XC9265B38B4R-G [TOREX]

Switching Regulator,;
XC9265B38B4R-G
型号: XC9265B38B4R-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Switching Regulator,

开关 光电二极管
文件: 总30页 (文件大小:958K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC9265Series  
ETR05053-004  
Ultra Low Power Synchronous Step-Down PFM DC/DC Converter  
GreenOperation Compatible  
GENERAL DESCRIPTION  
XC9265 series are Ultra Low Power synchronous-rectification type PFM step down DC/DC converters with a built-in 0.4  
(TYP.) Pch driver and 0.4(TYP.) Nch synchronous switching transistor, designed to allow the use of ceramic capacitor.  
PFM control enables a low quiescent current, making these products ideal for battery operated devices that require high  
efficiency and long battery life.  
Only inductor, CIN and C capacitors are needed as external parts to make a step down DC/DC circuit.  
L
Operation voltage range is from 2.0V to 6.0V. This product has fixed output voltage from 1.0V to 4.0V(accuracy: ±2.0%) in  
increments of 0.05V.  
During stand-by, all circuits are shutdown to reduce consumption to as low as 0.1μA(TYP.) or less.  
With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel MOS driver transistor is forced OFF when input  
voltage gets lower than UVLO detection voltage. Besides, XC9265 series has UVLO release voltage of 1.8V (Typ.).  
The product with C  
L
discharge function can discharge C capacitor during stand-by mode due to the internal resistance by turning  
L
on the internal switch between VOUT -GND. This enables output voltage restored to GND level fast.  
FEATURES  
APPLICATIONS  
Input Voltage Range  
:
:
:
2.0V~6.0V  
Wearable Devices  
Output Voltage Setting  
Output Current  
1.0V~4.0V (±2.0%, 0.05V step increments)  
Smart meters  
200mA(XC9265A/C)  
50mA(XC9265B/D)  
Bluetooth units  
Driver Transistor  
:
0.4(Pch Driver Tr)  
Energy Harvest devices  
Back up power supply circuits  
Portable game consoles  
Devices with 1 Lithium cell  
0.4(Nch Synchronous rectifier Switch Tr)  
0.50μA @ VOUT(T)=1.8V (TYP.)  
PFM control  
Supply Current  
Control Method  
:
:
High Speed Transient  
PFM Switching Current  
:
:
50mV (VIN=3.6V, VOUT=1.8V, IOUT=10μA50mA)  
330mA(XC9265A/C), 180mA(XC9265B/D)  
Function  
:
Short Protection  
CL Discharge(XC9265C/ D)  
UVLO  
Ceramic Capacitor Compatible  
-40+85℃  
Operation Ambient Temperature  
Package  
:
:
:
SOT-25, USP-6EL  
Environmentally Friendly  
EU RoHS compliant, Pb Free  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION CIRCUIT  
CHARACTERISTICS  
Efficiency vs. Output Current  
XC9265B181xR-G(VOUT=1.8V)  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
L
100  
VIN  
VOUT  
VIN  
CE  
LX  
80  
CIN  
(Ceramic)  
CL  
(Ceramic)  
VOUT  
VIN=4.2V  
60  
VIN=3.6V  
GND  
VIN=2.7V  
40  
20  
0
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
1/30  
XC9265 series  
BLOCK DIAGRAM  
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
XC9265A and B type do not have CL Discharge function.  
PRODUCT CLASSIFICATION  
Ordering information  
XC9265①②③④⑤⑥-⑦  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
Iout=200mA Without CL Discharge  
A
B
C
Iout=50mA Without CL Discharge  
Iout=200mA With CL Discharge  
Iout=50mA With CL Discharge  
Product Type  
D
Output Voltage : e.g. VOUT=1.80V=1, =8  
Output Voltage Range: 1.0V4.0V (0.05V step)  
Output Voltage {x.x0V} (the 2nd decimal place is “0”)  
Output Voltage {x.x5V} (the 2nd decimal place is “5”)  
USP-6EL (3,000pcs/Reel)  
②③  
Output Voltage  
Output Voltage Type  
Packages (Order Unit)  
10 40  
1
B
4R-G  
MR-G  
(*1)  
⑤⑥-⑦  
SOT-25 (3,000pcs/Reel)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
2/30  
XC9265  
Series  
PIN CONFIGURATION  
LX  
5
VOUT  
4
1 LX  
VIN  
6
5
4
GND  
2
3
NC  
CE  
VOUT  
1
2
3
VIN  
GND  
CE  
USP-6EL  
(BOTTOM VIEW)  
SOT-25  
(TOP VIEW)  
* The dissipation pad for the USP-6EL package should be solder-plated in  
recommended mount pattern and metal masking so as to enhance mounting  
strength and heat release.  
The mount pattern should be connected to GND pin (No.2).  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
USP-6EL  
SOT-25  
1
2
3
4
5
6
5
2
4
3
-
LX  
GND  
VOUT  
CE  
Switching  
Ground  
Output Voltage  
Chip Enable  
No Connection  
Power Input  
NC  
1
VIN  
CE PIN FUNCTION  
PIN NAME  
SIGNAL  
STATUS  
H
L
Operation (All Series)  
Standby (All Series)  
CE  
* Please do not leave the CE pin open.  
