits define the number of data bits that are sent or checked in  
each serial character.  
TABLE 6-2 WORD LENGTH DEFINITION  
DLS1  
DLS0  
DATA LENGTH  
5 bits  
0
0
1
1
0
1
0
1
6 bits  
7 bits  
8 bits  
6.2.2  
UART Status Register (USR) (Read/Write)  
This 8-bit register provides information about the status of the data transfer during communication.  
2
7
6
4
3
1
0
5
RBR Data ready (RDR)  
Overrun error (OER)  
Parity bit error (PBER)  
No stop bit error (NSER)  
Silent byte detected (SBD)  
Transmitter Buffer Register empty (TBRE)  
Transmitter Shift Register empty (TSRE)  
RX FIFO Error Indication (RFEI)  
Bit 7: RFEI. In 16450 mode, this bit is always set to a logic 0. In 16550 mode, this bit is set to a logic 1  
when there is at least one parity bit error, no stop bit error or silent byte detected in the FIFO. In  
16550 mode, this bit is cleared by reading from the USR if there are no remaining errors left in  
the FIFO.  
Publication Release Date: May 2006  
-41 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 6: TSRE. In 16450 mode, when TBR and TSR are both empty, this bit will be set to a logical 1. In  
16550 mode, if the transmit FIFO and TSR are both empty, it will be set to a logical 1. Other  
thanthese two cases, this bit will be reset to a logical 0.  
Bit 5: TBRE. In 16450 mode, when a data character is transferred from TBR to TSR, this bit will be set  
to a logical 1. If ETREI of ICR is a logical 1, an interrupt will be generated to notify the CPU to  
write the next data. In 16550 mode, this bit will be set to a logical 1 when the transmit FIFO is  
empty. It will be reset to a logical 0 when the CPU writes data into TBR or FIFO.  
Bit 4: SBD. This bit is set to a logical 1 to indicate that received data are kept in silent state for a full  
word time, including start bit, data bits, parity bit, and stop bits. In 16550 mode, it indicates the  
same condition for the data on top of the FIFO. When the CPU reads USR, it will clear this bit to  
a logical 0.  
Bit 3: NSER. This bit is set to a logical 1 to indicate that the received data have no stop bit. In 16550  
mode, it indicates the same condition for the data on top of the FIFO. When the CPU reads  
USR, it will clear this bit to a logical 0.  
Bit 2: PBER. This bit is set to a logical 1 to indicate that the parity bit of received data is wrong. In  
16550 mode, it indicates the same condition for the data on top of the FIFO. When the CPU  
reads USR, it will clear this bit to a logical 0.  
Bit 1: OER. This bit is set to a logical 1 to indicate received data have been overwritten by the next  
received data before they were read by the CPU. In 16550 mode, it indicates the same  
condition instead of FIFO full. When the CPU reads USR, it will clear this bit to a logical 0.  
Bit 0: RDR. This bit is set to a logical 1 to indicate received data are ready to be read by the CPU in  
the RBR or FIFO. After no data are left in the RBR or FIFO, the bit will be reset to a logical 0.  
6.2.3  
Handshake Control Register (HCR) (Read/Write)  
This register controls the pins of the UART used for handshaking peripherals such as modem, and  
controls the diagnostic mode of the UART.  
2
7
0
5
0
4
3
1
0
6
0
Data terminal ready (DTR)  
Request to send (RTS)  
Loopback RI input  
IRQ enable  
Internal loopback enable  
Bit 4: When this bit is set to a logical 1, the UART enters diagnostic mode by an internal loopback, as  
follows:  
(1) SOUT is forced to logical 1, and SIN is isolated from the communication link instead of the  
TSR.  
(2) Modem output pins are set to their inactive state.  
-42  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
(3) Modem input pins are isolated from the communication link and connect internally as DTR  
(bit 0 of HCR) DSR, RTS ( bit 1 of HCR) CTS, Loopback RI input ( bit 2 of HCR) →  
RI and IRQ enable ( bit 3 of HCR) DCD.  
Aside from the above connections, the UART operates normally. This method allows the  
CPU to test the UART in a convenient way.  
Bit 3: The UART interrupt output is enabled by setting this bit to a logic 1. In the diagnostic mode this  
bit is internally connected to the modem control input DCD .  
Bit 2: This bit is used only in the diagnostic mode. In the diagnostic mode this bit is internally  
connected to the modem control input RI .  
Bit 1: This bit controls the RTS output. The value of this bit is inverted and output to RTS .  
Bit 0: This bit controls the DTR output. The value of this bit is inverted and output to DTR.  
6.2.4  
Handshake Status Register (HSR) (Read/Write)  
This register reflects the current state of four input pins for handshake peripherals such as a modem  
and records changes on these pins.  
7
6
5
4
3
2
1
0
toggling (TCTS)  
toggling (TDSR)  
CTS  
DSR  
RI falling edge (FERI)  
toggling (TDCD)  
DCD  
Clear to send (CTS)  
Data set ready (DSR)  
Ring indicator (RI)  
Data carrier detect (DCD)  
Bit 7: This bit is the opposite of the DCD input. This bit is equivalent to bit 3 of HCR in loopback  
mode.  
Bit 6: This bit is the opposite of the RI input. This bit is equivalent to bit 2 of HCR in loopback mode.  
Bit 5: This bit is the opposite of the DSR input. This bit is equivalent to bit 0 of HCR in loopback  
mode.  
Bit 4: This bit is the opposite of the CTS input. This bit is equivalent to bit 1 of HCR in loopback  
mode.  
Bit 3: TDCD. This bit indicates that the DCD pin has changed state after HSR was read by the  
CPU.  
Bit 2: FERI. This bit indicates that the RI pin has changed from low to high state after HSR was read  
by the CPU.  
Bit 1: TDSR. This bit indicates that the DSR pin has changed state after HSR was read by the CPU.  
Bit 0: TCTS. This bit indicates that the CTS pin has changed state after HSR was read.  
Publication Release Date: May 2006  
-43 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
6.2.5  
UART FIFO Control Register (UFR) (Write only)  
This register is used to control the FIFO functions of the UART.  
2
1
7
6
5
4
3
0
FIFO enable  
Receiver FIFO reset  
Transmitter FIFO reset  
DMA mode select  
Reserved  
Reserved  
RX interrupt active level (LSB)  
RX interrupt active level (MSB)  
Bit 6, 7: These two bits are used to set the active level for the receiver FIFO interrupt. For example, if  
the interrupt active level is set as 4 bytes, once there are more than 4 data characters in the  
receiver FIFO, the interrupt will be activated to notify the CPU to read the data from the FIFO.  
TABLE 6-3 FIFO TRIGGER LEVEL  
BIT 7  
BIT 6  
RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)  
0
0
1
1
0
1
0
1
01  
04  
08  
14  
Bit 4, 5: Reserved  
Bit 3: When this bit is programmed to logic 1, the DMA mode will change from mode 0 to mode 1 if  
UFR bit 0 = 1.  
Bit 2: Setting this bit to a logical 1 resets the TX FIFO counter logic to initial state. This bit will clear to  
a logical 0 by itself after being set to a logical 1.  
Bit 1: Setting this bit to a logical 1 resets the RX FIFO counter logic to initial state. This bit will clear to  
a logical 0 by itself after being set to a logical 1.  
Bit 0: This bit enables the 16550 (FIFO) mode of the UART. This bit should be set to a logical 1 before  
other bits of UFR are programmed.  
-44  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
6.2.6  
Interrupt Status Register (ISR) (Read only)  
This register reflects the UART interrupt status, which is encoded by different interrupt sources into 3  
bits.  
7
6
5
0
4
3
2
1
0
0
0 if interrupt pending  
Interrupt Status bit 0  
Interrupt Status bit 1  
Interrupt Status bit 2  
FIFOs enabled  
FIFOs enabled  
Bit 7, 6: These two bits are set to a logical 1 when UFR bit 0 = 1.  
Bit 5, 4: These two bits are always logic 0.  
Bit 3: In 16450 mode, this bit is 0. In 16550 mode, both bit 3 and 2 are set to a logical 1 when a time-  
out interrupt is pending.  
Bit 2, 1: These two bits identify the priority level of the pending interrupt, as shown in the table below.  
Bit 0: This bit is a logical 1 if there is no interrupt pending. If one of the interrupt sources has occurred,  
this bit will be set to a logical 0.  
TABLE 6-4 INTERRUPT CONTROL FUNCTION  
ISR  
INTERRUPT SET AND FUNCTION  
Bit  
3
Bit  
2
Bit  
1
Bit  
0
Interrupt Interrupt  
Interrupt Source  
Clear Interrupt  
priority  
Type  
0
0
0
1
0
1
1
0
-
-
No Interrupt pending  
-
First  
UART  
1. OER = 1 2. PBER =1  
3. NSER = 1 4. SBD = 1  
Read USR  
Receive  
Status  
0
1
1
1
0
0
0
0
Second  
Second  
RBR Data  
Ready  
1. RBR data ready  
1. Read RBR  
2. FIFO interrupt active  
level reached  
2. Read RBR until  
FIFO data under  
active level  
FIFO Data  
Timeout  
Data present in RX FIFO  
for 4 characters period of  
time since last access of  
RX FIFO.  
Read RBR  
0
0
0
0
1
0
0
0
Third  
TBR Empty  
TBR empty  
1. Write data into TBR  
2. Read ISR (if priority  
is third)  
Fourth  
Handshake  
status  
1. TCTS = 1 2. TDSR = 1 Read HSR  
3. FERI = 1 4. TDCD = 1  
** Bit 3 of ISR is enabled when bit 0 of UFR is logical 1.  
Publication Release Date: May 2006  
Revision 0.60  
-45 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
6.2.7  
Interrupt Control Register (ICR) (Read/Write)  
This 8-bit register allows the five types of controller interrupts to activate the interrupt output signal  
separately. The interrupt system can be totally disabled by resetting bits 0 through 3 of the Interrupt  
Control Register (ICR). A selected interrupt can be enabled by setting the appropriate bits of this  
register to a logical 1.  
5
6
0
3
0
4
0
2
7
0
1
0
RBR data ready interrupt enable (ERDRI)  
TBR empty interrupt enable (ETBREI)  
UART receive status interrupt enable (EUSRI)  
Handshake status interrupt enable (EHSRI)  
Bit 7-4: These four bits are always logic 0.  
Bit 3: EHSRI. Setting this bit to a logical 1 enables the handshake status register interrupt.  
Bit 2: EUSRI. Setting this bit to a logical 1 enables the UART status register interrupt.  
Bit 1: ETBREI. Setting this bit to a logical 1 enables the TBR empty interrupt.  
Bit 0: ERDRI. Setting this bit to a logical 1 enables the RBR data ready interrupt.  
6.2.8  
Programmable Baud Generator (BLL/BHL) (Read/Write)  
Two 8-bit registers, BLL and BHL, compose a programmable baud generator that uses 24 MHz to  
16  
generate a 1.8461 MHz frequency and divides it by a divisor from 1 to 2 -1. The output frequency of  
the baud generator is the baud rate multiplied by 16, and this is the base frequency for the transmitter  
and receiver. The table in the next page illustrates the use of the baud generator with a frequency of  
1.8461 MHz. In high-speed UART mode (refer to CR0C bit7 and CR0C bit6), the programmable baud  
generator directly uses 24 MHz and the same divisor as the normal speed divisor. In high-speed  
mode, the data transmission rate can be as high as 1.5M bps.  
-46  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
6.2.9  
User-defined Register (UDR) (Read/Write)  
This is a temporary register that can be accessed and defined by the user.  
TABLE 6-5 BAUD RATE TABLE  
BAUD RATE FROM DIFFERENT PRE-DIVIDER  
PRE-DIV: 13  
1.8461M HZ  
PRE-  
DIV:1.625  
PRE-DIV: 1.0  
24M HZ  
DECIMAL DIVISOR  
USED TO  
GENERATE 16X  
CLOCK  
ERROR PERCENTAGE  
BETWEEN DESIRED AND  
ACTUAL  
14.769M HZ  
50  
75  
400  
600  
650  
975  
**  
2304  
1536  
1047  
857  
768  
384  
192  
96  
**  
110  
880  
1430  
0.18%  
134.5  
150  
1076  
1478.5  
1950  
0.099%  
1200  
**  
**  
300  
2400  
3900  
600  
4800  
7800  
**  
1200  
1800  
2000  
2400  
3600  
4800  
7200  
9600  
19200  
38400  
57600  
115200  
9600  
15600  
23400  
26000  
31200  
46800  
62400  
93600  
124800  
249600  
499200  
748800  
1497600  
**  
14400  
16000  
19200  
28800  
38400  
57600  
76800  
153600  
307200  
460800  
921600  
**  
64  
0.53%  
**  
58  
48  
**  
32  
**  
24  
**  
16  
**  
12  
**  
6
**  
3
**  
2
**  
1
** The percentage error for all baud rates, except where indicated otherwise, is 0.16%.  
Note. Pre-Divisor is determined by CRF0 of UART A and B.  
Publication Release Date: May 2006  
Revision 0.60  
-47 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7. INFRARED (IR) PORT  
The Infrared (IR) function provides point-to-point (or multi-point to multi-point) wireless communication  
which can operate under various transmission protocols including IrDA 1.0 SIR, IrDA 1.1 MIR (1.152  
Mbps), IrDA 1.1 FIR (4 Mbps), SHARP ASK-IR, and remote control (NEC, RC-5, advanced RC-5, and  
RECS-80 protocol).  
7.1 IR Register Description  
When bank select enable bit (ENBNKSEL, the bit 0 in CRF0 of logic device 6) is set, legacy IR will be  
switched to Advanced IR, and eight Register Sets can then be accessible. These Register Sets  
control enhanced IR, SIR, MIR, or FIR. Also a superior traditional SIR function can be used with  
enhanced features such as 32-byte transmitter/receiver FIFOs, non-encoding IRQ identify status  
register, and automatic flow control. The MIR/FIR and remote control registers are also defined in  
these Register Sets. Structure of these Register Sets is shown as follows.  
Reg 7  
Reg 6  
Reg 5  
Reg 4  
BDL/SSR  
All in one Reg  
to Select SSR  
Reg 2  
Reg 1  
Reg 0  
Set 0  
Set 1  
Set 2  
Set 3  
Set 4  
Set 5  
Set 6  
Set 7  
*Set 0, 1 are legacy/Advanced UART Registers  
*Set 2~7 are Advanced UART Registers  
Each of these register sets has a common register, namely Sets Select Register (SSR), in order to  
switch to another register set. The summary description of these Sets is shown in the following.  
-48  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
SET  
SETS DESCRIPTION  
Legacy/Advanced IR Control and Status Registers.  
0
1
2
3
4
5
6
7
Legacy Baud Rate Divisor Register.  
Advanced IR Control and Status Registers.  
Version ID and Mapped Control Registers.  
Transmitter/Receiver/Timer Counter Registers and IR Control Registers.  
Flow Control and IR Control and Frame Status FIFO Registers.  
IR Physical Layer Control Registers  
Remote Control and IR front-end Module Selection Registers.  
7.2 Set0-Legacy/Advanced IR Control and Status Registers  
ADDRESS OFFSET  
REGISTER NAME  
RBR/TBR  
ICR  
REGISTER DESCRIPTION  
Receiver/Transmitter Buffer Registers  
Interrupt Control Register  
0
1
2
3
4
5
6
7
Interrupt Status or IR FIFO Control Register  
IR Control or Sets Select Register  
Handshake Control Register  
IR Status Register  
ISR/UFR  
UCR/SSR  
HCR  
USR  
Handshake Status Register  
HSR  
User Defined Register  
UDR/ESCR  
7.2.1  
Set0.Reg0 - Receiver/Transmitter Buffer Registers (RBR/TBR) (Read/Write)  
Receiver Buffer Register is read only and Transmitter Buffer Register is write only. When operate in  
the PIO mode, the port is used to Receive/Transmit 8-bit data.  
When function as a legacy IR, this port only supports PIO mode. If set in the advanced IR mode and  
configured as MIR/FIR/Remote IR, this port can support DMA transmission. Two DMA channels can  
be used simultaneously, one for TX DMA and the other for RX DMA. Therefore, single DMA channel  
is also supported when set the bit of D_CHSW (DMA Channel Swap, in Set2.Reg2.Bit3) and the  
TX/RX DMA channel is swapped. Note that two DMA channel can be defined in configure register  
CR2A which selects DMA channel or disables DMA channel. If only RX DMA channel is enabled  
while TX DMA channel is disabled, then the single DMA channel will be selected.  
Publication Release Date: May 2006  
-49 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.2.2  
Set0.Reg1 - Interrupt Control Register (ICR)  
MODE  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Legacy IR  
0
0
0
0
0
0
EUSRI  
ETBREI  
ERDRI  
ERBRI  
Advanced IR  
ETMRI  
EFSFI  
ETXTHI  
EDMAI  
EUSRI/ TXURI ETBREI  
The advanced IR functions including Advanced SIR/ASK-IR, MIR, FIR, or Remote IR are described as  
follows.  
Bit 7:  
Bit 6:  
Legacy IR Mode:  
Not used. A read will return 0.  
Advanced IR Mode:  
ETMRI - Enable Timer Interrupt  
A write to 1 will enable timer interrupt.  
Legacy IR Mode:  
Not used. A read will return 0.  
MIR, FIR mode:  
EFSFI - Enable Frame Status FIFO Interrupt  
A write to 1 will enable frame status FIFO interrupt.  
Advanced SIR/ASK-IR, Remote IR:  
Not used.  
Bit 5:  
Bit 4:  
Legacy IR Mode:  
Not used. A read will return 0.  
Advanced SIR/ASK-IR, MIR, FIR, Remote IR:  
ETXTHI - Enable Transmitter Threshold Interrupt  
A write to 1 will enable transmitter threshold interrupt.  
Legacy IR Mode:  
Not used. A read will return 0.  
MIR, FIR, Remote IR:  
EDMAI - Enable DMA Interrupt.  
A write to 1 will enable DMA interrupt.  
Reserved. A read will return 0.  
Legacy IR Mode:  
Bit 3:  
Bit 2:  
EUSRI - Enable USR (IR Status Register) Interrupt  
A write to 1 will enable IR status register interrupt.  
Advanced SIR/ASK-IR:  
EUSRI - Enable USR (IR Status Register) Interrupt  
A write to 1 will enable IR status register interrupt.  
MIR, FIR, Remote Controller:  
-50  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
EHSRI/ETXURI - Enable USR Interrupt or Enable Transmitter Underrun Interrupt  
A write to 1 will enable USR interrupt or enable transmitter underrun interrupt.  
Bit 1:  
ETBREI - Enable TBR (Transmitter Buffer Register) Empty Interrupt  
A write to 1 will enable the transmitter buffer register empty interrupt.  
ERBRI - Enable RBR (Receiver Buffer Register) Interrupt  
A write to 1 will enable receiver buffer register interrupt.  
Bit 0:  
7.2.3  
Set0.Reg2 - Interrupt Status Register/IR FIFO Control Register (ISR/UFR)  
7.2.3.1 Interrupt Status Register (Read Only)  
MODE  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Legacy IR  
FIFO Enable  
TMR_I  
FIFO Enable  
FSF_I  
0
0
IID2  
IID1  
IID0  
IP  
Advanced IR  
TXTH_I DMA_I HS_I  
USR_I/  
TXEMP_I RXTH_I  
FEND_I  
Reset Value  
0
0
1
0
0
0
1
0
Legacy IR:  
This register reflects the Legacy IR interrupt status, which is encoded by different interrupt sources  
into 3 bits.  
Bit 7, 6: These two bits are set to a logical 1 when UFR bit 0 = 1.  
Bit 5, 4: These two bits are always logical 0.  
Bit 3: When not in FIFO mode, this bit is always 0. In FIFO mode, both bit 3 and 2 are set to logical 1  
when a time-out interrupt is pending.  
Bit 2, 1: These bits identify the priority level of the pending interrupt, as shown in the table below.  
Bit 0: This bit is a logical 1 if there is no interrupt pending. If one of the interrupt sources has occurred,  
this bit will be set to logical 0.  
Publication Release Date: May 2006  
-51 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
TABLE: INTERRUPT CONTROL FUNCTION  
ISR  
INTERRUPT SET AND FUNCTION  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Interrupt Interrupt Type  
Interrupt Source  
Clear Interrupt  
priority  
0
0
0
1
0
1
1
0
-
-
No Interrupt pending  
-
First  
IR Receive  
Status  
1. OER = 1 2. PBER =1 Read USR  
3. NSER = 1 4. SBD = 1  
0
1
0
0
Second  
RBR Data  
Ready  
1. RBR data ready  
1. Read RBR  
2. FIFO interrupt active  
level reached  
2. Read RBR until  
FIFO data under  
active level  
1
0
1
0
0
1
0
0
Second  
Third  
FIFO Data  
Time-out  
Data present in RX FIFO  
for 4 characters period of  
time since last access of  
RX FIFO.  
Read RBR  
TBR Empty  
TBR empty  
1. Write data into TBR  
2. Read ISR (if priority  
is third)  
** Bit 3 of ISR is enabled when bit 0 of UFR is a logical 1.  
Advanced IR:  
Bit 7:  
TMR_I - Timer Interrupt.  
Set to 1 when timer count to logical 0. This bit is valid when: (1) the timer registers are  
defined in Set4.Reg0 and Set4.Reg1; (2) EN_TMR(Enable Timer, in Set4.Reg2.Bit0) is  
set to 1; (3) ENTMR_I (Enable Timer Interrupt, in Set0.Reg1.Bit7) is set to 1.  
Bit 6:  
MIR, FIR modes:  
FSF_I - Frame Status FIFO Interrupt.  
Set to 1 when Frame Status FIFO is equal or larger than the threshold level or Frame  
Status FIFO time-out occurs. Cleared to 0 when Frame Status FIFO is below the  
threshold level.  
Advanced SIR/ASK-IR, Remote IR modes: Not used.  
Bit 5:  
Bit 4:  
TXTH_I - Transmitter Threshold Interrupt.  
Set to 1 if the TBR (Transmitter Buffer Register) FIFO is below the threshold level.  
Cleared to 0 if the TBR (Transmitter Buffer Register) FIFO is above the threshold level.  
MIR, FIR, Remote IR Modes:  
DMA_I - DMA Interrupt.  
Set to 1 if the DMA controller 8237A sends a TC (Terminal Count) to I/O device which  
might be a Transmitter TC or a Receiver TC. Cleared to 0 when this register is read.  
Bit 3:  
HS_I - Handshake Status Interrupt.  
Set to 1 when the Handshake Status Register has a toggle. Cleared to 0 when  
Handshake Status Register (HSR) is read. Note that in all IR modes including SIR, ASK-  
IR, MIR, FIR, and Remote Control IR, this bit defaults to be inactive unless IR Handshake  
Status Enable (IRHS_EN) is set to 1.  
-52  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 2:  
Advanced SIR/ASK-IR modes:  
USR_I - IR Status Interrupt.  
Set to 1 when overrun error, parity error, stop bit error, or silent byte error detected and  
registered in the IR Status Register (USR). Cleared to 0 when USR is read.  
MIR, FIR modes:  
FEND_I - Frame End Interrupt.  
Set to 1 when (1) a frame has a grace end to be detected where the frame signal is  
defined in the physical layer of IrDA version 1.1; (2) abort signal or illegal signal has been  
detected during receiving valid data. Cleared to 0 when this register is read.  
Remote Controller Mode: Not used.  
Bit 1:  
Bit 0:  
TXEMP_I - Transmitter Empty.  
Set to 1 when transmitter (or, say, FIFO + Transmitter) is empty. Cleared to 0 when this  
register is read.  
RXTH_I - Receiver Threshold Interrupt.  
Set to 1 when (1) the Receiver Buffer Register (RBR) is equal or larger than the threshold  
level; or (2) RBR time-out occurs if the receiver buffer register has valid data and below  
the threshold level. Cleared to 0 when RBR is less than threshold level after reading  
RBR.  
7.2.3.2 IR FIFO Control Register (UFR):  
MODE  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Legacy IR  
RXFTL1  
(MSB)  
RXFTL0 (LSB)  
0
0
0
TXF_RST RXF_RST EN_FIFO  
Advanced IR RXFTL1  
(MSB)  
RXFTL0 (LSB) TXFTL1  
(MSB)  
TXFTL0  
(LSB)  
0
0
TXF_RST RXF_RST EN_FIFO  
Reset Value  
0
0
0
0
0
0
0
Legacy IR:  
This register is used to control FIFO functions of the IR.  
Bit 6, 7: These two bits are used to set the active level for the receiver FIFO interrupt. For example, if  
the interrupt active level is set as 4 bytes and there are more than 4 data characters in the  
receiver FIFO, the interrupt will be activated to notify CPU to read the data from FIFO.  
TABLE: FIFO TRIGGER LEVEL  
BIT 7  
BIT 6  
RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)  
0
0
1
1
0
1
0
1
01  
04  
08  
14  
Publication Release Date: May 2006  
Revision 0.60  
-53 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 4, 5: Reserved  
Bit 3: When this bit is programmed to logic 1, the DMA mode will change from mode 0 to mode 1 if  
UFR bit 0 = 1.  
Bit 2: Setting this bit to a logical 1 resets the TX FIFO counter logic to its initial state. This bit will be  
cleared to logical 0 by itself after being set to logical 1.  
Bit 1: Setting this bit to logical 1 resets the RX FIFO counter logic to its initial state. This bit will be  
cleared to a logical 0 by itself after being set to logical 1.  
Bit 0: This bit enables the 16550 (FIFO) mode of the IR. This bit should be set to logical 1 before  
other bits of UFR can be programmed.  
Advanced IR:  
Bit 7, 6:  
RXFTL1, 0 - Receiver FIFO Threshold Level  
Its definition is the same as Legacy IR. RXTH_I becomes 1 when the Receiver FIFO  
Threshold Level is equal or larger than the defined value shown as follow.  
RXFTL1, 0  
(BIT 7, 6)  
RX FIFO THRESHOLD LEVEL  
(FIFO SIZE: 16-BYTE)  
RX FIFO THRESHOLD LEVEL  
(FIFO SIZE: 32-BYTE)  
1
4
1
4
00  
01  
10  
11  
8
16  
26  
14  
Note that the FIFO Size is selectable in SET2.Reg4.  
Bit 5, 4:  
TXFTL1, 0 - Transmitter FIFO Threshold Level  
TXTH_I (Transmitter Threshold Level Interrupt) is set to 1 when the Transmitter Threshold  
Level is less than the programmed value shown as follows.  
TXFTL1, 0  
(BIT 5, 4)  
TX FIFO THRESHOLD  
LEVEL  
TX FIFO THRESHOLD LEVEL  
(FIFO SIZE: 32-BYTE)  
(FIFO SIZE: 16-BYTE)  
1
3
1
7
00  
01  
10  
11  
9
17  
25  
13  
Bit 3 ~0  
Same as in Legacy IR Mode  
-54  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.2.4  
Set0.Reg3 - IR Control Register/Set Select Register (UCR/SSR):  
These two registers share the same address. In all Register Sets, Set Select Register (SSR) can be  
programmed to select a desired Set but IR Control Register can only be programmed in Set 0 and Set  
1. In other words, writing to Reg3 in Sets other than Set 0 and Set 1 will not affect IR Control  
Register. The mapping of entry Set and programming value is shown as follows.  
SSR BITS  
SELECTED  
Set  
7
0
1
1
1
1
1
1
1
6
5
4
3
2
1
0
Hex Value  
¡Ð  
¡Ñ  
¡Ñ  
¡Ñ  
¡Ñ  
¡Ñ  
¡Ñ  
¡Ñ  
Set 0  
Set1  
Any combination except those used in SET 2~7  
¡Ð  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0xE0  
0xE4  
0xE8  
0xEC  
0xF0  
0xF4  
Set 2  
Set 3  
Set 4  
Set 5  
Set 6  
Set 7  
7.2.5  
Set0.Reg4 - Handshake Control Register (HCR)  
MODE  
Legacy IR  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
0
XLOOP  
EN_IRQ  
TX_WT  
0
0
0
0
0
0
0
0
Advanced IR AD_MD2 AD_MD1 AD_MD0 SIR_PLS  
Reset Value  
EN_DMA  
0
1
1
0
0
Legacy IR Register:  
This register controls the pins of IR used for handshaking with peripherals such as modem, and  
controls the diagnostic mode of IR.  
Bit 4: When this bit is set to logical 1, the legacy IR enters diagnostic mode by an internal loopback:  
IRTX is forced to logical 0, and IRRX is isolated from the communication link instead of the  
TSR.  
Bit 3: The legacy IR interrupt output is enabled by setting this bit to logic 1.  
