SI9122A [VISHAY]

500-kHz Half-Bridge DC/DC Controller With Integrated Secondary Synchronous Rectification Drivers; 集成二级同步整流驱动器的500 kHz的半桥DC / DC控制器
SI9122A
型号: SI9122A
厂家: VISHAY    VISHAY
描述:

500-kHz Half-Bridge DC/DC Controller With Integrated Secondary Synchronous Rectification Drivers
集成二级同步整流驱动器的500 kHz的半桥DC / DC控制器

驱动器 控制器
文件: 总15页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si9122A  
Vishay Siliconix  
500-kHz Half-Bridge DC/DC Controller  
With Integrated Secondary Synchronous Rectification Drivers  
FEATURES  
28-V to 75-V Input Voltage Range  
Compatible with ETSI 300 132-2  
Integrated 1–A Half Bridge Primary Drivers  
Secondary Synchronous Rectifier Control Signals With  
Programmable Deadtime Delay  
Frequency Foldback Eliminates Constant Current Tail  
Advanced Maximum Current Control During Start-Up and  
Shorted Load  
Low Input Voltage Detection  
Programmable Soft-Start Function  
Over Temperature Protection  
Voltage Mode Control  
Voltage Feedforward Compensation  
High Voltage Pre-Regulator Operates During Start-Up  
Current Sensing On Low-Side Primary Device  
APPLICATIONS  
Network Cards  
Power Supply Modules  
DESCRIPTION  
Si9122A is a half-bridge controller IC ideally suited to fixed  
telecom applications where high efficiency is required at low  
output voltages (e.g. <3.3 V). Designed to operate within the  
fixed telecom voltage range of 33–75 V and withstand 100 V,  
100 ms transients, the IC is capable of controlling and driving  
both the low and high-side switching devices of a half bridge  
circuit and also controlling the switching devices on the  
secondary side of the bridge. Due to the very low on-resistance  
of the secondary MOSFETs, a significant increase in  
conversion efficiency can be achieved as compared with  
conventional Schottky diodes. Control of the secondary  
devices is by means of a pulse transformer and a pair of  
inverters. Such a system has efficiencies well in excess of 90%  
even for low output voltages. On-chip control of the dead time  
delays between the primary and secondary synchronous  
signals keep efficiencies high and prevent accidental  
destruction of the power transformer. An external resistor sets  
the switching frequency from 200 kHz to 625 kHz.  
Si9122A has advanced current monitoring and control circuitry  
which allow the user to set the maximum current in the primary  
circuit. Such a feature acts as protection against output  
shorting and also provides constant current into large  
capacitive loads during start-up or when paralleling power  
supplies. Current sensing is by means of a sense resistor on  
the low-side primary device.  
FUNCTIONAL BLOCK DIAGRAM  
28 V to 75 V  
BST  
Synchronous  
Rectifiers  
DH  
LX  
1 V to 12 V Typ.  
+
V
Si9122A  
OUT  
DL  
CS2  
V
IN_DET  
CS1  
SR  
H
C
Error  
L_CONT  
Amplifier  
V
CC  
SR  
L
+
V
REF  
EP  
Opto Isolator  
Figure 1.  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
1
Si9122A  
Vishay Siliconix  
TECHNICAL DESCRIPTION  
Si9122A is a voltage mode controller for the half-bridge  
topology. With 100-V depletion mode MOSFET capability, the  
Si9122A is capable of powering directly from the high voltage  
bus to VCC through an external PNP pass transistor, or may be  
powered through an external regulator directly through the  
VCC pin. With PWM control, Si9122A provides peak efficiency  
throughout the entire line and load range. In order to simplify  
the design of efficient secondary synchronous rectification  
circuitry, Si9122A provides intelligent gate drive signals to  
control the secondary MOSFETs. With independent gate drive  
signals from the controller, transformer design is no longer  
limited by the gate to source rating of the secondary–side  
MOSFETs. Si9122A provides constant VGS voltage,  
independent of line voltage to minimize the gate charge loss  
as well as conduction loss. A break-before-make function is  
included to prevent shoot through current or transformer  
shorting. Adjustable Break-Before-Make time is incorporated  
into the IC and is programmable by an external resistor value.  
Si9122A is packaged in lead (Pb)–free TSSOP-20 and  
MLP65-20 packages. To satisfy stringent ambient tempe–  
rature requirements, Si9122A is rated to handle the industrial  
temperature range of –40 to 85 C. When a situation arises  