ABSOLUTE MAXIMUM RATINGS  
Ta=25˚C  
PARAMETER  
VIN Pin Voltage  
LX Pin Voltage  
VOUT Pin Voltage  
CE Pin Voltage  
SYMBOL  
VN  
RATINGS  
UNITS  
-0.3 ~ +7.0  
-0.3 ~ VIN+0.3 or +7.0 (*1)  
-0.3 ~ VIN+0.3 or +7.0 (*1)  
-0.3 ~ +7.0  
V
V
V
V
VLX  
VOUT  
VCE  
LX Pin Current  
ILX  
1000  
mA  
SOT-25  
250  
120  
Power Dissipation  
Pd  
mW  
USP-6EL  
Operating Ambient Temperature  
Storage Temperature  
Topr  
Tstg  
-40 ~ +85  
-55 ~ +125  
˚C  
˚C  
* All voltages are described based on the GND.  
(*1) The maximum value is the lower of either VIN + 0.3 or +7.0.  
3/30  
XC9265 series  
ELECTRICAL CHARACTERISTICS  
XC9265Axxx Type, without CL discharge function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
CIRCUIT  
Input Voltage  
VIN  
-
V
Resistor connected with LX pin.  
(*2)  
Output Voltage  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
Supply Current  
VOUT(E)  
Voltage which LX pin changes “L” to “H” level  
while VOUT is decreasing.  
E1  
1.8  
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level  
while VIN is increasing.  
VUVLO(E)  
VHYS(E)  
Iq  
1.65  
0.11  
1.95  
0.24  
V
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
V
UVLO(E) - Voltage which LX pin changes “H” to “L”  
level while VIN is decreasing.  
VIN=VCE=VOUT(T)+0.5V (*1)  
VIN=2.0V, if VOUT(T)1.5V (*1)  
0.15  
E2  
,
,
μA  
VOUT=VOUT(T)+0.5V (*1), LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
Standby Current  
ISTB  
ILEAKH  
ILEAKL  
IPFM  
-
0.1  
0.1  
0.1  
330  
1.0  
1.0  
1.0  
400  
μA  
μA  
μA  
mA  
LX SW “H” Leak Current  
LX SW “L” Leak Current  
PFM Switching Current  
-
-
260  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
Resistor connected with LX pin.  
VIN=VCE=5.0V,  
Maximum Duty Ratio (*3)  
Efficiency (*4)  
MAXDTY  
EFFI  
100  
-
93  
-
%
%
%
%
-
-
-
-
-
-
-
V
OUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
OUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
OUT(T)=1.8V (*1), IOUT=30mA.  
Efficiency (*4)  
EFFI  
93  
-
V
Efficiency (*4)  
EFFI  
87  
-
0.65  
-
V
LX SW “Pch”  
ON Resistance (*5)  
LX SW “Nch”  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
0.4  
0.4 (*6)  
RLXN  
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/℃  
(VOUTΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VCE=0.21.5V.  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
V
V
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “H” to “L” level while  
VCEL  
GND  
V
CE=1.50.2V.  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
Short Protection  
VSHORT  
Voltage which LX pin changes “H” to “L” level while  
0.4  
0.5  
0.6  
V
Threshold Voltage  
V
OUT= VOUT(T)+0.1V0V(*1)  
.
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA  
(*6) Designed value  
4/30  
XC9265  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9265Bxxx Type, without CL discharge function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
CIRCUIT  
Input Voltage  
VIN  
-
V
Resistor connected with LX pin.  
(*2)  
Output Voltage  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
Supply Current  
VOUT(E)  
Voltage which LX pin changes “L” to “H” level  
while VOUT is decreasing.  
E1  
1.8  
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level  
while VIN is increasing.  
VUVLO(E)  
VHYS(E)  
Iq  
1.65  
0.11  
1.95  
0.24  
V
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
V
UVLO(E) - Voltage which LX pin changes “H” to “L”  
level while VIN is decreasing.  
VIN=VCE=VOUT(T)+0.5V (*1)  
VIN=2.0V, if VOUT(T)1.5V (*1)  
0.15  
E2  
,
,
μA  
VOUT=VOUT(T)+0.5V (*1), LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
Standby Current  
ISTB  
ILEAKH  
ILEAKL  
IPFM  
-
0.1  
0.1  
0.1  
180  
1.0  
1.0  
1.0  
250  
μA  
μA  
μA  
mA  
LX SW “H” Leak Current  
LX SW “L” Leak Current  
PFM Switching Current  
-
-
115  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
Resistor connected with LX pin.  
VIN=VCE=5.0V,  
Maximum Duty Ratio (*3)  
Efficiency (*4)  
MAXDTY  
EFFI  
100  
-
95  
-
%
%
%
%
-
-
-
-
-
-
-
V
OUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
OUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
OUT(T)=1.8V (*1), IOUT=30mA.  