Advanced IR Register:  
Bit 7~5 Advanced SIR/ASK-IR, MIR, FIR, Remote Controller Modes:  
AD_MD2~0 - Advanced IR/Infrared Mode Select.  
These registers are active when Advanced IR Select (ADV_SL, in Set2.Reg2.Bit0) is set  
to 1. Operational mode selection is defined as follows. When backward operation  
occurs, these registers will be reset to 0 and fall back to legacy IR mode.  
Publication Release Date: May 2006  
-55 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
AD_MD2~0  
(BIT 7, 6, 5)  
SELECTED MODE  
000  
001  
010  
011  
100  
101  
110  
111  
Reserved  
Low speed MIR (0.576M bps)  
Advanced ASK-IR  
Advanced SIR  
High Speed MIR (1.152M bps)  
FIR (4M bps)  
Consumer IR  
Reserved  
Bit 4:  
MIR, FIR Modes:  
SIR_PLS - Send Infrared Pulse  
Writing 1 to this bit will send a 2 μ s long infrared pulse after physical frame end. This is to  
signal to SIR that the high speed infrared is still in. This bit will be auto cleared by  
hardware.  
Other Modes: Not used.  
MIR, FIR modes:  
Bit 3:  
TX_WT - Transmission Waiting  
If this bit is set to 1, the transmitter will wait for TX FIFO reaching threshold level or  
transmitter time-out before it begins to transmit data which prevents short queues of data  
bytes from transmitting prematurely. This is to avoid Underrun.  
Other Modes: Not used.  
Bit 2:  
MIR, FIR modes:  
EN_DMA - Enable DMA  
Enable DMA function for transmitting or receiving. Before using this, the DMA channel  
should be selected first. If only RX DMA channel is set and TX DMA channel is disabled,  
then the single DMA channel is used. In the single channel system, the bit of D_CHSW  
(DMA channel swap, in Set 2.Reg2.Bit3) will determine if it is RX_DMA or TX_DMA  
channel.  
Other modes: Not used.  
Bit 1, 0:  
RTS, DTR  
Functional definitions is the same as in legacy IR mode.  
-56  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.2.6  
Set0.Reg5 - IR Status Register (USR)  
MODE  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Legacy IR  
RFEI  
TSRE  
TSRE  
0
TBRE  
TBRE  
0
SBD  
NSER  
PBER  
OER  
OER  
0
RDR  
RDR  
0
Advanced IR LB_INFR  
Reset Value  
MX_LEX PHY_ERR CRC_ERR  
0
0
0
0
Legacy IR Register: These registers are defined the same as previous description.  
Advanced IR Register:  
Bit 7:  
MIR, FIR Modes:  
LB_INFR - Last Byte In Frame End  
Set to 1 when last byte of a frame is in the bottom of FIFO. This bit separates one frame  
from another when RX FIFO has more than one frame.  
Bit 6, 5:  
Bit 4:  
Same as legacy IR description.  
MIR, FIR modes:  
MX_LEX - Maximum Frame Length Exceed  
Set to 1 when the length of a frame from the receiver has exceeded the programmed  
frame length defined in SET4.Reg6 and Reg5. If this bit is set to 1, the receiver will not  
receive any data to RX FIFO.  
Bit 3:  
MIR, FIR modes:  
PHY_ERR - Physical Layer Error  
Set to 1 when an illegal data symbol is received. The illegal data symbol is defined in  
physical layer of IrDA version 1.1. When this bit is set to 1, the decoder of receiver will be  
aborted and a frame end signal is set to 1.  
Bit 2:  
MIR, FIR Modes:  
CRC_ERR - CRC Error  
Set to 1 when an attached CRC is erroneous.  
OER - Overrun Error, RDR - RBR Data Ready  
Definitions are the same as legacy IR.  
Bit 1, 0:  
7.2.7  
Set0.Reg6 - Reserved  
7.2.8  
Set0.Reg7 - User Defined Register (UDR/AUDR)  
MODE  
Legacy IR  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
0
Bit 1  
Bit 0  
Advanced FLC_ACT  
IR  
UNDRN  
RX_BSY/  
RX_IP  
LST_FE/  
RX_PD  
S_FEND  
LB_SF  
RX_TO  
Reset  
Value  
0
0
0
0
0
0
0
0
Publication Release Date: May 2006  
Revision 0.60  
-57 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Legacy IR Register:  
This is a temporary register that can be accessed and defined by the user.  
Advanced IR Register:  
Bit 7  
MIR, FIR Modes:  
FLC_ACT - Flow Control Active  
Set to 1 when the flow control occurs. Cleared to 0 when this register is read. Note that  
this will be affected by Set5.Reg2 which controls the SIR mode switches to MIR/FIR mode  
or MIR/FIR mode operated in DMA function switches to SIR mode.  
Bit 6  
Bit 5  
MIR, FIR Modes:  
UNDRN - Underrun  
Set to 1 when transmitter is empty and S_FEND (bit 3 of this register) is not set in PIO  
mode or no TC (Terminal Count) in DMA mode. Cleared to 0 after a write to 1.  
MIR, FIR Modes:  
RX_BSY - Receiver Busy  
Set to 1 when receiver is busy or active in process.  
Remote IR mode:  
RX_IP - Receiver in Process  
Set to 1 when receiver is in process.  
MIR, FIR modes:  
Bit 4:  
LST_FE - Lost Frame End  
Set to 1 when a frame end in a entire frame is lost. Cleared to 0 when this register is  
read.  
Remote IR Modes:  
RX_PD - Receiver Pulse Detected  
Set to 1 when one or more remote pulses are detected. Cleared to 0 when this register is  
read.  
Bit 3  
MIR, FIR Modes:  
S_FEND - Set a Frame End  
Set to 1 when trying to terminate the frame, that is, the procedure of PIO command is  
An Entire Frame = Write Frame Data (First) + Write S_FEND (Last)  
This bit should be set to 1, if use in PIO mode, to avoid transmitter underrun. Note that  
setting S_FEND to 1 is equivalent to TC (Terminal Count) in DMA mode. Therefore, this  
bit should be set to 0 in DMA mode.  
Bit 2:  
Bit 1:  
Reserved.  
MIR, FIR Modes:  
LB_SF - Last Byte Stay in FIFO  
A 1 in this bit indicates one or more frame ends still stay in receiver FIFO.  
MIR, FIR, Remote IR Modes:  
Bit 0:  
RX_TO - Receiver FIFO or Frame Status FIFO time-out  
Set to 1 when receiver FIFO or frame status FIFO time-out occurs  
-58  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.3 Set1 - Legacy Baud Rate Divisor Register  
ADDRESS  
OFFSET  
REGISTER  
NAME  
REGISTER DESCRIPTION  
Baud Rate Divisor Latch (Low Byte)  
0
1
2
3
4
5
6
7
BLL  
BHL  
Baud Rate Divisor Latch (High Byte)  
Interrupt Status or IR FIFO Control Register  
IR Control or Sets Select Register  
Handshake Control Register  
IR Status Register  
ISR/UFR  
UCR/SSR  
HCR  
USR  
Handshake Status Register  
User Defined Register  
HSR  
UDR/ESCR  
7.3.1  
Set1.Reg0~1 - Baud Rate Divisor Latch (BLL/BHL)  
These two registers of BLL and BHL are baud rate divisor latch in the legacy SIR/ASK-IR mode.  
Accessing these registers in Advanced IR mode will cause backward operation, that is, UART will fall  
back to legacy SIR mode and clear some register values as shown in the following table.  
SET & REGISTER  
ADVANCED MODE  
DIS_BACK=¡Ñ  
LEGACY MODE  
DIS_BACK=0  
Set 0.Reg 4  
Set 2.Reg 2  
Set 4.Reg 3  
Bit 7~5  
Bit 0, 5, 7  
Bit 2, 3  
-
Bit 5, 7  
-
Note that DIS_BACK=1 (Disable Backward operation) in legacy SIR/ASK-IR mode will not affect any register which is  
meaningful in legacy SIR/ASK-IR.  
7.3.2  
Set1.Reg 2~7  
These registers are defined as the same as Set 0 registers.  
7.4 Set2 - Interrupt Status or IR FIFO Control Register (ISR/UFR)  
These registers are only used in advanced modes.  
ADDRESS  
OFFSET  
REGISTER  
NAME  
REGISTER DESCRIPTION  
Advanced Baud Rate Divisor Latch (Low Byte)  
Advanced Baud Rate Divisor Latch (High Byte)  
Advanced IR Control Register 1  
Sets Select Register  
0
1
2
3
4
5
6
7
ABLL  
ABHL  
ADCR1  
SSR  
Advanced IR Control Register 2  
-
ADCR2  
Reserved  
TXFDTH  
RXFDTH  
Transmitter FIFO Depth  
Receiver FIFO Depth  
Publication Release Date: May 2006  
Revision 0.60  
-59 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.4.1  
Reg0, 1 - Advanced Baud Rate Divisor Latch (ABLL/ABHL)  
These two registers are the same as legacy IR baud rate divisor latch in SET 1.Reg0~1. In advanced  
SIR/ASK-IR mode, user should program these registers to set baud rate. This is to prevent backward  
operation from occurring.  
7.4.2  
Reg2 - Advanced IR Control Register 1 (ADCR1)  
MODE  
Advanced IR BR_OUT  
Reset Value  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
-
EN_LOUT  
0
ALOOP  
0
D_CHSW DMATHL  
DMA_F  
0
ADV_SL  
0
0
0
0
0
Bit 7:  
BR_OUT - Baud Rate Clock Output  
When written to 1, the programmed baud rate clock will be output to DTR pin. This bit is  
only used to test baud rate divisor.  
Bit 6:  
Bit 5:  
Reserved, write 0.  
EN_LOUT - Enable Loopback Output  
A write to 1 will enable transmitter to output data to IRTX pin when loopback operation.  
Internal data can be verified through an output pin by setting this bit.  
Bit 4:  
Bit 3:  
ALOOP - All Mode Loopback  
A write to 1 will enable loopback in all modes.  
D_CHSW - DMA TX/RX Channel Swap  
If only one DMA channel operates in MIR/FIR mode, then the DMA channel can be  
swapped.  
D_CHSW  
DMA Channel Selected  
Receiver (Default)  
Transmitter  
0
1
A write to 1 will enable output data when ALOOP=1.  
DMATHL - DMA Threshold Level  
Bit 2:  
Set DMA threshold level as shown in the following table.  
DMATHL  
TX FIFO THRESHOLD  
RX FIFO THRESHOLD  
16-BYTE  
32-BYTE  
(16/32-BYTE)  
13  
23  
13  
7
4
0
1
10  
-60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 1:  
DMA_F - DMA Fairness  
DMA_F  
Function Description  
DMA request (DREQ) is forced inactive after 10.5us  
No effect DMA request.  
0
1
Bit 0:  
ADV_SL - Advanced Mode Select  
A write to 1 selects advanced mode.  
7.4.3  
Reg3 - Sets Select Register (SSR)  
Reading this register returns E0H. Writing a value selects Register Set.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SSR  
SSR7  
1
SSR6  
1
SSR5  
1
SSR4  
0
SSR3  
0
SSR2  
0
SRR1  
0
SRR0  
0
Refault Value  
7.4.4  
Reg4 - Advanced IR Control Register 2 (ADCR2)  
MODE  
Advanced IR DIS_BACK  
Reset Value  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
-
PR_DIV1 PR_DIV0 RX_FSZ1 RX_FSZ0 TX_FSZ1 TXFSZ0  
0
0
0
0
0
0
0
0
Bit 7:  
DIS_BACK - Disable Backward Operation  
A write to 1 disables backward legacy IR mode. When operate in legacy SIR/ASK-IR  
mode, this bit should be set to 1 to avoid backward operation.  
Bit 6:  
Reserved, write 0.  
Bit 5, 4:  
PR_DIV1~0 - Pre-Divisor 1~0.  
These bits select pre-divisor for external input clock 24M Hz. The clock goes through the  
pre-divisor then input to baud rate divisor of IR.  
PR_DIV1~0  
PRE-DIVISOR  
MAX. BAUD RATE  
13.0  
1.625  
6.5  
00  
01  
10  
11  
115.2K bps  
921.6K bps  
230.4K bps  
1.5M bps  
1
Bit 3, 2:  
RX_FSZ1~0 - Receiver FIFO Size 1~0  
These bits setup receiver FIFO size when FIFO is enable.  
Publication Release Date: May 2006  
Revision 0.60  
-61 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
RX_FSZ1~0  
RX FIFO SIZE  
00  
01  
1X  
16-Byte  
32-Byte  
Reserved  
Bit 1, 0:  
TX_FSZ1~0 - Transmitter FIFO Size 1~0  
These bits setup transmitter FIFO size when FIFO is enable.  
TX_FSZ1~0  
TX FIFO SIZE  
00  
01  
1X  
16-Byte  
32-Byte  
Reserved  
TABLE: SIR Baud Rate  
BAUD RATE FROM DIFFERENT PRE-DIVIDER  
PRE-DIV: 13 PRE-DIV:1.625  
PRE-DIV:  
1.0  
DECIMAL DIVISOR  
USED TO GENERATE  
16X CLOCK  
ERROR PERCENTAGE  
BETWEEN DESIRED AND  
ACTUAL  
1.8461M HZ  
14.769M HZ  
24M HZ  
650  
50  
75  
400  
600  
**  
2304  
1536  
1047  
857  
768  
384  
192  
96  
975  
**  
110  
880  
1430  
0.18%  
134.5  
150  
1076  
1478.5  
1950  
0.099%  
1200  
**  
**  
300  
2400  
3900  
600  
4800  
7800  
**  
1200  
1800  
2000  
2400  
3600  
4800  
7200  
9600  
19200  
38400  
57600  
115200  
9600  
15600  
23400  
26000  
31200  
46800  
62400  
93600  
124800  
249600  
499200  
748800  
1497600  
**  
14400  
16000  
19200  
28800  
38400  
57600  
76800  
153600  
307200  
460800  
921600  
**  
64  
0.53%  
**  
58  
48  
**  
32  
**  
24  
**  
16  
**  
12  
**  
6
**  
3
**  
2
**  
1
** The percentage error for all baud rates, except where indicated otherwise, is 0.16%.  
-62  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.4.5  
Reg6 - Transmitter FIFO Depth (TXFDTH) (Read Only)  
MODE  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Advanced IR  
Reset Value  
0
0
0
0
TXFD5  
0
TXFD4  
0
TXFD3  
0
TXFD2  
0
TXFD1  
0
TXFD1  
0
Bit 7~6:  
Bit 5~0:  
Reserved, Read 0.  
Reading these bits returns the current transmitter FIFO depth, that is, the number of bytes  
left in the transmitter FIFO.  
7.4.6  
Reg7 - Receiver FIFO Depth (RXFDTH) (Read Only)  
MODE  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
RXFD2  
0
BIT 1  
BIT 0  
Advanced IR  
Reset Value  
0
0
0
0
RXFD5 RXFD4 RXFD3  
RXFD1 RXFD1  
0
0
0
0
0
Bit 7~6:  
Bit 5~0:  
Reserved, Read 0.  
Reading these bits returns the current receiver FIFO depth, that is, the number of bytes  
left in the receiver FIFO.  
7.5 Set3 - Version ID and Mapped Control Registers  
ADDRESS  
OFFSET  
REGISTER  
NAME  
REGISTER DESCRIPTION  
Advanced IR ID  
0
1
2
3
4
5
6
7
AUID  
Mapped IR Control Register  
MP_UCR  
MP_UFR  
SSR  
Mapped IR FIFO Control Register  
Sets Select Register  
-
-
-
-
Reversed  
Reserved  
Reserved  
Reserved  
7.5.1  
Reg0 - Advanced IR ID (AUID)  
This register is read only. It stores advanced IR version ID. Reading it returns 1XH.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SSR  
SSR7  
0
SSR6  
0
SSR5  
0
SSR4  
1
SSR3  
X
SSR2  
X
SRR1  
X
SRR0  
X
Default Value  
Publication Release Date: May 2006  
Revision 0.60  
-63 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.5.2  
Reg1 - Mapped IR Control Register (MP_UCR)  
This register is read only. Reading this register returns IR Control Register value of Set 0.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SSR  
SSR7  
0
SSR6  
0
SSR5  
0
SSR4  
0
SSR3  
0
SSR2  
0
SRR1  
0
SRR0  
0
Default Value  
7.5.3  
Reg2 - Mapped IR FIFO Control Register (MP_UFR)  
This register is read only. Reading this register returns IR FIFO Control Register (UFR) value of SET  
0.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SSR  
SSR7  
0
SSR6  
0
SSR5  
0
SSR4  
0
SSR3  
0
SSR2  
0
SRR1  
0
SRR0  
0
Default Value  
7.5.4  
Reg3 - Sets Select Register (SSR)  
Reading this register returns E4H. Writing a value selects a Register Set.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SSR  
SSR7  
1
SSR6  
1
SSR5  
1
SSR4  
0
SSR3  
0
SSR2  
1
SRR1  
0
SRR0  
0
Default Value  
7.6 Set4 - TX/RX/Timer counter registers and IR control registers.  
ADDRESS  
OFFSET  
REGISTER  
NAME  
REGISTER DESCRIPTION  
Timer Value Low Byte  
0
1
2
3
4
5
6
7
TMRL  
TMRH  
IR_MSL  
SSR  
Timer Value High Byte  
Infrared Mode Select  
Sets Select Register  
Transmitter Frame Length Low Byte  
Transmitter Frame Length High Byte  
Receiver Frame Length Low Byte  
Receiver Frame Length High Byte  
TFRLL  
TFRLH  
RFRLL  
RFRLH  
7.6.1  
Set4.Reg0, 1 - Timer Value Register (TMRL/TMRH)  
12  
This is a 12-bit timer whose resolution is 1ms, that is, the maximum programmable time is 2 -1 ms.  
The timer is a down-counter and starts counting down when EN_TMR (Enable Timer) of Set4.Reg2 is  
set to 1. When the timer counts down to zero and EN_TMR=1, the TMR_I is set to 1 and a new initial  
value will be loaded into counter.  
-64  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.6.2  
Set4.Reg2 - Infrared Mode Select (IR_MSL)  
MODE  
BIT 7 BIT 6 BIT 5 BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Advanced IR  
Reset Value  
-
-
-
-
IR_MSL1  
0
IR_MSL0  
0
TMR_TST  
0
EN_TMR  
0
0
0
0
0
Bit 7~4:  
Bit 3, 2:  
Reserved, write to 0.  
IR_MSL1, 0 - Infrared Mode Select  
Select legacy IR, SIR, or ASK-IR mode. Note that in legacy SIR/ASK-IR user should set  
DIS_BACK=1 to avoid backward when programming baud rate.  
IR_MSL1, 0  
OPERATION MODE SELECTED  
00  
01  
10  
11  
Legacy IR  
CIR  
Legacy ASK-IR  
Legacy SIR  
Bit 1:  
Bit 0:  
7.6.3  
TMR_TST - Timer Test  
When set to 1, reading the TMRL/TMRH returns the programmed values of TMRL/TMRH  
instead of the value of down counter. This bit is for testing timer register.  
EN_TMR - Enable Timer  
A write to 1 will enable the timer.  
Set4.Reg3 - Set Select Register (SSR)  
Reading this register returns E8H. Writing this register selects Register Set.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SSR  
SSR7  
1
SSR6  
1
SSR5  
1
SSR4  
1
SSR3  
1
SSR2  
0
SRR1  
0
SRR0  
0
Default Value  
7.6.4  
Set4.Reg4, 5 - Transmitter Frame Length (TFRLL/TFRLH)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
TFRLL  
bit 7  
0
bit 6  
0
bit 5  
0
bit 4  
0
bit3  
0
bit 2  
0
bit 1  
0
bit 0  
0
Reset  
Value  
TFRLH  
-
-
-
-
-
-
bit 12  
0
bit 11  
0
bit 10  
0
bit 9  
0
bit 8  
0
Reset  
Value  
Publication Release Date: May 2006  
Revision 0.60  
-65 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
These are combined to be a 13-bit register. Writing these registers programs the transmitter frame  
length of a package. These registers are only valid when APM=1 (automatic package mode,  
Set5.Reg4.bit5). When APM=1, the physical layer will split data stream to a programmed frame  
length if the transmitted data is larger than the programmed frame length. When these registers are  
read, they will return the number of bytes which is not transmitted from a frame length programmed.  
7.6.5  
Set4.Reg6, 7 - Receiver Frame Length (RFRLL/RFRLH)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RFRLL  
bit 7  
0
bit 6  
0
bit 5  
0
bit 4  
0
bit 3  
0
bit 2  
0
bit 1  
0
bit 0  
0
Reset  
Value  
RFRLH  
-
-
-
-
-
-
bit 12  
0
bit 11  
0
bit 10  
0
bit 9  
0
bit 8  
0
Reset  
Value  
These are combined to be a 13-bit registers and up counter. The length of receiver frame will be  
limited to the programmed frame length. If the received frame length is larger than the programmed  
receiver frame length, the bit of MX_LEX (Maximum Length Exceed) will be set to 1. Simultaneously,  
the receiver will not receive any more data to RX FIFO until the next start flag of the next frame, which  
is defined in the physical layer IrDA 1.1. Reading these registers returns the number of received data  
bytes of a frame from the receiver.  
7.7 Set 5 - Flow control and IR control and Frame Status FIFO registers  
ADDRESS  
OFFSET  
REGISTER  
NAME  
REGISTER DESCRIPTION  
Flow Control Baud Rate Divisor Latch Register (Low Byte)  
Flow Control Baud Rate Divisor Latch Register (High Byte)  
Flow Control Mode Operation  
0
1
2
3
4
5
6
7
FCBLL  
FCBHL  
FC_MD  
SSR  
Sets Select Register  
Infrared Configure Register  
IRCFG1  
FS_FO  
RFRLFL  
RFRLFH  
Frame Status FIFO Register  
Receiver Frame Length FIFO Low Byte  
Receiver Frame Length FIFO High Byte  
7.7.1  
Set5.Reg0, 1 - Flow Control Baud Rate Divisor Latch Register (FCDLL/ FCDHL)  
If flow control is enforced when UART switches mode from MIR/FIR to SIR, then the pre-programmed  
baud rate of FCBLL/FCBHL are loaded into advanced baud rate divisor latch (ADBLL/ADBHL).  
-66  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.7.2  
Set5.Reg2 - Flow Control Mode Operation (FC_MD)  
These registers control flow control mode operation as shown in the following table.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
FC_MD  
FC_MD2  
0
FC_MD1  
0
FC_MD0  
0
-
FC_DSW  
0
EN_FD  
0
EN_BRFC  
0
EN_FC  
0
Reset  
Value  
0
Bit 7~5  
FC_MD2 - Flow Control Mode  
When flow control is enforced, these bits will be loaded into AD_MD2~0 of advanced  
HSR (Handshake Status Register). These three bits are defined as same as AD_MD2~0.  
Bit 4:  
Bit 3:  
Reserved, write 0.  
FC_DSW - Flow Control DMA Channel Swap  
A write to 1 allow user to swap DMA channel for transmitter or receiver when flow control  
is enforced.  
FC_DSW  
Next Mode After Flow Control Occurred  
Receiver Channel  
0
1
Transmitter Channel  
Bit 2:  
Bit 1:  
EN_FD - Enable Flow DMA Control  
A write to 1 enables UART to use DMA channel when flow control is enforced.  
EN_BRFC - Enable Baud Rate Flow Control  
A write to 1 enables FC_BLL/FC_BHL (Flow Control Baud Rate Divider Latch, in  
Set5.Reg1~0) to be loaded into advanced baud rate divisor latch (ADBLL/ADBHL, in  
Set2.Reg1~0).  
Bit 0:  
EN_FC - Enable Flow Control  
A write to 1 enables flow control function and bit 7~1 of this register.  
Publication Release Date: May 2006  
-67 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.7.3  
Set5.Reg3 - Sets Select Register (SSR)  
Writing this register selects Register Set. Reading this register returns ECH.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SSR  
SSR7  
1
SSR6  
1
SSR5  
1
SSR4  
0
SSR3  
1
SSR2  
1
SRR1  
0
SRR0  
0
Default Value  
7.7.4  
Set5.Reg4 - Infrared Configure Register 1 (IRCFG1)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRCFG1  
-
FSF_TH  
0
FEND_M  
0
AUX_RX  
0
-
-
IRHSSL  
0
IR_FULL  
0
Reset  
Value  
0
0
0
Bit 7:  
Reserved, write 0.  
FSF_TH - Frame Status FIFO Threshold  
Bit 6:  
Set this bit to determine the frame status FIFO threshold level and to generate the FSF_I.  
The threshold level values are defined as follows.  
FSF_TH  
STATUS FIFO THRESHOLD LEVEL  
2
4
0
1
Bit 5:  
Bit 4:  
FEND_MD - Frame End Mode  
A write to 1 enables hardware to split data stream into equal length frame automatically  
as defined in Set4.Reg4 and Set4.Reg5, i.e., TFRLL/TFRLH.  
AUX_RX - Auxiliary Receiver Pin  
A write to 1 selects IRRX input pin. (Refer to Set7.Reg7.Bit5)  
Reserved, write 0.  
Bit 3~2:  
Bit 1:  
IRHSSL - Infrared Handshake Status Select  
When set to 0, the HSR (Handshake Status Register) operates as same as defined in IR  
mode. A write to 1 will disable HSR, and reading HSR returns 30H.  
Bit 0:  
IR_FULL - Infrared Full Duplex Operation  
When set to 0, IR module operates in half duplex. A write to 1 makes IR module operate  
in full duplex.  
-68  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.7.5  
Set5.Reg5 - Frame Status FIFO Register (FS_FO)  
This register shows the bottom byte of frame status FIFO.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
FS_FO  
FSFDR  
0
LST_FR  
0
-
MX_LEX PHY_ERR CRC_ERR  
RX_OV  
0
FSF_OV  
0
Reset  
Value  
0
0
0
0
Bit 7:  
FSFDR - Frame Status FIFO Data Ready  
Indicate that a data byte is valid in frame status FIFO bottom.  
LST_FR - Lost Frame  
Bit 6:  
Bit 5:  
Bit 4:  
Set to 1 when one or more frames have been lost.  
Reserved.  
MX_LEX - Maximum Frame Length Exceed  
Set to 1 when incoming data exceeds programmed maximum frame length defined in  
Set4.Reg6 and Set4.Reg7. This bit is in frame status FIFO bottom and is valid only when  
FSFDR=1 (Frame Status FIFO Data Ready).  
Bit 3:  
Bit 2:  
PHY_ERR - Physical Error  
When receiving data, any physical layer error as defined in IrDA 1.1 will set this bit to 1.  
This bit is in frame status FIFO bottom and is valid only when FSFDR=1 (Frame Status FIFO  
Data Ready).  
CRC_ERR - CRC Error  
Set to 1 when receive a bad CRC in a frame. This CRC belongs to physical layer as defined  
in IrDA 1.1. This bit is in frame status FIFO bottom and is valid only when FSFDR=1 (Frame  
Status FIFO Data Ready).  
Bit 1:  
Bit 0:  
RX_OV - Received Data Overrun  
Set to 1 when receiver FIFO overruns.  
FSF_OV - Frame Status FIFO Overrun  
Set to 1 When frame status FIFO overruns.  
7.7.6  
Set5.Reg6, 7 - Receiver Frame Length FIFO (RFLFL/RFLFH) or Lost Frame  
Number (LST_NU)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RFLFL/ LST_NU  
Reset Value  
RFLFH  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
0
-
0
-
0
-
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
Reset Value  
0
0
0
Publication Release Date: May 2006  
Revision 0.60  
-69 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Receiver Frame Length FIFO (RFLFL/RFLFH):  
These are combined to be a 13-bit register. Reading these registers returns received byte count for  
the frame. When read, the register of RFLFH will pop-up another frame status and frame length if  
FSFDR=1 (Set5.Reg4.Bit7).  
Lost Frame Number (LST_NU):  
When LST_FR=1 (Set5.Reg4.Bit6), Reg6 stands for LST_NU which is a 8-bit register holding the  
number of frames lost in succession.  
7.8 Set6 - IR Physical Layer Control Registers  
ADDRESS OFFSET  
REGISTER NAME  
REGISTER DESCRIPTION  
Infrared Configure Register 2  
0
1
2
3
4
5
6
7
IR_CFG2  
MIR_PW  
SIR_PW  
SSR  
MIR (1.152M bps or 0.576M bps) Pulse Width  
SIR Pulse Width  
Sets Select Register  
High Speed Infrared Flag Number  
HIR_FNU  
Reserved  
Reserved  
Reserved  
-
-
-
7.8.1  
This register controls ASK-IR, MIR, FIR operations.  
REG. BIT 7 BIT 6 BIT 5 BIT 4  
IR_CFG2 SHMD_N SHDM_N FIR_CRC MIR_CRC  
Set6.Reg0 - Infrared Configure Register 2 (IR_CFG2)  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
-
INV_CRC DIS_CRC  
-
Reset  
Value  
0
0
1
0
0
0
0
0
Bit 7:  
SHMD_N - ASK-IR Modulation Disable  
SHMD_N  
Modulation Mode  
0
1
IRTX modulate 500K Hz Square Wave  
Re-rout IRTX  
Bit 6:  
SHDM_N - ASK-IR Demodulation Disable  
SHDM_N  
Demodulation Mode  
Demodulation 500K Hz  
Re-rout IRRX  
0
1
-70  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 5:  
FIR_CRC - FIR (4M bps) CRC Type  
FIR_CRC  
CRC Type  
16-bit CRC  
32-bit CRC  
0
1
Note that the 16/32-bit CRC are defined in IrDA 1.1 physical layer.  
Bit 4:  
MIR_CRC - MIR (1.152M/0.576M bps) CRC Type  
MIR_CRC  
CRC Type  
16-bit CRC  
32-bit CRC  
0
1
Bit 2:  
Bit 1:  
INV_CRC - Inverting CRC  
When set to 1, the CRC is inversely output in physical layer.  
DIS_CRC - Disable CRC  
When set to 1, the transmitter does not transmit CRC in physical layer.  
Reserved, write 1.  
Bit 0:  
7.8.2  
Set6.Reg1 - MIR (1.152M/0.576M bps) Pulse Width  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
MIR_PW  
-
-
-
M_PW4  
0
M_PW3  
1
M_PW2  
0
M_PW1  
1
M_PW0  
0
Reset  
Value  
0
0
0
This 5-bit register sets MIR output pulse width.  
M_PW4~0  
MIR PULSE WIDTH (1.152M BPS)  
MIR OUTPUT WIDTH (0.576M BPS)  
00000  
00001  
00010  
...  
0 ns  
20.83 ns  
0 ns  
41.66 ns  
41.66 (==20.83*2) ns  
...  
83.32 (==41.66*2) ns  
...  
k
20.83*k ns  
41.66*k ns  
10  
10  
10  
...  
...  
...  
11111  
645 ns  
1290 ns  
Publication Release Date: May 2006  
Revision 0.60  
-71 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
7.8.3  
Set6.Reg2 - SIR Pulse Width  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SIR_PW  