which results in a rapid increase in primary (or secondary  
current) such as output shorted or start-up with a large output  
capacitor, control of the PWM generator is handed over to the  
the current loop. Monitoring of the load current is by means of  
an external current sense resistor in the source of the primary  
low-side switch.  
SI9122 BLOCK DIAGRAM  
V
IN  
V
CC  
R
OSC  
High-Side  
Primary  
Driver  
BST  
9.1 V  
V
UVLO  
REG_COMP  
Pre-Regulator  
+
Int  
D
H
V
REF  
8.8 V  
L
X
Low-Side  
Driver  
V
CC  
V
INDET  
V
FF  
V
D
UV  
+
L
OSC  
V
REF  
EP  
SS  
Ramp  
V
SD  
+
PGND  
132 k  
550 mV  
60 k  
V
CC  
+
Driver  
Control  
and  
+
Error Amplifier  
SR  
H
V
PWM  
Comparator  
REF  
Timing  
2
20  
A
SYNC  
Driver High  
I
SS  
OTP  
8 V  
V
CC  
SR  
L
CS2  
CS1  
Duty Cycle  
Control  
+
Peak DET  
SYNC  
Driver Low  
Si9122  
Over Current Protection  
GND  
C
BBM  
L_CONT  
Figure 2.  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
2
Si9122A  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS (ALL VOLTAGES REFERENCED TO GND = 0 V)  
V
V
V
V
(Continuous) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 V  
(100 ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5 V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65 to 150 C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 C  
IN  
IN  
a
Power Dissipation  
CC  
b
TSSOP-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 mW  
(Continuous) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 V  
(100 ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.2 V  
BST  
c
MLP65-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2500 mW  
V
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 V  
Thermal Impedance (  
TSSOP-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 C/W  
MLP65-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 C/W  
)
LX  
JA  
– V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V  
BST  
LX  
, R  
REF OSC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V + 0.3 V  
CC  
Notes  
Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V + 0.3 V  
CC  
a. Device mounted on JEDEC compliant 1S2P test board..  
b. Derate –14 mW/ C above 25 C.  
c. Derate –26 mW/ C above 25 C.  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V + 0.3 V  
CC  
HV Pre-Regulator Input Current (continuous) . . . . . . . . . . . . . . . . . . . . . 5 mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING RANGE (ALL VOLTAGES REFERENCED TO GND = 0 V)  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 to 75 V  
Operating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 to 13.2 V  
R
C
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 to 50 k  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1  
IN  
BBM  
F
F
REF  
CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1  
BOOST  
CV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 F  
CC  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to V – 2 V  
CC  
f
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 to 625 kHz  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.6 to 72 k  
OSC  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to V  
CC  
R
Reference Voltage Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 2.5 mA  
OSC  
a
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
Limits  
–40 to 85 C  
f
= 500 kHz, V = 75 V  
IN  
NOM  
Parameter  
Symbol  
Minb  
Typc  
Maxb  
Unit  
V
= 7.5 V; 10.5 V V 13.2 V  
CC  
INDET  
Reference (3.3 V)  
Output Voltage  
V
V
CC  
= 12 V, 25 C Load = 0 mA  
3.2  
3.3  
3.4  
–50  
–75  
V
REF  
Short Circuit Current  
Load Regulation  
I
V
REF  
= 0 V  
mA  
mV  
dB  
SREF  
dVr/dlr  
PSRR  
I
= 0 to –2.5 mA  
@ 100Hz  
–30  
60  
REF  
Power Supply Rejection  
Oscillator  
Accuracy (1% R  
)
R
= 30 k , f = 500 kHz  
NOM  
–20  
500  
20  
%
OSC  
OSC  
h
Max Frequency  
F
R
OSC  
= 22.6 k  
625  
100  
750  
MAX  
kHz  
d
Foldback Frequency  
F
f
= 500 kHz, V  
– V  
1
5
0
m
V
FOBK  
NOM  
CS2  
CS1  
Error Amplifier  
Input Bias Current  
Gain  
I
V
= 0 V  
–40  
–15  
A
V/V  
MHz  
dB  
BIAS  
EP  
A
V
–2.2  
5
Bandwidth  
BW  
Power Supply Rejection  
Slew Rate  
PSRR  
SR  
@ 100Hz  
60  
0.5  
V/ s  
Current Sense Amplifier  
Input Voltage CM Range  
Input Amplifier Gain  
V
V
CS1  
– GND, V – GND  
CS2  
150  
17.5  
5
mV  
dB  
CM  
A
VOL  
Input Amplifier Bandwidth  