Efficiency (*4)  
EFFI  
95  
-
V
Efficiency (*4)  
EFFI  
89  
-
0.65  
-
V
LX SW “Pch”  
ON Resistance (*5)  
LX SW “Nch”  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
0.4  
0.4 (*6)  
RLXN  
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/℃  
(VOUTΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VCE=0.21.5V.  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
V
V
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “H” to “L” level while  
VCEL  
GND  
V
CE=1.50.2V.  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
Short Protection  
VSHORT  
Voltage which LX pin changes “H” to “L” level while  
0.4  
0.5  
0.6  
V
Threshold Voltage  
V
OUT= VOUT(T)+0.1V0V(*1)  
.
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA  
(*6) Designed value  
5/30  
XC9265 series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9265CxxxTypewith CL Discharge Function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
V
CIRCUIT  
Input Voltage  
VIN  
-
Resistor connected with LX pin.  
(*2)  
Output Voltage  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
Supply Current  
VOUT(E)  
Voltage which LX pin changes “L” to “H” level  
while VOUT is decreasing.  
E1  
1.8  
V
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level  
while VIN is increasing.  
VUVLO(E)  
VHYS(E)  
Iq  
1.65  
0.11  
1.95  
0.24  
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
V
UVLO(E) - Voltage which LX pin changes “H” to “L”  
level while VIN is decreasing.  
VIN=VCE=VOUT(T)+0.5V (*1)  
VIN=2.0V, if VOUT(T)1.5V (*1)  
0.15  
E2  
V
,
,
μA  
VOUT=VOUT(T)+0.5V (*1), LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
Standby Current  
ISTB  
ILEAKH  
ILEAKL  
IPFM  
-
0.1  
0.1  
0.1  
330  
1.0  
1.0  
1.0  
400  
μA  
μA  
μA  
mA  
LX SW “H” Leak Current  
LX SW “L” Leak Current  
PFM Switching Current  
-
-
260  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
Resistor connected with LX pin.  
VIN=VCE=5.0V,  
Maximum Duty Ratio (*3)  
Efficiency (*4)  
MAXDTY  
EFFI  
100  
-
93  
-
%
%
%
%
-
-
-
-
-
-
-
V
OUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
OUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
OUT(T)=1.8V (*1), IOUT=30mA.  
Efficiency (*4)  
EFFI  
93  
-
V
Efficiency (*4)  
EFFI  
87  
-
0.65  
-
V
LX SW “Pch”  
ON Resistance (*5)  
LX SW “Nch”  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
0.4  
0.4 (*6)  
RLXN  
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/℃  
(VOUTΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VCE=0.21.5V.  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
V
V
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “H” to “L” level while  
VCEL  
GND  
V
CE=1.50.2V.  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
Short Protection  
VSHORT  
Voltage which LX pin changes “H” to “L” level while  
0.4  
55  
0.5  
80  
0.6  
V
Threshold Voltage  
V
OUT= VOUT(T)+0.1V0V(*1)  
VIN=VOUT=5.0V, VCE=0V, LX=Open.  
.
CL Discharge  
RDCHG  
105  
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA  
(*6) Designed value  
6/30  
XC9265  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9265Dxxx Type, with CL Discharge function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
V
CIRCUIT  
Input Voltage  
VIN  
-
Resistor connected with LX pin.  
(*2)  
Output Voltage  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
Supply Current  
VOUT(E)  
Voltage which LX pin changes “L” to “H” level  
while VOUT is decreasing.  
E1  
1.8  
V
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level  
while VIN is increasing.  
VUVLO(E)  
VHYS(E)  
Iq  
1.65  
0.11  
1.95  
0.24  
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
V
UVLO(E) - Voltage which LX pin changes “H” to “L”  
level while VIN is decreasing.  
VIN=VCE=VOUT(T)+0.5V (*1)  
VIN=2.0V, if VOUT(T)1.5V (*1)  
0.15  
E2  
V
,
,
μA  
VOUT=VOUT(T)+0.5V (*1), LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
Standby Current  
ISTB  
ILEAKH  
ILEAKL  
IPFM  
-
0.1  
0.1  
0.1  
180  
1.0  
1.0  
1.0  
250  
μA  
μA  
μA  
mA  
LX SW “H” Leak Current  
LX SW “L” Leak Current  
PFM Switching Current  
-
-
115  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
Resistor connected with LX pin.  
VIN=VCE=5.0V,  
Maximum Duty Ratio (*3)  
Efficiency (*4)  
MAXDTY  
EFFI  
100  
-
95  
-
%
%
%
%
-
-
-
-
-
-
-
V
OUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
OUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
OUT(T)=1.8V (*1), IOUT=30mA.  
Efficiency (*4)  
EFFI  
95  
-
V
Efficiency (*4)  
EFFI  
89  
-
0.65  
-
V
LX SW “Pch”  
ON Resistance (*5)  
LX SW “Nch”  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
0.4  
0.4 (*6)  
RLXN  
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/℃  
(VOUTΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VCE=0.21.5V.  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
V
V
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “H” to “L” level while  
VCEL  
GND  
V
CE=1.50.2V.  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
Short Protection  
VSHORT  
Voltage which LX pin changes “H” to “L” level while  
0.4  
55  
0.5  
80  
0.6  
V
Threshold Voltage  
V
OUT= VOUT(T)+0.1V0V(*1)  
VIN=VOUT=5.0V, VCE=0V, LX=Open.  
.