-
-
-
S_PW4  
0
S_PW3  
0
S_PW2  
0
S_PW1  
0
S_PW0  
0
Reset Value  
0
0
0
This 5-bit register sets SIR output pulse width.  
S_PW4~0  
SIR OUTPUT PULSE WIDTH  
00000  
01101  
Others  
3/16 bit time of IR  
1.6 us  
1.6 us  
7.8.4  
Set6.Reg3 - Set Select Register  
Select Register Set by writing a set number to this register. Reading this register returns F0H.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SSR  
SSR7  
1
SSR6  
1
SSR5  
1
SSR4  
1
SSR3  
0
SSR2  
0
SRR1  
0
SRR0  
0
Default Value  
7.8.5  
Set6.Reg4 - High Speed Infrared Beginning Flag Number (HIR_FNU)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
HIR_FNU  
M_FG3  
0
M_FG2  
0
M_FG1  
1
M_FG0  
0
F_FL3  
1
F_FL2  
0
F_FL1  
1
F_FL0  
0
Reset Value  
Bit 7~4:  
M_FG3~0 - MIR beginning Flag Number  
These bits define the number of transmitter Start Flag of MIR. Note that the number of  
MIR start flag should be equal or more than two which is defined in IrDA 1.1 physical  
layer. The default value is 2.  
M_FG3~0  
BEGINNING FLAG NUMBER  
M_FG3~0  
BEGINNING FLAG NUMBER  
Reserved  
10  
12  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
16  
2 (Default)  
3
4
5
6
8
20  
24  
28  
32  
Reserved  
-72  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 3~0:  
F_FG3~0 - FIR Beginning Flag Number  
These bits define the number of transmitter Preamble Flag in FIR. Note that the number  
of FIR start flag should be equal to sixteen which is defined in IrDA 1.1 physical layer.  
The default value is 16.  
M_FG3~0  
BEGINNING FLAG  
NUMBER  
M_FG3~0  
BEGINNING FLAG NUMBER  
Reserved  
10  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
2
3
4
5
6
8
12  
16 (Default)  
20  
24  
28  
32  
Reserved  
7.9 Set7 - Remote control and IR module selection registers  
ADDRESS OFFSET REGISTER NAME  
REGISTER DESCRIPTION  
Remote Infrared Receiver Control  
Remote Infrared Transmitter Control  
Remote Infrared Config Register  
Sets Select Register  
0
1
2
3
4
5
6
7
RIR_RXC  
RIR_TXC  
RIR_CFG  
SSR  
Infrared Module (Front End) Select 1  
Infrared Module Select 2  
IRM_SL1  
IRM_SL2  
IRM_SL3  
IRM_CR  
Infrared Module Select 3  
Infrared Module Control Register  
7.9.1  
Set7.Reg0 - Remote Infrared Receiver Control (RIR_RXC)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RIR_RXC  
RX_FR2  
0
RX_FR1  
0
RX_FR0 RX_FSL4 RX_FSL3 RX_FSL2 RX_FSL1 RX_FSL0  
Default Value  
1
0
1
0
0
1
Publication Release Date: May 2006  
Revision 0.60  
-73 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
This register defines frequency range of receiver of remote IR.  
Bit 7~5:  
RX_FR2~0 - Receiver Frequency Range 2~0.  
These bits select the input frequency range of the receiver. It is implemented through a  
band pass filter, i.e., only the input signals whose frequency lies in the range defined in  
this register will be received.  
Bit 4~0:  
RX_FSL4~0 - Receiver Frequency Select 4~0.  
Select the operation frequency of receiver.  
Table: Low Frequency range select of receiver.  
RX_FR2~0 (LOW FREQUENCY)  
010  
001  
011  
RX_FSL4~0  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01011  
01100  
01101  
01111  
10000  
10010  
10011  
10101  
10111  
11010  
11011  
11101  
MIN.  
26.1  
28.2  
29.4  
30.0  
31.4  
32.1  
32.8  
33.6*  
34.4  
36.2  
37.2  
38.2  
40.3  
41.5  
42.8  
44.1  
45.5  
48.7  
50.4  
54.3  
MAX.  
29.6  
32.0  
33.3  
34.0  
35.6  
36.4  
37.2  
38.1*  
39.0  
41.0  
42.1  
43.2  
45.7  
47.1  
48.5  
50.0  
51.6  
55.2  
57.1  
61.5  
MIN.  
24.7  
26.7  
27.8  
28.4  
29.6  
30.3  
31.0  
31.7  
32.5  
34.2  
35.1  
36.0  
38.1  
39.2  
40.4  
41.7  
43.0  
46.0  
47.6  
51.3  
MAX.  
31.7  
34.3  
35.7  
36.5  
38.1  
39.0  
39.8  
40.8  
41.8  
44.0  
45.1  
46.3  
49.0  
50.4  
51.9  
53.6  
55.3  
59.1  
61.2  
65.9  
MIN.  
23.4  
25.3  
26.3  
26.9  
28.1  
28.7  
29.4  
30.1  
30.8  
32.4  
33.2  
34.1  
36.1  
37.2  
38.3  
39.5  
40.7  
43.6  
45.1  
48.6  
MAX.  
34.2  
36.9  
38.4  
39.3  
41.0  
42.0  
42.9  
44.0  
45.0  
47.3  
48.6  
49.9  
52n.7  
54.3  
56.0  
57.7  
59.6  
63.7  
65.9  
71.0  
Note that those unassigned combinations are reserved.  
-74  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Table: High Frequency range select of receiver  
RX_FR2~0 (HIGH FREQUENCY)  
001  
Min.  
Max.  
457.1  
489.8  
527.4  
RX_FSL4~0  
355.6  
380.1  
410.3  
00011  
01000  
01011  
Note that those unassigned combinations are reserved.  
Table: SHARP ASK-IR receiver frequency range select.  
RX_FSL4~0 (SHARP ASK-IR)  
011 100  
457.1 564.7 436.4 600.0 417.4 640.0 400.0 685.6 384.0 738.5  
RX_FR2~0  
001  
010  
101  
110  
-
480.0* 533.3*  
Note that those unassigned combinations are reserved.  
7.9.2  
Set7.Reg1 - Remote Infrared Transmitter Control (RIR_TXC)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RIR_TXC  
TX_PW2 TX_PW1 TX_PW0 TX_FSL4 TX_FSL3 TX_FSL2 TX_FSL1 TX_FSL0  
Default Value  
0
1
1
0
1
0
0
1
This Register defines the transmitter frequency and pulse width of remote IR.  
Bit 7~5:  
TX_PW2~0 - Transmitter Pulse Width 2~ 0.  
Select the transmission pulse width.  
TX_PW2~0  
010  
LOW FREQUENCY  
6 μ s  
HIGH FREQUENCY  
0.7 μ s  
011  
7 μ s  
0.8 μ s  
100  
9 μ s  
0.9 μ s  
101  
10.6 μ s  
1.0 μ s  
Note that those unassigned combinations are reserved.  
Bit 4~0:  
TX_FSL4~0 - Transmitter Frequency Select 4~0.  
Select the transmission frequency.  
Publication Release Date: May 2006  
Revision 0.60  
-75 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Table: Low frequency selected.  
TX_FSL4~0  
LOW FREQUENCY  
30K Hz  
00011  
31K HZ  
00100  
...  
...  
11101  
56K Hz  
Note that those unassigned combinations are reserved.  
Table: High frequency selected.  
TX_FSL4~0  
HIGH FREQUENCY  
400K Hz  
00011  
450K Hz  
01000  
01011  
480K Hz  
Note that those unassigned combinations are reserved.  
7.9.3  
Set7.Reg2 - Remote Infrared Config Register (RIR_CFG)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RIR_CFG  
P_PNB  
0
SMP_M  
0
RXCFS  
0
-
TX_CFS  
0
RX_DM  
0
TX_MM1 TX_MM0  
Default Value  
0
0
0
Bit 7:  
P_PNB: Programming Pulse Number Coding.  
Write a 1 to select programming pulse number coding. The code format is defined as  
follows.  
(Number of bits) - 1  
B7 B6 B5 B4 B3 B2 B1 B0  
Bit value  
If the bit value is set to 0, the high pulse will be transmitted/received. If the bit value is set  
to 1, then no energy will be transmitted/received.  
Bit 6:  
SMP_M - Sampling Mode.  
To select receiver sampling mode.  
When set to 0 then uses T-period sampling, that the T-period is programmed IR baud  
rate.  
When set to 1, programmed baud rate will be used to do oversampling.  
-76  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 5:  
RXCFS - Receiver Carry Frequency Select  
RXCFS  
Selected Frequency  
30K ~ 56K Hz  
0
1
400K ~ 480K Hz  
Bit 4:  
Bit 3:  
Reserved, write 0.  
TX_CFS - Transmitter Carry Frequency Select.  
Select low speed or high speed transmitter carry frequency.  
TX_FCS  
Selected Frequency  
30K ~ 56K Hz  
0
400K ~ 480K Hz  
1
Bit 2:  
RX_DM - Receiver Demodulation Mode.  
RX_DM  
Demodulation Mode  
Enable internal decoder  
Disable internal decoder  
0
1
Bit 1~0:  
TX_MM1~0 - Transmitter Modulation Mode 1~0  
TX_MM1~0  
TX Modulation Mode  
Continuously send pulse for logic 0  
8 pulses for logic 0 and no pulse for logic 1.  
6 pulses for logic 0 and no pulse for logic 1  
Reserved.  
00  
01  
10  
11  
7.9.4  
Set7.Reg3 - Sets Select Register (SSR)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SSR  
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
0
Bit 2  
1
Bit 1  
0
Bit 0  
0
Default Value  
Reading this register returns F4H. Select Register Set by writing a set number to this register.  
7.9.5 Set7.Reg4 - Infrared Module (Front End) Select 1 (IRM_SL1)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRM_SL1  
IR_MSP  
0
SIR_SL2 SIR_SL1 SIR_SL0  
-
AIR_SL2 AIR_SL1 AIR_SL0  
Default Value  
0
0
0
0
0
0
0
Publication Release Date: May 2006  
Revision 0.60  
-77 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 7:  
IR_MSP - IR Mode Select Pulse  
When set to 1, the transmitter (IRTX) will send a 64 μs pulse to setup a special IR front-  
end operational mode. When IR front-end module uses mode select pin (MD) and  
transmitter IR pulse (IRTX) to switch between high speed IR (such as FIR or MIR) and  
low speed IR (SIR or ASK-IR), this bit should be used.  
Bit 6~4:  
SIR_SL2~0 - SIR (Serial IR) mode select.  
These bits are used to program the operational mode of the SIR front-end module.  
These values of SIR_SL2~0 will be automatically loaded to pins of IR_SL2~0,  
respectively, when (1) AM_FMT=1 (Automatic Format, in Set7.Reg7.Bit7); (2) the mode  
of Advanced IR is set to SIR (AD_MD2~0, in Set0.Reg4.Bit7~0).  
Bit 3:  
Reserved, write 0.  
Bit 2~0:  
AIR_SL2~0 - ASK-IR Mode Select.  
These bits setup the operational mode of ASK-IR front-end module when AM_FMT=1 and  
AD_MD2~0 are configured to ASK-IR mode. These values will be automatically loaded to  
IR_SL2~0, respectively.  
7.9.6  
Set7.Reg5 - Infrared Module (Front End) Select 2 (IRM_SL2)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRM_SL2  
-
FIR_SL2 FIR_SL1 FIR_SL0  
-
MIR_SL2 MIR_SL1 MIR_SL0  
Default Value  
0
0
0
0
0
0
0
0
Bit 7:  
Reserved, write 0.  
FIR_SL2~0 - FIR mode select.  
Bit 6~4:  
These bits setup the operational mode of FIR front-end module when AM_FMT=1 and  
AD_MD2~0 are configured to FIR mode. These values will be automatically loaded to  
IR_SL2~0, respectively.  
Bit 3:  
Reserved, write 0.  
Bit 2~0:  
MIR_SL2~0 - MIR Mode Select.  
These bits setup the MIR operational mode when AM_FMT=1 and AD_MD2~0 are  
configured to MIR mode. These values will be automatically loaded to IR_SL2~0,  
respectively.  
7.9.7  
Set7.Reg6 - Infrared Module (Front End) Select 3 (IRM_SL3)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRM_SL3  
-
LRC_SL2 LRC_SL1 LRC_SL0  
-
HRC_SL2 HRC_SL1 HRC_SL0  
Default Value  
0
0
0
0
0
0
0
0
-78  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 7:  
Reserved, write 0.  
Bit 6~4:  
LRC_SL2~0 - Low Speed Remote IR mode select.  
These bits setup the operational mode of low speed remote IR front-end module when  
AM_FMT=1 and AD_MD2~0 are configured to Remote IR mode. These values will be  
automatically loaded to IR_SL2~0, respectively.  
Bit 3:  
Reserved, write 0.  
Bit 2~0:  
HRC_SL2~0 - High Speed Remote IR Mode Select.  
These bits setup the operational mode of high speed remote IR front-end module when  
AM_FMT=1 and .AD_MD2~0 are configured to Remote IR mode. These values will be  
automatically loaded to IR_SL2~0, respectively.  
7.9.8  
Set7.Reg7 - Infrared Module Control Register (IRM_CR)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRM_CR  
AM_FMT IRX_MSL  
IRSL0D  
0
RXINV  
0
TXINV  
0
-
-
-
Default Value  
0
0
0
0
0
Bit 7:  
Bit 6:  
AM_FMT - Automatic Format  
A write to 1 will enable automatic format IR front-end module. These bit will affect the  
output of IR_SL2~0 which is referred by IR front-end module selection (Set7.Reg4~6)  
IRX_MSL - IR Receiver Module Select  
Select the receiver input path from the IR front end module if IR module has the  
separated high speed and low speed receiver path. If the IR module has only one  
receiving path, then this bit should be set to 0.  
IRX_MSL  
Receiver Pin selected  
IRRX (Low/High Speed)  
IRRXH (High Speed)  
0
1
Bit 5:  
IRSL0D - Direction of IRSL0 Pin  
Select function for IRRXH or IRSL0 because they share common pin and have different  
input/output direction.  
IRSL0_D  
Function  
IRRXH (I/P)  
IRSL0 (O/P)  
0
1
Publication Release Date: May 2006  
Revision 0.60  
-79 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Table: IR receiver input pin selection  
IRSL0D  
IRX_MSL  
AUX_RX  
HIGH SPEED IR  
SELECTED IR PIN  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
X
X
0
1
X
X
0
1
IRRX  
IRRXH  
IRRX  
X
X
0
IRRXH  
IRRX  
1
Reserved  
IRRX  
X
X
Reserved  
Note: that (1) AUX_RX is defined in Set5.Reg4.Bit4, (2) high speed IR includes MIR (1.152M or 0.576M bps) and FIR (4M bps),  
(3) IRRX is the input of the low speed or high speed IR receiver, IRRXH is the input of the high speed IR receiver.  
Bit 4:  
RXINV - Receiving Signal Invert  
A write to 1 will Invert the receiving signal.  
TXINV - Transmitting Signal Invert  
A write to 1 will Invert the transmitting signal.  
Reserved, write 0.  
Bit 3:  
Bit 2~0:  
-80  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8. PARALLEL PORT  
8.1 Printer Interface Logic  
The parallel port of the W83977F/G, W83977AF/AG makes possible the attachment of various  
devices that accept eight bits of parallel data at standard TTL level. The W83977F/G, W83977AF/AG  
supports an IBM XT/AT compatible parallel port (SPP), bi-directional parallel port (BPP), Enhanced  
Parallel Port (EPP), Extended Capabilities Parallel Port (ECP), Extension FDD mode (EXTFDD),  
Extension 2FDD mode (EXT2FDD) on the parallel port. Refer to the configuration registers for more  
information on disabling, power-down, and on selecting the mode of operation.  
Table 8-1 shows the pin definitions for different modes of the parallel port.  
TABLE 8-1-1 PARALLEL PORT CONNECTOR AND PIN DEFINITIONS  
HOST  
PIN NUMBER  
PIN  
SPP  
EPP  
ECP  
CONNECTOR OF W83977F/ AF  
ATTRIBUTE  
1
36  
O
nSTB  
nWrite  
2
nSTB, HostClk  
2-9  
10  
31-26, 24-23  
22  
I/O  
I
PD<0:7>  
nACK  
PD<0:7> PD<0:7>  
Intr  
2
nACK, PeriphClk  
11  
12  
13  
14  
15  
16  
17  
21  
19  
18  
35  
34  
33  
32  
I
I
BUSY  
PE  
nWait  
PE  
2
BUSY, PeriphAck  
2
PEerror, nAckReverse  
I
SLCT  
nAFD  
nERR  
nINIT  
nSLIN  
Select  
nDStrb  
nError  
nInit  
2
SLCT, Xflag  
O
I
2
nAFD, HostAck  
1
2
nFault , nPeriphRequest  
O
O
1
2
nINIT , nReverseRqst  
nAStrb  
1
2
nSLIN , ECPMode  
Notes:  
n<name > : Active Low  
1. Compatible Mode  
2. High Speed Mode  
3. For more information, refer to the IEEE 1284 standard.  
Publication Release Date: May 2006  
Revision 0.60  
-81 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
TABLE 8-1-2 PARALLEL PORT CONNECTOR AND PIN DEFINITIONS  
HOST  
CONNECTOR  
PIN NUMBER  
OF W83977F/  
AF  
PIN  
ATTRIBUTE  
SPP  
PIN  
ATTRIBUTE  
EXT2FD  
D
PIN  
ATTRIBUTE  
EXTFDD  
1
2
36  
31  
O
nSTB  
PD0  
---  
I
---  
---  
I
---  
I/O  
INDEX2  
TRAK02  
WP2  
INDEX2  
TRAK02  
WP2  
3
4
5
6
30  
29  
28  
27  
I/O  
I/O  
I/O  
I/O  
PD1  
PD2  
PD3  
PD4  
I
I
I
I
I
I
I
I
RDATA2  
DSKCHG2  
RDATA2  
DSKCHG2  
7
8
26  
24  
I/O  
I/O  
PD5  
PD6  
---  
---  
---  
---  
---  
---  
OD  
MOA2  
DSA2  
DSB2  
MOB2  
WD2  
9
23  
22  
21  
19  
18  
35  
34  
I/O  
PD7  
nACK  
BUSY  
PE  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
---  
---  
10  
11  
12  
13  
14  
15  
I
I
OD  
OD  
OD  
OD  
OD  
OD  
DSB2  
MOB2  
WD2  
I
I
SLCT  
nAFD  
nERR  
WE2  
WE2  
O
I
RWC2  
HEAD2  
DIR2  
RWC2  
HEAD2  
DIR2  
16  
17  
33  
32  
O
O
nINIT  
OD  
OD  
OD  
OD  
nSLIN  
STEP2  
STEP2  
8.2 Enhanced Parallel Port (EPP)  
TABLE 8-2 PRINTER MODE AND EPP REGISTER ADDRESS  
A2  
0
A1  
0
A0  
0
REGISTER  
NOTE  
Data port (R/W)  
1
1
1
1
2
2
2
2
2
0
0
1
Printer status buffer (Read)  
Printer control latch (Write)  
0
1
0
0
1
0
Printer control swapper (Read)  
EPP address port (R/W)  
EPP data port 0 (R/W)  
EPP data port 1 (R/W)  
EPP data port 2 (R/W)  
EPP data port 2 (R/W)  
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Notes:  
1. These registers are available in all modes.  
2. These registers are available only in EPP mode.  
8.2.1  
Data Swapper  
The system microprocessor can read the contents of the printer's data latch by reading the data  
swapper.  
-82  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.2.2  
Printer Status Buffer  
The system microprocessor can read the printer status by reading the address of the printer status  
buffer. The bit definitions are as follows:  
7
6
5
4
3
2
1
1
1
0
TMOUT  
ERROR  
SLCT  
PE  
ACK  
BUSY  
Bit 7: This signal is active during data entry, when the printer is off-line during printing, when the print  
head is changing position, or during an error state. When this signal is active, the printer is busy  
and cannot accept data.  
Bit 6: This bit represents the current state of the printer's  
signal. A 0 means the printer has  
ACK  
received a character and is ready to accept another. Normally, this signal will be active for  
approximately 5 microseconds before BUSY stops.  
Bit 5: Logical 1 means the printer has detected the end of paper.  
Bit 4: Logical 1 means the printer is selected.  
Bit 3: Logical 0 means the printer has encountered an error condition.  
Bit 1, 2: These two bits are not implemented and are logic one during a read of the status register.  
Bit 0: This bit is valid in EPP mode only. It indicates that a 10 μS time-out has occurred on the EPP  
bus. A logic 0 means that no time-out error has occurred; a logic 1 means that a time-out error  
has been detected. Writing a logic 1 to this bit will clear the time-out status bit; writing a logic 0  
has no effect.  
Publication Release Date: May 2006  
-83 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.2.3  
Printer Control Latch and Printer Control Swapper  
The system microprocessor can read the contents of the printer control latch by reading the printer  
control swapper. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
1
1
STROBE  
AUTO FD  
INIT  
SLCT IN  
IRQ ENABLE  
DIR  
Bit 7, 6: These two bits are a logic one during a read. They can be written.  
Bit 5: Direction control bit  
When this bit is a logic 1, the parallel port is in input mode (read); when it is a logic 0,  
the parallel port is in output mode (write). This bit can be read and written. In SPP mode, this  
bit is invalid and fixed at zero.  
Bit 4: A 1 in this position allows an interrupt to occur when ACK changes from low to high.  
Bit 3: A 1 in this bit position selects the printer.  
Bit 2: A 0 starts the printer (50 microsecond pulse, minimum).  
Bit 1: A 1 causes the printer to line-feed after a line is printed.  
Bit 0: A 0.5 microsecond minimum high active pulse clocks data into the printer. Valid data must be  
present for a minimum of 0.5 microseconds before and after the strobe pulse.  
8.2.4  
EPP Address Port  
The address port is available only in EPP mode. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
The contents of DB0-DB7 are buffered (non-inverting) and output to ports PD0-PD7 during a write  
operation. The leading edge of IOW causes an EPP address write cycle to be performed, and the  
trailing edge of IOW latches the data for the duration of the EPP write cycle.  
PD0-PD7 ports are read during a read operation. The leading edge of IOR causes an EPP address  
read cycle to be performed and the data to be output to the host CPU.  
-84  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.2.5  
EPP Data Port 0-3  
These four registers are available only in EPP mode. Bit definitions of each data port are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
When accesses are made to any EPP data port, the contents of DB0-DB7 are buffered (non-inverting)  
and output to the ports PD0-PD7 during a write operation. The leading edge of IOW causes an EPP  
data write cycle to be performed, and the trailing edge of IOW latches the data for the duration of the  
EPP write cycle.  
During a read operation, ports PD0-PD7 are read, and the leading edge of IOR causes an EPP read  
cycle to be performed and the data to be output to the host CPU.  
8.2.6  
Bit Map of Parallel Port and EPP Registers  
REGISTER  
7
6
5
4
3
2
PD2  
1
1
PD1  
1
0
Data Port (R/W)  
PD7  
PD6  
PD5  
PE  
PD4  
SLCT  
PD3  
PD0  
Status Buffer (Read)  
TMOUT  
BUSY  
1
ACK  
1
ERROR  
SLIN  
Control Swapper  
(Read)  
1
IRQEN  
IRQ  
INIT  
AUTOFD  
STROBE  
Control Latch (Write)  
1
1
DIR  
SLIN  
INIT  
PD2  
PD2  
PD2  
PD2  
PD2  
AUTOFD  
PD1  
STROBE  
PD0  
EPP Address Port  
R/W)  
PD7  
PD7  
PD7  
PD7  
PD7  
PD6  
PD6  
PD6  
PD6  
PD6  
PD5  
PD5  
PD5  
PD5  
PD5  
PD4  
PD4  
PD4  
PD4  
PD4  
PD3  
PD3  
PD3  
PD3  
PD3  
EPP Data Port 0  
(R/W)  
PD1  
PD0  
EPP Data Port 1  
(R/W)  
PD1  
PD0  
EPP Data Port 2  
(R/W)  
PD1  
PD0  
EPP Data Port 3  
(R/W)  
PD1  
PD0  
Publication Release Date: May 2006  
Revision 0.60  
-85 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.2.7  
EPP Pin Descriptions  
EPP NAME  
TYPE  
EPP DESCRIPTION  
Denotes an address or data read or write operation.  
Bi-directional EPP address and data bus.  
nWrite  
PD<0:7>  
Intr  
O
I/O  
I
Used by peripheral device to interrupt the host.  
nWait  
I
Inactive to acknowledge that data transfer is completed. Active to indicate  
that the device is ready for the next transfer.  
PE  
I
I
Paper end; same as SPP mode.  
Select  
nDStrb  
nError  
nInits  
Printer selected status; same as SPP mode.  
This signal is active low. It denotes a data read or write operation.  
Error; same as SPP mode.  
O
I
O
This signal is active low. When it is active, the EPP device is reset to its  
initial operating mode.  
nAStrb  
O
This signal is active low. It denotes an address read or write operation.  
8.2.8  
EPP Operation  
When the EPP mode is selected in the configuration register, the standard and bi-directional modes  
are also available. The PDx bus is in the standard or bi-directional mode when no EPP read, write, or  
address cycle is currently being executed. In this condition all output signals are set by the SPP  
Control Port and the direction is controlled by DIR of the Control Port.  
A watchdog timer is required to prevent system lockup. The timer indicates that more than 10 μS have  
elapsed from the start of the EPP cycle to the time  
is deasserted. The current EPP cycle is  
WAIT  
aborted when a time-out occurs. The time-out condition is indicated in Status bit 0.  
8.2.8.1 EPP Operation  
The EPP operates on a two-phase cycle. First, the host selects the register within the device for  
subsequent operations. Second, the host performs a series of read and/or write byte operations to the  
selected register. Four operations are supported on the EPP: Address Write, Data Write, Address  
Read, and Data Read. All operations on the EPP device are performed asynchronously.  
8.2.8.2 EPP Version 1.9 Operation  
The EPP read/write operation can be completed under the following conditions:  
a. If the nWait is active low, when the read cycle (nWrite inactive high, nDStrb/nAStrb active low) or  
write cycle (nWrite active low, nDStrb/nAStrb active low) starts, the read/write cycle proceeds normally  
and will be completed when nWait goes inactive high.  
b. If nWait is inactive high, the read/write cycle will not start. It must wait until nWait changes to active  
low, at which time it will start as described above.  
8.2.8.3 EPP Version 1.7 Operation  
The EPP read/write cycle can start without checking whether nWait is active or inactive. Once the  
read/write cycle starts, however, it will not terminate until nWait changes from active low to inactive  
high.  
-86  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.3 Extended Capabilities Parallel (ECP) Port  
This port is software and hardware compatible with existing parallel ports, so it may be used as a  
standard printer mode if ECP is not required. It provides an automatic high burst-bandwidth channel  
that supports DMA for ECP in both the forward (host to peripheral) and reverse (peripheral to host)  
directions.  
Small FIFOs are used in both forward and reverse directions to improve the maximum bandwidth  
requirement. The size of the FIFO is 16 bytes. The ECP port supports an automatic handshake for the  
standard parallel port to improve compatibility mode transfer speed.  
The ECP port supports run-length-encoded (RLE) decompression (required) in hardware.  
Compression is accomplished by counting identical bytes and transmitting an RLE byte that indicates  
how many times the next byte is to be repeated. Hardware support for compression is optional.  
For more information about the ECP Protocol, refer to the Extended Capabilities Port Protocol and ISA  
Interface Standard.  
8.3.1  
ECP Register and Mode Definitions  
NAME  
data  
ADDRESS  
Base+000h  
Base+000h  
Base+001h  
Base+002h  
Base+400h  
Base+400h  
Base+400h  
Base+400h  
Base+401h  
Base+402h  
I/O  
R/W  
R/W  
R
ECP MODES  
000-001  
011  
FUNCTION  
Data Register  
ecpAFifo  
dsr  
ECP FIFO (Address)  
Status Register  
All  
dcr  
R/W  
R/W  
R/W  
R/W  
R
All  
Control Register  
cFifo  
ecpDFifo  
tFifo  
010  
Parallel Port Data FIFO  
ECP FIFO (DATA)  
Test FIFO  
011  
110  
cnfgA  
cnfgB  
ecr  
111  
Configuration Register A  
Configuration Register B  
Extended Control Register  
R/W  
R/W  
111  
All  
Note: The base addresses are specified by CR23, which are determined by configuration register or hardware setting.  
MODE  
000  
001  
010  
011  
100  
101  
110  
111  
DESCRIPTION  
SPP mode  
PS/2 Parallel Port mode  
Parallel Port Data FIFO mode  
ECP Parallel Port mode  
EPP mode (If this option is enabled in the CR9 and CR0 to select ECP/EPP mode)  
Reserved  
Test mode  
Configuration mode  
Note: The mode selection bits are bit 7-5 of the Extended Control Register.  
Publication Release Date: May 2006  
Revision 0.60  
-87 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.3.2  
Data and ecpAFifo Port  
Modes 000 (SPP) and 001 (PS/2) (Data Port)  
During a write operation, the Data Register latches the contents of the data bus on the rising edge of  
the input. The contents of this register are output to the PD0-PD7 ports. During a read operation, ports  
PD0-PD7 are read and output to the host. The bit definitions are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
Mode 011 (ECP FIFO-Address/RLE)  