BW  
MHz  
Input amplifier Offset Voltage  
V
OS  
5
mV  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
3
Si9122A  
Vishay Siliconix  
a
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
Limits  
–40 to 85 C  
f
= 500 kHz, V = 75 V  
IN  
NOM  
Parameter  
Symbol  
Minb  
Typc  
Maxb  
Unit  
V
= 7.5 V; 10.5 V V 13.2 V  
CC  
INDET  
Current Sense Amplifier  
dV = 0  
CS  
120  
0
A
dV = 100 mV  
CS  
CL_CONT Current  
I
CL_CONT  
dV = 170 mV  
CS  
2  
mA  
I
= I – I  
= 0  
PD  
PU  
CL_CONT  
Lower Current Limit Threshold  
V
TLCL  
100  
See Figure 6  
mV  
V
Upper Current Limit Threshold  
Hysteresis  
V
I
2
m
A
150  
–50  
THCL  
PD  
I
5
0
0
A
PU  
CL_CONT Clamp Level  
C
I
= 500  
A
0.6  
90  
1.5  
95  
L_CONT(min)  
PU  
PWM Operation  
D
V
= 0 V  
92  
15  
3
MAX  
EP  
f
= 500 kHz  
OSC  
e
V
= 1.75 V  
Duty Cycle  
%
V
EP  
D
MIN  
V
– V  
1
5
0
m
V
CS2  
CS1  
Pre-Regulator  
Input Voltage  
+V  
I
= 10  
A
28  
75  
10  
IN  
IN  
Input Leakage Current  
I
V
= 75 V, V V  
IN CC REG  
LKG  
A
I
I
V
= 75 V, V  
V  
SD  
86  
8
200  
14  
REG1  
REG2  
IN  
INDET  
Regulator Bias Current  
V
= 75 V, V  
V
mA  
IN  
INDET  
REF  
I
–29  
50  
–19  
82  
–9  
SOURCE  
Regulator_Comp  
V
CC  
= 12 V  
A
I
110  
SINK  
Pre-Regulator Drive Capacility  
I
V
CC  
V  
REG  
20  
mA  
START  
7.4  
8.5  
9.1  
9.1  
9.2  
8.8  
8.8  
0.5  
10.4  
9.7  
V
V  
REF  
V
V
INDET  
REG1  
V
Pre-Regulator Turn Off  
CC  
T
= 25 C  
= 25 C  
A
Threshold Voltage  
V
= 0 V  
REG2  
INDET  
V
7.15  
8.1  
9.8  
9.3  
Undervoltage Lockout  
g
V
UVLO  
V
CC  
Rising  
T
A
V
UVLO  
Hysteresis  
V
UVLOHYS  
Soft-Start  
Soft-Start Current Output  
I
Start-Up Condition  
Normal Operation  
12  
20  
28  
A
V
SS  
Soft-Start Completion Voltage  
V
7.35  
8.05  
8.85  
SS_COMP  
Shutdown  
V
Shutdown  
V
V
Rising  
INDET  
350  
550  
200  
720  
INDET  
SD  
mV  
V
V
SD  
Hysteresis  
V
INDET  
VINDET Input Threshold Voltages  
V
INDET  
– V Under Voltage  
V
UV  
V
INDET  
Rising  
3.13  
3.3  
0.3  
3.46  
IN  
V
UW  
Hysteresis  
V
INDET  
Over Temperature Protection  
Activating Temperature  
T Increasing  
160  
130  
J
C
De-Activating Temperature  
T Decreasing  
J
Converter Supply Current (VCC  
)
Shutdown  
I
I
I
Shutdown, V  
= 0 V  
50  
4
350  
12  
A
CC1  
CC2  
CC3  
INDET  
Switching Disabled  
Switching w/o Load  
V
INDET  
V
8
REF  
V
V , f = 500 kHz  
REF NOM  
5
10  
15  
INDET  
mA  
V
= 12 V, C = C = 3 nF  
DH DL  
CC  
C
Switching with C  
I
21  
LOAD  
CC4  
= C  
= 0.3 nF  
SRH  
SRL  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
4
Si9122A  
Vishay Siliconix  
a
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
Limits  
–40 to 85 C  
f
= 500 kHz, V = 75 V  
IN  
NOM  
Parameter  
Symbol  
Minb  
Typc  
Maxb  
Unit  
V
= 7.5 V; 10.5 V V 13.2 V  
INDET  
CC  
Output MOSFET DH Driver (High-Side)  
Output High Voltage  
Output Low Voltage  
Boost Current  
V
Sourcing 10 mA  
Sinking 10 mA  
V
BST  
– 0.3  
OH  
V
mA  
A
V
V
LX  
+ 0.3  
OL  
I
V
V
= 75 V, V  
= 75 V, V  
= V + V  
1.3  
1.9  
–0.7  
–1.0  
1.0  
35  
2.7  
BST  
LX  
BST  
BST  
LX  
CC  
L
X
Current  
I
= V + V  
–1.1  
–0.4  
LX  
SOURCE  
LX  
LX  
CC  
Peak Output Source  
Peak Output Sink  
Rise Time  
I
–0.75  
V
CC  
= 10.5 V  
I
0.75  
SINK  
t
r
C
DH  
= 3 nF  
ns  
Fall Time  
t
f
35  
Output MOSFET DLDriver (Low-Side)  
Output High Voltage  
Output Low Voltage  
Peak Output Source  
Peak Output Sink  
Rise Time  
V
Sourcing 10 mA  
Sinking 10 mA  
V
CC  
– 0.3  
OH  
V
A
V
0.3  
OL  
SOURCE  
I
–1.0  
1.0  
35  
–0.75  
V
CC  
= 10.5 V  
I
0.75  
SINK  
t
r
C
DL  
= 3 nF  
ns  
Fall Time  
t
f
35  
Synchronous Rectifier (SRH, SRL) Drivers  
Output High Voltage  
Output Low Voltage  
V
Sourcing 10 mA  
Sinking 10 mA  
V
CC  
– 0.4  
OH  
V
V
0.4  
OL  
t
t
t
t
55  
40  
BBM1  
BBM2  
BBM3  
BBM4  
T
A
= 25 C, R  
= 33 k , See Figure 3  
BBM  
f
Break-Before-Make Time  
ns  
35  
T
= 25 C,R  
= 33 k , L = 75 V  
BBM X  
A
55  
Peak Output Source  
Peak Output Sink  
Rise Time  
I
–100  
100  
35  
SOURCE  
V
= 10.5 V  
mA  
ns  
CC  
I
SINK  
t
r
C
= C  
= 0.3 nF  
SRH  
SRL  
Fall Time  
t
f
35  
Voltage Mode  
Error Amplifier  
Current Mode  
Current Amplifier  
Notes  
Input to high-side switch off  
Input to low-side switch off  
200  
200  
t
d1DH  
ns  
ns  
t
d2DL  
Input to high-side switch off  