CL Discharge  
RDCHG  
105  
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA  
(*6) Designed value  
7/30  
XC9265 series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9265 series voltage chart  
SYMBOL  
PARAMETER  
UNITS: V  
E1  
E2  
Output Voltage  
UNITS: V  
Supply Current  
UNITS: μA  
OUTPUT  
MIN.  
MAX.  
TYP.  
MAX.  
VOLTAGE  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
0.980  
1.029  
1.078  
1.127  
1.176  
1.225  
1.274  
1.323  
1.372  
1.421  
1.470  
1.519  
1.568  
1.617  
1.666  
1.715  
1.764  
1.813  
1.862  
1.911  
1.960  
2.009  
2.058  
2.107  
2.156  
2.205  
2.254  
2.303  
2.352  
2.401  
2.450  
2.499  
2.548  
2.597  
2.646  
2.695  
2.744  
2.793  
1.020  
1.071  
1.122  
1.173  
1.224  
1.275  
1.326  
1.377  
1.428  
1.479  
1.530  
1.581  
1.632  
1.683  
1.734  
1.785  
1.836  
1.887  
1.938  
1.989  
2.040  
2.091  
2.142  
2.193  
2.244  
2.295  
2.346  
2.397  
2.448  
2.499  
2.550  
2.601  
2.652  
2.703  
2.754  
2.805  
2.856  
2.907  
0.5  
0.8  
0.5  
0.9  
0.6  
1.1  
0.7  
1.5  
8/30  
XC9265  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9265 series voltage chart  
SYMBOL  
PARAMETER  
UNITS: V  
E1  
E2  
Output Voltage  
UNITS: V  
Supply Current  
UNITS: μA  
OUTPUT  
MIN.  
MAX.  
TYP.  
MAX.  
VOLTAGE  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
3.65  
3.70  
3.75  
3.80  
3.85  
3.90  
3.95  
4.00  
2.842  
2.891  
2.940  
2.989  
3.038  
3.087  
3.136  
3.185  
3.234  
3.283  
3.332  
3.381  
3.430  
3.479  
3.528  
3.577  
3.626  
3.675  
3.724  
3.773  
3.822  
3.871  
3.920  
2.958  
3.009  
3.060  
3.111  
3.162  
3.213  
3.264  
3.315  
3.366  
3.417  
3.468  
3.519  
3.570  
3.621  
3.672  
3.723  
3.774  
3.825  
3.876  
3.927  
3.978  
4.029  
4.080  
0.7  
1.5  
0.8  
2.1  
1.5  
3.0  
9/30  
XC9265 series  
TEST CIRCUITS  
10/30  
XC9265  
Series  
TYPICAL APPLICATION CIRCUIT  
L
VIN  
VOUT  
VIN  
CE  
LX  
CIN  
(Ceramic)  
CL  
(Ceramic)  
VOUT  
GND  
Typical Examples】  
MANUFACTURE  
PRODUCT NUMBER  
VALUE  
TDK  
VLF302512M-100M  
LPS3015-103MRB  
1239AS-H-100M  
LMK107BJ106MA  
JMK107BJ226MA  
10μH  
10μH  
10μH  
L
Coilcraft  
TOKO  
CIN  
CL  
TAIYO YUDEN  
TAIYO YUDEN  
10μF/10V  
22μF/6.3V  
* Take capacitance loss, withstand voltage, and other conditions into consideration when selecting components.  
* Characteristics are dependent on deviations in the coil inductance value. Test fully using the actual device.  
* A value of 10μH is recommended for the coil inductance.  
* If a tantalum or electrolytic capacitor is used for the load capacitance CL, ripple voltage will increase, and there is a possibility that operation will  
become unstable. Test fully using the actual device.  
11/30  
XC9265 series  
OPERATIONAL EXPLANATION  
The XC9265 series consists of a reference voltage supply, PFM comparator, Pch driver Tr, Nch synchronous rectification switch Tr, current  
sensing circuit, PFM control circuit, CE control circuit, and others. (Refer to the block diagram below.)  
XC9265Axxx/XC9265Bxxx  
XC9265Cxxx/XC9265xxx  
An ultra-low quiescent current circuit and synchronous rectification enable a significant reduction of dissipation in the IC, and the IC operates with  
high efficiency at both light loads and heavy loads. Current limit PFM is used for the control method, and even when switching current  
superposition occurs, increases of output voltage ripple are suppressed, allowing use over a wide voltage and current range. The IC is compatible  
with low-capacitance ceramic capacitors, and a small, high-performance step-down DC-DC converter can be created.  
The actual output voltage VOUT(E) in the electrical characteristics is the threshold voltage of the PFM comparator in the block diagram. Therefore  
the average output voltage of the step-down circuit, including peripheral components, depends on the ripple voltage. Before use, test fully using  
the actual device.  
VIN=VCE=3.6V  
V
=1.8V  
I
=5mA L=10μH C =22uF Ta=25  
VIN=VCE=3.6V  
V
=1.8V  
I
=30mA L=10μH C =22uF Ta=25  
、 、 、 ℃  
OUT L  
OUT  
OUT  
L
OUT  
VLX  
VLX  
VLX : 2[V/div]  
VOUT  
VOUT  
VOUT : 50[mV/div]  
VOUT(E)  
Voltage  
ILX  
ILX  
IPFM  
ILX : 100[mA/div]  
10[μs/div ]  
10[μs/div]  
<Reference voltage supply (VREF)>  
Reference voltage for stabilization of the output voltage of the IC.  