A data byte written to this address is placed in the FIFO and tagged as an ECP Address/RLE. The  
hardware at the ECP port transmits this byte to the peripheral automatically. The operation of this  
register is defined only for the forward direction. The bit definitions are as follows:  
7
6
5
4
3
2
1
0
Address or RLE  
Address/RLE  
8.3.3  
Device Status Register (DSR)  
These bits are at low level during a read of the Printer Status Register. The bits of this status register  
are defined as follows:  
7
6
5
4
3
2
1
0
1
1
1
nFault  
Select  
PError  
nAck  
nBusy  
-88  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 7: This bit reflects the complement of the Busy input.  
Bit 6: This bit reflects the nAck input.  
Bit 5: This bit reflects the PError input.  
Bit 4: This bit reflects the Select input.  
Bit 3: This bit reflects the nFault input.  
Bit 2-0: These three bits are not implemented and are always logic one during a read.  
8.3.4  
Device Control Register (DCR)  
The bit definitions are as follows:  
7
1
6
5
4
3
2
1
0
1
strobe  
autofd  
nInit  
SelectIn  
ackIntEn  
Direction  
Bit 6, 7: These two bits are logic one during a read and cannot be written.  
Bit 5: This bit has no effect and the direction is always out if mode = 000 or mode = 010. Direction is  
valid in all other modes.  
0
1
the parallel port is in output mode.  
the parallel port is in input mode.  
Bit 4: Interrupt request enable. When this bit is set to a high level, it may be used to enable interrupt  
requests from the parallel port to the CPU due to a low to high transition on the ACK input.  
Bit 3: This bit is inverted and output to the SLIN output.  
0
1
The printer is not selected.  
The printer is selected.  
Bit 2: This bit is output to the INIT output.  
Bit 1: This bit is inverted and output to the AFD output.  
Bit 0: This bit is inverted and output to the STB output.  
8.3.5  
cFifo (Parallel Port Data FIFO) Mode = 010  
This mode is defined only for the forward direction. The standard parallel port protocol is used by a  
hardware handshake to the peripheral to transmit bytes written or DMAed from the system to this  
FIFO. Transfers to the FIFO are byte aligned.  
Publication Release Date: May 2006  
-89 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.3.6  
ecpDFifo (ECP Data FIFO) Mode = 011  
When the direction bit is 0, bytes written or DMAed from the system to this FIFO are transmitted by a  
hardware handshake to the peripheral using the ECP parallel port protocol. Transfers to the FIFO are  
byte aligned.  
When the direction bit is 1, data bytes from the peripheral are read under automatic hardware  
handshake from ECP into this FIFO. Reads or DMAs from the FIFO will return bytes of ECP data to  
the system.  
8.3.7  
tFifo (Test FIFO Mode) Mode = 110  
Data bytes may be read, written, or DMAed to or from the system to this FIFO in any direction. Data in  
the tFIFO will not be transmitted to the parallel port lines. However, data in the tFIFO may be  
displayed on the parallel port data lines.  
8.3.8  
cnfgA (Configuration Register A) Mode = 111  
This register is a read-only register. When it is read, 10H is returned. This indicates to the system that  
this is an 8-bit implementation.  
8.3.9  
cnfgB (Configuration Register B) Mode = 111  
The bit definitions are as follows:  
7
6
5
4
3
2
1
1
0
1
1
IRQx 0  
IRQx 1  
IRQx 2  
intrValue  
compress  
Bit 7: This bit is read-only. It is at low level during a read. This means that this chip does not support  
hardware RLE compression.  
Bit 6: Returns the value on the ISA IRQ line to determine possible conflicts.  
Bit 5-3: Reflect the IRQ resource assigned for ECP port.  
cnfgB[5:3]  
000  
IRQ resource  
reflect other IRQ resources selected by PnP register (default)  
001  
IRQ7  
010  
IRQ9  
011  
100  
101  
110  
IRQ10  
IRQ11  
IRQ14  
IRQ15  
IRQ5  
111  
Bit 2-0: These five bits are at high level during a read and can be written.  
-90  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.3.10  
ecr (Extended Control Register) Mode = all  
This register controls the extended ECP parallel port functions. The bit definitions are follows:  
7
6
5
4
3
2
1
0
empty  
full  
service Intr  
dmaEn  
nErrIntrEn  
MODE  
MODE  
MODE  
Bit 7-5: These bits are read/write and select the mode.  
000  
001  
Standard Parallel Port mode. The FIFO is reset in this mode.  
PS/2 Parallel Port mode. This is the same as 000 except that direction may be used  
to tri-state the data lines and reading the data register returns the value on the data  
lines and not the value in the data register.  
010  
011  
Parallel Port FIFO mode. This is the same as 000 except that bytes are written or  
DMAed to the FIFO. FIFO data are automatically transmitted using the standard  
parallel port protocol. This mode is useful only when direction is 0.  
ECP Parallel Port Mode. When the direction is 0 (forward direction), bytes placed  
into the ecpDFifo and bytes written to the ecpAFifo are placed in a single FIFO and  
auto transmitted to the peripheral using ECP Protocol. When the direction is 1  
(reverse direction), bytes are moved from the ECP parallel port and packed into  
bytes in the ecpDFifo.  
100  
101  
110  
Selects EPP Mode. In this mode, EPP is activated if the EPP mode is selected.  
Reserved.  
Test Mode. The FIFO may be written and read in this mode, but the data will not be  
transmitted on the parallel port.  
111  
Configuration Mode. The confgA and confgB registers are accessible at 0x400 and  
0x401 in this mode.  
Bit 4: Read/Write (Valid only in ECP Mode)  
1
0
Disables the interrupt generated on the asserting edge of nFault.  
Enables an interrupt pulse on the high to low edge of nFault. If nFault is asserted  
(interrupt) an interrupt will be generated and this bit is written from a 1 to 0.  
Bit 3: Read/Write  
1
0
Enables DMA.  
Disables DMA unconditionally.  
Publication Release Date: May 2006  
-91 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 2: Read/Write  
1
Disables DMA and all of the service interrupts.  
0
Enables one of the following cases of interrupts. When one of the service interrupts  
has occurred, the serviceIntr bit is set to a 1 by hardware. This bit must be reset to  
0 to re-enable the interrupts. Writing a 1 to this bit will not cause an interrupt.  
(a) dmaEn = 1: During DMA this bit is set to a 1 when terminal count is reached.  
(b) dmaEn = 0 direction = 0: This bit is set to 1 whenever there are writeIntr  
Threshold or more bytes free in the FIFO.  
(c) dmaEn = 0 direction = 1: This bit is set to 1 whenever there are readIntr  
Threshold or more valid bytes to be read from the FIFO.  
Bit 1: Read only  
0
1
The FIFO has at least 1 free byte.  
The FIFO cannot accept another byte or the FIFO is completely full.  
Bit 0: Read only  
0
1
The FIFO contains at least 1 byte of data.  
The FIFO is completely empty.  
8.3.11  
Bit Map of ECP Port Registers  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOTE  
data  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
ecpAFifo Addr/RLE Address or RLE field  
2
1
1
2
2
2
dsr  
nBusy  
1
nAck  
1
PError  
Select  
nFault  
1
1
1
autofd  
dcr  
Directio  
ackIntEn  
SelectIn  
nInit  
strobe  
cFifo  
Parallel Port Data FIFO  
ecpDFifo ECP Data FIFO  
tFifo  
cnfgA  
cnfgB  
ecr  
Test FIFO  
0
0
0
1
1
1
0
1
0
1
0
1
0
1
compress  
intrValue  
nErrIntrEn  
MODE  
dmaEn  
serviceIntr  
full  
empty  
Notes:  
1. These registers are available in all modes.  
2. All FIFOs use one common 16-byte FIFO.  
-92  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.3.12  
ECP Pin Descriptions  
NAME  
TYPE  
DESCRIPTION  
nStrobe (HostClk)  
O
The nStrobe registers data or address into the slave on the asserting  
edge during write operations. This signal handshakes with Busy.  
PD<7:0>  
I/O  
I
These signals contains address or data or RLE data.  
nAck (PeriphClk)  
This signal indicates valid data driven by the peripheral when asserted.  
This signal handshakes with nAutoFd in reverse.  
Busy (PeriphAck)  
I
This signal deasserts to indicate that the peripheral can accept data. It  
indicates whether the data lines contain ECP command information or  
data in the reverse direction. When in reverse direction, normal data  
are transferred when Busy (PeriphAck) is high and an 8-bit command  
is transferred when it is low.  
PError (nAckReverse)  
I
This signal is used to acknowledge a change in the direction of the  
transfer (asserted = forward). The peripheral drives this signal low to  
acknowledge nReverseRequest. The host relies upon nAckReverse to  
determine when it is permitted to drive the data bus.  
Select (Xflag)  
I
Indicates printer on line.  
nAutoFd (HostAck)  
O
Requests a byte of data from the peripheral when it is asserted. This  
signal indicates whether the data lines contain ECP address or data in  
the forward direction. When in forward direction, normal data are  
transferred when nAutoFd (HostAck) is high and an 8-bit command is  
transferred when it is low.  
nFault (nPeriphRequest)  
I
Generates an error interrupt when it is asserted. This signal is valid  
only in the forward direction. The peripheral is permitted (but not  
required) to drive this pin low to request a reverse transfer during ECP  
Mode.  
nInit (nReverseRequest)  
nSelectIn (ECPMode)  
O
O
This signal sets the transfer direction (asserted = reverse, deasserted  
= forward). This pin is driven low to place the channel in the reverse  
direction.  
This signal is always deasserted in ECP mode.  
8.3.13  
ECP Operation  
The host must negotiate on the parallel port to determine if the peripheral supports the ECP protocol  
before ECP operation. After negotiation, it is necessary to initialize some of the port bits. The  
following are required:  
(a) Set direction = 0, enabling the drivers.  
(b) Set strobe = 0, causing the nStrobe signal to default to the deasserted state.  
(c) Set autoFd = 0, causing the nAutoFd signal to default to the deasserted state.  
(d) Set mode = 011 (ECP Mode)  
ECP address/RLE bytes or data bytes may be sent automatically by writing the ecpAFifo or ecpDFifo,  
respectively.  
Publication Release Date: May 2006  
-93 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.3.13.1 Mode Switching  
Software will execute P1284 negotiation and all operations prior to a data transfer phase under  
programmed I/O control (mode 000 or 001). Hardware provides an automatic control line handshake,  
moving data between the FIFO and the ECP port only in the data transfer phase (mode 011 or 010).  
If the port is in mode 000 or 001 it may switch to any other mode. If the port is not in mode 000 or 001  
it can only be switched into mode 000 or 001. The direction can be changed only in mode 001.  
When in extended forward mode, the software should wait for the FIFO to be empty before switching  
back to mode 000 or 001. In ECP reverse mode the software waits for all the data to be read from the  
FIFO before changing back to mode 000 or 001.  
8.3.13.2 Command/Data  
ECP mode allows the transfer of normal 8-bit data or 8-bit commands. In the forward direction, normal  
data are transferred when HostAck is high and an 8-bit command is transferred when HostAck is low.  
The most significant bits of the command indicate whether it is a run-length count (for compression) or  
a channel address.  
In the reverse direction, normal data are transferred when PeriphAck is high and an 8-bit command is  
transferred when PeriphAck is low. The most significant bit of the command is always zero.  
8.3.13.3 Data Compression  
The W83977F/G, W83977AF/AG supports run length encoded (RLE) decompression in hardware and  
can transfer compressed data to a peripheral. Note that the odd (RLE) compression in hardware is not  
supported. In order to transfer data in ECP mode, the compression count is written to the ecpAFifo  
and the data byte is written to the ecpDFifo.  
8.3.14  
FIFO Operation  
The FIFO threshold is set in configuration register 5. All data transfers to or from the parallel port can  
proceed in DMA or Programmed I/O (non-DMA) mode, as indicated by the selected mode. The FIFO  
is used by selecting the Parallel Port FIFO mode or ECP Parallel Port Mode. After a reset, the FIFO is  
disabled.  
8.3.15  
DMA Transfers  
DMA transfers are always to or from the ecpDFifo, tFifo, or CFifo. The DMA uses the standard PC  
DMA services. The ECP requests DMA transfers from the host by activating the PDRQ pin. The DMA  
will empty or fill the FIFO using the appropriate direction and mode. When the terminal count in the  
DMA controller is reached, an interrupt is generated and serviceIntr is asserted, which will disable the  
DMA.  
8.3.16  
Programmed I/O (NON-DMA) Mode  
The ECP or parallel port FIFOs can also be operated using interrupt driven programmed I/O.  
Programmed I/O transfers are to the ecpDFifo at 400H and ecpAFifo at 000H or from the ecpDFifo  
located at 400H, or to/from the tFifo at 400H. The host must set the direction, state, dmaEn = 0 and  
serviceIntr = 0 in the programmed I/O transfers.  
The ECP requests programmed I/O transfers from the host by activating the IRQ pin. The  
programmed I/O will empty or fill the FIFO using the appropriate direction and mode.  
-94  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
8.4 Extension FDD Mode (EXTFDD)  
In this mode, the W83977F/ AF changes the printer interface pins to FDC input/output pins, allowing  
the user to install a second floppy disk drive (FDD B) through the DB-25 printer connector. The pin  
assignments for the FDC input/output pins are shown in Table 5-1.  
After the printer interface is set to EXTFDD mode, the following occur:  
(1) Pins MOB and DSB will be forced to inactive state.  
(2) Pins DSKCHG, RDATA , WP, TRAK0, INDEX will be logically ORed with pins PD4-PD0 to serve  
as input signals to the FDC.  
(3) Pins PD4-PD0 each will have an internal resistor of about 1K ohm to serve as pull-up resistor for  
FDD open drain/collector output.  
(4) If the parallel port is set to EXTFDD mode after the system has booted DOS or another operating  
system, a warm reset is needed to enable the system to recognize the extension floppy drive.  
8.5 Extension 2FDD Mode (EXT2FDD)  
In this mode, the W83977F/G, W83977AF/AG changes the printer interface pins to FDC input/output  
pins, allowing the user to install two external floppy disk drives through the DB-25 printer connector to  
replace internal floppy disk drives A and B. The pin assignments for the FDC input/output pins are  
shown in Table5-1.  
After the printer interface is set to EXTFDD mode, the following occur:  
(1) Pins MOA , DSA, MOB, and DSB will be forced to inactive state.  
(2) Pins DSKCHG, RDATA , WP, TRAK0, and INDEX will be logically ORed with pins PD4-PD0 to  
serve as input signals to the FDC.  
(3) Pins PD4-PD0 each will have an internal resistor of about 1K ohm to serve as pull-up resistor for  
FDD open drain/collector output.  
(4) If the parallel port is set to EXT2FDD mode after the system has booted DOS or another operating  
system, a warm reset is needed to enable the system to recognize the extension floppy drive.  
Publication Release Date: May 2006  
-95 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
9. REAL-TIME CLOCK (RTC) AND "ON-NOW" CONTROL  
The RTC with 242 bytes of RAM is a low-power device that provides a time-of-day clock in various  
formats, and a calendar with century register. It has two alarms and three programmable interrupts. It  
is also equipped with external battery backup capability for keeping time and saving RAM data under  
power-failure situation.  
The RTC software is compatible with the MC146818 Clock chip.  
The "On-Now" Control enables PC to be powered on by several trigger events, a telephone ring for  
example. Also, it allows a safely controlled power-off procedure executed in an orderly fashion.  
9.1 REGISTER ADDRESS MAP  
Table 9.1.1, table 9.1.2, and table 9.1.3 show the register map of RTC and "On-Now". These  
registers are separated into three banks: Bank 0, Bank 1, and Bank 2. Bank 0 contains 10 bytes of  
time, calendar, and alarm A data, four bytes of control/status registers, and 114 bytes of general  
purpose user RAM.  
TABLE 9.1.1 - REAL TIME CLOCK ADDRESS MAP BANK 0  
ADDRESS  
00h  
REGISTER TYPE  
REGISTER FUNCTION  
Register 00h : Seconds  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
01h  
Register 01h : Seconds Alarm A  
Register 02h : Minutes  
02h  
03h  
Register 03h : Minutes Alarm A  
Register 04h : Hours  
04h  
05h  
Register 05h : Hours Alarm A  
Register 06h : Day of Week  
Register 07h : Date of Month  
Register 08h: Month  
06h  
07h  
08h  
09h  
Register 09h : Year  
0Ah  
Register 0Ah : Control Register  
Register 0Bh : Control Register (Bit 0 is Read only)  
Register 0Ch : Status Register  
Register 0Dh : Status Register  
Register 0Eh-7Fh : User RAM  
0Bh  
0Ch  
0Dh  
R
0Eh-7Fh  
R/W  
In Bank 1, there are 128 bytes of general purpose user RAM, as shown in table 9.1.2.  
-96  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
TABLE 9.1.2 - REAL TIME CLOCK ADDRESS MAP BANK 1  
ADDRESS  
REGISTER TYPE  
REGISTER FUNCTION  
Register 0h-7Fh : user RAM  
00h-7Fh  
R/W  
Bank 2 has 13 registers, 1 Century register, 8 Alarm B registers and 4 control/status registers for "On-  
Now" function.  
TABLE 9.1.3 - REAL TIME CLOCK "ON-NOW" ADDRESS MAP BANK 2  
ADDRESS  
40h  
REGISTER TYPE  
REGISTER FUNCTION  
Register 40h : Centuries  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
41h  
Register 41h : Seconds Alarm B  
42h  
Register 42h : Minutes Alarm B  
43h  
Register 43h : Hours Alarm B  
44h  
Register 44h : Day of Week Alarm B  
Register 45h : Date of Month Alarm B  
Register 46h : Month Alarm B  
45h  
46h  
47h  
Register 47h : Year Alarm B  
48h  
Register 48h : Century Alarm B  
49h  
Register 49h : "On-Now" Control Register 1  
Register 4Ah : "On-Now" Control Register 2  
Register 4Bh : "On-Now" Status Register 3  
Register 4Ch : "On-Now" Control/Status Register 4  
4Ah  
4Bh  
4Ch  
R/W  
Time, Calendar, Alarm A, and Alarm B data Modes  
REGISTER  
LOCATION  
FUNCTION  
RANGE(DATA MODE)  
BINARY BCD  
00h-3Bh 00h-59h  
EXAMPLE  
BINARY  
BCD  
30h  
30h  
30h  
30h  
08h  
Register 00h Seconds  
Register 01h Sec. Alarm A  
Register 02h Minutes  
Register 03h Min. Alarm A  
Register 04h Hours  
1Eh  
1Eh  
1Eh  
1Eh  
08h  
00h-3Bh  
00h-59h  
00h-3Bh  
00h-59h  
00h-3Bh  
00h-59h  
01h-0Ch(AM)  
01h-12h(AM)  
81h-92h(PM)  
00h-23h  
(12-Hour Mode) 81h-8Ch(PM)  
(24-Hour Mode) 00h-17h  
08h  
08h  
Publication Release Date: May 2006  
Revision 0.60  
-97 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Time, Calendar, Alarm A, and Alarm B data Modes continued  
REGISTER  
LOCATION  
FUNCTION  
RANGE(DATA MODE)  
EXAMPLE  
BINARY  
BINARY  
BCD  
01h-12h(AM)  
81h-92h(PM)  
00h-23h  
BCD  
Register 05h Hours Alarm A 01h-0Ch(AM)  
(12-Hour Mode) 81h-8Ch(PM)  
08h  
08h  
(24-Hour Mode) 00h-17h  
08h  
02h  
04h  
07h  
61h  
13h  
1Eh  
1Eh  
08h  
08h  
02h  
04h  
07h  
97h  
19h  
30h  
30h  
08h  
Register 06h Day of Week  
01h-07h  
01h-07h  
Register 07h Date of Month 01h-1Fh  
01h-31h  
Register 08h Month  
01h-0Ch  
00h-63h  
00h-63h  
00h-3Bh  
00h-3Bh  
01h-12h  
Register 09h Year  
00h-99h  
Register 40h Century  
Register 41h Sec. Alarm B  
Register 42h Min. Alarm B  
00h-99h  
00h-59h  
00h-59h  
Register 43h Hours Alarm B 01h-0Ch(AM)  
(12-Hour Mode) 81h-8Ch(PM)  
01h-12h(AM)  
81h-92h(PM)  
00h-23h  
(24-Hour Mode) 00h-17h  
08h  
02h  
08h  
02h  
Register 44h Day of Week  
Alarm B  
01h-07h  
01h-07h  
Register 45h Date of Month 01h-1Fh  
Alarm B  
01h-31h  
04h  
04h  
Register 46h Month Alarm B 01h-0Ch  
01h-12h  
00h-99h  
00h-99h  
07h  
61h  
13h  
07h  
97h  
19h  
Register 47h Year Alarm B  
00h-63h  
Register 48h Century Alarm 00h-63h  
B
9.2 Update Cycle  
The RTC executes an update cycle once per second. It is in an update cycle when RTC updates the  
contents of the clock and calendar registers. In the meantime, RTC also compares each alarm byte  
with corresponding timer byte and generates an alarm flag if a match or a don't care condition (0C0h)  
is present in the alarm register.  
The update-in-progress bit (UIP) in register A pulses high once per second. The update cycle occurs  
244μS after the UIP bit goes high. This bit is cleared and the update-ended flag (UF) is set in the end  
of an update cycle.  
UPDATE CYCLE TIME TABLE  
UIP BIT  
UPDATE CYCLE TIME (T  
)
UC  
BEFORE UPDATE CYCLE TIME (T  
MIN)  
BUC  
1
0
-
1984μS  
-
244μS  
-98  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Update Period and UIP Timing  
Update Period(1 Second)  
BUC  
UC  
t
t
9.3 REGISTERS  
The RTC has four control/status registers. They are accessible at all times.  
9.3.1 Register 0Ah  
All bits are unaffected by RESET.  
Register A is a read/write register except bit 7 (UIP is read only).  
BIT  
7
6
5
4
3
2
1
0
UIP  
DV2  
DV1  
DV0  
RS3  
RS2  
RS1  
RS0  
NAME  
UIP : (read only)  
When UIP is 1, an update cycle is in progress. The UIP is cleared in the end of an update cycle and  
when the SET bit in register B is 1.  
DV[2:0] : Divider Control  
These three bits are used to control divider and 32KHz oscillator.  
TIME-BASE  
DV2  
DV1  
DV0  
OPERATION MODE  
DIVIDER RESET  
FREQUENCY  
32.768KHZ  
32.768KHZ  
32.768KHZ  
32.768KHZ  
32.768KHZ  
0
0
0
1
1
0
1
1
0
1
X
0
NO  
YES  
NO  
NO  
NO  
-
-
1
-
-
X
X
YES  
RS[3:0] : Periodic Interrupt Rate  
Publication Release Date: May 2006  
Revision 0.60  
-99 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
PERIODIC INTERRUPT RATE TABLE  
RS[3:0]  
TIME BASE  
None  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3.90625mS / 256Hz  
7.8125mS / 128Hz  
122.070μS / 8.192KHz  
244.141μS / 4.096KHz  
488.281μS / 2.048KHz  
976.562μS / 1.024KHz  
1.953125mS / 512Hz  
3.90625mS / 256Hz  
7.8125mS / 128Hz  
15.625ms / 64Hz  
31.25ms / 32Hz  
62.5ms / 16Hz  
125ms / 8Hz  
250ms / 4Hz  
500ms / 2Hz  
9.3.2  
Register 0Bh (Read/Write)  
BIT  
NAME  
SET  
7
6
5
4
3
2
1
0
SET  
PE  
AE  
UE  
Reserved  
DM  
12/24  
DSE  
When the SET bit is set, any occurring update cycle is aborted and registers (Register 00h~09h,  
Register (40h~48h) may be modified without entering an update cycle. When this bit is cleared, the  
update cycle function occurs once per second. This bit is not affected by any other internal functions  
or by a RESET.  
PE  
A "1" on the periodic interrupt enable bit enables the periodic interrupt flag (PF) bit in Register 0Ch to  
assert an interrupt.  
A "0" on this bit blocks the IRQ output from being driven by a periodic interrupt. This bit can not be  
modified by any internal function, but it may be cleared by a RESET.  
AE  
A "1" on the enable bit of alarm A enables the alarm A flag (AF) bit in Register 0Ch to assert an  
interrupt.  
A "0" on this bit prohibits alarm A interrupt. The RESET signal clears AE to "0". This bit can not be  
modified by any internal function.  
-100  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
UE  
A "1" on this bit enables the update-ended flag (UF) bit in register C to assert an interrupt.  
A "0" on this bit prohibits update-ended interrupt. The UE bit is cleared by setting the SET bit or by a  
RESET.  
DM  
The data mode bit determines whether time and calendar updates are in binary format or in binary-  
coded-decimal (BCD) format.  
A "1" on this bit means binary format.  
A "0" on this bit means BCD format. This bit can not be modified by a RESET or any internal function.  
24/12  
A "1" on this bit selects 24-hour mode for the time-of-day function.  
A "0" on this bit selects 12-hour mode. This bit can not be modified by a RESET or any internal  
function.  
DSE  
A "1" on this bit allows two special updates:  
On the last Sunday of April, the time increments from 1:59:59 AM to 3:00:00 AM.  
On the last Sunday of October, the time decrements from 1:59:59 AM to 1:00:00 AM.  
A "0" on this bit disables these special updates. DSE can not be changed by any internal operation or  
a RESET.  
(Note: RTC IRQ is ultimately controlled by Logical Device 4-CR70 and Logical Device 4-CR71. These two registers must be  
set properly if RTC IRQ is needed)  
9.3.3  
Register 0Ch (Read only)  
BIT  
NAME  
IRQF  
7
6
5
4
3
2
1
0
IRQF  
PF  
AF  
UF  
0
0
0
0
The interrupt request flag is set to a "1" if one or more of following cases are true:  
PF*PE = "1"  
AF*AE = "1"  
UF*UE = "1"  
(i.e., IRQF = PF*PE + AF*AE + UF*UE)  
Any time the IRQF bit is a "1", the IRQ is asserted (provided LD4-CR70 and LD4-CR71 are set  
properly). All flags are cleared by reading the register or by a RESET.  
PF  
The periodic interrupt flag is set to "1" when a rising edge is detected on the selected tap of the divider  
chain(RS[3:0] of register A). PF is set to a "1" regardless of the state of PE bit. This bit is cleared by a  
RESET or when this register is read.  
AF  
A "1" on this bit indicates that the current time has reached the alarm time setting (alarm A). A  
RESET or a read of this register clears this bit.  
Publication Release Date: May 2006  
-101 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
UF  
The update-ended interrupt flag bit is set after the end of each update cycle. This bit is cleared by a  
RESET or when this bit is read.  
Bit 3 - Bit 0  
These bits are reserved and all read "0".  
9.3.4  
Register D (Read only)  
BIT  
NAME  
VRT  
7
6
5
4
3
2
1
0
VRT  
0
0
0
0
0
0
0
The valid RAM and time bit. A "0" appears on this bit when the external battery is removed or at low-  
voltage during power-failure situation, indicating the data integrity of the real time clock, "On-Now"  
logic, and storage registers is not guaranteed. This bit can only be set by reading this register, and is  