Input to low-side switch off  
200  
200  
t
d3DH  
t
d4DL  
a. Refer to PROCESS OPTION FLOWCHART for additional information.  
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum (–40 to 85 C).  
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
d.  
F
when V  
at clamp level. Typical foldback frequency change +20%, –30% over temperature.  
MIN  
CL_CONT  
e. Measured on SRL or SRH outputs.  
f.  
g.  
See Figure 3 for Break-Before-Make time definition.  
tracks V by a diode drop  
V
UVLO  
REG1  
h. Guaranteed by design and characterization, not tested in production.  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
5
Si9122A  
Vishay Siliconix  
TIMING DIAGRAM FOR MOS DRIVERS  
V
CC  
PWM  
PWM  
PWM  
PWM  
GND  
V
CC  
D
L
D
L
GND  
V
CC  
SR  
L
SR  
L
GND  
V
BST  
D
H
D
H
V
MID  
D
H
D
H
GND  
V
CC  
SR  
H
SR  
H
GND  
Time  
D
H
t
t
t
t
BBM4  
BST = L + V  
BBM1  
BBM2  
BBM3  
X
CC  
50%  
V L  
X
L
X
D , L  
H
X
D , L  
V
V
H
X
MID  
SR  
H
CC  
50%  
D , L  
H
X
GND  
t
t
BBM4  
BBM3  
D
L
SR  
L
SR  
L
V
CC  
GND  
Specification Table  
Return to:  
Rectification Timing Sequence  
t
t
BBM2  
BBM1  
Primary MOSFET Drivers  
Secondary MOSFET Drivers  
Figure 3.  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
6
Si9122A  
Vishay Siliconix  
PIN CONFIGURATION  
Si9122ADQ (TSSOP-20)  
Si9122ADLP (MLP65-20)  
V
BST  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IN  
1
2
3
4
5
20  
19  
18  
17  
16  
REG_COMP  
D
H
V
BST  
IN  
V
CC  
L
X
REG_COMP  
D
H
V
D
L
V
CC  
L
X
REF  
GND  
PGND  
V
D
L
REF  
6
7
15  
14  
13  
12  
11  
R
SR  
H
GND  
PGND  
OSC  
EP  
SR  
L
R
OSC  
SR  
H
8
V
SS  
EP  
SR  
L
INDET  
9
V
SS  
CS1  
CS2  
BBM  
INDET  
10  
CS1  
CS2  
BBM  
C
L_CONT  
C
L_CONT  
Top View  
Top View  
ORDERING INFORMATION  
Part Number  
Temperature Range  
Package  
Si9122ADQ–T1–E3  
TSSOP-20  
MLP65-20  
–40 to 85 C  
Si9122ADLP–T1–E3  
Eval Board  
Temperature Range  
Board Type  
Surface Mount and  
Thru-Hole  
Contact Factory  
–10 to 70 C  
PIN DESCRIPTION  
Pin Number  
Name  
Function  
1
2
3
4
5
6
7
V
Input supply voltage for the start-up circuit.  
Control signal for an external pass transistor.  
Supply voltage for internal circuitry  
3.3-V reference  
IN  
REG_COMP  
V
CC  
V
REF  
GND  
Ground  
R
OSC  
External resistor connection to oscillator  
Voltage control input  
EP  
V
under voltage detect and shutdown function input. Shuts down or disables switching when V  
falls below  
IN  
INDET  
8
V
INDET  
preset threshold voltages and provides the feed forward voltage.  
9
CS1  
CS2  
Current limit amplifier negative input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Current limit amplifier positive input  
C
Current limit compensation  
L_CONT  
BBM  
Programmable Break-Before-Make time connection to an external resistor to set time delay  
Soft-Start control – external capacitor connection  
Signal transformer drive, sequenced with the primary side.  
Signal transformer drive, sequenced with the primary side.  
Power ground.  
SS  
SR  
L
SR  
H
PGND  
D
L
Low-side gate drive signal – primary  
L
X
High-side source and transformer connection node  
High-side gate drive signal – primary  
D
H
BST  
Bootstrap voltage to drive the high-side n-channel MOSFET switch  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
7
Si9122A  
Vishay Siliconix  
V
CC  
V
IN  
Pre-Regulator  
+
V
REG  
9.1 V  
Bandgap  
Reference  
3.3 V  
9.1 V  
V
REF  
V
UVLO  
+
+
V
V
UV  
High-Side  
Primary  
Driver  
V
INDET  
V
REF  
8.6 V  
C
L_CONT  
SD  
BST  
+
Voltage  
Feedforward  
Frequency  
Foldback  
160 C Temp  
Protection  
High Voltage  
Interface  
D
H
550 mV  
L
X
V
SD  
V
V
UV UVLO  
R
OSC  
OSC  
OTP  
Oscillator  
Clock  
V
CC  
Clock  
Logic  
Low-Side  
Driver  
132 k  
D
L
60 k  
EP  
+
+
Logic  
Timer  
V
/2  
REF  
PGND  
PWM  
Generator  
Current  
Control  
Gain  
V
V
CC  
Synchronous  
Driver  
CS2  
CS1  
Loop  
Control  
+
(High)  
SR  
H
100 mV  
Blanking  
CC  
Synchronous  
Driver  
C
L_CONT  
GND  
(Low)  
V
CC  
SR  
L
BBM  
Si9122A  
20  
A
8 V  
Soft-Start  
SS  
SS Enable  
Figure 4.  
Detailed Si9122A Block Diagram  
DETAILED OPERATION  
Start-Up  
of the VCC capacitor, bootstrap capacitor and the soft-start  
capacitor. The value of the VCC capacitor should therefore be  
chosen to be capable of maintaining switch mode operation  