<PFM control>  
(1) The feedback voltage (FB voltage) is the voltage that results from dividing the output voltage with the IC internal dividing resistors RFB1 and  
FB2. The PFM comparator compares this FB voltage to VREF. When the FB voltage is lower than VREF, the PFM comparator sends a signal to the  
R
buffer driver through the PFM control circuit to turn on the Pch driver Tr. When the FB voltage is higher than VREF, the PFM comparator sends a  
signal to prevent the Pch driver Tr from turning on.  
(2) When the Pch driver Tr is on, the current sense circuit monitors the current that flows through the Pch driver Tr connected to the Lx pin. When the  
current reaches the set PFM switching current (IPFM), the current sense circuit sends a signal to the buffer driver through the PFM control circuit. This  
signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.  
(3) The on time (off time) of the Nch synchronous rectification switch Tr is dynamically optimized inside the IC. After the off time elapses and the  
PFM comparator detects that the VOUT voltage is higher than the set voltage, the PFM comparator sends a signal to the PFM control circuit that  
prevents the Pch driver Tr from turning on. However, if the VOUT voltage is lower than the set voltage, the PFM comparator starts Pch driver Tr on.  
12/30  
XC9265  
Series  
OPERATIONAL EXPLANATION (Continued)  
By continuously adjusting the interval of the linked operation of (1), (2) and (3) above in response to the load current, the output voltage is  
stabilized with high efficiency from light loads to heavy loads.  
<PFM Switching Current >  
The PFM switching current monitors the current that flows through the Pch driver Tr, and is a value that limits the Pch driver Tr current.  
The Pch driver Tr remains on until the coil current reaches the PFM switching current (IPFM). An approximate value for this on-time tON can be  
calculated using the following equation:  
tON = L × IPFM / (VIN – VOUT  
)
<Maximum on-time function>  
To avoid excessive ripple voltage in the event that the coil current does not reach the PFM switching current within a certain interval even though  
the Pch driver Tr has turned on and the FB voltage is above VREF, the Pch driver Tr can be turned off at any timing using the maximum on-time  
function of the PFM control circuit. If the Pch driver Tr turns off by the maximum on-time function instead of the current sense circuit, the Nch  
synchronous rectification switch Tr will not turn on and the coil current will flow to the VOUT pin by means of the parasite diode of the Nch  
synchronous rectification switch Tr.  
<Through mode>  
When the VIN voltage is lower than the output voltage, through mode automatically activates and the Pch driver Tr stays on continuously.  
(1) In through mode, when the load current is increased and the current that flows through the Pch driver Tr reaches a load current that is several tens  
of mA lower than the set PFM switching current (IPFM), the current sense circuit sends a signal through the PFM control circuit to the buffer driver. This  
signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.  
(2) After the on-time (off-time) of the Nch synchronous rectification switch Tr, the Pch driver Tr turns on until the current reaches the set PFM  
switching current (IPFM) again.  
If the load current is large as described above, operations (1) and (2) above are repeated. If the load current is several tens of mA lower than the  
PFM switching current (IPFM), the Pch driver Tr stays on continuously.  
<VIN start mode>  
When the VIN voltage rises, VIN start mode stops the short-circuit protection function during the interval until the FB voltage approaches VREF. After  
the VIN voltage rises and the FB voltage approaches VREF by step-down operation, VIN start mode is released. In order to prevent an excessive  
rush current while VIN start mode is activated, the coil current flows to the VOUT pin by means of the parasitic diode of the Nch synchronous  
rectification Tr. In VIN start mode as well, the coil current is limited by the PFM switching current.  
<Short-circuit protection function>  
The short-circuit protection function monitors the VOUT voltage. In the event that the VOUT pin is accidentally shorted to GND or an excessive load  
current causes the VOUT voltage to drop below the set short-circuit protection voltage, the short-circuit protection function activates, and turns off  
and latches the Pch driver Tr at any selected timing. Once in the latched state, the IC is turned off and then restarted from the CE pin, or operation  
is started by re-applying the VIN voltage.  
<UVLO function>  
When the VIN pin voltage drops below the UVLO detection voltage, the IC stops switching operation at any selected timing, turns off the Pch driver  
Tr and Nch synchronous rectification switch Tr (UVLO mode). When the VIN pin voltage recovers and rises above the UVLO release voltage, the  
IC restarts operation.  
<CL discharge function>  
On the XC9265 series, a CL discharge function is available as an option (XC9265C/XC9265D types). This function enables quick discharging of  
the CL load capacitance when Lvoltage is input into the CE pin by the Nch Tr connected between the VOUT-GND pins, or in UVLO mode. This  
prevents malfunctioning of the application in the event that a charge remains on CL when the IC is stopped. The discharge time is determined by  
CL and the CL discharge resistance RDCHG, including the Nch Tr (refer to the diagram below). Using this time constant τ= CL×RDCHG, the  
discharge time of the output voltage is calculated by means of the equation below.  