not affected by a RESET.  
9.4 "On-Now" Control  
The "On-Now" Control function is built in RTC. It enables the PC to be powered on automatically  
from triggers of various events, and to be powered off in an orderly controlled fashion.  
The "On-Now" works at all times even when the system power is switch-off or disconnected. It  
detects several external events to control system power supply On/Off properly (e.g. telephone ring,  
panel switch-off). It also controls the signal (PSCTRL ) to turn the power supply on or off.  
9.5 Power-On Events  
The "On-Now" Control turns on power supply when one of the following events occurs:  
Panel Switch "turned on"  
Telephone is ringing  
Ring-In detection signal comes from a modem  
Keyboard/Mouse is stroked/moved  
Power-wake-up input goes from high to low.  
PSCTRL active when power returns after a power-failure occurs.  
(Note: Panel-Switch has a debounce circuit which is clocked by RTC 32.768KHz oscillator. The "On-Now" control will not  
function properly if this oscillator fails to work and PC can not be powered-on consequently)  
9.6 Power-Off Events  
Panel Switch "turned off"  
Power-off under software control  
Power-failure event  
Override Power off: Panel switch is pushed for at least 4 seconds, then the system will be forced  
to turn off immediately  
-102  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
9.7 Registers  
9.7.1  
On-Now”” Register 1 (Bank2 Register 49h)  
BIT  
NAME  
7
6
5
4
3
2
1
0
PF  
CLPOST  
SPOFC  
DPSCA  
CLRSMI  
SMIMD  
PHRIDM DPODTM  
PF (Power Failure)  
The PF is set when a power-failure occurs. This bit is cleared by writing a "1" to it.  
CLPOST (Clear Panel-switch-off-Save Timer)  
This bit is self-cleared after writing an "1" to it. If it is set, Panel-switch-off-Save timer is stopped and  
cleared.  
SPOFC (Software Power-Off Command)  
This bit is self-cleared after writing an "1" to it. If it is set, the PSCTRL goes inactive immediately.  
DPSCA (Disable Power Supply Control Activation)  
This bit is set as long as PF is set. When set, it disables all PSCTRL activation events except Panel-  
Switch- On event.  
CLSMI (Clear SMI)  
This bit is self-cleared after writing an "1" to it. If it is set, SMI is cleared to its inactive state. This bit  
is used to clear SMI when SMIMD is set.  
SMIMD ( SMI Mode)  
If it is set, SMI is level-sensitive. Once SMI goes active, it keeps active until CLSMI is set.  
Writing a "0" to this bit sets SMI to be edge-triggered.  
PHRIDM (PHRI Detection Mode)  
A "1" on this bit sets PHRI detection mode to be on falling edge.  
A "0" on this bit sets PHRI detection mode to be on a pulse train of frequency greater than 11Hz and  
lasts for 0.2 second.  
DPODTM (Disable Power Off Delay Timer )  
If set, Panel Switch Power-Off Delay Timer is stopped.  
If reset, Panel Switch Power-Off Delay Timer counts down continuously.  
Publication Release Date: May 2006  
-103 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
9.7.2  
On-Now_ Register 2 (Bank2 Register 4Ah)  
BIT  
7
6
5
4
3
2
1
0
NAME  
MCLKE  
KCLKE  
RIBE  
RIAE  
PHRIE  
PWAKI2E PWAKI1E ALARMBE  
MCLKE (Mouse Clock Enable)  
Logical 1 on this bit, a falling edge transition on MCLK asserts PSCTRL .  
KCLKE (Keyboard Clock Enable)  
Logical 1 on this bit, a falling edge transition on KCLK asserts PSCTRL .  
RIBE (RI B Enable)  
Logical 1 on this bit, a falling edge transition on RIB asserts PSCTRL .  
RIAE (RI A Enable)  
Logical 1 on this bit, a falling edge transition on RIA asserts PSCTRL .  
PHRIE (PHRI Enable)  
Logical 1 on this bit, a falling edge transition on PHRI asserts PSCTRL .  
PWAKI2E (Power Wake-up Input 2 Enable)  
Logical 1 on this bit, a falling edge transition on PWAKIN2 asserts PSCTRL .  
PWAKI1E (Power Wake-up Input 1 Enable)  
Logical 1 on this bit, a falling edge transition on PWAKIN1 asserts PSCTRL .  
ALARMBE (Alarm B Enable)  
Logical 1 on this bit, the alarm B reaches its predetermined time asserts PSCTRL .  
-104  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
9.7.3  
"On-Now" Register 3 (Bank2 Register 4Bh)  
BIT  
7
6
5
4
3
2
1
0
NAME  
PHRIST  
Reserved PSPOFD PSPOFTD  
RIBD  
RIAD  
PHRID  
ALMBD  
This register is read only except bit 5.  
PHRIST (PHRI Status)  
This bit holds the current value of PHRI.  
PSPOFD (Panel Switch Power-Off Detect)  
Logical 1 on this bit, a Panel-Switch-Off event is detected.  
Logical 0 on this bit, there is no Panel-Switch-Off event.  
PSOFTD (Panel Switch Power-Off Delay Timer Detect)  
This bit is set when Panel Switch Power-Off Delay Timer reaches its terminal count. This bit is  
cleared by reading this register.  
RIBD (RI B Detect)  
A falling edge transition on RIB asserts this bit. This bit is cleared by reading this register.  
RIAD (RI A Detect)  
A falling edge transition on RIA asserts this bit. This bit is cleared by reading this register.  
PHRID (PHRI Detect)  
A falling edge transition on PHRI asserts this bit. This bit is cleared by reading this register.  
ALMBD (Alarm B Detect)  
Logical 1 on this bit, the alarm B when reaching its preset time asserts this bit. This bit is cleared by  
reading this register.  
Publication Release Date: May 2006  
-105 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
9.7.4  
"On-Now" Register 4 (Bank2 Register 4Ch)  
BIT  
7
6
5
4
3
2
1
0
NAME  
PSOFDS1 PSOFDS0  
INVSMI  
Reserved  
MCLKD  
KCLKD  
PWAKI2D PWAKI1D  
This register is read only except bits 5, 6 and 7.  
PSOFDS1, PSOFDS0  
These two bits decide the delay time between panel switch power off event and power supply off.  
00 : 0 second.  
01 : 5 seconds.  
10 : 13 seconds.  
11 : 21 seconds.  
INVSMI  
Logical 1 on this bit, nSMI is active low and goes high-Z when dis-asserted.  
Logical 0 on this bit, nSMI is active high and goes high-Z when dis-asserted.  
MCLKD (MCLK Detect)  
A falling edge transition on MCLK asserts this bit. This bit is cleared by reading this register.  
KCLKD (KCLK Detect)  
A falling edge transition on KCLK asserts this bit. This bit is cleared by reading this register.  
PWAKI2D (PWAKIN2 Detect)  
A falling edge transition on PWAKIN2 asserts this bit. This bit is cleared by reading this register.  
PWAKI1D (PWAKIN1 Detect)  
A falling edge transition on PWAKIN1 asserts this bit. This bit is cleared by reading this register.  
-106  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
10. KEYBOARD CONTROLLER  
The KBC (8042 with licensed KB BIOS) circuit of W83977F/G, W83977AF/AG is designed to provide  
the functions needed to interface a CPU with a keyboard and/or a PS/2 mouse, and can be used with  
®-  
IBM compatible personal computers or PS/2-based systems. The controller receives serial data  
from the keyboard or PS/2 mouse, checks the parity of the data, and presents the data to the system  
as a byte of data in its output buffer. Then, the controller will assert an interrupt to the system when  
data are placed in its output buffer. The keyboard and PS/2 mouse are required to acknowledge all  
data transmissions. No transmission should be sent to the keyboard or PS/2 mouse until an  
acknowledge is received for the previous data byte.  
P24  
P25  
P21  
P20  
KIRQ  
MIRQ  
GATEA20  
KBRST  
KINH  
P17  
KDAT  
KCLK  
P27  
P10  
P26  
8042  
T0  
GP I/O PINS  
Multiplex I/O PINS  
MCLK  
MDAT  
P23  
T1  
P12~P16  
P22  
P11  
Keyboard and Mouse Interface  
Publication Release Date: May 2006  
Revision 0.60  
-107 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
10.1 Output Buffer  
The output buffer is an 8-bit read-only register at I/O address 60H (Default, PnP programmable I/O  
address LD5-CR60 and LD5-CR61). The keyboard controller uses the output buffer to send the scan  
code received from the keyboard and data bytes required by commands to the system. The output  
buffer can only be read when the output buffer full bit in the register is "1".  
10.2 Input Buffer  
The input buffer is an 8-bit write-only register at I/O address 60H or 64H (Default, PnP programmable  
I/O address LD5-CR60, LD5-CR61, LD5-CR62, and LD5-CR63). Writing to address 60H sets a flag  
to indicate a data write; writing to address 64H sets a flag to indicate a command write. Data written  
to I/O address 60H is sent to keyboard (unless the keyboard controller is expecting a data byte)  
through the controller's input buffer only if the input buffer full bit in the status register is _0_.  
10.3 Status Register  
The status register is an 8-bit read-only register at I/O address 64H (Default, PnP programmable I/O  
address LD5-CR62 and LD5-CR63), that holds information about the status of the keyboard controller  
and interface. It may be read at any time.  
BIT  
BIT FUNCTION  
DESCRIPTION  
0
Output Buffer Full  
0: Output buffer empty  
1: Output buffer full  
1
2
Input Buffer Full  
System Flag  
0: Input buffer empty  
1: Input buffer full  
This bit may be set to 0 or 1 by writing to the system flag  
bit in the command byte of the keyboard controller. It  
defaults to 0 after a power-on reset.  
3
4
5
6
7
Command/Data  
Inhibit Switch  
0: Data byte  
1: Command byte  
0: Keyboard is inhibited  
1: Keyboard is not inhibited  
Auxiliary Device Output  
Buffer  
0: Auxiliary device output buffer empty  
1: Auxiliary device output buffer full  
General Purpose Time-  
out  
0: No time-out error  
1: Time-out error  
Parity Error  
0: Odd parity  
1: Even parity (error)  
-108  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
10.4 Commands  
COMMAND  
20h  
FUNCTION  
Read Command Byte of Keyboard Controller  
Write Command Byte of Keyboard Controller  
60h  
BIT  
BIT DEFINITION  
7
6
Reserved  
IBM Keyboard Translate Mode  
Disable Auxiliary Device  
Disable Keyboard  
5
4
3
2
1
Reserve  
System Flag  
Enable Auxiliary Interrupt  
Enable Keyboard Interrupt  
0
Test Password  
A4h  
Returns 0Fah if Password is loaded  
Returns 0F1h if Password is not loaded  
Load Password  
A5h  
A6h  
Load Password until a "0" is received from the system  
Enable Password  
Enable the checking of keystrokes for a match with the password  
Disable Auxiliary Device Interface  
A7h  
A8h  
A9h  
Enable Auxiliary Device Interface  
Interface Test  
BIT  
BIT DEFINITION  
No Error Detected  
00  
01  
Auxiliary Device "Clock" line is stuck low  
Auxiliary Device "Clock" line is stuck high  
Auxiliary Device "Data" line is stuck low  
02  
03  
04  
Auxiliary Device "Data" line is stuck low  
AAh  
Self-test  
Returns 055h if self test succeeds  
Publication Release Date: May 2006  
Revision 0.60  
-109 -  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Commands, continued  
COMMAND  
FUNCTION  
ABh  
Interface Test  
BIT DEFINITION  
No Error Detected  
BIT  
00  
01  
Keyboard "Clock" line is stuck low  
02  
03  
04  
Keyboard "Clock" line is stuck high  
Keyboard "Data" line is stuck low  
Keyboard "Data" line is stuck high  
ADh  
AEh  
C0h  
C1h  
C2h  
D0h  
D1h  
D2h  
D3h  
D4h  
E0h  
FXh  
Disable Keyboard Interface  
Enable Keyboard Interface  
Read Input Port(P1) and send data to the system  
Continuously puts the lower four bits of Port1 into STATUS register  
Continuously puts the upper four bits of Port1 into STATUS register  
Send Port2 value to the system  
Only set/reset GateA20 line based on the system data bit 1  
Send data back to the system as if it came from Keyboard  
Send data back to the system as if it came from Auxiliary Device  
Output next received byte of data from system to Auxiliary Device  
Reports the status of the test inputs  
Pulse only RC(the reset line) low for 6μS if Command byte is even  
10.5 HARDWARE GATEA20/KEYBOARD RESET CONTROL LOGIC  
The KBC implements a hardware control logic to speed-up GATEA20 and KBRESET. This control  
logic is controlled by LD5-CRF0 as follows:  
10.5.1  
KB Control Register (Logic Device 5, CR-F0)  
BIT  
7
6
5
4
3
2
1
0
KCLKS1 KCLKS0 Reserved Reserved Reserved P92EN  
HGA20 HKBRST  
NAME  
KCLKS1, KCLKS0  
This 2 bits are for the KBC clock rate selection.  
= 0 0  
= 0 1  
= 1 0  
= 1 1  
KBC clock input is 6 Mhz  
KBC clock input is 8 Mhz  
KBC clock input is 12 Mhz  
KBC clock input is 16 Mhz  
P92EN (Port 92 Enable)  
A "1" on this bit enables Port 92 to control GATEA20 and KBRESET.  
A "0" on this bit disables Port 92 functions.  
-110  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
HGA20 (Hardware GATE A20)  
A "1" on this bit selects hardware GATEA20 control logic to control GATE A20 signal.  
A "0" on this bit disables hardware GATEA20 control logic function.  
HKBRST (Hardware Keyboard Reset)  
A "1" on this bit selects hardware KB RESET control logic to control KBRESET signal.  
A "0" on this bit disables hardware KB RESET control logic function.  
When the KBC receives data that follows a "D1" command, the hardware control logic sets or clears  
GATE A20 according to the received data bit 1. Similarly, the hardware control logic sets or clears  
KBRESET depending on the received data bit 0. When the KBC receives a "FE" command, the  
KBRESET is pulse low for 6μS(Min.) with 14μS(Min.) delay.  
GATEA20 and KBRESET are controlled by either the software control or the hardware control logic  
and they are mutually exclusive. Then, GATEA20 and KBRESET are merged along with Port92 when  
P92EN bit is set.  
10.5.2  
Port 92 Control Register (Default Value = 0x24)  
BIT  
7
6
5
4
3
2
1
0
NAME  
Res. (0) Res. (0) Res. (1) Res. (0) Res. (0) Res. (1)  
SGA20 PLKBRST  
SGA20 (Special GATE A20 Control)  
A "1" on this bit drives GATE A20 signal to high.  
A "0" on this bit drives GATE A20 signal to low.  
PLKBRST (Pull-Low KBRESET)  
A "1" on this bit causes KBRESET to drive low for 6μS(Min.) with 14μS(Min.) delay. Before issuing  
another keyboard reset command, the bit must be cleared.  
Publication Release Date: May 2006  
-111 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
11. GENERAL PURPOSE I/O  
W83977F/G, W83977AF/AG provides 14 Input/Output ports that can be individually configured to  
perform a simple basic I/O function or a pre-defined alternate function. Those 14 GP I/O ports are  
divided into two groups, the first group contains 8 ports, and the other group contains only 6 ports.  
Each port in the first group corresponds to a configuration register in logical device 7. Each port in the  
second group corresponds to a configuration register in logical device 8. Users can select those I/O  
ports functions by independently programming the configuration registers. Figure 8.1 and 8.2  
respectively show the GP I/O port's structure of logical device 7 and device 8. Right after Power-on  
reset, those ports perform basic I/O functions.  
Figure 11.1  
-112  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Figure 11.2  
11.1 Basic I/O functions  
The Basic I/O functions of W83977F/G, W83977AF/AG provide several I/O operations including  
driving a logic value to output port, latching a logic value from input port, inverting the input/output  
logic value, and steering Common Interrupt (only available in the second group of the GP I/O port).  
Common Interrupt is the ORed function of all interrupt channels in the second group of the GP I/O  
ports, and it also connects to a 1ms debounce filter which can reject a noise of 1 ms pulse width or  
less. There are two 8-bit registers, GP1 and GP2, which are directly connected to both groups of GP  
I/O ports. Each GP I/O port is represented as a bit in one of two 8-bit registers. Only 6 bits of GP2  
are implemented. Table 11.1.1 shows their combinations of Basic I/O functions, and Table 11.1.2  
shows the register bit assignments of GP1 and GP2.  
Publication Release Date: May 2006  
-113 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Table 11.1.1  
I/O BIT  
ENABLE INT BIT  
POLARITY BIT  
BASIC I/O OPERATIONS  
0 = OUTPUT  
0 = DISABLE  
0 = NON INVERT  
1 = INPUT  
1 = ENABLE  
1 = INVERT  
0
0
0
0
0
1
0
1
0
Basic non-inverting output  
Basic inverting output  
Non-inverted output bit value of GP2  
drive to Common Interrupt  
0
1
1
Inverted output bit value of GP2 drive  
to Common Interrupt  
1
1
1
0
0
1
0
1
0
Basic non-inverting input  
Basic inverting input  
Non-inverted input drive to Common  
Interrupt  
1
1
1
Inverted input drive to Common  
Interrupt  
Table 11.1.2  
GP I/O PORT ACCESSED REGISTER  
REGISTER BIT ASSIGNMENT  
GP I/O PORT  
BIT 0  
GP10  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
GP11  
GP12  
GP13  
GP14  
GP15  
GP16  
GP1  
BIT 7  
BIT 0  
GP17  
GP20  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
GP21  
GP22  
GP23  
GP24  
GP25  
GP2  
-114  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
11.2 Alternate I/O Functions  
W83977F/G, W83977AF/AG provides several alternate functions which are scattered among the GP  
I/O ports. Table 11.2.1 shows their assignments. Polarity bit can also be set to alter their polarity of  
alternate functions.  
Table 11.2.1  
GP I/O PORT  
GP10  
GP11  
GP12  
GP13  
GP14  
GP15  
GP16  
GP17  
GP20  
GP21  
GP22  
GP23  
GP24  
GP25  
ALTERNATE FUNCTION  
Interrupt Steering  
Interrupt Steering  
Watching Dog Timer Output/IRRX input  
Power LED output/ IRTX output [W83977AF only]  
General Purpose Address Decoder/ Keyboard Inhibit(P17)  
General Purpose Write Strobe/ 8042 P12  
Watching Dog Timer Output  
Power LED output  
Keyboard Reset (8042 P20)  
8042 P13  
8042 P14  
8042 P15  
8042 P16  
GATE A20 (8042 P21)  
11.2.1  
Interrupt Steering  
GP10 and GP11 can be programmed to map their own interrupt channels. The selection of IRQ  
channel can be done in configure registers CR70 and CR72 of logical device 7. Each interrupt  
channel also has its own 1 ms debounce filter that is used to reject any noise which is equal to or less  
than 1 ms wide.  
11.2.2  
Watch Dog Timer Output  
Watch Dog Timer contains a one minutes resolution down counter, CRF2 of Logical Device 8, and two  
watch Dog control registers, WDT_CTRL0 and WDT_CTRL1 of Logical Device 8. The down counter  
can be programmed within the range from 1 to 255 minutes. Writing any new non-zero value to CRF2  
or reset signal coming from a Mouse interrupt or Keyboard interrupt (CRF2 also contains non-zero  
value) will cause the Watch Dog Timer to reload and start to count down from the new value. As the  
counter reaches zero, (1) Watch Dog Timer time-out occurs and the bit 0 of WDT_CTRL1 will be set  
to logic 1; (2) Watch Dog interrupt output is asserted if the interrupt is enable in CR72 of logical device  
8; and (3) Power LED starts to toggle output if the bit 3 of WDT_CTRL0 is enabled. WDT_CTRL1  
also can be accessed through GP2 I/O base address + 1.  
Publication Release Date: May 2006  
-115 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
11.2.3  
Power LED  
The Power LED function provides 1 Hertz rate toggle pulse output with 50 percent duty cycle. Table  
11.2.2 shows how to enable Power LED.  
Table 11.2.2  
WDT_CTRL1 BIT[1]  
WDT_CTRL0 BIT[3]  
WDT_CTRL1 BIT[0]  
POWER LED STATE  
1 Hertz Toggle pulse  
Continuous high or low *  
Continuous high or low *  
1 Hertz Toggle pulse  
1
0
0
0
X
0
1
1
X
X
0
1
* Note: Continuous high or low depends on the polarity bit of GP13 or GP17 configure registers.  
11.2.4  
General Purpose Address Decoder  
General Purpose Address Decoder provides two address decode as AEN equal to logic 0. The  
address base is stored at CR62, CR63 of logical device 7. The decode output is normally active low.  
Users can alter its polarity through the polarity bit of the GP14's configuration register.  
11.2.5  
General Purpose Write Strobe  
General Purpose Write Strobe is an address decoder that performs like General Purpose Address  
Decoder, but it has to be qualified by IOW and AEN. Its output is normally active low. Users can  
alter its polarity through the polarity bit of the GP15's configuration register.  
-116  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
12. PLUG AND PLAY CONFIGURATION  
The W83977F/G, W83977AF/AG provides many configuration registers for setting up different types  
of configurations. There are two approaches to entering the configuration state and accessing these  
configuration registers, Comply PnP and Compatible PnP. The Comply PnP protocol is based on the  
Plug and Play ISA Specification. The Compatible PnP protocol is similar to previous Winbond I/O's  
protocol. The Power-On-Setting upon the Pin 51 ( DTRB ) decides the method of entering the  
configuration mode. In W83977F/G, W83977AF/AG, there are nine Logical Devices (from Logical  
Device 0 to Logical Device 8) which correspond to nine individual functions: FDC, PRT, UART1,  
UART2, RTC, KBC, IR, GPIO1, GPIO2 in listed order. Each Logical Device has its own configuration  
registers (above CR30). Host can access those registers only after entering configuration mode.  
12.1 Comply PnP  
The protocol of Comply PnP is 100% compatible with the Plug and Play ISA Specification. W83977F/  
G, W83977AF provide built-in Plug and Play state machine to control the configuration flow. The state  
machine supports four states: Wait for Key state, Sleep state, Isolation state, and Configure State.  
According to Plug and Play ISA Specification, users can transit the four states by accessing the  
configuration registers, CR00 - CR07.  
12.1.1  
Wait for Key State  
All cards enter this state after power-up reset or in response to the Reset and Wait for Key  
commands. No command is active in this state until the initiation key is detected on the ISA bus. The  
initiation key is a sequence of 32 hexadecimal number which will be shifted into LFSR (linear  
feedback shift register) built in W83977F/G, W83977AF/AG. The Wait for Key state is the default  
state for Plug and Play cards during normal system operation. After configuration and activation,  
software should return all cards to this state.  
Publication Release Date: May 2006  
-117 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
12.1.2  
Sleep State  
In this state, Plug and Play wait for a Wake[CSN] command. This command will selectively enable  
one or more cards to enter either the Isolation or Configure states based on the write data and the  
value of the CSN on each card. If the write data for the Wake[CSN] command is zero then all cards  
that have not been assigned a CSN will enter the Isolation state. If the write data for the Wake[CSN]  
command is not zero then the one card whose assigned CSN matches the parameter of the  
Wake[CSN] command will enter the Configure state.  
12.1.3  
Isolation State  
In this state, Plug and Play cards respond to reads of the Serial Isolation registers according to  
Isolation protocol. An unique CSN is assigned after the card is isolated  
12.1.4  
Configure State  
A card in the Configure state responds to all configuration commands including reading the card's  
resource configure information and programming the card's resource selections. Only one card may  
be in this state at a time.  
12.2 Compatible PnP  
12.2.1  
Extended Function Registers  
In Compatible PnP, there are two ways to enter Extended Function mode (which is same as Configure  
State in Comply PnP) and read or write the configuration registers. HEFRAS (CR26 bit 6) can be  
used to select one out of these two methods of entering the Extended Function mode as follows:  
HEFRAS  
ADDRESS AND VALUE  
write 87h to the location 3F0h twice  
write 87h to the location 370h twice  
0
1
After Power-on reset, the value on RTSA (pin 43) is latched by HEFRAS of CR26. In Compatible  
PnP, a specific value (87h) must be written twice to the Extended Functions Enable Register (I/O port  
address 3F0h or 370h). Secondly, an index value (02h, 07h-FEh) must be written to the Extended  
Functions Index Register (I/O port address 3F0h or 370h same as Extended Functions Enable  
Register) to identify which configuration register is to be accessed. The designer can then access the  
desired configuration register through the Extended Functions Data Register (I/O port address 3F1h  
or 371h).  
After programming of the configuration register is finished, an additional value(AAh) should be written  
to EFERs to exit the Extended Function mode to prevent unintentional access to those configuration  
registers. The designer can also set bit 5 of CR26 (LOCKREG) to high to protect the configuration  
registers against accidental accesses.  
The configuration registers can be reset to their default or hardware settings only by a cold reset (pin  
MR = 1). A warm reset will not affect the configuration registers.  
-118  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
12.2.2  
Extended Functions Enable Registers (EFERs)  
After a power-on reset, the W83977F/ AF enters the default operating mode. Before the W83977F/  
AF enters the extended function mode, a specific value must be programmed into the Extended  
Function Enable Register (EFER) so that the extended function register can be accessed. The  
Extended Function Enable Registers are write-only registers. On a PC/AT system, their port  
addresses are 3F0h or 370h (as described in previous section).  
12.2.3  
Extended Function Index Registers (EFIRs), Extended Function Data Registers  
(EFDRs)  
After the extended function mode is entered, the Extended Function Index Register (EFIR) must be  
loaded with an index value (02h, 07h-FEh) to access Configuration Register 0 (CR0), Configuration  
Register 7 (CR07) to Configuration Register FE (CRFE), and so forth through the Extended Function  
Data Register (EFDR). The EFIRs are write-only registers with port address 3F0h or 370h (as  
described in section 12.2.1) on PC/AT systems; the EFDRs are read/write registers with port address  
3F1h or 371h (as described in section 9.2.1) on PC/AT systems.  
Publication Release Date: May 2006  
-119 -  
Revision 0.60  
 