until the required VCC current can be supplied from the external  
circuit (e.g via a power transformer winding and zener  
regulator). Feedback from the output of the switch mode  
supply charges VCC above VREG and fully disconnects the  
pre-regulator, isolating VCC from VIN. VCC is then maintained  
above VREG for the duration of switch mode operation. In the  
event of an over voltage condition on VCC, an internal voltage  
clamp turns on at 14.5 V to shunt excessive current to GND.  
When VINEXT rises above 0 V, the internal pre-regulator begins  
to charge up the Vcc capacitor. Current into the external VCC  
capacitor is limited to typically 40 mA by the internal DMOS  
device. When Vcc exceeds the UVLO voltage of 8.8 V a  
soft-start cycle of the switch mode supply is initiated. The VCC  
supply continues to be charged by the pre-regulator until VCC  
equals VREG. During this period, between VUVLO and VREG  
,
excessive load current will result in VCC falling below VUVLO  
and stopping switch mode operation. This situation is avoided  
by the hysteresis between VREG and VUVLO and correct sizing  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
8
Si9122A  
Vishay Siliconix  
Care needs to be taken if there is a delay prior to the external  
circuit feeding back to the VCC supply. To prevent excessive  
power dissipation within the IC it is advisable to use an external  
PNP device. A pin has been incorporated on the IC,  
(REG_COMP) to provide compensation when employing the  
external device. In this case the VIN pin is connected to the  
base of the PNP device and controls the current, while the  
REG_COMP pin determines the frequency compensation of  
the circuit. To understand the operation please refer to  
Figure 5.  
Half-Bridge and Synchronous Rectification Timing  
Sequence  
The PWM signal generated within the Si9122A controls the  
low and high-side bridge drivers on alternative cycles. A period  
of inactivity always results after initiation of the soft-start cycle  
until the soft-start voltage reaches approximately 1.2 V and  
PWM controlled switching begins. The first bridge driver to  
switch is always the low-side (DL), as this allows charging of  
the high-side boost capacitor.  
The timing and coordination of the drives to the primary and  
secondary stages is very important and shown in Figure 3. It  
is essential to avoid the situation where both of the secondary  
MOSFETs are on when either the high or the low-side switch  
are active. In this situation the transformer would effectively be  
presented with a short across the output. To avoid this, a  
dedicated break-before-make circuit is included which will  
generate non overlapping waveforms for the primary and the  
secondary drive signals. This is achieved by a programmable  
timer which delays the switching on of the primary driver  
relative to the switching off of the related secondary and  
subsequently delays the switching on of the secondary relative  
to the switching off of the related primary.  
The soft-start circuit is designed for the dc-dc converter to  
start-up in an orderly manner and reduce component stress on  
the IC. This feature is programmable by selecting an external  
CSS. An internal 20- A current source charges CSS from 0 V  
to the final clamped voltage of 8 V. In the event of UVLO or  
shutdown, VSS will be held low (<1 V) disabling driver  
switching. To prevent oscillations, a longer soft-start time may  
be needed for highly capacitive loads and/or high peak output  
current applications.  
Reference  
Typical variations of BBM times with respect to RBBM and other  
operating parameters are shown on page 13 and 14.  
The reference voltage of Si9122A is set at 3.3 V. The reference  
voltage should be de-coupled externally with 0.1- F capacitor.  
The VREF voltage is 0 V in shutdown mode and has 50-mA  
source capability.  
Primary High- and Low-Side MOSFET Drivers  
The drive voltage for the low-side MOSFET switch is provided  
directly from VCC. The high-side MOSFET however requires  
the gate voltage to be enhanced above VIN. This is achieved  
by bootstrapping the VCC voltage onto the LX voltage (the  
high-side MOSFET source). In order to provide the  
bootstrapping an external diode and capacitor are required as  
shown on the application schematic. The capacitor will charge  