V = VOUT × e - t /τ, or in terms of t, t = τIn(VOUT / V)  
V: Output voltage after discharge  
VOUT : Set output voltage  
: Discharge time  
CL: Value of load capacitance (CL)  
RDCHG : Value of CL discharge resistance Varies by power supply voltage.  
τ: CL × RDCHG  
The CL discharge function is not available on the XC9265A/XC9265B types.  
13/30  
XC9265 series  
NOTE ON USE  
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.  
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally connected  
components, so refer to the specifications of each component and be careful when selecting the components. Be especially careful of the  
characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics (JIS Standard) or an X7R/X5R (EIA  
Standard) ceramic capacitor.  
3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause the IC  
operation to become unstable, so reinforce the area around the GND pin of the IC in particular.  
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.  
5. When the voltage difference between VIN and VOUT is small, switching energy increases and there is a possibility that the ripple voltage will be  
too large. Before use, test fully using the actual device.  
6. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.  
7. If other than the recommended inductance and capacitance values are used, excessive ripple voltage or a drop in efficiency may result.  
8. If other than the recommended inductance and capacitance values are used, a drop in output voltage when the load is excessive may cause  
the short-circuit protection function to activate. Before use, test fully using the actual device.  
9. At high temperature, excessive ripple voltage may occur and cause a drop in output voltage and efficiency. Before using at high temperature,  
test fully using the actual device  
10. At light loads or when IC operation is stopped, leakage current from the Pch driver Tr may cause the output voltage to rise.  
11. The average output voltage may vary due to the effects of output voltage ripple caused by the load current. Before use, test fully using the  
actual device.  
12. If the CL capacitance or load current is large, the output voltage rise time will lengthen when the IC is started, and coil current overlay may  
occur during the interval until the output voltage reaches the set voltage (refer to the diagram below).  
X
C
9
2
6
5
A series V =V =0 6.0V V =1.0V I  
=200mA L=10μH C =22uF Ta=25  
、 、 、 ℃  
OUT L  
、  
IN  
CE  
OUT  
VLX  
VLX : 10[V/div ]  
IPFM  
ILX  
IL : 200[mA/div]  
VOUT : 1[V/div ]  
VOUT  
VIN  
V
IN : 5[V/div ]  
Zoom  
200[μs/div ]  
VLX  
ILX  
VLX : 10[V/div ]  
IL : 200[mA/div ]  
VOUT  
VIN  
VOUT : 1[V/div ]  
VIN : 5[V/div]  
5[μs/div ]  
13. When the IC is started, the short-circuit protection function does not operate during the interval until the VOUT voltage reaches a value near the  
set voltage.  
14. If the IC is started at a VIN voltage that activates through mode, it is possible that the short-circuit protection function will not operate. Before  
use, test fully using the actual device.  
15. If the load current is excessively large when the IC is started, it is possible that the VOUT voltage will not rise to the set voltage. Before use, test  
fully using the actual device.  
14/30  
XC9265  
Series  
NOTE ON USE (Continued)  
16. In actual operation, the maximum on-time depends on the peripheral components, input voltage, and load current. Before use, test fully using  
the actual device.  
17. When the VIN voltage is turned on and off continuously, excessive rush current may occur while the voltage is on. Before use, test fully using  
the actual device.  
18. When the VIN voltage is high, the Pch driver may change from on to off before the coil current reaches the PFM switching current (IPFM), or  
before the maximum on-time elapses. Before use, test fully using the actual device.  
19. When the IC change to the Through Mode at light load, the supply current of this IC can increase in some cases.  
20. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.  
21. Torex places an importance on improving our products and their reliability.  
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.  
22. The UVLO function can be activated when the UVLO hysteresis width gets to about 0mV and after several tens ms elapses at light loads.  
Before use, test fully using the actual device.  
15/30  
XC9265 series  
NOTE ON USE (Continued)  
Instructions of pattern layouts  
1. To suppress fluctuations in the VIN potential, connect a bypass capacitor (CIN) in the shortest path between the VIN pin and ground pin.  
2. Please mount each external component as close to the IC as possible.  
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.  
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of  
switching may result in instability of the IC.  
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.  