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
13. CONFIGURATION REGISTER  
13.1 Chip (Global) Control Register  
CR00 (only available in comply PnP mode)  
Bit 7-0 : IORDPRA9 - IORDPRA2 --> Set RD_DATA Port A9-A2  
CR01 (only available in comply PnP mode)  
Bit7-0 : SISO 7-0 --> Serial Isolation  
CR02 (Default 0x00)  
Bit 7-3 : Reserved.  
Bit 2: RSTCSN --> Reset CSN to 0. Only available in comply PnP mode.  
Bit 1: RTUWAIT -- > Return to Wait for Key state. Only available in comply PnP mode.  
Bit 0 : SWRST --> Soft Reset.  
CR03 (only available in comply PnP mode)  
Bit 7-0 : WAKCSN7 - WAKCSN0 --> Wake CSN  
CR04 (only available in comply PnP mode)  
Bit 7-0 : RSODAT7 - RSODAT 0 --> Resource Data  
CR05 (only available in comply PnP mode)  
Bit 7-1 : Reserved  
Bit 0 : RSOSTAT -- > resource status bit  
CR06 (only available in comply PnP mode)  
Bit 7-0 : CSN7 -CSN0 --> Card Select Number 7 - 0  
CR07  
Bit 7-0 : LDNB7 - LDNB0 --> Logical Device Number Bit 7 - 0  
CR20  
Bit 7-0 : DEVIDB7 - DEBIDB0 -- > Device ID Bit 7 - Bit 0 = 0x97 (read only).  
CR21  
Bit 7-0 : DEVREVB7 - DEBREVB0 -- > Device Rev Bit 7 - Bit 0 = 0x71 (read only).  
CR22 (Default 0xff)  
Bit 7-6 : Reserved.  
Bit 5 : URBPWD  
= 0 Power down  
= 1 No Power down  
Bit 4 : URAPWD  
= 0 Power down  
= 1 No Power down  
Bit 3 : PRTPWD  
= 0 Power down  
= 1 No Power down  
Bit 2 : IRPWD  
= 0 Power down  
= 1 No Power down  
Bit 1 : Reserved.  
Bit 0 : FDCPWD  
-120  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
= 0 Power down  
= 1 No Power down  
CR23 (Default 0x00)  
Bit7-6 : Reserved  
Bit 5-3 : APDTMS2 APDTMS1 APDTMS0  
= 000 4 seconds count-down time of the APD mode.  
= 001 8 seconds count-down time of the APD mode.  
= 010 16 seconds count-down time of the APD mode.  
= 011 32 seconds count-down time of the APD mode.  
= 100 1 minute count-down time of the APD mode.  
= 101 2 minutes count-down time of the APD mode.  
= 110 4 minutes count-down time of the APD mode.  
= 111 16 minutes count-down time of the APD mode.  
Bit 2-0 : OSCS2, OSCS1, OSCS0.  
= 000 Default power-on state after power on reset.  
= 1xx Stop Clock supply to whole chip, but PLL circuit still in operation.  
= 001 Stop Clock supply to whole chip and PLL circuit.  
= 010 Standby for automatic power-down(APD).  
= 011 Automatic power-down(APD) has been happened.  
CR24 (Default 0b1ss00sss)  
Bit 7 : EN16SA  
= 0 12 bit Address Qualification  
= 1 16 bit Address Qualification  
Bit 6-5 : CLKSEL, ENPLL  
= 00 The clock input on Pin 1 should be 14.31818 Mhz.  
= 01 The clock input on Pin 1 should be 24 Mhz.  
= 11 The clock input on Pin 1 should be 48 Mhz.  
Bit 4 : RWPNPREG  
= 0 Disable read/write PnP mode config registers by using the method of non-PnP mode  
= 1 Enable read/write PnP mode config registers by using the method of non-PnP mode  
Bit 3 : Reserved  
Bit 2 : ENKBRTC  
= 0 KBC and RTC are disabled after hardware reset.  
= 1 KBC and RTC are active after hardware reset.  
This bit is read only, and set/reset by hardware setting.  
Bit 1 : ENPNP  
= 0 Disable Comply PnP  
= 1 Enable Comply PnP  
Bit 0 : PNPCSV  
= 0 The Compatible and Comply PnP has default value  
= 1 The Compatible and Comply PnP has no default value  
CR25 (Default 0x00)  
Bit 7-6 : Reserved  
Publication Release Date: May 2006  
-121 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 5 : URBTRI  
Bit 4 : URATRI  
Bit 3 : PRTTRI  
Bit 2 : IRTRI [W83977AF only]  
Bit 1 : Reserved.  
Bit 0 : FDCTRI.  
CR26 (Default 0b0s000000)  
Bit 7 : SEL4FDD  
= 0 Select two FDD mode.  
= 1 Select four FDD mode.  
Bit 6 : HEFRAS  
These two bits define how to enable Configuration mode.  
HEFRAS Address and Value  
= 0 Write 87h to the location 3F0h twice.  
= 1 Write 87h to the location 370h twice.  
Bit 5 : LOCKREG  
= 0 Enable R/W Configuration Registers.  
= 1 Disable R/W Configuration Registers.  
Bit 4 : DSIRLGRQ [W83977AF only]  
= 0 Enable IR legacy mode on IRQ and DRQ selection, then MCR register bit 3 is effective  
in selecting IRQ and DRQ.  
= 1 Disable IR legacy mode on IRQ and DRQ selection, then MCR register bit 3 is not  
effective in selecting IRQ and DRQ.  
Bit 3 : DSFDLGRQ  
= 0 Enable FDC legacy mode on IRQ and DRQ selection, then DO register bit 3 is effective  
in selecting IRQ  
= 1 Disable FDC legacy mode on IRQ and DRQ selection, then DO register bit 3 is not  
effective in selecting IRQ  
Bit 2 : DSPRLGRQ  
= 0 Enable PRT legacy mode on IRQ and DRQ selection, then DCR bit 4 is effective on  
selecting IRQ  
= 1 Disable PRT legacy mode on IRQ and DRQ selection, then DCR bit 4 is not effective  
on selecting IRQ  
Bit 1 : DSUALGRQ  
= 0 Enable UART A legacy mode IRQ selecting, then MCR bit 3 is effective on selecting  
IRQ  
= 1 Disable UART A legacy mode IRQ selecting, then MCR bit 3 is not effective on  
selecting IRQ  
Bit 0 : DSUBLGRQ  
= 0 Enable UART B legacy mode IRQ selecting, then MCR bit 3 is effective on selecting  
IRQ  
= 1 Disable UART B legacy mode IRQ selecting, then MCR bit 3 is not effective on  
selecting IRQ  
CR28 (Default 0x00)  
Bit 7-5: Reserved.  
Bit 4 : IRQ Sharing selection.  
-122  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
= 0  
Disable IRQ Sharing  
= 1  
Enable IRQ Sharing  
Bit 3 :Reserved  
Bit 2-0 : PRTMODS2 - PRTMODS0  
= 0xx Parallel Port Mode  
= 100 Reserved  
= 101 External FDC Mode  
= 110 Reserved  
= 111 External two FDC Mode  
CR29 [W83977AF only]  
Bit 7-0 : CPSIDB7 - CPSIDB0 --> Comply PnP Serial ID Bit 7 - Bit 0.  
CR2A (Default 0x00)  
Bit 7 : PIN57S  
= 0 KBRST  
= 1 GP12  
Bit 6 : PIN56S  
= 0 GA20  
= 1 GP11  
Bit 5-4 : PIN40S1, PIN40S0  
= 00 CIRRX [W83977AF only]  
= 01 GP24  
= 10 8042 P13  
= 11 Reserved  
Bit 3-2 : PIN39S1, PIN39S0  
= 00 IRRXH [W83977AF only]  
= 01 IRSL0 [W83977AF only]  
= 10 GP25  
= 11 CTSC [W83977AF only]  
Bit 1-0 : PIN3S1, PIN3S0  
= 00 DRVDEN1  
= 01 GP10  
= 10 8042 P12  
= 11 nDSRC  
CR2B (Default 0x00)  
Bit 7-6 : PIN73S1, PIN73S0  
= 00 PANSW  
= 01 GP23  
= 10 Reserved  
= 11 DCDC [W83977AF only]  
Bit 5 : PIN72S  
= 0 PSCTRL  
= 1 GP22  
Publication Release Date: May 2006  
Revision 0.60  
-123 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 4-3 : PIN70S1, PIN70S0  
= 00 SMI  
= 01 GP21  
= 10 8042 P16  
= 11 RIC [W83977AF only]  
Bit 2-1 : PIN69S1, PIN69S0  
= 00 PHRI  
= 01 GP20  
= 10 Reserved  
= 11 Reserved  
Bit 0 : PIN58S  
= 0 KBLOCK  
= 1 GP13  
CR2C (Default 0x00)  
Bit 7-6 : PIN121S1, PIN121S0  
= 00 DRQ0  
= 01 GP17  
= 10 8042 P14  
= 11 nDTRC [W83977AF only]  
Bit 5-4 : PIN119S1, PIN119S0  
= 00 NDACK0  
= 01 GP16  
= 10 8042 P15  
= 11 nRTSC  
Bit 3-2 : PIN104S1, PIN104S0  
= 00 IRQ15  
= 01 GP15  
= 10 WDTO  
= 11 IRSL2 [W83977AF only]  
Bit 1-0 : PIN103S1, PIN103S0  
= 00 IRQ14  
= 01 GP14  
= 10 PLEDO  
= 11 IRSL1 [W83977AF only]  
CR2D (Default 0x00)  
Test Modes: Reserved for Winbond.  
CR2E (Default 0x00)  
Test Modes: Reserved for Winbond.  
CR2F (Default 0x00)  
Test Modes: Reserved for Winbond.  
-124  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
13.2 Logical Device 0 (FDC)  
CR30 (Default 0x01)  
Bit 7-1 : Reserved.  
Bit 0 : = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR31  
Bit 7-2 : Reserved.  
Bit 1 : ENRNGCK -- > Enable I/O Range check  
Bit 0 : FORIORD --> Forces LDN to respond I/O read  
CR60, CR 61 (Default 0x03, 0xf0)  
These two registers select FDC I/O base address [0x100:0xFF8] on 8 byte boundaries.  
CR70 (Default 0x06)  
Bit 7-4 : Reserved.  
Bit 3-0 : These bits select IRQ resource for FDC.  
CR71 (Default 0x02, read only)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; = 0: Edge trigger  
CR74 (Default 0x02)  
Bit 7-3 : Reserved.  
Bit 2-0 : These bits select DRQ resource for FDC.  
= 0x00 DMA0  
= 0x01 DMA1  
= 0x02 DMA2  
= 0x03 DMA3  
= 0x04-0x07 No DMA active  
CRF0 (Default 0x0E)  
FDD Mode Register  
Bit 7 : FIPURDWN  
This bit controls the internal pull-up resistors of the FDC input pins RDATA, INDEX, TRAK0,  
DSKCHG, and WP.  
= 0 The internal pull-up resistors of FDC are turned on.(Default)  
= 1 The internal pull-up resistors of FDC are turned off.  
Bit 6 : INTVERTZ  
This bit determines the polarity of all FDD interface signals.  
= 0 FDD interface signals are active low.  
= 1 FDD interface signals are active high.  
Bit 5 : DRV2EN (PS2 mode only)  
When this bit is a logic 0, indicates a second drive is installed and is reflected in status register A.  
Bit 4 : Swap Drive 0, 1 Mode  
Publication Release Date: May 2006  
-125 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
= 0 No Swap (Default)  
= 1 Drive and Motor sel 0 and 1 are swapped.  
Bit 3-2 Interface Mode  
= 11 AT Mode (Default)  
= 10 (Reserved)  
= 01 PS/2  
= 00 Model 30  
Bit 1 : FDC DMA Mode  
= 0 Burst Mode is enabled  
= 1 Non-Burst Mode (Default)  
Bit 0 : Floppy Mode  
= 0 Normal Floppy Mode (Default)  
= 1 Enhanced 3-Mode FDD  
CRF1 (Default 0x00)  
Bit 7-6 : Boot Floppy  
= 00 FDD A  
= 01 FDD B  
= 10 FDD C  
= 11 FDD D  
Bit 5 : Media ID1 Polarity  
= 0 Non-Inverse  
= 1 Inverse  
Bit 4 : Media ID0 Polarity  
= 0 Non-Inverse  
= 1 Inverse  
Bit 3-2 : Density Select  
= 00 Normal (Default)  
= 01 Normal  
= 10 1 ( Forced to logic 1)  
= 11 0 ( Forced to logic 0)  
Bit 1 : DISFDDWR  
= 0 Enable FDD write.  
= 1 Disable FDD write(forces pins WE, WD to stay high).  
Bit 0 : SWWP  
= 0 Normal, use WP to determine whether the FDD is write protected or not.  
= 1 FDD is always write-protected.  
CRF2 (Default 0xFF)  
Bit 7-6 : FDD D Drive Type  
Bit 5-4 : FDD C Drive Type  
Bit 3-2 : FDD B Drive Type  
Bit 1:0 : FDD A Drive Type  
When FDD is in enhanced 3-mode(CRF0.bit0=1),these bits determine SELDEN value in TABLE A  
of CRF4 and CRF5 as follows.  
-126  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
DTYPE1  
DPYTE0  
DRATE1  
DRATE0  
SELDEN  
0
0
0
0
0
1
0
1
1
0
0
1
X
X
0
1
0
1
0
X
X
1
1
1
0
0
0
1
0
0
0
0
0
1
1
Note: X means don't care.  
CRF4 (Default 0x00)  
FDD0 Selection:  
Bit 7 : Reserved.  
Bit 6 : Precomp. Disable.  
= 1 Disable FDC Precompensation.  
= 0 Enable FDC Precompensation.  
Bit 5 : Reserved.  
Bit 4-3 : DRTS1, DRTS0 : Data Rate Table select (Refer to TABLE A).  
= 00 Select Regular drives and 2.88 format  
= 01 Specifical application  
= 10 2 Meg Tape  
= 11 Reserved  
Bit 2 : Reserved.  
Bit 1:0 : DMOD0, DMOD1 : Drive Model select (Refer to TABLE B).  
CRF5 (Default 0x00)  
FDD1 Selection : Same as FDD0 of CRF4.  
Publication Release Date: May 2006  
Revision 0.60  
-127 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
TABLE A  
DRIVE RATE TABLE  
DATA RATE  
SELECTED DATA RATE  
SELDEN  
SELECT  
DRTS1  
DRTS0  
DRATE1  
DRATE0  
MFM  
1Meg  
500K  
300K  
250K  
1Meg  
500K  
500K  
250K  
1Meg  
500K  
2Meg  
250K  
FM  
---  
CRF0 BIT 0=0  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
250K  
150K  
125K  
---  
1
0
250K  
250K  
125K  
---  
250K  
---  
125K  
Note:Refer to CRF2 for SELDEN value in the cases when CRF0, bit0=1.  
TABLE B  
DMOD0  
DMOD1  
DRVDEN0(PIN 2)  
DRVDEN1(PIN 3)  
DRIVE TYPE  
0
0
SELDEN  
DRATE0  
4/2/1 MB 3.5”“  
2/1 MB 5.25”  
2/1.6/1 MB 3.5” (3-MODE)  
0
1
1
0
DRATE1  
DRATE0  
DRATE0  
SELDEN  
DRATE0  
1
1
DRATE1  
13.3 Logical Device 1 (Parallel Port)  
CR30 (Default 0x01 when PNPCSV=0 at POR)  
Bit 7-1 : Reserved.  
Bit 0 :  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR31  
Bit 7-2 : Reserved.  
Bit 1 : ENRNGCK -- > Enable I/O Range check  
Bit 0 : FORIORD --> Forces LDN to respond I/O read  
-128  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
CR60, CR 61 (Default 0x03, 0x78 at PNPCSV=0)  
These two registers select Parallel Port I/O base address.  
[0x100:0xFFC] on 4 byte boundaries(EPP not supported) or  
[0x100:0xFF8] on 8 byte boundaries(all modes supported, EPP is only available when the base  
address is on an 8byte boundary).  
CR70 (Default 0x07 when PNPCSV=0 at POR)  
Bit 7-4 : Reserved.  
Bit [3:0] : These bits select IRQ resource for Parallel Port.  
CR71 (Default 0x02, read only)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; = 0: Edge trigger  
CR74 (Default 0x04)  
Bit 7-3 : Reserved.  
Bit 2-0 : These bits select DRQ resource for Parallel Port.  
0x00=DMA0  
0x01=DMA1  
0x02=DMA2  
0x03=DMA3  
0x04-0x07= No DMA active  
CRF0 (Default 0x3F)  
Bit 7 : PP Interrupt Type:  
Not valid when the parallel port is in the printer Mode (100) or the standard & Bi-directional  
Mode (000).  
= 1 Pulsed Low, released to high-Z .  
= 0 IRQ follows nACK when parallel port in EPP Mode or [Printer, SPP, EPP] under ECP.  
Bit [6:3] : ECP FIFO Threshold.  
Bit 2-0 Parallel Port Mode (CR F1 PRTMODS2= logical 1)  
= 100 Printer Mode (Default)  
= 000 Standard and Bi-direction (SPP) mode  
= 001 EPP-1.9 and SPP mode  
= 101 EPP-1.7 and SPP mode  
= 010 ECP mode  
= 011 ECP and EPP-1.9 mode  
= 111 ECP and EPP-1.7 mode.  
Publication Release Date: May 2006  
-129 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
13.4 Logical Device 2 (UART A)¢)  
CR30 (Default 0x01 when PNPCSV=0 at POR)  
Bit 7-1 : Reserved.  
Bit 0 :  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR31  
Bit 7-2 : Reserved.  
Bit 1 : ENRNGCK -- > Enable I/O Range check  
Bit 0 : FORIORD --> Forces LDN to respond I/O read  
CR60, CR 61 (Default 0x03, 0xF8 when PNPCSV=0 at POR )  
These two registers select Serial Port 1 I/O base address [0x100:0xFF8] on 8 byte boundaries.  
CR70 (Default 0x04 when PNPCSV=0 at POR)  
Bit 7-4 : Reserved.  
Bit [3:0] : These bits select IRQ resource for Serial Port 1.  
CR71(Default 0x02, read only)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; = 0: Edge trigger  
CRF0 (Default 0x00)  
Bit 7-2 : Reserved.  
Bit 1-0 : SUACLKB1, SUACLKB0  
= 00 UART A clock source is 1.8462 Mhz (24MHz/13)  
= 01 UART A clock source is 2 Mhz (24MHz/12)  
= 10 UART A clock source is 24 Mhz (24MHz/1)  
= 11 UART A clock source is 14.769 Mhz (24MHz/1.625)  
-130  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
13.5 Logical Device 3 (UART B)  
CR30 (Default 0x01 when PNPCSV=0 at POR)  
Bit 7-1 : Reserved.  
Bit 0 :  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR31  
Bit 7-2 : Reserved.  
Bit 1 : ENRNGCK -- > Enable I/O Range check  
Bit 0 : FORIORD --> Forces LDN to respond I/O read  
CR60, CR 61 (Default 0x02, 0xF8 when PNPCSV=0 at POR)  
These two registers select Serial Port 2 I/O base address [0x100:0xFF8] on 8 byte boundaries.  
CR70 (Default 0x03 when PNPCSV=0 at POR)  
Bit 7-4 : Reserved.  
Bit [3:0] : These bits select IRQ resource for Serial Port 2.  
CR71 (Default 0x02, read only)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; 0: Edge trigger  
CRF0 (Default 0x00)  
Bit 7-2 : Reserved.  
Bit 1-0 : SUBCLKB1, SUBCLKB0  
= 00 UART B clock source is 1.8462 Mhz (24MHz/13)  
= 01 UART B clock source is 2 Mhz (24MHz/12)  
= 10 UART B clock source is 24 Mhz (24MHz/1)  
= 11 UART B clock source is 14.769 Mhz (24MHz/1.625)  
Publication Release Date: May 2006  
-131 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
13.6 Logical Device 4 (Real Time Clock)  
CR30 (Default 0x01 when PENKRC=1 at POR)  
Bit 7-1 : Reserved.  
Bit 0 :  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR31  
Bit 7-2 : Reserved.  
Bit 1 : ENRNGCK -- > Enable I/O Range check  
Bit 0 : FORIORD --> Forces LDN to respond I/O read  
CR60, CR 61 (Default 0x00, 0x70 when PENKRC=1 at POR)  
These two registers select Real Time Clock I/O base address [0x100:0xFFE] on 2 byte  
boundaries.  
CR70 (Default 0x08 when PENKRC=1 at POR)  
Bit 7-4 : Reserved.  
Bit [3:0] : These bits select IRQ resource for RTC.  
CR71 (Default 0x00, read/write)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; = 0: Edge trigger  
CRF0 (Default 0x00)  
RTC Mode Register  
Bit 7-6 :  
= 00 Select BANK0 of RAM  
= 01 Select BANK1 of RAM  
= 10 Select BANK2 of RAM  
Bit 5-4 : Reserved.  
Bit 3 : = 1 Lock CMOS RAM E0-FFh  
Bit 2 : = 1 Lock CMOS RAM C0-DFh  
Bit 1 : = 1 Lock CMOS RAM A0-BFh  
Bit 0 : = 1 Lock CMOS RAM 80-9Fh  
Note : Once set, bit[3:0] can not be cleared by a write; bit[3:0] is cleared only on Power-On Reset or upon a Hard Reset.  
-132  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
13.7 Logical Device 5 (KBC)  
CR30 (Default 0x01 when PENKRC=1 at POR)  
Bit 7-1 : Reserved.  
Bit 0 :  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR31  
Bit 7-2 : Reserved.  
Bit 1 : ENRNGCK -- > Enables I/O Range check  
Bit 0 : FORIORD --> Forces LDN to respond I/O read  
CR60, CR 61 (Default 0x00, 0x60 when PENKRC=1 at POR)  
These two registers select the first KBC I/O base address [0x100:0xFFF] on 1 byte boundaries.  
CR62, CR 63 (Default 0x00, 0x64 when PENKRC=1 at POR)  
These two registers select the second KBC I/O base address [0x100:0xFFF] on 1 byte boundaries.  
CR70 (Default 0x01 when PENKRC=1 at POR)  
Bit 7-4 : Reserved.  
Bit [3:0] : These bits select IRQ resource for KINT(keyboard).  
CR71 (Default 0x02, Read only)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; = 0: Edge trigger  
CR72 (Default 0x0C when PENKRC=1 at POR)  
Bit 7-4 : Reserved.  
Bit [3:0] : These bits select IRQ resource for MINT(PS2 Mouse)  
CR73 (Default 0x02)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; = 0: Edge trigger  
CRF0 (Default 0x40)  
Bit 7-6 : KBC clock rate selection  
= 00 Select 6MHz as KBC clock input.  
= 01 Select 8MHz as KBC clock input.  
= 10 Select 12Mhz as KBC clock input.  
Publication Release Date: May 2006  
-133 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
= 11 Select 16Mhz as KBC clock input.  
Bit 5-3 : Reserved.  
Bit 2 :  
= 0 Port 92 disable.  
= 1 Port 92 enable.  
Bit 1 :  
= 0 Gate20 software control.  
= 1 Gate20 hardware speed up.  
Bit 0 :  
= 0 KBRST software control.  
= 1 KBRST hardware speed up.  
13.8 Logical Device 6 (IR)  
CR30 (Default 0x00)  
Bit 7-1 : Reserved.  
Bit 0 :  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR31  
Bit 7-2 : Reserved.  
Bit 1 : ENRNGCK -- > Enable I/O Range check  
Bit 0 : FORIORD --> Forces LDN to respond I/O read  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select IR I/O base address [0x100:0xFF8] on 8 byte boundaries.  
CR70 (Default 0x00)  
Bit 7-4 : Reserved.  
Bit [3:0] : These bits select IRQ resource for IR.  
CR71 (Default 0x02, read only)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; = 0: Edge trigger  
-134  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
CR74 (Default 0x04)  
Bit 7-3 : Reserved.  
Bit 2-0 : These bits select DRQ resource for RX of UART C.  
= 0x00 DMA0  
= 0x01 DMA1  
= 0x02 DMA2  
= 0x03 DMA3  
= 0x04-0x07 No DMA active  
CR75 (Default 0x04)  
Bit 7-3 : Reserved.  
Bit 2-0 : These bits select DRQ resource for TX of UART C.  