up after the low-side driver has turned on. The switch gate  
drive signals DH and DL are shown in Figure 3.  
Voltage Mode PWM Operation  
Under normal load conditions, the IC operates in voltage mode  
and generates a fixed frequency pulse width modulated signal  
to the drivers. Duty cycle is controlled over a wide range to  
maintain output voltage under line and load variation. Voltage  
feed forward is also included to take account of variations in  
supply voltage VIN.  
Secondary MOSFET Drivers  
In the half-bridge topology requiring isolation between output  
and input, the reference voltage and error amplifier must be  
supplied externally, usually on the secondary side. The error  
information is thus passed to the power controller through an  
opto-coupling device. This information is inverted, hence 0 V  
represents the maximum duty cycle, whilst 2 V represents  
minimum duty cycle. The error information enters the IC via pin  
EP, and is passed to the PWM generator via an inverting  
amplifier. The relationship between Duty cycle and VEP is  
shown in the Typical Characteristic Graph,Duty Cycle vs. VEP  
25 C , page 11. Voltage feedforward is implemented by taking  
the attenuated VIN signal at VINDET and directly modulating the  
duty cycle.  
The secondary side MOSFETs are driven from the Si9122A  
via a center tapped pulse transformer and inverter drivers. The  
waveforms from SRH and SRL are shown in Figure 3. Of  
importance is the relative voltage between SRH and SRL, i.e.  
that which is presented across the primary of the pulse  
transformer. When both potentials of SRL and SRH are equal  
then by the action of the inverting drivers both secondary  
MOSFETs are turned on.  
Oscillator  
The oscillator is designed to operate at a nominal frequency of  
500 kHz. The 500-kHz operating frequency allows the converter  
to minimize the inductor and capacitor size, improving the power  
density of the converter. The oscillator and therefore the  
switching frequency is programmable by attaching a resistor to  
the ROSC pin. Under overload conditions the oscillator frequency  
is reduced by the current overload protection to enable a constant  
current to be maintained into a low impedance circuit.  
At start-up, i.e., once VCC is greater than VUVLO, switching is  
initiated under soft-start control which increases primary  
switch on-times linearly from DMIN to DMAX over the soft-start  
period. Start-up from a VINDET power down is also initiated  
under soft-start control.  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
9
Si9122A  
Vishay Siliconix  
Current Limit  
voltage of VREF (3.3 V, 300-mV hysteresis), is achieved. This  
is achieved by choosing an appropriate resistive tap between  
the ground and VIN, and comparing this voltage with the  
reference voltage. When the applied voltage is greater than  
VREF, the output drivers are activated as normal. VINDET also  
provides the input to the voltage feed forward function.  
Current mode control providing constant current operation is  
achieved by monitoring the differential voltage between the  
CS1and CS2 pins which are connected across a primary  
low-side sense resistor. Once this differential voltage exceeds  
the 100-mV trigger point, the voltage on the CL_CONT pin is  
pulled lower at a rate proportional to the excess voltage and the  
value of the external capacitor connected between the  
CL_CONT pin and ground. If the voltage between CS1 and CS2  
exceeds 150 mV the CL_CONT capacitor is discharged rapidly  
resulting in minimum duty cycle and frequency immediately.  
However, if the divided voltage applied to the VINDET pin is  
greater than VCC –0.3 V, the high-side driver, DH, will stop  
switching until the voltage drops below VCC –0.3 V. Thus, the  
resistive tap on the VIN divider must be set to accommodate  
the normal VCC operating voltage to avoid this condition.  
Alternatively, a zener clamp diode from VINDET to GND may  
also be used.  
Lowering the CL_CONT voltage results in PWM control of the  
output drive being taken over by the current limit control loop.  
Current control works to initially reduce the switching duty  
cycle down to DMIN (12.5%). Further reduction in the duty  
cycle is accompanied by a reduction in switching frequency at  
a rate proportional to the duty cycle. This prevents the on time  