Recommended Pattern Layout (USP-6EL)  
Top view  
Bottom view  
Recommended Pattern Layout (SOT-25)  
Top view  
Bottom view  
16/30  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
XC9265A181  
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
XC9265A181  
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=2.7V  
VIN=2.7V  
VIN=4.2V  
VIN=4.2V  
VIN=3.6V  
VIN=3.6V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN =4.2V  
VIN=3.6V  
VIN =4.2V  
VIN=3.6V  
VIN=2.7V  
VIN=2.7V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=4.2V  
VIN=4.2V  
VIN=3.6V  
VIN=3.6V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
17/30  
XC9265 series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(1) Efficiency vs. Output Current (Continued)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=4.2V  
VIN=4.2V  
VIN =3.6V  
VIN=3.6V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
(2) Output Voltage vs. Output Current  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
VIN=2.7V,3.6V,4.2V  
VIN=2.7V,3.6V,4.2V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
VIN=2.7V,3.6V,4.2V  
VIN=2.7V,3.6V,4.2V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
18/30  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(2) Output Voltage vs. Output Current (Continued)  
XC9265A301  
XC9265A301  
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
CL=44μF(JMK107BJ226MA×2)  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
VIN=3.6V,4.2V  
VIN=3.6V,4.2V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
VIN=3.6V,4.2V  
VIN =3.6V,4.2V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
(3) Ripple Voltage vs. Output Current  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN=4.2V  
VIN=3.6V  
VIN=2.7V  
VIN=3.6V  
VIN =2.7V  
VIN=4.2V  
0
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
19/30  
XC9265 series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(3) Ripple Voltage vs. Output Current (Continued)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN =2.7V,3.6V,4.2V  
VIN =4.2V  
VIN=3.6V  
VIN=2.7V  
0
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN =4.2V  
VIN =3.6V  
VIN=4.2V  
VIN=3.6V  
0
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN=4.2V  
VIN =3.6V  
VIN=4.2V  
VIN=3.6V  
0
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
20/30  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Output Voltage Vs. Ambient Temperature  
XC9265x301  
XC9265x181  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
VIN=5.0V  
VIN=5.0V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta(  
)
Ambient Temperature: Ta(  
)
(5) Supply Current vs. Ambient Temperature  
XC9265x301  
XC9265x181  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN =2.3V  
VIN=3.5V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta(  
)
Ambient Temperature: Ta(  
)
(6) Stand-by Current vs. Ambient Temperature  
XC9265x301  
XC9265x181  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
VIN=5.0V,3.6V,2.3V  
VIN=5.0V,3.6V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta(  
)
Ambient Temperature: Ta(  
)
21/30  
XC9265 series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(7) UVLO Release Voltage vs. Ambient Temperature  
XC9265x181  
XC9265x301  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
VRELEASE (T) =1.8V  
VRELEASE (T) =1.8V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta(  
)
Ambient Temperature: Ta(  
)
(8) PFM Switching Current vs. Ambient Temperature  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
600  
500  
400  
300  
200  
100  
0
600  
VIN=5.0V,3.6V  
VIN =5.0V,3.6V  
500  
VIN=2.3V  
400  
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
VIN=5.0V  
VIN=3.6V  
VIN=5.0V  
VIN=3.6V  
VIN =2.3V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
22/30  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(9) Maximum Frequency vs. Ambient Temperature  
XC9265A101  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A251  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
VIN=5.0V  
VIN=4.2V  
VIN=5.0V  
VIN=3.6V  
VIN=3.6V  
VIN=2.7V  
VIN=2.0V  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta(  
)
Ambient Temperature: Ta(  
)
XC9265A401  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
XC9265B101  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
CL=22μF(JMK107BJ226MA)  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
VIN=6.0V  
VIN=5.0V  
VIN=3.6V  
VIN=5.5V  
VIN=5.0V  
VIN=2.7V  
VIN=2.0V  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta(  
)
Ambient Temperature: Ta(  
)
XC9265B401  
XC9265B251  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
CL=22μF(JMK107BJ226MA)  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
VIN=6.0V  
VIN=5.0V  
VIN=4.2V  
VIN=3.6V  
VIN=5.5V  
VIN=5.0V  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta(  
)
Ambient Temperature: Ta(  
)
23/30  
XC9265 series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(10) Pch Driver ON Resistance vs. Ambient Temperature  
(11) Nch Driver ON Resistance vs. Ambient Temperature  
XC9265  
XC9265  
VIN=VCE,VOUT=0V,ILX=100mA  
VIN=VCE  
1.2  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Topr=85  
Topr=85  
Topr=25  
Topr=25  
Topr=-40  
Topr=-40  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Input Voltage : VIN (V)  
Input Voltage : VIN (V)  
(12) Lx SW "H" Leakage Current vs. Ambient Temperature  
(13) Lx SW "L" Leakage Current vs. Ambient Temperature  
XC9265  
XC9265  
VOUT=VCE=0V,VLX=0V  
VOUT=VCE=0V,VLX=5.0V  
3.0  
3.0  
VIN =5.0V  
VIN =5.0V  
2.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
)
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
Ambient Temperature: Ta (  
)