= 0x00 DMA0  
= 0x01 DMA1  
= 0x02 DMA2  
= 0x03 DMA3  
= 0x04-0x07 No DMA active  
CRF0 (Default 0x00)  
Bit 7-4 : Reserved.  
Bit 3 : RXW4C  
= 0 No reception delay when SIR is changed from TX mode to RX mode.  
= 1 Reception delays 4 characters-time(40 bit-time) when SIR is changed from TX mode  
to RX mode.  
Bit 2 : TXW4C  
= 0 No transmission delay when SIR is changed from RX mode to TX mode.  
= 1 Transmission delays 4 characters-time(40 bit-time) when SIR is changed from RX  
mode  
to TX mode.  
Bit 1 : APEDCRC  
= 0 No append hardware CRC value as data in FIR/MIR mode.  
= 1 Append hardware CRC value as data in FIR/MIR mode.  
Bit 0 : ENBNKSEL; Bank select enable  
= 0 Disable IR Bank selection.  
= 1 Enable IR Bank selection.  
Publication Release Date: May 2006  
Revision 0.60  
-135 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
13.9 Logical Device 7 (Auxiliary I/O Part I)  
CR30 (Default 0x00)  
Bit 7-1 : Reserved.  
Bit 0 : = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR31  
Bit 7-2 : Reserved.  
Bit 1 : ENRNGCK -- > Enable I/O Range check  
Bit 0 : FORIORD --> Forces LDN to respond I/O read  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select GP1 I/O base address [0x100:0xFFF] on 1 byte boundaries.  
CR62, CR 63 (Default 0x00, 0x00)  
These two registers select GP14 alternate function Primary I/O base address [0x100:0xFFE] on 2  
byte boundaries; They are available as you setting GP14 to be an alternate function (General  
Purpose Address Decode).  
CR64, CR 65 (Default 0x00, 0x00)  
These two registers select GP15 alternate function Primary I/O base address [0x100:0xFFF] on 1  
byte boundaries; They are available as you setting GP15 to be an alternate function (General  
Purpose Write Decode).  
CR70 (Default 0x00)  
Bit 7-4 : Reserved.  
Bit 3-0 : These bits select IRQ resource for GP10 as you setting GP10 to be an alternate function  
(Interrupt Steering).  
CR71 (Default 0x02, read only)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; = 0: Edge trigger  
CR72 (Default 0x00)  
Bit 7-4 : Reserved.  
Bit 3-0 : These bits select IRQ resource for GP11 as you setting GP10 to be an alternate function  
(Interrupt Steering).  
CR73 (Default 0x02)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; = 0: Edge trigger  
-136  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
CRE0 (GP10, Default 0x01)  
Bit 7-5 : Reserved.  
Bit 4 : IRQ Filter Select  
= 1 Debounce Filter Enabled  
= 0 Debounce Filter Bypassed  
Bit 3 : Select Function.  
= 1 Select Alternate Function : Interrupt Steering.  
= 0 Select Basic I/O Function.  
Bit 2 : Reserved.  
Bit 1 : Polarity.  
= 1 Invert.  
= 0 No Invert.  
Bit 0 : In/Out selection.  
= 1 Input.  
= 0 Output.  
CRE1 (GP11, Default 0x01)  
Bit 7-5 : Reserved.  
Bit 4 : IRQ Filter Select  
= 1 Debounce Filter Enabled  
= 0 Debounce Filter Bypassed  
Bit 3 : Select Function.  
= 1 Select Alternate Function : Interrupt Steering.  
= 0 Select Basic I/O Function.  
Bit 2 : Reserved.  
Bit 1 : Polarity.  
= 1 Invert.  
= 0 No Invert.  
Bit 0 : In/Out selection.  
= 1 Input.  
= 0 Output.  
CRE2 (GP12, Default 0x01)  
Bit 7-5 : Reserved  
Bit 4-3 : Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function : Watching Dog Timer Output.  
= 10 Reserved  
= 11 Reserved  
Bit 2 : Reserved.  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
Publication Release Date: May 2006  
-137 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
CRE3 (GP13, Default 0x01)  
Bit 7-5 : Reserved.  
Bit 4-3 : Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function : Power LED output.  
= 10 Reserved  
= 11 Reserved  
Bit 2 : Reserved.  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
CRE4 (GP14, Default 0x01)  
Bit 7-5 : Reserved.  
Bit 4-3 : Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function : General Purpose Address Decoder(Active Low when  
Bit 1 = 0, Decode two byte address).  
= 10 Select 2nd alternate function : Keyboard Inhibit(P17).  
= 11 Reserved  
Bit 2 : Reserved.  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
CRE5 (GP15, Default 0x01)  
Bit 7-5 : Reserved.  
Bit 4-3 : Select Function.  
= 00 Select Basic I/O function.  
= 01 General Purpose Write Strobe(Active Low when Bit 1 = 0).  
= 10 8042 P12.  
= 11 Reserved  
Bit 2 : Reserved.  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
CRE6 (GP16, Default 0x01)  
Bit 7-5 : Reserved.  
Bit 4-3 : Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function : Watching Dog Timer Output.  
= 1x Reserved  
Bit 2 : Reserved.  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
-138  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
CRE7 (GP17, Default 0x01)  
Bit 7-4 : Reserved.  
Bit 4-3 : Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function : Power LED output. Please refer to TABLE C  
= 1x Reserved  
Bit 2 : Reserved.  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
TABLE C  
WDT_CTRL1* BIT[1]*  
WDT_CTRL0* BIT[3]  
WDT_CTRL1 BIT[0]  
POWER LED STATE  
1 Hertz Toggle pulse  
Continuous high or low*  
Continuous high or low*  
1 Hertz Toggle pulse  
1
0
0
0
X
0
1
1
X
X
0
1
*Note: 1). Regarding to the contents of WDT_CTR1 and WDT_CTRL0, please refer to CRF3 and CRF4 in Logic Device 8.  
2). Continuous high or low depends on the polarity bit of GP13 or GP17 configure registers.  
CRF1 ( Default 0x00)  
General Purpose Read/Write Enable*  
Bit 7-2 : Reserved  
Bit 1 :  
= 1 Enable General Purpose Write Strobe  
= 0 Disable General Purpose Write Strobe  
Bit 0 :  
= 1 Enable General Purpose Address Decode  
= 0 Disable General Purpose Address Decode  
*Note : If the logical deviceactivate bit is not set then bit 0 and 1 have no effect.  
13.10 Logical Device 8 (Auxiliary I/O Part II)  
CR30 (Default 0x00)  
Bit 7-1 : Reserved.  
Bit 0 :  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR31  
Bit 7-2 : Reserved.  
Bit 1 : ENRNGCK -- > Enable I/O Range check  
Bit 0 : FORIORD --> Forces LDN to respond I/O read  
Publication Release Date: May 2006  
-139 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select GP2 & Watch Dog I/O base address [0x100:0xFFE] on 2 byte  
boundaries. I/O base address + 1 : Watch Dog I/O base address.  
CR70 (Default 0x00)  
Bit 7-4 : Reserved.  
Bit 3-0 : These bits select IRQ resource for Common IRQ of GP20~GP25 at Logic Device 9.  
CR71 (Default 0x02)  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; 0: Edge trigger  
CR72 (Default 0x00)  
Bit 7-4 : Reserved.  
Bit 3-0 : These bits select IRQ resource for Watch Dog.  
CR73  
Bit 7-2 : Reserved.  
Bit 1 : IRQLEV -- > IRQ Level  
= 1: High; = 0: Low  
Bit 0 : IRQTYPE --> IRQ Type  
= 1: Level trigger; = 0: Edge trigger  
CRE8 (GP20, Default 0x01)  
Bit 7-5 : Reserved.  
Bit 4-3 : Select Function.  
= 00 Select basic I/O function  
= 01 Reserved  
= 10 Select alternate function : Keyboard Reset (connected to KBC P20)  
= 11 Reserved  
Bit 2 : Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
CRE9 (GP21, Default 0x01)  
Bit 7-5 : Reserved  
Bit 4-3 : Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function : Keyboard P13 I/O  
= 11 Reserved  
-140  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 2 : Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
CREA (GP22, Default 0x01)  
Bit 7-5 : Reserved.  
Bit 4-3 : Select Function.  
= 00 Select Basic I/O function.  
= 01 Reserved  
= 10 Select 2nd alternate function : Keyboard P14 I/O.  
= 11 Reserved  
Bit 2 : Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
CREB (GP23, Default 0x01)  
Bit 7-5 : Reserved.  
Bit 4-3 : Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function : Keyboard P15 I/O  
= 11 Reserved  
Bit 2 : Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
CREC (GP24, Default 0x01)  
Bit 7-5 : Reserved.  
Bit 4-3 : Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function : Keyboard P16 I/O  
= 11 Reserved  
Publication Release Date: May 2006  
-141 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 2 : Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
CRED (GP25, Default 0x01)  
Bit 7-4 : Reserved.  
Bit 3 : Select Function.  
= 1 Select alternate function: GATE A20(Connect to KBC P21).  
= 0 Select basic I/O function  
Bit 2 : Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1 : Polarity : 1 : Invert, 0 : No Invert  
Bit 0 : In/Out : 1 : Input, 0 : Output  
CRF0 (Default 0x00)  
Debounce Filter Enable or Disable for General Purpose I/O Combined Interrupt. The Debounce Filter  
can reject a pulse with 1ms width or less.  
Bit 7-4 : Reserved  
Bit 3 : GP Common IRQ Filter Select  
= 1 Debounce Filter Enabled  
= 0 Debounce Filter Bypassed  
Bit 2-0 : Reserved  
CRF1 (Reserved)  
CRF2 (Default 0x00)  
Watching Dog Timer Time-out value. Writing a non-zero value to this register causes the counter to  
load the value to Watching Dog Counter and start to count down. If the Bit2 and Bit 1 are set, any  
Mouse Interrupt or Keyboard Interrupt happen will also cause to reload the non-zero value to  
Watching Dog Counter and count down. Read this register can not access Watching Dog Timer  
Time-out value, but can access the current value in Watching Dog Counter.  
Bit 7-0 :  
= 0x00 Time-out Disable  
= 0x01 Time-out occurs after 1 minute  
= 0x02 Time-out occurs after 2 minutes  
= 0x03 Time-out occurs after 3 minutes  
................................................  
= 0xFF Time-out occurs after 255 minutes  
CRF3 (WDT_CTRL0, Default 0x00)  
Watching Dog Timer Control Register #0  
Bit 7-4 : Reserved  
-142  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Bit 3 : When Time-out occurs, Enable or Disable Power LED with 1 Hz and 50% duty cycle output.  
= 1 Enable  
= 0 Disable  
Bit 2 : Mouse interrupt reset Enable or Disable  
= 1 Watching Dog Timer is reset upon a Mouse interrupt  
= 0 Watching Dog Timer is not affected by Mouse interrupt  
Bit 1 : Keyboard interrupt reset Enable or Disable  
= 1 Watching Dog Timer is reset upon a Keyboard interrupt  
= 0 Watching Dog Timer is not affected by Keyboard interrupt  
Bit 0 : Reserved.  
CRF4 (WDT_CTRL1, Default 0x00)  
Watching Dog Timer Control Register #1  
Bit 7-4 : Reserved  
Bit 3 : Enable the rising edge of Keyboard Reset(P20) to force Time-out event, R/W*  
= 1 Enable  
= 0 Disable  
Bit 2 : Force Watching Dog Timer Time-out, Write only*  
= 1 Force Watching Dog Timer time-out event; this bit is self-clearing.  
Bit 1 : Enable Power LED 1Hz rate toggle pulse with 50% duty cycle , R/W  
= 1 Enable  
= 0 Disable  
Bit 0 : Watching Dog Timer Status, R/W  
= 1 Watching Dog Timer time-out occurred.  
= 0 Watching Dog Timer counting  
*Note : 1). Internal logic provides an 1us Debounce Filter to reject the width of P20 pulse less than 1us.  
2). The P20 signal that coming from Debounce Filter is ORed with the signal generated by the Force Time-out bit and  
then connect to set the Bit 0(Watching Dog Timer Status). The ORed signal is self-clearing.  
Publication Release Date: May 2006  
-143 -  
Revision 0.60  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
14. SPECIFICATIONS  
14.1 Absolute Maximum Ratings  
PARAMETER  
Power Supply Voltage  
RATING  
-0.5 to 7.0  
UNIT  
V
Input Voltage  
-0.5 to VDD+0.5  
4.0 to 1.8  
V
RTC Battery Voltage VBAT  
Operating Temperature  
Storage Temperature  
V
0 to +70  
° C  
° C  
-55 to +150  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability  
of the device.  
14.2 DC CHARACTERISTICS  
(Ta = 0° C to 70° C, VDD = 5V ± 10%, VSS = 0V)  
PARAMETER  
SYM. MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
VBAT = 2.5 V  
RTC Battery Quiescent  
Current  
IBAT  
2.4  
uA  
ACPI Stand-by Power  
Supply Quiescent  
Current  
IBAT  
2.0  
mA  
VSB = 5.0 V, All ACPI pins  
are not connected.  
I/O - TTL level bi-directional pin with source-sink capability of 8 mA  
8t  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
0.8  
V
V
2.0  
2.4  
VOL  
VOH  
ILIH  
ILIL  
0.4  
V
IOL = 8 mA  
IOH = - 8 mA  
VIN = VDD  
VIN = 0V  
V
+10  
-10  
μA  
μA  
I/O - TTL level bi-directional pin with source-sink capability of 6 mA  
6t  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
0.8  
V
V
2.0  
2.4  
VOL  
VOH  
ILIH  
ILIL  
0.4  
V
IOL = 6 mA  
IOH = - 6 mA  
VIN = VDD  
VIN = 0V  
V
+10  
-10  
μA  
μA  
-144  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
I/O - CMOS level bi-directional pin with source-sink capability of 8 mA  
8
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
VIL  
VIH  
0.3xVDD  
0.4  
V
V
V
V
0.7xVDD  
3.5  
VOL  
VOH  
ILIH  
IOL = 8 mA  
IOH = - 8 mA  
VIN = VDD  
+ 10  
- 10  
μA  
μA  
Input Low Leakage  
ILIL  
VIN = 0V  
I/O - CMOS level bi-directional pin with source-sink capability of 12 mA  
12  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
VIL  
VIH  
0.3xVDD  
V
V
V
V
0.7xVDD  
3.5  
VOL  
VOH  
ILIH  
0.4  
IOL = 12 mA  
IOH = - 12 mA  
VIN = VDD  
+ 10  
- 10  
μA  
μA  
Input Low Leakage  
ILIL  
VIN = 0V  
I/O  
- CMOS level bi-directional pin with source-sink capability of 16 mA, with internal pull-up  
16u  
resistor  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
VIL  
VIH  
0.3xVDD  
0.4  
V
V
V
V
0.7xVDD  
3.5  
VOL  
VOH  
ILIH  
IOL = 16 mA  
IOH = - 16 mA  
VIN = VDD  
+ 10  
- 10  
μA  
μA  
Input Low Leakage  
ILIL  
VIN = 0V  
I/OD  
16u  
- CMOS level Open-Drain pin with source-sink capability of 16 mA, with internal pull-up  
resistor  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
VIL  
VIH  
0.3xVDD  
0.4  
V
V
V
V
0.7xVDD  
3.5  
VOL  
VOH  
ILIH  
IOL = 16 mA  
IOH = - 16 mA  
VIN = VDD  
+ 10  
- 10  
μA  
μA  
Input Low Leakage  
ILIL  
VIN = 0V  
Publication Release Date: May 2006  
Revision 0.60  
-145 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
I/O  
- TTL level bi-directional pin with source-sink capability of 12 mA  
12t  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
VIL  
VIH  
0.8  
0.4  
V
V
V
V
2.0  
2.4  
VOL  
VOH  
ILIH  
IOL = 12 mA  
IOH = - 12 mA  
VIN = VDD  
+ 10  
- 10  
μA  
μA  
Input Low Leakage  
ILIL  
VIN = 0V  
I/O  
- TTL level bi-directional pin with source-sink capability of 24 mA  
24t  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
VIL  
VIH  
0.8  
V
V
V
V
2.0  
2.4  
VOL  
VOH  
ILIH  
0.4  
IOL = 24 mA  
IOH = - 24 mA  
VIN = VDD  
+ 10  
- 10  
μA  
μA  
Input Low Leakage  
ILIL  
VIN = 0V  
OUT - TTL level output pin with source-sink capability of 8 mA  
8t  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
0.4  
V
V
IOL = 8 mA  
2.4  
IOH = - 8 mA  
OUT  
- TTL level output pin with source-sink capability of 12 mA  
12t  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
0.4  
V
V
IOL = 12 mA  
IOH = -12 mA  
2.4  
OD - Open-drain output pin with sink capability of 12 mA  
12  
Output Low Voltage  
VOL  
0.4  
V
V
IOL = 12 mA  
IOL = 24 mA  
OD - Open-drain output pin with sink capability of 24 mA  
24  
Output Low Voltage  
VOL  
0.4  
0.8  
IN - TTL level input pin  
t
Input Low Voltage  
Input High Voltage  
Input High Leakage  
VIL  
VIH  
ILIH  
V
V
2.0  
+10  
-10  
VIN = VDD  
VIN = 0 V  
μA  
μA  
Input Low Leakage  
ILIL  
-146  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
IN - CMOS level input pin  
c
Input Low Voltage  
Input High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
ILIH  
ILIL  
V
V
0.3×VDD  
0.7×VDD  
+10  
-10  
VIN = VDD  
VIN = 0 V  
μA  
μA  
IN - CMOS level Schmitt-triggered input pin  
cs  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
Vt-  
Vt+  
1.3  
3.2  
1.5  
1.5  
3.5  
2
1.7  
3.8  
V
V
V
VDD = 5 V  
VDD = 5 V  
VDD = 5 V  
VIN = VDD  
VTH  
ILIH  
Input High Leakage  
+10  
-10  
μA  
μA  
Input Low Leakage  
ILIL  
VIN = 0 V  
IN - CMOS level input pin with internal pull-up resistor  
cu  
Input Low Voltage  
Input High Voltage  
Input High Leakage  
VIL  
VIH  
ILIH  
0.7xVDD  
V
V
0.7xVDD  
+10  
-10  
VIN = VDD  
VIN = 0 V  
μA  
μA  
Input Low Leakage  
ILIL  
IN - TTL level Schmitt-triggered input pin  
ts  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
Vt-  
Vt+  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
V
VDD = 5 V  
VDD = 5 V  
VDD = 5 V  
VIN = VDD  
VTH  
ILIH  
Input High Leakage  
+10  
-10  
μA  
μA  
Input Low Leakage  
ILIL  
VIN = 0 V  
IN - TTL level Schmitt-triggered input pin with internal pull-up resistor  
tsu  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
Vt-  
Vt+  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
V
VDD = 5 V  
VDD = 5 V  
VDD = 5 V  
VIN = VDD  
VTH  
ILIH  
Input High Leakage  
+10  
-10  
μA  
μA  
Input Low Leakage  
ILIL  
VIN = 0 V  
Publication Release Date: May 2006  
Revision 0.60  
-147 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
14.3 AC Characteristics  
14.3.1  
FDC: Data rate = 1 MB, 500 KB, 300 KB, 250 KB/sec.  
PARAMETER  
SYM.  
TEST  
CONDITIONS  
MIN.  
TYP.  
(NOTE 1)  
MAX.  
UNIT  
TAR  
25  
nS  
SA9-SA0, AEN, DACK ,  
CS, setup time to IOR  
TAR  
0
nS  
SA9-SA0, AEN, DACK ,  
hold time for IOR↑  
TRR  
TFD  
80  
nS  
nS  
IOR width  
CL = 100 pf  
Data access time from  
IOR↓  
80  
50  
CL = 100 pf  
CL = 100 pf  
TDH  
TDF  
TRI  
10  
10  
nS  
nS  
nS  
Data hold from IOR↓  
SD to from IOR ↑  
360/570  
/675  
IRQ delay from IOR↑  
TAW  
TWA  
25  
0
nS  
nS  
SA9-SA0, AEN, DACK ,  
setup time to IOW ↓  
SA9-SA0, AEN, DACK ,  
hold time for IOW ↑  
TWW  
TDW  
TWD  
TWI  
60  
60  
0
nS  
nS  
nS  
nS  
IOW width  
Data setup time to IOW ↑  
Data hold time from IOW ↑  
IRQ delay from IOW ↑  
360/570  
/675  
DRQ cycle time  
TMCY  
TAM  
TMA  
TAA  
27  
0
μS  
50  
nS  
DRQ delay time DACK ↓  
DRQ to DACK delay  
DACK width  
nS  
nS  
260/430  
/510  
TMR  
TMW  
0
0
nS  
nS  
IOR delay from DRQ  
IOW delay from DRQ  
-148  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
FDC: Data rate = 1 MB, 500 KB, 300 KB, 250 KB/sec, continued.  
PARAMETER  
SYM.  
TEST  
CONDITIONS  
MIN.  
TYP.  
(NOTE 1)  
MAX.  
UNIT  
μS  
nS  
TMRW  
6/12  
/20/24  
IOW or IOR response time  
from DRQ  
TC width  
TTC  
TRST  
TIDX  
TDST  
TSTD  
TSTP  
135/220  
/260  
RESET width  
1.8/3/3.  
5
μS  
μS  
μS  
μS  
μS  
0.5/0.9  
/1.0  
INDEX width  
1.0/1.6  
/2.0  
DIR setup time to STEP  
DIR hold time from STEP  
STEP pulse width  
24/40/4  
8
6.8/11.5  
/13.8  
7/11.7  
/14  
7.2/11.9  
/14.2  
TSC  
Note 2  
Note 2  
Note 2  
μS  
μS  
STEP cycle width  
WD pulse width  
TWDD  
100/185  
/225  
125/210  
/250  
150/235  
/275  
Write precompensation  
TWPC  
100/138  
/225  
125/210  
/250  
150/235  
/275  
μS  
Notes:  
1. Typical values for T = 25° C and normal supply voltage.  
2. Programmable from 2 mS through 32 mS in 2 mS increments.  
Publication Release Date: May 2006  
Revision 0.60  
-149 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
14.3.2  
UART/Parallel Port  
PARAMETER  
SYMBOL  
TEST  
MIN.  
MAX.  
UNIT  
CONDITIONS  
Delay from Stop to Set Interrupt  
TSINT  
9/16  
Baud  
Rate  
TRINT  
TIRS  
100 pf Loading  
100 pf Loading  
1
μS  
Delay from IOR Reset Interrupt  
Delay from Initial IRQ Reset to Transmit  
Start  
1/16  
9/16  
8/16  
Baud  
Rate  
THR  
TSI  
175  
nS  
Delay from IOW to Reset interrupt  
Delay from Initial IOW to interrupt  
Delay from Stop to Set Interrupt  
16/16  
Baud  
Rate  
TSTI  
1/2  
Baud  
Rate  
TIR  
100 pF Loading  
100 pF Loading  
250  
200  
nS  
nS  
Delay from IOR to Reset Interrupt  
TMWO  
Delay from IOR to Output  
Set Interrupt Delay from Modem Input  
TSIM  
TRIM  
250  
250  
nS  
nS  
Reset Interrupt Delay from IOR  
Interrupt Active Delay  
Interrupt Inactive Delay  
Baud Divisor  
TIAD  
TIID  
N
100 pF Loading  
100 pF Loading  
100 pF Loading  
25  
30  
16  
nS  
nS  
2
-1  
14.3.3  
Parallel Port Mode Parameters  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
t1  
100  
nS  
PD0-7, INDEX, STROBE, AUTOFD Delay from  
IOW  
t2  
t3  
60  
nS  
nS  
IRQ Delay from ACK, nFAULT  
105  
IRQ Delay from IOW  
IRQ Active Low in ECP and EPP Modes  
t4  
t5  
200  
300  
105  
nS  
nS  
ERROR Active to IRQ Active  
-150  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
14.3.4  
EPP Data or Address Read Cycle Timing Parameters  
PARAMETER  
Ax Valid to IOR Asserted  
SYM.  
MIN.  
MAX.  
UNIT  
t1  
40  
nS  
t2  
t3  
t4  
t5  
0
10  
40  
0
nS  
nS  
IOCHRDY Deasserted to IOR Deasserted  
IOR Deasserted to Ax Valid  
10  
24  
IOR Deasserted to  
or IOR Asserted  
IOW  
nS  
nS  
IOR Asserted to IOCHRDY Asserted  
PD Valid to SD Valid  
t6  
t7  
0
0
75  
40  
μS  
nS  
nS  
IOR Deasserted to SD Hi-Z (Hold Time)  
SD Valid to IOCHRDY Deasserted  
t8  
t9  
0
85  
60  
160  
WAIT Deasserted to IOCHRDY Deasserted  
PD Hi-Z to PDBIR Set  
t10  
t13  
0
0
nS  
nS  
WRITE Deasserted to IOR Asserted  
WAIT Asserted to WRITE Deasserted  
Deasserted to WRITE Modified  
IOR Asserted to PD Hi-Z  
t14  
t15  
t16  
t17  
0
60  
0
185  
190  
50  
nS  
nS  
nS  
nS  
60  
180  
WAIT Asserted to PD Hi-Z  
Command Asserted to PD Valid  
Command Deasserted to PD Hi-Z  
t18  
t19  
t20  
0
0
nS  
nS  
nS  
60  
190  
WAIT Deasserted to PD Drive  
t21  
1
nS  
WRITE Deasserted to Command  
PBDIR Set to Command  
t22  
t23  
t24  
t25  
0
0
20  
30  
nS  
nS  
nS  
nS  
PD Hi-Z to Command Asserted  
Asserted to Command Asserted  
0
195  
180  
60  
WAIT Deasserted to Command Deasserted  
Time out  
t26  
t27  
10  
0
12  
nS  
nS  
PD Valid to WAIT Deasserted  
PD Hi-Z to WAIT Deasserted  
t28  
0
μS  
Publication Release Date: May 2006  
Revision 0.60  
-151 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
14.3.5  
EPP Data or Address Write Cycle Timing Parameters  
PARAMETER  
Ax Valid to IOW Asserted  
SYM.  
MIN.  
MAX.  
UNIT  
t1  
40  
nS  
SD Valid to Asserted  
t2  
t3  
10  
10  
nS  
nS  
IOW Deasserted to Ax Invalid  
t4  
t5  
0
10  
40  
0
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
WAIT Deasserted to IOCHRDY Deasserted  
Command Asserted to WAIT Deasserted  
IOW Deasserted to IOW or IOR Asserted  
IOCHRDY Deasserted to IOW Deasserted  
WAIT Asserted to Command Asserted  
IOW Asserted to WAIT Asserted  
PBDIR Low to WRITE Asserted  
WAIT Asserted to WRITE Asserted  
WAIT Asserted to WRITE Change  
IOW Asserted to PD Valid  
t6  
t7  
24  
160  
70  
t8  
60  
0
t9  
t10  
t11  
t12  
t13  
t14  
0
60  
60  
0
185  
185  
50  
0
WAIT Asserted to PD Invalid  
PD Invalid to Command Asserted  
t15  
t16  
10  
5
nS  
nS  
35  
210  
190  
10  
IOW to Command Asserted  
t17  
t18  
t19  
t20  
t21  
t22  
60  
60  
0
nS  
nS  
μS  
WAIT Asserted to Command Asserted  
WAIT Deasserted to Command Deasserted  
Command Asserted to WAIT Deasserted  
Time out  
10  
0
12  
μS  
nS  
Command Deasserted to WAIT Asserted  
0
nS  
IOW Deasserted to WRITE Deasserted and PD  
invalid  
-152  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
14.3.6  
Parallel Port FIFO Timing Parameters  
PARAMETER  
SYMBOL  
MIN.  
600  
600  
450  
80  
MAX.  
UNIT  
nS  
DATA Valid to nSTROBE Active  
t1  
t2  
t3  
t4  
t5  
t6  
nSTROBE Active Pulse Width  
DATA Hold from nSTROBE Inactive  
BUSY Inactive to PD Inactive  
nS  
nS  
nS  
BUSY Inactive to nSTROBE Active  
nSTROBE Active to BUSY Active  
680  
nS  
500  
nS  
14.3.7  
ECP Parallel Port Forward Timing Parameters  
PARAMETER  
SYMBOL  
MIN.  
0
MAX.  
60  
UNIT  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nAUTOFD Valid to nSTROBE Asserted  
PD Valid to nSTROBE Asserted  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
60  
BUSY Deasserted to nAUTOFD Changed  
BUSY Deasserted to PD Changed  
80  
80  
0
180  
180  
nSTROBE Deasserted to BUSY Deasserted  
BUSY Deasserted to nSTROBE Asserted  
nSTROBE Asserted to BUSY Asserted  
BUSY Asserted to nSTROBE Deasserted  
80  
0
200  
180  
80  
14.3.8  
ECP Parallel Port Reverse Timing Parameters  
PARAMETER  
SYMBOL  
MIN.  
0
MAX.  
UNIT  
nS  
PD Valid to nACK Asserted  
t1  
t2  
t3  
t4  
t5  
t6  
nAUTOFD Deasserted to PD Changed  
nAUTOFD Asserted to nACK Asserted  
nAUTOFD Deasserted to nACK Deasserted  
nACK Deasserted to nAUTOFD Asserted  
PD Changed to nAUTOFD Deasserted  
0
nS  
0
nS  
0
nS  
80  
80  
200  
200  
nS  
nS  
Publication Release Date: May 2006  
Revision 0.60  
-153 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
14.3.9  
KBC Timing Parameters  
NO.  
T1  
DESCRIPTION  
MIN.  
0
MAX.  
UNIT  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
μS  
μS  
μS  
μS  
μS  
μS  
μS  
mS  
μS  
nS  
Address Setup Time from WRB  
Address Setup Time from RDB  
WRB Strobe Width  
T2  
0
T3  
20  
20  
0
T4  
RDB Strobe Width  
T5  
Address Hold Time from WRB  
Address Hold Time from RDB  
Data Setup Time  
T6  
0
T7  
50  
0
T8  
Data Hold Time  
T9  
Gate Delay Time from WRB  
RDB to Drive Data Delay  
RDB to Floating Data Delay  
Data Valid After Clock Falling (SEND)  
K/B Clock Period  
10  
30  
40  
20  
4
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
0
20  
10  
4
K/B Clock Pulse Width  
Data Valid Before Clock Falling (RECEIVE)  
K/B ACK After Finish Receiving  
RC Fast Reset Pulse Delay (8 Mhz)  
RC Pulse Width (8 Mhz)  
Transmit Timeout  
20  
2
3
2
6
Data Valid Hold Time  
0
83  
30  
30  
5
167  
50  
Input Clock Period (612 Mhz)  
Duration of CLK inactive  
Duration of CLK active  
μS  
μS  
μS  
50  
Time from inactive CLK transition, used to time when  
the auxiliary device sample DATA  
25  
T25  
T26  
T27  
T28  
T29  
Time of inhibit mode  
100  
5
300  
T28-5  
50  
μS  
μS  
μS  
μS  
μS  
Time from rising edge of CLK to DATA transition  
Duration of CLK inactive  
30  
30  
5
Duration of CLK active  
50  
Time from DATA transition to falling edge of CLK  
25  
-154  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
14.3.10 GPIO, ACPI, ROM Interface Timing Parameters  
SYMBOL  
PARAMETER  
Write data to GPIO update  
MIN.  
MAX.  
UNIT  
tWGO  
300(Note 1)  
ns  
tSWP  
tSWE  
SWITCH pulse width  
16  
14  
msec  
msec  
16  
Delay from SWITCH events to PSCTRL , and  
from SWITCH Off event to SMI  
tPORW  
tPOWR  
30  
-
90  
25  
μs  
SMI pulse width (edge mode)  
nsec  
Delay from APCI Reg.1 write to SMI inactive  
(level mode)  
tRIO  
-
25  
nsec  
Delay from RIA,B KCLK, MCLK, PWAKIN1,  
PWAKIN2 to PSCTRL  
tRPO  
tRTO  
tRINW  
-
25  
0.190  
-
sec  
sec  
ns  
Delay from PHRI pulse to PSCTRL  
Delay from PHRI pulse train to PSCTRL  
PHRI width (high and low time)  
0.125  
10  
Note : Refer to Microprocessor Interface Timing for Read Timing.  
Publication Release Date: May 2006  
Revision 0.60  
-155 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15. TIMING WAVEFORMS  
15.1 FDC  
Write Date  
Processor Read Operation  
WD  
SA0-SA9  
AEN  
TWDD  
CS  
TAR  
TRA  
DACK  
TRR  
IOR  
TDH  
Index  
TFD  
TDF  
D0-D7  
IRQ  
INDEX  
TR  
TIDX  
TIDX  
Processor Write Operation  
Terminal Count  
SA0-SA9  
AEN  
TC  
TAW  
TWA  
DACK  
IOW  
TTC  
TWW  
TWD  
Reset  
TDW  
D0-D7  
IRQ  
RESET  
TWI  
TRST  
DMA Operation  
Drive Seek operation  
TAM  
DRQ  
DIR  
TMCY  
TAA  
DACK  
TMA  
TSTP  
TSTD  
TDST  
TMRW  
IOW or  
IOR  
STEP  
TMW (IOW)  
TMR (IOR)  
TSC  
-156  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.2 UART/Parallel  
Receiver Timing  
SIN  
(RECEIVER  
STAR  
INPUT DATA)  
DATA BITS  
(5-8)  
PARITY  
STOP  
TSINT  
IRQ3 or IRQ4  
IOR  
TRINT  
(READ RECEIVER  
BUFFER REGISTER)  
Transmitter Timing  
SERIAL OUT  
(SOUT)  
STAR  
STAR  
DATA  
(5-8)  
PARITY  
STOP  
(1-2)  
THRS  
THR  
TSTI  
IRQ3 or IRQ4  
THR  
IOW  
TSI  
(WRITE THR)  
TIR  
IOR  
(READ TIR)  
Publication Release Date: May 2006  
Revision 0.60  
-157 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.2.1  
Modem Control Timing  
MODEM Control Timing  
IOW  
(WRITE MCR)  
TMWO  
TMWO  
→ ←  
RTS,DTR  
?
CTS,DSR  
DCD  
TSIM  
TSIM  
IRQ3 or  
IRQ4  
TRIM  
TRIM  
IOR  
(READ MSR)  
TSIM  
?
RI  
Printer Interrupt Timing  
ACK  
TLAD  
TLID  
IRQ7  
-158  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.3 Parallel Port  
15.3.1  
Parallel Port Timing  
IOW  
t1  
INIT, STROBE  
AUTOFD, SLCTIN  
PD<0:7>  
ACK  
t2  
IRQ (SPP)  
IRQ  
t3  
t4  
(EPP or ECP)  
nFAULT  
(ECP)  
ERROR  
(ECP)  
t5  
t2  
t4  
IRQ  
Publication Release Date: May 2006  
Revision 0.60  
-159 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.3.2  
EPP Data or Address Read Cycle (EPP Version 1.9)  
t3  
A<0:10>  
IOR  
t1  
t2  
t4  
t6  
t7  
SD<0:7>  
t8  
t9  
t5  
IOCHRDY  
t10  
t13  
t14  
t15  
WRITE  
t16  
t18  
t19  
t20  
t17  
t21  
PD<0:7>  
t22  
t23  
t25  
t24  
ADDRSTB  
DATASTB  
t27  
t28  
t26  
WAIT  
-160  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.3.3  
EPP Data or Address Write Cycle (EPP Version 1.9)  
t3  
t4  
A10-A0  
SD<0:7>  
t5  
t1  
t6  
t2  
IOW  
IOCHRDY  
t7  
t8  
t9  
t10  
t11  
t12  
t14  
WRITE  
t13  
PD<0:7>  
t15  
t16  
t17  
t18  
DATAST  
ADDRSTB  
t19  
t21  
t20  
WAIT  
t22  
PBDIR  
Publication Release Date: May 2006  
Revision 0.60  
-161 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.3.4  
EPP Data or Address Read Cycle (EPP Version 1.7)  
t3  
A<0:10>  
t1  
t2  
t4  
IOR  
t6  
t7  
SD<0:7>  
t8  
t9  
t5  
IOCHRDY  
t10  
t13  
t14  
t15  
WRITE  
t16  
t18  
t19  
t20  
t17  
t21  
PD<0:7>  
t22  
t23  
t25  
ADDRSTB  
DATASTB  
t24  
t26  
t28  
t27  
WAIT  
-162  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.3.5  
EPP Data or Address Write Cycle (EPP Version 1.7)  
t3  
t4  
A10-A0  
SD<0:7>  
t5  
t1  
t6  
t2  
IOW  
t7  
t8  
IOCHRDY  
t9  
t10  
t11  
t22  
t22  
WRITE  
t13  
PD<0:7>  
t15  
t16  
t17  
t18  
DATAST  
ADDRSTB  
t19  
t20  
WAIT  
15.3.6  
Parallel Port FIFO Timing  
t4  
>|  
>|  
t3  
PD<0:7>  
t1  
t2  
t5  
>|  
>
>|  
nSTROBE  
BUSY  
t6  
>|  
Publication Release Date: May 2006  
Revision 0.60  
-163 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.3.7  
ECP Parallel Port Forward Timing  
t3  
t4  
nAUTOFD  
PD<0:7>  
t1  
t2  
t6  
t8  
nSTROBE  
t5  
t5  
t7  
BUSY  
15.3.8  
ECP Parallel Port Reverse Timing  
t2  
PD<0:7>  
t1  
t3  
t4  
nACK  
t5  
t5  
t6  
nAUTOFD  
-164  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.4 KBC  
15.4.1  
Write Cycle Timing  
A2, CSB  
T1  
T5  
T3  
WRB  
ACTIVE  
T7  
T8  
D0~D7  
DATA IN  
T9  
GA20  
OUTPUT PORT  
T17  
T18  
FAST RESET PULSE RC  
FE COMMAND  
15.4.2  
Read Cycle Timing  
A2,CSB  
AEN  
T2  
T6  
T4  
RDB  
ACTIVE  
T10  
T11  
D0-D7  
DATA OUT  
15.4.3  
Send Data to K/B  
CLOCK  
(KCLK)  
T12  
T13  
T16  
T14  
SERIAL DATA  
(KDAT)  
D5  
START  
D1  
D2  
D3  
D4  
D0  
D6  
D7  
P
STOP  
T19  
Publication Release Date: May 2006  
Revision 0.60  
-165 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.4.4  
Receive Data from K/B  
CLOCK  
(KCLK)  
T14  
T13  
T15  
SERIAL DATA  
D5  
START  
T20  
D1  
D2  
D3  
D4  
D0  
D6  
D7  
P
STOP  
(T1)  
15.4.5  
15.4.6  
Input Clock  
CLOCK  
CLOCK  
T21  
Send Data to Mouse  
MCLK  
T25  
T23  
T24  
T22  
MDAT  
START  
Bit  
D5  
D1  
D2  
D3  
D4  
D0  
D6  
D7  
P
STOP  
Bit  
15.4.7  
Receive Data from Mouse  
MCLK  
T29  
T26  
D1  
T27  
T28  
D3  
MDAT  
D5  
START  
D2  
D4  
D0  
D6  
D7  
P
STOP  
Bit  
-166  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.5 GPIO Write Timing Diagram  
VALID  
A0-A15  
IOW  
D0-7  
VALID  
GPIO10-17  
GPIO20-25  
PREVIOUS STATE  
VALID  
tWGO  
15.6 Master Reset (MR) Timing  
Vcc  
MR  
tVMR  
15.7 ACPI  
15.7.1  
PANSW Trigger and PSCTRL Timing  
V
V
tSWP  
tSWP  
tSWE  
OH  
OL  
PANSW  
tSWE  
HI-Z  
OL  
PSCTRL  
SMI  
V
edge:  
tPORW  
V
HI-Z/  
OH  
V
OL  
V
V
OH  
OL  
WR  
Level:  
tPRL  
Publication Release Date: May 2006  
Revision 0.60  
-167 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
15.7.2  
RIA, RIB , KLCK, MCLK, PWAKIN1, PWAKIN2 Trigger and PSCTRL Timing  
RIA, RIB  
V
OH  
OL  
KCLK, MCLK  
V
PWAKIN1, PWAKIN2  
tRIO  
HI-Z  
PSCTRL  
V
OL  
15.7.3  
PHRI Trigger and PSCTRL Timing  
V
V
OH  
OL  
PHRI  
tRINW  
tRINW  
tRPO  
tRTO  
HI-Z  
PSCTRL  
V
OL  
-168  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
16. APPLICATION CIRCUITS  
16.1 Parallel Port Extension FDD  
JP13  
13  
WE2/SLCT  
25  
12  
JP 13A  
WD2/PE  
24  
11  
23  
10  
22  
9
21  
8
20  
7
19  
6
18  
5
17  
4
16  
3
DCH2  
HEAD2  
RDD2  
WP2  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
MOB2/BUSY  
DSB2/ACK  
PD7  
TRK02  
WE2  
WD2  
PD6  
PD5  
STEP2  
DIR2  
MOB2  
DSB2  
IDX2  
DCH2/PD4  
RDD2/PD3  
7
5
3
1
STEP2/SLIN  
WP2/PD2  
6
4
2
RWC2  
DIR2/INIT  
TRK02/PD1  
15  
2
14  
1
EXT FDC  
HEAD2/ERR  
IDX2/PD0  
RWC2/AFD  
STB  
PRINTER PORT  
Parallel Port Extension FDD Mode Connection Diagram  
Publication Release Date: May 2006  
Revision 0.60  
-169 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
16.2 Parallel Port Extension 2FDD  
JP13  
13  
25  
12  
WE2/SLCT  
JP 13A  
34  
WD2/PE  
DCH2  
HEAD2  
RDD2  
WP2  
24  
11  
23  
10  
22  
9
21  
8
20  
7
19  
6
18  
5
17  
4
16  
3
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
MOB2/BUSY  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
DSB2/ACK  
TRK02  
DSA2/PD7  
MOA2/PD6  
WE2  
WD2  
STEP2  
DIR2  
PD5  
MOB2  
DSA2  
DSB2  
MOA2  
IDX2  
DCH2/PD4  
RDD2/PD3  
7
5
3
1
STEP2/SLIN  
WP2/PD2  
6
4
2
RWC2  
DIR2/INIT  
TRK02/PD1  
15  
2
14  
1
EXT FDC  
HEAD2/ERR  
IDX2/PD0  
RWC2/AFD  
STB  
PRINTER PORT  
Parallel Port Extension 2FDD Connection Diagram  
16.3 Four FDD Mode  
74LS139  
G1  
7407(2)  
W83977F  
1Y0  
1Y1  
DSA  
DSB  
DSC  
DSD  
MOA  
DSA  
DSB  
A1  
B1  
1Y2  
1Y3  
2Y0  
2Y1  
MOA  
MOB  
MOB  
MOC  
MOD  
G2  
2Y2  
2Y3  
A2  
B2  
-170  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
17. ORDERING INFORMATION  
PART NO.  
W83977F-P  
KBC FIRMWARE  
REMARKS  
without FIR, 3rd UART  
TM  
TM  
Phoenix MultiKey/42  
W83977F-A  
W83977AF-P  
W83977AF-A  
W83977G-A  
W83977AG-A  
TM  
without FIR, 3rd UART  
AMIKEY-2  
with FIR, 3rd UART  
Phoenix MultiKey/42  
TM  
with FIR, 3rd UART  
AMIKEY-2  
TM  
Lead-free version of W83977F-A  
Lead-free version of W83977AF-A  
AMIKEY-2  
TM  
AMIKEY-2  
Publication Release Date: May 2006  
Revision 0.60  
-171 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
18. HOW TO READ THE TOP MARKING  
Example: The top marking of W83977F-A  
inbond  
W83977TF-A  
© AM. MEGA. 87-96  
719AB27039520  
1st line: Winbond logo  
2nd line: the type number: W83977F-A  
3rd line: the source of KBC F/W -- American Megatrends IncorporatedTM  
4th line: Tracking code  
719 A B 2 6519520  
719: packages made in '97, week 19  
A: assembly house ID; A means ASE, S means SPIL  
B: IC revision; B means version B, C means version C  
2: wafers manufactured in Winbond FAB 2  
7039520: wafer production series lot number  
Example: The top marking of W83977G-A  
inbond  
W83977G-A  
AM. MEGA. 87-96  
520AB26519520  
1st line: Winbond logo  
2nd line: the type number: W83977G-A  
3rd line: the source of KBC F/W -- American Megatrends IncorporatedTM  
4th line: Tracking code  
709 A B 2 6519520  
520: packages made in '05, week 20  
A: assembly house ID; A means ASE, S means SPIL  
B: IC revision; B means version B, C means version C  
2: wafers manufactured in Winbond FAB 2  
6519520: wafer production series lot number  
-172  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
19. PACKAGE DIMENSIONS  
(128-pin QFP)  
Dimension in mm  
Dimension in inch  
H E  
E
Symbol  
Min  
0.25  
2.57  
Nom  
0.35  
Max  
0.45  
2.87  
Min Nom Max  
65  
102  
1
A
0.010  
0.101  
0.014  
0.107  
0.018  
0.113  
2.72  
A
2
64  
103  
0.10  
0.10  
0.20  
0.15  
0.30  
0.20  
0.004 0.008 0.012  
0.004 0.006 0.008  
0.547 0.551 0.555  
b
c
D
E
e
13.90  
19.90  
14.00  
20.00  
0.50  
14.10  
20.10  
0.783 0.787  
0.020  
0.791  
HD  
D
H
D
17.20  
23.20  
0.669  
0.677 0.685  
0.921  
17.40  
23.40  
0.95  
17.00  
23.00  
0.905 0.913  
HE  
L
0.80  
1.60  
0.025 0.031 0.037  
0.063  
0.65  
39  
128  
1
L
0.08  
7
y
0.003  
1
38  
e
b
0
7
0
0
c
Note:  
A
1.Dimension D & E do not include interlead  
flash.  
2
A
2.Dimension b does not include dambar  
protrusion/intrusion  
.
3.Controlling dimension : Millimeter  
4.General appearance spec. should be based  
on final visual inspection spec.  
1
A
See Detail F  
Seating Plane  
L
y
L 1  
Detail F  
5. PCB layout please use the "mm".  
Publication Release Date: May 2006  
Revision 0.60  
-173 -  
W83977F-A/ W83977G-A/ W83977AF-A/ W83977AG-A  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control  
instruments, airplane or spaceship instruments, transportation instruments, traffic signal  
instruments, combustion control instruments, or for other applications intended to support or  
sustain life. Further more, Winbond products are not intended for applications wherein failure  
of Winbond products could result or lead to a situation wherein personal injury, death or  
severe property or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
-174  

相关型号:

W83977AF-P

WINBOND I/O
WINBOND

W83977AG-A

WINBOND I/O
WINBOND

W83977ATF

WINBOND I/O
WINBOND

W83977ATF-AW

WINBOND I/O
WINBOND

W83977ATF-P

Multifunction Peripheral, CMOS, PQFP128, PLASTIC, QFP-128
WINBOND

W83977ATG

WINBOND I/O
WINBOND

W83977ATG-AW

WINBOND I/O
WINBOND

W83977CTF

WINBOND I/O
WINBOND

W83977CTF-AW

WINBOND I/O
WINBOND

W83977CTF-PW

WINBOND I/O
WINBOND

W83977EF

WINBOND I/O
WINBOND

W83977EF-AW

WINBOND I/O
WINBOND