of the primary drivers from falling below 100 ns, thereby  
avoiding “current tailing”. Frequency reduction will then occur  
until the operating frequency reaches 20% of the nominal  
frequency, yielding a duty cycle as low as 2.5% during output  
overloads.  
Shutdown Mode  
If VINDET is forced below the lower VSD threshold, the device  
will enter SHUTDOWN mode. This powers down all  
unnecessary functions of the controller, ensures that the  
primary switches are off, and results in a low level current  
demand from the VIN or VCC supplies.  
V
INEXT  
With constant current mode control of on time and with  
reduced operating frequency, protection of the MOSFET  
switches is increased during fault conditions. Minimum duty  
cycle and reduced frequency switching continues for the  
duration of the fault condition. The converter reverts to voltage  
mode operation immediately whenever the primary current  
fails to reach the limit level. CL_CONT clamps to 6.5 V when not  
in current limit.  
R
EXT  
V
IN  
PNP Ext  
(Si9122A)  
Auxillary  
CC  
HV  
DMOS  
V
V
CC  
REG_COMP  
C
VCC  
The soft-start function does not apply under current limit as this  
would constitute hiccup mode operation.  
C
EXT  
2 nF  
0.5  
F
14.5 V  
V
REF  
GND  
VIN Voltage Monitor –VINDET  
Figure 5. High-Voltage Pre-Regulator Circuit  
The chip provides a means of sensing the voltage of VIN, and  
withholding operation of the output drivers until a minimum  
V
CC  
OSC  
AV  
I
PU  
120 A (nom)  
+
GM  
Peak Detect  
V
C
L_CLAMP  
OFFSET  
C
R
L_CONT  
CS1  
CS2  
+
AV  
A
V
150 mV  
EXT  
Blank  
+
C
EXT  
GM  
I
PD  
0 – 240 A (nom)  
A
V
1
0
0
m
V
Figure 6 . Current Limit Circuit  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
10  
Si9122A  
Vishay Siliconix  
TYPICAL CHARACTERISTICS  
F
OSC  
vs. R  
@ V = 12 V  
V vs. Temperature, V = 12 V  
REF CC  
OSC  
CC  
600  
500  
400  
300  
200  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
20  
30  
40  
50  
(k  
60  
70  
80  
–50  
–25  
0
25  
50  
75  
100  
R
)
Temperature ( C)  
OSC  
V
vs. Temperature, V = 48 V  
IN  
SRL, SRH Duty Cycle vs. V  
REG  
EP  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.6 V = V  
INDET  
4.8 V  
7.2 V  
V
INDET  
V  
REF  
TC = –11 mV/C  
V
CC  
= 12 V  
–50 –25  
0
25  
50  
75  
100 125 150  
0.0  
0.5  
1.0  
1.5  
2.0  
Temperature ( C)  
V
EP  
(V)  
I
SS  
vs. Temperature  
V
SS  
vs. Temperature, V = 12 V  
CC  
25  
23  
21  
19  
17  
15  
8.20  
8.15  
8.10  
8.05  
8.00  
7.95  
7.90  
V
CC  
= 13 V  
TC = +1.25 mV/C  
V
CC  
= 12 V  
V
INDET  
V  
REF  
V
CC  
= 10 V  
–50  
–25  
0
25  
50  
75  
100  
125  
–50 –25  
0
25  
50  
75  
100 125 150  
Temperature ( C)  
Temperature ( C)  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
11  
Si9122A  
Vishay Siliconix  
TYPICAL CHARACTERISTICS  
I
vs. Temperature  
REG2  
I
vs. Temperature  
CC3  
11  
10  
9
13  
12  
11  
10  
9
8
7
6
8
5
7
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
800  
800  
Temperature ( C)  
Temperature ( C)  
D , D I  
H
vs. V  
OL  
D , D I  
vs. V  
OH  
L
SINK  
H
L
SOURCE  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
V
= 12 V  
V
CC  
= 12 V  
CC  
0
0
0
200  
400  
600  
0
200  
400  
600  
800  
V
(mV)  
V
(mV)  
OL  
OH  
SRL, SRH I  
vs. V  
OH  
SRL, SRH I  
vs. V  
OL  
SOURCE  
SINK  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V
CC  
= 12 V  
V
CC  
= 12 V  
0
0
0
200  
400  
600  
800  
0
200  
400  
(mV)  
600  
V
(mV)  
V
OH  
OL  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
12  
Si9122A  
Vishay Siliconix  
TYPICAL CHARACTERISTICS  
t
vs. R , V = 0 V  
BBM EP  
t
vs. R , V = 1.65 V  
BBM EP  
BBM  
BBM  
100  
90  
80  
70  
60  
50  
40  
30  
20  
65  
55  
45  
35  
25  
15  
t
t
BBM4  
V
CC  
= 12 V  
V
CC  
= 12 V  
t
t
BBM1  
BBM1  
BBM4  
t
t
BBM2  
BBM3  
t
t
BBM3  
BBM2  
25  
30  
35  
(k  
40  
45  
25  
30  
35  
40  
45  
R
)
R
(k )  
BBM  
BBM  
t
vs. Temperature, V = 0 V  
t
vs. Temperature, V = 1.65 V  
BBM1, 2  
EP  
BBM1, 2  
EP  
80  
70  
60  
50  
40  
30  
60  
55  
50  
45  
40  
35  
30  
t
V
= 13 V  
t
V
= 1.65 V  
= 33 k  
BBM1, CC  
t
V
= 10 V  
EP  
BBM1, CC  
V
= 12 V  
R
BBM  
BBM1, CC  
t
V
= 10 V  
BBM1, CC  
VEP = 0 V  
= 33 k  
t
V
= 13 V  
= 12 V  
BBM1, CC  
R
BBM  
t
V
= 12 V  
BBM1, CC  
t
V
= 10 V  
BBM2, CC  
t
V
= 10 V  
= 13 V  
BBM2, CC  
t
V
= 12 V  
BBM2, CC  
t
V
BBM2, CC  
t
V
= 13 V  
BBM2, CC  
t
V
BBM2, CC  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature ( C)  
Temperature ( C)  
t
vs. Temperature, V = 0 V  
t vs. Temperature, V = 1.65 V  
BBM3, 4 EP  
BBM3, 4  
EP  
80  
70  
t
V
= 10 V  
V
= 0 V  
BBM  
V
= 1.65 V  
BBM  
BBM4, CC  
EP  
R
EP  
R
t
V
= 13 V  
BBM4, CC  
= 33 k  
= 33 k  
65  
60  
55  
50  
45  
40  
35  
30  
70  
60  
50  
40  
30  
20  
t
V
= 12 V  
t
V
= 12 V  
BBM4, CC  
BBM4, CC  
t
t
V
= 10 V  
= 12 V  
BBM4, CC  
t
V
= 13 V  
BBM4, CC  
t
V
= 13 V  
BBM3, CC  
V
BBM3, CC  
t
V
= 12 V  
BBM3, CC  
t
V
= 10 V  
BBM3, CC  
t
V
= 13 V  
BBM3, CC  
t
V
= 10 V  
25  
BBM3, CC  
–50  
–25  
0
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature ( C)  
Temperature ( C)  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
13  
Si9122A  
Vishay Siliconix  
TYPICAL CHARACTERISTICS  
t
vs. V vs. V  
t vs. V vs. V  
BBM1, 2 CC INDET  
BBM1, 2  
CC  
INDET  
80  
70  
60  
50  
40  
30  
55  
50  
45  
40  
35  
t
V
= 13 V  
= 10 V  
BBM1, CC  
t
t
V
= 13 V  
BBM1, CC  
t
V
= 12 V  
t
V
BBM1, CC  
BBM1, CC  
V
= 12 V  
= 10 V  
BBM1, CC  
t
V
BBM1, CC  
V
EP  
= 0 V  
V
= 1.65 V  
EP  
t
V
= 12 V  
BBM2, CC  
t
V
= 10 V  
BBM2, CC  
t
V
= 13 V  
BBM2, CC  
t
V
= 13 V  
BBM2, CC  
t
V
= 12 V  
5.5  
BBM2, CC  
t
V
= 10 V  
BBM2, CC  
3.5  
4.5  
6.5  
7.5  
3.5  
4.5  
5.5  
6.5  
7.5  
V
INDET  
(V)  
V
INDET  
(V)  
t
vs. V vs. V  
t
vs. V vs. V  
BBM3, 4  
CC  
INDET  
BBM3, 4  
CC  
INDET  
80  
70  
60  
50  
40  
30  
65  
60  
55  
50  
45  
40  
35  
30  
t
V
= 10 V  
BBM4, CC  
V
= 0 V  
EP  
t
V
= 12 V  
BBM4, CC  
t
t
V
= 12 V  
= 13 V  
BBM4, CC  
t
V
= 10 V  
BBM4, CC  
V
BBM4, CC  
t
V
= 13 V  
BBM4, CC  
V
= 1.65 V  
EP  
t
V
= 12 V  
BBM3, CC  
t
V
= 10 V  
BBM3, CC  
t
V
= 12 V  
BBM3, CC  
t
V
= 13 V  
t
V
= 10 V  
BBM3, CC  
BBM3, CC  
t
V
= 13 V  
BBM3, CC  
3.5  
4.5  
5.5  
6.5  
7.5  
3.5  
4.5  
5.5  
6.5  
7.5  
V
INDET  
(V)  
V
INDET  
(V)  
V
, F  
, and Duty Cycle vs. V  
ROSC OSC CLCONT  
I
vs. R  
(V = 72 V)  
IN  
OUT  
LOAD  
500  
400  
500  
400  
300  
200  
100  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
Frequency  
Frequency  
D%  
D%  
300  
200  
D
DL  
D
SRL  
I
OUT  
100  
0
V
ROSC  
V
OUT  
0
1
2
3
4
5
0.0  
0.2  
0.4  
0.6  
)
0.8  
1.0  
V
(V)  
R
(
CLCONT  
LOAD  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
14  
Si9122A  
Vishay Siliconix  
TYPICAL WAVEFORMS  
Figure 7.  
Foldback Mode, R = 0.02  
Figure 8.  
Normal Mode, R = 0.1  
L
L
SRL 10 V/div  
SRL 10 V/div  
I
5 A /div  
I
5 A /div  
5 V/div  
OUT  
OUT  
D
L
10 V/div  
D
L
CS2 5 V/div  
CS2 50 mV/div  
2
s/div  
2 s/div  
Figure 9.  
V
CC  
Ramp-Up  
Figure 10. Overload Recovery  
V
2 V/div  
2 V/div  
CL  
V
IN  
2 V/div  
V
EP  
I
10 A/div  
OUT  
V
OUT  
2 V/div  
V
CC  
2 V/div  
2 ms/div  
200 s/div  
Figure 11. Effective BBM—Measured On Secondary  
Figure 12. Drive Waveforms  
DH 5 V/div  
LX 20 V/div  
SRL 5 V/div  
D
L
5 V/div  
SRH 2 V/div  
SRL 2 V/div  
SRH 5 V/div  
500 ns/div  
500 ns/div  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and  
Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see  
http://www.vishay.com/ppg?73492.  
Document Number: 73492  
S–51921—Rev. A, 12-Sep-05  
www.vishay.com  
15  

相关型号:

SI9122ADLP-T1-E3

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers
VISHAY

SI9122ADQ-T1-E3

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers
VISHAY

SI9122A_08

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers
VISHAY

SI9122DLP-T1-E3

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers
VISHAY

SI9122DQ

Switching Regulator/Controller, Voltage-mode, 600kHz Switching Freq-Max, PDSO20,
VISHAY

SI9122DQ-E3

Switching Regulator/Controller, Voltage-mode, 600kHz Switching Freq-Max, PDSO20
VISHAY

SI9122DQ-T1

500-kHz Half-Bridge DC-DC Converter With Integrated Secondary Synchronous Rectification Drivers
VISHAY

SI9122DQ-T1-E3

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers
VISHAY

SI9122DW-T1-E3

Switching Regulator/Controller, Voltage-mode, 600kHz Switching Freq-Max, PDSO20
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers
VISHAY

SI9122EDLP-T1-E3

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers
VISHAY

SI9122EDQ-T1-E3

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers
VISHAY