(14) CE "High" Voltage vs. Ambient Temperature  
(15) CE "Low" Voltage vs. Ambient Temperature  
XC9265  
XC9265  
1.0  
1.0  
0.8  
0.8  
0.6  
0.6  
VIN =5.0V  
VIN=5.0V  
VIN =3.6V  
VIN=3.6V  
0.4  
0.4  
0.2  
0.0  
VIN =2.0V  
VIN =2.0V  
0.2  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
24/30  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(16) CL Discharge vs. Ambient Temperature  
(17) Short Protection Thrreshold vs. Ambient Temperature  
XC9265C/D  
XC9265  
VIN =VOUT,VCE=0V  
VIN =VCE  
600  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIN =5.0V,3.6V,2.0V  
500  
400  
300  
VIN =6.0V  
VIN=4.0V  
VIN =2.0V  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(18) Rising Output Voltage  
XC9265A181  
XC9265A181  
VIN=VCE=0 3.6V,IOUT=10uA  
VIN=VCE=0 3.6V,IOUT=100mA  
VOUT  
VOUT  
VIN  
VIN  
VLX  
VLX  
ILx  
ILx  
VOUT:1V/div,VIN:5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
VOUT:1V/div,VIN:5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B181  
XC9265B181  
VIN=VCE=0 3.6V,IOUT=10uA  
VIN=VCE=0 3.6V,IOUT=50mA  
VOUT  
VOUT  
VIN  
VIN  
VLX  
VLX  
ILx  
ILx  
VOUT:1V/div,VIN:5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
VOUT:1V/div,VIN:5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
25/30  
XC9265 series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(19) Load Transient Response  
XC9625A301  
XC9265A301  
VIN=3.6V, IOUT=10uA 100mA  
VIN=3.6V IOUT=10uA 100mA  
VOUT  
VOUT  
VLX  
VLX  
ILx  
ILx  
Iout  
Iout  
VOUT:200mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
VOUT:200mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
XC9265B301  
XC9265B301  
VIN=3.6V, IOUT=10uA 50mA  
VIN=3.6V, IOUT=10uA 50mA  
VOUT  
VOUT  
VLX  
VLX  
ILx  
ILx  
Iout  
Iout  
VOUT:200mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
VOUT:200mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A181  
XC9265A181  
VIN=3.6V, IOUT=10uA 100mA  
VIN =3.6V IOUT=10uA 100mA  
VOUT  
VOUT  
VLX  
VLX  
ILx  
ILx  
Iout  
Iout  
VOUT:100mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
VOUT:100mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
26/30  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(19) Load Transient Response (Continued)  
XC9265B181  
XC9265B181  
VIN=3.6V IOUT=10uA 50mA  
VIN=3.6V IOUT=10uA 50mA  
VOUT  
VOUT  
VLX  
VLX  
ILx  
ILx  
Iout  
Iout  
VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
27/30  
XC9265 series  
PACKAGING INFORMATION  
SOT-25 (unit: mm)  
USP-6EL (unit: mm)  
1.8±0.05  
1PIN INDENT  
0.3±0.05  
1
2
3
A part of the pin may appear from  
6
5
4
(0.55)  
the side of the package because of  
1.5±0.05  
its structure.  
USP-6EL Reference Pattern Layout (unit: mm)  
USP-6EL Reference Metal Mask Design (unit: mm)  
28/30  
XC9265  
Series  
MARKING RULE  
MARKrepresents product series  
SOT-25(Under dot)  
MARK  
C
PRODUCT SERIES  
5
4
XC9265A/B/C/D*****-G  
MARKrepresents output voltage  
PRODUCT SERIES  
MARK  
OUTPUT VOLTAGE  
3.9 1.95 2.95 3.95  
4.0 1.05 2.05 3.05  
1
2
3
0
1
-
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
-
Zoom  
1.0  
-
-
-
-
-
-
-
-
-
2
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
-
-
1.15 2.15 3.15  
1.25 2.25 3.25  
1.35 2.35 3.35  
1.45 2.45 3.45  
1.55 2.55 3.55  
1.65 2.65 3.65  
1.75 2.75 3.75  
1.85 2.85 3.85  
3
-
4
-
XC9265A/B*****-G  
5
-
6
-
-
7
8
-
USP-6EL  
9
2.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
-
A
B
C
D
E
F
H
K
L
3.9  
-
1.95 2.95 3.95  
1
2
3
6
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
4.0 1.05 2.05 3.05  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.15 2.15 3.15  
1.25 2.25 3.25  
1.35 2.35 3.35  
1.45 2.45 3.45  
1.55 2.55 3.55  
1.65 2.65 3.65  
1.75 2.75 3.75  
5
4
XC9265C/D*****-G  
M
1.8  
2.8  
3.8  
-
1.85 2.85 3.85  
-
MARKrepresents output voltage range  
OUTPUT  
MARK  
PRODUCT SERIES  
VOLTAGE  
A
B
C
D
E
F
1.01.8V  
1.92.8V  
2.93.8V  
3.94.0V  
1.01.8V  
1.92.8V  
2.93.8V  
3.94.0V  
1.051.85V  
1.952.85V  
2.953.85V  
3.95V  
XC9265A/C**1**-G  
XC9265B/D**1**-G  
XC9265A/C**B**-G  
XC9265B/D**B**-G  
H
K
P
R
S
T
U
V
X
Y
1.051.85V  
1.952.85V  
2.953.85V  
3.95V  
MARK④⑤ represents production lot number  
01090A0Z119ZA1A9AAAZB1ZZ  
(G, I, J, O, Q, W excluded and no character inversion used)  
29/30  
XC9265 series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions. Do not use the product for the above use unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent  
personal injury and/or property damage resulting from such failure, customers are required to  
incorporate adequate safety measures in their designs, such as system fail safes, redundancy and  
fire prevention features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
30/30  

相关型号:

XC9265C1814R-G

IC REG BUCK 1.8V 0.2A SYNC 6USP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9265C181MR-G

IC REG BUCK 1.8V 0.2A SYNC SOT25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9265D2914R-G

Switching Regulator,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9265D3914R-G

Switching Regulator,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9268

36V Operation 600mA Synchronous Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9268B75CER-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9268B75CPR-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9268B75DER-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9268B75DPR-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9271A083QR-G

Switching Regulator,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9271A085QR-G

Switching Regulator,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XC9271B083QR-G

Switching Regulator,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX