XC9271B083QR-G [TOREX]

Switching Regulator,;
XC9271B083QR-G
型号: XC9271B083QR-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Switching Regulator,

开关
文件: 总29页 (文件大小:1039K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC9270/XC9271Series  
30V Driver Transistor Built-In Step-Down DC/DC Converters  
GENERAL DESCRIPTION  
ETR05048-003  
The XC9270/XC9271 series are 30V operation step-down DC/DC converter ICs with an internal driver transistor. The internal Nch driver  
transistor is driven by bootstrap to achieve a stable, high-efficiency power supply up to an output current of 2.0A. Low ESR capacitors such as  
ceramic capacitors can be used for the load capacitor (CL).  
A 0.8V reference voltage source is incorporated in the IC, and the output voltage can be set to a value from 1.2V to 12.0V using external  
resistors (RFB1, RFB2).  
300kHz or 500kHz can be selected for the switching frequency. The generation of unneeded noise can be suppressed by synchronizing to an  
external CLK in a range of ±25% of the free running frequency using the SYNC pin. In automatic PWM/PFM control, the IC operates by PFM  
control when the load is light to achieve high efficiency over the full load range from light to heavy.  
The soft start time can be set as desired by adding an external capacitance to the SS pin.  
With the built-in UVLO function, the driver transistor is forced OFF when input voltage becomes 4.5V or lower.  
Internal protection circuits include over current protection, integral latch protection, short-circuit protection, and thermal shutdown circuits to  
enable safe use.  
FEATURES  
Input Voltage  
APPLICATIONS  
:
:
:
:
:
730V  
Car navigation systems  
Car audios  
0.8V (±2)  
300kHz, 500kHz  
FB Voltage  
Industrial equipment  
Oscillation Frequency  
Maximum Output Current  
Control Method  
2.0A  
PWM (XC9270)  
PWM/PFM (XC9271)  
External Capacitor  
:
:
Soft-start  
(set by external capacitor C)  
Over Current Protection 3.2A (TYP.)  
Protection Circuit  
Integral Latch Method (XC9270 / XC9271A)  
Automatic Recovery (XC9270 / XC9271B)  
Thermal Shutdown  
Low ESR Ceramic Capacitor  
:
:
:
:
Ceramic Capacitor  
-40~ +105℃  
Operating Ambient Temperature  
Package  
SOP-8FD  
Environmentally Friendly  
EU RoHS Compliant, Pb Free  
*Performance depends on external components and wiring on the PCB.  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION CIRCUIT  
CHARACTERISTICS  
XC9270x085/XC9271x085  
(VIN=12V , VOUT=5V)  
L=15 H(CLF12555-150M), C =10 F(GRM32ER71H106KA12L),  
μ
μ
IN1  
SBD=CMS15, C =22 F×2(GRM32ER71E226KE15L)  
μ
L
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XC9271  
XC9270  
1
10  
100  
1000  
10000  
Output Current :IOUT[mA]  
1/29  
XC9270/XC9271 Series  
BLOCK DIAGRAM  
1) XC9270 Series, Type A  
* Diodes inside the circuit are ESD protection diodes and parasitic diodes.  
2) XC9270 Series, Type B  
* Diodes inside the circuit are ESD protection diodes and parasitic diodes.  
2/29  
XC9270/XC9271  
Series  
BLOCK DIAGRAM (Continued)  
3) XC9271 Series, Type A  
* Diodes inside the circuit are ESD protection diodes and parasitic diodes.  
4) XC9271 Series, Type B  
* Diodes inside the circuit are ESD protection diodes and parasitic diodes.  
3/29  
XC9270/XC9271 Series  
PRODUCT CLASSIFICATION  
Ordering Information  
XC9270①②③④⑤⑥-PWM  
XC9271①②③④⑤⑥-PWM/PFM Auto  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
Refer to Selection Guide  
A
B
②③  
Functional selection  
Adjustable Output Voltage  
Oscillation Frequency  
08  
3
Output voltage can be adjusted in 1.2V to 12V  
300kHz  
500kHz  
5
(*1)  
⑤⑥-⑦  
Package (Order Unit)  
QR-G  
SOP-8FD (1,000pcs/Reel)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
Selection Guide  
CURRENT  
LIMITTER  
LATCH  
TYPE  
CHIP ENABLE  
UVLO  
PROTECTION  
A
B
YES  
YES  
YES (*1)  
NO  
YES  
YES  
YES  
YES  
THERMAL  
SYNCHRONIZED with  
EXTERNAL CLOCK  
TYPE  
SOFT-START  
SHUTDOWN  
A
B
YES  
YES  
YES  
YES  
YES  
YES  
(*1) The over-current protection latch is an integral latch type.  
PIN CONFIGURATION  
* The dissipation pad for this IC should be solder-plated for mounting strength and heat  
dissipation. Please refer to the reference mount pattern and metal masking. The dissipation pad  
should be connected to the GND (No. 6) pin.  
4/29  
XC9270/XC9271  
Series  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
SOP-8FD  
FUNCTIONS  
1
2
3
4
5
6
7
8
VIN  
CE  
Power Input  
Chip Enable  
SYNC  
FB  
External CLK Sync Pin  
Output Voltage Sense  
Soft-start Adjustment  
Ground  
SS  
GND  
BST  
Lx  
Bootstrap  
Switching Output  
FUNCTION  
PIN NAME  
SIGNAL  
STATUS  
L
H
Stand-by  
Active  
CE  
OPEN  
L
Undefined State (*1)  
Operates with internal clock frequency  
H
SYNC  
CLK  
Synchronizes with External Clock Signal  
Undefined State (*1)  
OPEN  
(*1) Please do not leave the CE and SYNC pin open.  
ABSOLUTE MAXIMUM RATINGS  
Ta=25℃  
PARAMETER  
VIN Pin Voltage  
BST Pin Voltage  
FB Pin Voltage  
SYNC Pin Voltage  
CE Pin Voltage  
SS Pin Voltage  
Lx Pin Voltage  
Lx Pin Current  
SYMBOL  
RATINGS  
-0.3 +36  
UNITS  
VIN  
V
V
V
V
V
V
V
A
VBST  
VFB  
-0.3 or VLX-0.3 (*1) VLX+6.5 or +36 (*2)  
-0.3 +6.5  
VSYNC  
VCE  
-0.3 +6.5  
-0.3 +36  
VCSS  
VLx  
-0.3 +6.5  
-0.3 VIN+0.3 or +36 (*3)  
ILx  
4.2  
300  
Power Dissipation  
Pd  
mW  
1500 (PCB mounted)  
46 (*4)  
Surge Voltage  
VSURGE  
Topr  
V
Operating Ambient Temperature  
Storage Temperature  
-40 +105  
Tstg  
-55 +125  
* All voltages are described based on the GND pin.  
(*1) The minimum value should be either -0.3 or VLX-0.3 in the highest.  
(*2) The maximum value should be either VLX+6.5 or +36 in the lowest.  
(*3) The maximum value should be either VIN+0.3 or +36 in the lowest.  
(*4) Applied Time400ms  
5/29  
XC9270/XC9271 Series  
ELECTRICAL CHARACTERISTICS  
XC9270A/B083  
Ta=25℃  
PARAMETER  
FB Voltage  
SYMBOL  
VFB1  
CONDITIONS  
MIN.  
TYP.  
0.8  
MAX.  
0.816  
UNITS  
V
CIRCUIT  
V
FB=0.816V0.784V, VSS=6V,  
0.784  
VFB Voltage when Lx pin oscillates  
FB Voltage  
Temperature Characteristics  
Output Voltage  
VFB  
(Topr  
/
-40℃≦Topr105℃  
-
±50  
-
ppm/℃  
VFB)  
VOUTSET  
VIN  
-
1.2 (*1)  
7
-
-
12  
30  
V
V
-
-
Setting Range  
Operating Voltage Range  
-
VIN=4.9V4.3V, VFB=0.65V, VSS=6V  
VIN Voltage when Lx pin voltage changes from "H"  
level to "L" level  
UVLO detect voltage  
UVLO release voltage  
VUVLO1  
4.3  
4.7  
4.6  
5.0  
4.9  
5.3  
V
V
VIN=4.7V5.3V, VFB=0.65V, VSS=6V  
VIN Voltage when Lx pin voltage changes from "L"  
level to "H" level  
VUVLO2  
Quiescent Current  
Stand-by Current  
Iq  
VIN=VCE=30V, VFB=0.95V  
-
-
200  
0.01  
300  
310  
0.1  
μA  
μA  
ISTB  
fOSC  
VIN=30V, VCE=0V, VSS=0V, VSYNC=0V  
Connected to external components, IOUT=300mA  
Oscillation Frequency  
276  
324  
kHz  
External Clock Signal  
SYNCOSC  
DSYNC  
Connected to external components, IOUT=0mA  
Connected to external components, IOUT=0mA  
fOSCx0.75  
25  
fOSC  
fOSCx1.25  
75  
kHz  
%
Synchronized Frequency  
External Clock Signal  
Duty Cycle  
-
Maximum Duty Cycle  
Minimum Duty Cycle  
Lx SW On Resistance  
Current Limit (*2)  
DMAX  
DMIN  
RLx  
VFB=0.65V  
83  
-
85  
-
88  
0
-
%
%
A
VFB=0.95V  
VFB=0.65V, VSS=6V  
-
0.3  
3.2  
ILIM  
VFB=0.65V, VSS=6V  
2.4  
-
XC9270A series only  
Latch Time  
tLAT  
0.8  
1.3  
1.8  
ms  
Connected to external components, VFB=0.65V, VSS=6V  
XC9270B series only, Connected to external components,  
VFB=0.45V0.35V, VSS=6V  
VFB Voltage when Oscillation Frequency is decreased  
Short Detect Voltage  
VSHORT  
0.35  
0.40  
0.45  
V
V
CE=012V, VSS=6V, VFB=VFB1×0.9V  
Internal Soft-start Time  
External Soft-start Time  
tSS1  
tSS2  
0.8  
9
1.3  
15  
2.0  
24  
ms  
ms  
Time until Lx pin oscillates  
VCE=012V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01  
Time until Lx pin oscillates  
μF  
Efficiency (*3)  
SYNC ‘H’ Voltage  
SYNC ‘L’ Voltage  
SYNC ‘H’ Current  
SYNC ‘L’ Current  
FB ‘H’ Current  
EFFI  
VSYNCH  
VSYNCL  
ISYNCH  
ISYNCL  
IFBH  
Connected to external components, IOUT=1A  
Connected to external components, IOUT=0mA  
Connected to external components, IOUT=0mA  
VIN=VCE=30V, VSYNC=6V, VFB=0.95V  
VIN=VCE=30V, VSYNC=0V, VFB=0.95V  
VIN=VCE=30V, VFB=6V, VSS=6V  
-
91  
-
-
%
V
1.5  
-
6
-
0.4  
0.1  
0.1  
0.1  
0.1  
V
-0.1  
-0.1  
-0.1  
-0.1  
0
0
0
0
μA  
μA  
μA  
μA  
FB ‘L’ Current  
IFBL  
VIN=VCE=30V, VFB=0V, VSS=6V  
V
CE=1.0V2.8V, VFB=0.65V, VSS=6V  
CE ‘H’ Voltage  
CE ‘L’ Voltage  
VCEH  
VCEL  
2.8  
-
-
-
30  
1
V
V
VCE Voltage when Lx pin voltage changes from "L" level to "H"  
V
CE=2.8V1.0V, VFB=0.65V, VSS=6V  
VCE Voltage when Lx pin voltage changes from "H" level to "L"  
VIN=VCE=30V, VFB=0.95V  
CE ‘H’ Current  
CE ‘L’ Current  
ICEH  
ICEL  
-0.1  
0
0
0.1  
0.1  
-
μA  
μA  
-
VIN=30V, VCE=0V, VFB=0.95V  
Junction Temperature  
-0.1  
Thermal Shutdown Temperature  
Hysteresis Width  
TTSD  
THYS  
-
-
150  
25  
Junction Temperature  
-
-
NOTE:  
Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V  
External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2k, RFB2=390, CFB=10nF  
(*1) Limited by a minimum ON time of 0.22μs (TYP.).  
(*2) Current limit denotes the level of detection at peak of coil current.  
(*3) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100  
6/29  
XC9270/XC9271  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9271A/B083  
Ta=25℃  
PARAMETER  
FB Voltage  
SYMBOL  
VFB1  
CONDITIONS  
MIN.  
TYP.  
0.8  
MAX.  
0.816  
UNITS  
CIRCUIT  
V
FB=0.816V0.784V, VSS=6V  
0.784  
V
VFB Voltage when Lx pin oscillates  
FB Voltage  
VFB  
(Topr  
/
-40℃≦Topr105℃  
-
±50  
-
ppm/  
Temperature Characteristics  
Output Voltage  
VFB)  
VIN-3 or  
12 (*2)  
30  
VOUTSET  
VIN  
-
1.2 (*1)  
7
-
-
V
V
-
-
Setting Range  
Operating Voltage Range  
-
VIN=4.9V4.3V, VFB=0.65V, VSS=6V  
VIN Voltage when Lx pin voltage changes from "H"  
level to "L" level  
UVLO detect voltage  
UVLO release voltage  
VUVLO1  
4.3  
4.7  
4.6  
5.0  
4.9  
5.3  
V
V
VIN=4.7V5.3V, VFB=0.65V, VSS=6V  
VIN Voltage when Lx pin voltage changes from "L"  
level to "H" level  
VUVLO2  
Quiescent Current  
Stand-by Current  
Iq  
VIN=VCE=30V, VFB=0.95V  
-
-
200  
0.01  
300  
310  
0.1  
μA  
μA  
ISTB  
fOSC  
VIN=30V, VCE=0V, VSS=0V, VSYNC=0V  
Connected to external components, IOUT=300mA  
Oscillation Frequency  
External Clock Signal  
Synchronized Frequency  
External Clock Signal  
Duty Cycle  
276  
324  
kHz  
SYNCOSC  
Connected to external components, IOUT=0mA  
Connected to external components, IOUT=0mA  
fOSCx0.75  
fOSC  
-
fOSCx1.25  
kHz  
%
DSYNC  
25  
75  
Maximum Duty Cycle  
Minimum Duty Cycle  
Lx SW On Resistance  
PFM Switch Current  
Current Limit (*3)  
DMAX  
DMIN  
RLx  
VFB=0.65V  
83  
-
85  
-
88  
%
%
VFB=0.95V  
0
VFB=0.65V, VSS=6V  
-
0.3  
160  
3.2  
-
240  
-
IPFM  
ILIM  
Connected to external components, IOUT=0mA  
VFB=0.65V, VSS=6V  
80  
2.4  
mA  
A
XC9271A series only, Connected to external components,  
VFB=0.65V, VSS=6V  
Latch Time  
tLAT  
0.8  
1.3  
1.8  
ms  
XC9271B series only, Connected to external components,  
VFB=0.45V0.35V, VSS=6V  
VFB Voltage when Oscillation Frequency is decreased  
Short Detect Voltage  
VSHORT  
0.35  
0.40  
0.45  
V
V
CE=012V, VSS=6V, VFB=VFB1×0.9V  
Internal Soft-start Time  
External Soft-start Time  
tSS1  
tSS2  
0.8  
9
1.3  
15  
2.0  
24  
ms  
ms  
Time until Lx pin oscillates  
VCE=012V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01  
Time until Lx pin oscillates  
μF  
Efficiency (*4)  
SYNC ‘H’ Voltage  
SYNC ‘L’ Voltage  
SYNC ‘H’ Current  
SYNC ‘L’ Current  
FB ‘H’ Current  
EFFI  
VSYNCH  
VSYNCL  
ISYNCH  
ISYNCL  
IFBH  
Connected to external components, IOUT=1A  
Connected to external components, IOUT=0mA  
Connected to external components, IOUT=0mA  
VIN=VCE=30V, VSYNC=6V, VFB=0.95V  
VIN=VCE=30V, VSYNC=0V, VFB=0.95V  
VIN=VCE=30V, VFB=6V, VSS=6V  
-
91  
-
-
%
V
1.5  
-
6
-
0.4  
0.1  
0.1  
0.1  
0.1  
V
-0.1  
-0.1  
-0.1  
-0.1  
0
0
0
0
μA  
μA  
μA  
μA  
FB ‘L’ Current  
IFBL  
VIN=VCE=30V, VFB=0V, VSS=6V  
V
CE=1.0V2.8V, VFB=0.65V, VSS=6V  
CE ‘H’ Voltage  
CE ‘L’ Voltage  
VCEH  
VCEL  
2.8  
-
-
-
30  
1
V
V
VCE Voltage when Lx pin voltage changes from "L" level to "H"  
V
CE=2.8V1.0V, VFB=0.65V, VSS=6V  
VCE Voltage when Lx pin voltage changes from "H" level to "L"  
VIN=VCE=30V, VFB=0.95V  
CE ‘H’ Current  
CE ‘L’ Current  
ICEH  
ICEL  
-0.1  
0
0
0.1  
0.1  
-
μA  
μA  
-
VIN=30V, VCE=0V, VFB=0.95V  
Junction Temperature  
-0.1  
Thermal Shutdown Temperature  
Hysteresis Width  
TTSD  
THYS  
-
-
150  
25  
Junction Temperature  
-
-
NOTE:  
Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V  
External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2k, RFB2=390, CFB=10nF  
(*1) Limited by a minimum ON time of 0.22μs (TYP.).  
(*2)  
V -3 or 12, whichever is lower.  
IN  
(*3) Current limit denotes the level of detection at peak of coil current.  
(*4) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100  
7/29  
XC9270/XC9271 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9270A/B085  
Ta=25℃  
PARAMETER  
FB Voltage  
SYMBOL  
VFB1  
CONDITIONS  
MIN.  
TYP.  
0.8  
MAX.  
0.816  
UNITS  
CIRCUIT  
V
FB=0.816V0.784V, VSS=6V  
0.784  
V
VFB Voltage when Lx pin oscillates  
FB Voltage  
VFB  
(Topr  
/
-40℃≦Topr105℃  
-
±50  
-
ppm/℃  
Temperature Characteristics  
VFB)  
Output Voltage  
Setting Range  
VOUTSET  
VIN  
1.2 (*1)  
7
-
-
12  
30  
V
V
-
-
Operating Voltage Range  
VIN=4.9V4.3V, VFB=0.65V, VSS=6V  
VIN Voltage when Lx pin voltage changes from "H"  
level to "L" level  
UVLO detect voltage  
UVLO release voltage  
VUVLO1  
4.3  
4.7  
4.6  
5.0  
4.9  
5.3  
V
V
VIN=4.7V5.3V, VFB=0.65V, VSS=6V  
VIN Voltage when Lx pin voltage changes from "L"  
level to "H" level  
VUVLO2  
Quiescent Current  
Stand-by Current  
Iq  
VIN=VCE=30V, VFB=0.95V  
-
-
250  
0.01  
500  
360  
0.1  
μA  
μA  
ISTB  
fOSC  
VIN=30V, VCE=0V, VSS=0V, VSYNC=0V  
Connected to external components, IOUT=300mA  
Oscillation Frequency  
External Clock Signal  
Synchronized Frequency  
External Clock Signal  
Duty Cycle  
460  
540  
kHz  
SYNCOSC Connected to external components, IOUT=0mA  
fOSCx0.75  
fOSC  
-
fOSCx1.25  
kHz  
%
DSYNC  
Connected to external components, IOUT=0mA  
25  
75  
Maximum Duty Cycle  
Minimum Duty Cycle  
Lx SW On Resistance  
DMAX  
DMIN  
RLx  
VFB=0.65V  
83  
-
85  
-
88  
0
-
%
%
A
VFB=0.95V  
VFB=0.65V, VSS=6V  
-
0.3  
3.2  
(*2)  
Current Limit  
ILIM  
VFB=0.65V, VSS=6V  
2.4  
-
XC9270A series only, Connected to external components,  
VFB=0.65V, VSS=6V  
Latch Time  
tLAT  
0.4  
0.7  
1.0  
ms  
XC9270B series only, Connected to external components,  
VFB=0.45V0.35V, VSS=6V  
VFB Voltage when Oscillation Frequency is decreased  
Short Detect Voltage  
VSHORT  
0.35  
0.40  
0.45  
V
V
CE=012V, VSS=6V, VFB=VFB1×0.9V  
Internal Soft-start Time  
External Soft-start Time  
tSS1  
tSS2  
0.4  
5
0.7  
9
1.2  
15  
ms  
ms  
Time until Lx pin oscillates  
VCE=012V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01  
Time until Lx pin oscillates  
μF  
(*3)  
Efficiency  
EFFI  
VSYNCH  
VSYNCL  
ISYNCH  
ISYNCL  
IFBH  
Connected to external components, IOUT=1A  
Connected to external components, IOUT=0mA  
Connected to external components, IOUT=0mA  
VIN=VCE=30V, VSYNC=6V, VFB=0.95V  
VIN=VCE=30V, VSYNC=0V, VFB=0.95V  
VIN=VCE=30V, VFB=6V, VSS=6V  
-
91  
-
-
%
V
SYNC ‘H’ Voltage  
SYNC ‘L’ Voltage  
SYNC ‘H’ Current  
SYNC ‘L’ Current  
FB ‘H’ Current  
1.5  
-
6
-
0.4  
0.1  
0.1  
0.1  
0.1  
V
-0.1  
-0.1  
-0.1  
-0.1  
0
0
0
0
μA  
μA  
μA  
μA  
FB ‘L’ Current  
IFBL  
VIN=VCE=30V, VFB=0V, VSS=6V  
V
CE=1.0V2.8V, VFB=0.65V, VSS=6V  
CE ‘H’ Voltage  
CE ‘L’ Voltage  
VCEH  
VCEL  
2.8  
-
-
-
30  
1
V
V
VCE Voltage when Lx pin voltage changes from "L" level to "H"  
V
CE=2.8V1.0V, VFB=0.65V, VSS=6V  
VCE Voltage when Lx pin voltage changes from "H" level to "L"  
VIN=VCE=30V, VFB=0.95V  
CE ‘H’ Current  
CE ‘L’ Current  
ICEH  
ICEL  
-0.1  
0
0
0.1  
0.1  
-
μA  
μA  
-
VIN=30V, VCE=0V, VFB=0.95V  
Junction Temperature  
-0.1  
Thermal Shutdown Temperature  
Hysteresis Width  
TTSD  
THYS  
-
-
150  
25  
Junction Temperature  
-
-
NOTE:  
Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V  
External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2k, RFB2=390, CFB=10nF  
(*1) Limited by a minimum ON time of 0.15μs (TYP.).  
(*2) Current limit denotes the level of detection at peak of coil current.  
(*3) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100  
8/29  
XC9270/XC9271  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9271A/B085  
Ta=25℃  
PARAMETER  
FB Voltage  
SYMBOL  
VFB1  
CONDITIONS  
MIN.  
TYP.  
0.8  
MAX.  
0.816  
UNITS  
CIRCUIT  
VFB=0.816V0.784V, VSS=6V  
0.784  
V
V
FB Voltage when Lx pin oscillates  
FB Voltage  
VFB  
(Topr  
/
-40℃≦Topr105℃  
-
±50  
-
ppm/  
Temperature Characteristics  
VFB)  
VIN-3  
or  
Output Voltage  
Setting Range  
VOUTSET  
VIN  
1.2 (*1)  
7
-
-
V
V
V
-
-
12 (*2)  
Operating Voltage Range  
30  
VIN=4.9V4.3V, VFB=0.65V, VSS=6V  
UVLO detect voltage  
VUVLO1  
V
IN Voltage when Lx pin voltage changes from "H"  
4.3  
4.6  
4.9  
5.3  
level to "L" level  
VIN=4.7V5.3V, VFB=0.65V, VSS=6V  
UVLO release voltage  
VUVLO2  
V
IN Voltage when Lx pin voltage changes from "L"  
4.7  
5.0  
V
level to "H" level  
Quiescent Current  
Stand-by Current  
Iq  
VIN=VCE=30V, VFB=0.95V  
-
-
250  
0.01  
500  
360  
0.1  
μA  
μA  
ISTB  
fOSC  
VIN=30V, VCE=0V, VSS=0V, VSYNC=0V  
Connected to external components, IOUT=300mA  
Oscillation Frequency  
460  
540  
kHz  
External Clock Signal  
SYNCOSC  
Connected to external components, IOUT=0mA  
Connected to external components, IOUT=0mA  
fOSCx0.75  
fOSC  
-
fOSCx1.25  
kHz  
%
Synchronized Frequency  
External Clock Signal  
Duty Cycle  
DSYNC  
25  
75  
Maximum Duty Cycle  
Minimum Duty Cycle  
Lx SW On Resistance  
PFM Switch Current  
Current Limit (*3)  
DMAX  
DMIN  
RLx  
VFB=0.65V  
83  
-
85  
-
88  
%
%
VFB=0.95V  
0
VFB=0.65V, VSS=6V  
-
0.3  
160  
3.2  
-
240  
-
IPFM  
ILIM  
Connected to external components, IOUT=0mA  
VFB=0.65V, VSS=6V  
80  
2.4  
mA  
A
XC9271A series only, Connected to external components,  
VFB=0.65V, VSS=6V  
Latch Time  
tLAT  
0.4  
0.7  
1.0  
ms  
XC9271B series only, Connected to external components,  
VFB=0.45V0.35V, VSS=6V  
VFB Voltage when Oscillation Frequency is decreased  
VCE=012V, VSS=6V, VFB=VFB1×0.9V  
Time until Lx pin oscillates  
Short Detect Voltage  
VSHORT  
0.35  
0.40  
0.45  
V
Internal Soft-Start Time  
External Soft-Start Time  
tSS1  
tSS2  
0.4  
5
0.7  
9
1.2  
15  
ms  
ms  
VCE=012V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF  
Time until Lx pin oscillates  
Efficiency (*4)  
SYNC ‘H’ Voltage  
SYNC ‘L’ Voltage  
SYNC ‘H’ Current  
SYNC ‘L’ Current  
FB ‘H’ Current  
EFFI  
VSYNCH  
VSYNCL  
ISYNCH  
ISYNCL  
IFBH  
Connected to external components, IOUT=1A  
Connected to external components, IOUT=0mA  
Connected to external components, IOUT=0mA  
VIN=VCE=30V, VSYNC=6V, VFB=0.95V  
-
91  
-
-
%
V
1.5  
-
6
-
0.4  
0.1  
0.1  
0.1  
0.1  
V
-0.1  
-0.1  
-0.1  
-0.1  
0
0
0
0
μA  
μA  
μA  
μA  
VIN=VCE=30V, VSYNC=0V, VFB=0.95V  
VIN=VCE=30V, VFB=6V, VSS=6V  
FB ‘L’ Current  
IFBL  
VIN=VCE=30V, VFB=0V, VSS=6V  
VCE=0.8V2.8V, VFB=0.65V, VSS=6V  
VCE Voltage when Lx pin voltage changes from "L" level to "H"  
VCE=2.8V0.8V, VFB=0.65V, VSS=6V  
VCE Voltage when Lx pin voltage changes from "H" level to "L"  
VIN=VCE=30V, VFB=0.95V  
CE ‘H’ Voltage  
CE ‘L’ Voltage  
VCEH  
VCEL  
2.8  
-
-
-
30  
1
V
V
CE ‘H’ Current  
CE ‘L’ Current  
ICEH  
ICEL  
-0.1  
0
0
0.1  
0.1  
-
μA  
μA  
-
VIN=30V, VCE=0V, VFB=0.95V  
-0.1  
Thermal Shutdown Temperature  
Hysteresis Width  
TTSD  
THYS  
Junction Temperature  
-
-
150  
25  
Junction Temperature  
-
-
NOTE:  
Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V  
External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2k, RFB2=390, CFB=10nF  
(*1) Limited by a minimum ON time of 0.15μs (TYP.).  
(*2)  
V -3 or 12, whichever is lower.  
IN  
(*3) Current limit denotes the level of detection at peak of coil current.  
(*4) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100  
9/29  
XC9270/XC9271 Series  
TEST CIRCUITS  
Circuit①  
A
VIN  
Probe  
22μH  
CE  
BST  
Lx  
1μF  
V
SS  
A
10μF  
CFB  
RFB1  
SYNC  
FB  
V
RFB2  
47μF  
SBD  
GND  
Circuit②  
Circuit③  
A
Probe  
VIN  
CE  
SS  
BST  
6V  
V
Lx  
V
10μF  
SYNC  
FB  
V
0.01μF  
GND  
V
10/29  
XC9270/XC9271  
Series  
TEST CIRCUITS (Continued)  
Circuit④  
Circuit⑤  
11/29  
XC9270/XC9271 Series  
TYPICAL APPLICATION CIRCUIT  
Typical Examples】  
MANUFACTURER PRODUCT NUMBER  
VALUE  
15μH  
22μH  
33μH  
CLF12555-150M  
TDK  
CLF12555-220M  
CLF12555-330M  
L
Toho Zinc  
Murata  
TCM-0840-200  
GRM32ER71H106K  
GRM21BB31H105K  
GRM32ER71A476K  
GRM32ER71E226K  
25SVPD47M  
20μH  
10μF/50V  
CIN1  
CIN2  
Murata  
1μF/50V  
47μF/10V  
Murata  
CL  
22μF/25V 2parallel  
47μF/25V, ESR=30m  
VF=0.51V (3A)  
VF=0.58V (3A)  
VF=0.69V (5A)  
0.01μF/10V (*1)  
1000pF/10V (*2)  
1μF/10V  
Panasonic  
TOREX  
XBS304S19R-G  
CMS15  
SBD  
TOSHIBA  
VISHAY  
SS5P5  
CSS  
CSYNC  
CBST  
(*1) Can also be used without CSS (SS pin OPEN). When used without CSS, the IC starts at the soft start time set internally.  
(*2)  
Can be used without CSYNC if the external CLK synchronization function is not used. In this case, connect the SYNC pin to GND in close  
proximity to the IC.  
<Output voltage setting>  
The output voltage can be set by adding an external dividing resistor. The output voltage is determined by the equation below based on the  
values of RFB1 and RFB2  
.
V
OUT=0.8 × (RFB1+RFB2)/RFB2  
with RFB215kΩ  
Adjust the value of the phase compensation speed-up capacitor. Adjust the CFB value so that fzfb = 1/(2×π×CFB×RFB1) is about 10kHz.  
Setting Example】  
When RFB1=68k, RFB2=13k, VOUT=0.8×(68k+13k) / 13k4.98V  
When fzfb is set to a target of 10.64kHz using the above equation, CFB=1/(2×π×10.64kHz×68k)220pF  
If the dropout voltage is too large and the minimum Lx ON time is not attained, pulse skipping will occur and the output voltage will not be stable.  
Use with an Lx ON time longer than the minimum. The minimum ON time is 0.22μs (TYP.) at a set frequency of 300kHz, or 0.15μs (TYP.) at a set  
frequency of 500kHz.  
12/29  
XC9270/XC9271  
Series  
TYPICAL APPLICATION CIRCUIT (Continued)  
<Inductance value setting>  
In the XC9270 and XC9271 series, it is optimum to set an inductance value within the range below based on the set frequency and setting output  
voltage.  
f
OSCSET: Set frequency  
OUTSET: Setting output voltage  
V
OSCSET  
1.2VVOUTSET6V  
6VVOUTSET12V  
33μH  
20μH  
22μH  
300kHz  
500kHz  
20μH  
22μH  
15μH  
<Soft-start function>  
The soft start time of the XC9270 and XC9271 series can be adjusted externally (SS pin). The soft start time is the time from the start of VCE until  
the output voltage reaches 90% of the set voltage. The soft start time depends on the external capacitance CSS, and is determined by the  
equation below.  
t
SS2 = 1.08 × CSS / ISS [ms]  
SS: External capacitance [nF]  
C
I
f
SS: When fOSCSET=300kHz, 0.72 [μA (TYP.)]  
When fOSCSET=500kHz, 1.2 [μA(TYP.)]  
OSCSET: Set frequency [kHz]  
* Note that the value of the soft start time tSS2 varies depending on the effective capacitance value of the delay capacitance CSS  
.
Calculation Example】  
When fOSCSET=300kHz and CSS=10nF, tss2=1.08×10/0.72=15ms  
When fOSCSET=500kHz and CSS=10nF, tss2=1.08×10/1.2=9ms  
The minimum value tSS2 of the soft-start time is set internally. The internal soft-start time tSS1 is determined by the equation below.  
When fOSCSET=300kHz, tss1=1.3ms TYP.)  
When fOSCSET=500kHz, tss1=0.7ms TYP.)  
13/29  
XC9270/XC9271 Series  
OPERATIONAL EXPLANATION  
The XC9270/XC9271 series consists internally of a reference voltage supply, ramp wave circuit, error amp, PWM comparator, phase  
compensation circuit, N-ch MOS driver transistor, current limiting circuit, under-voltage lockout (UVLO) circuit, internal power supply (VL) circuit,  
thermal shutdown (TSD) circuit, oscillator (OSC) circuit, soft-start circuit, control block and other elements.  
The voltage feed back from the FB pin is compared to the internal reference voltage by the error amp, the output from the error amp is phase  
compensated, and the signal is input to the PWM comparator to determine the ON time of switching during PWM operation. The output signal  
from the error amp is compared to the ramp wave by the PWM comparator, and the output is sent to the buffer drive circuit and output from the Lx  
pin as the duty width of switching. This operation is performed continuously to stabilize the output voltage.  
The driver transistor current is monitored at each switching by the output signal from the error amp is modulated as a multi-feedback signal. This  
allows a stable feedback system to be obtained even when a low ESR capacitor such as a ceramic capacitor is used, and this stabilizes the  
output voltage.  
Because the IC uses an N-ch MOS transistor for the Hi side driver, a voltage higher than the VIN voltage is required to turn on the driver. To  
generate a voltage higher than the VIN voltage, the bootstrap method is used.  
XC9271 Series, Type B  
<Reference voltage source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Oscillator circuit>  
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 300kHz, 500 kHz. Clock  
pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation.  
<Error amplifier>  
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by  
the internal split resistors, RFB1 and RFB2. When a voltage is lower than the reference voltage, then the voltage is fed back, the output voltage of  
the error amplifier increases. The error amplifier output is fixed internally to deliver an optimized signal to the mixer which is a part of a PWM  
comparator.  
<Chip enable>  
The XC9270/XC9271 series can be put in the standby state by inputting L level into the CE pin. In the standby state, the quiescent current of the  
IC is 0.01μA (TYP.). When H level is input into CE pin, operation starts. The input of the CE pin is CMOS input and the sink current is 0μA (TYP.).  
14/29  
XC9270/XC9271  
Series  
OPERATIONAL EXPLANATION (Continued)  
<Current limiting, short-circuit protection>  
The current limiting circuits of type B combine both current limiting and short-circuit protection.  
(1) The current in the N-ch MOS driver transistor connected to the Lx pin is monitored, and when the load current attains the limiting current, the  
current limiting circuit activates and the output voltage drops.  
(2) As the current limiting state continues, the switching frequency drops to prevent coil current (IL) overlay. When the current limiting state is  
released, the switching frequency returns to the set frequency.  
(3) If the output voltage drops further from states (2), the output current is limited, the switching frequency is lowered further, and the short-circuit  
state is entered. When the load becomes lighter than the short-circuit state, restart takes place automatically. To prevent overshoot during  
restart, restart takes place by soft-start.  
If the current limiting  
state continues, the  
switching frequency is  
lowered  
If VOUT drops to 50% (TYP.) or less of the regular level in  
the state of or , the output current is reduced, the  
switching frequency is further lowered, and the IC enters  
the short-circuit state  
Current limiting  
operates  
<Integral latch protection>  
When the current limiting state continues for a certain time, the correct limiting circuit of type A latches and stops the Lx pin in the "H" level state  
(turning off the driver Tr). To restart operation by soft-start once in the latch stop state, "L" level must be input into the CE pin followed by "H" level,  
or briefly lowering the VIN voltage below the UVLO detection voltage must be performed.  
Current limiting When the state of continues for 1.3ms  
Operation restarts by soft  
start when CE=“L”“H”  
operates  
(TYP. fOSCSET=300kHz) or 0.7ms (TYP., fOSCSET=500kHz),  
the Lx pin is latched to “L” level and operation stops  
<Thermal shutdown>  
The thermal shutdown (TSD) as an over current limit is built in the XC9270/XC9271 series.  
When the junction temperature reaches the detection temperature, the driver transistor is forcibly turned off. When the junction temperature falls  
to the release temperature while in the output stop state, restart takes place by soft-start.  
<UVLO>  
When the VIN pin voltage falls below 4.6V (TYP.), EXTB becomes "H" level and forcibly stops output to prevent false pulse output due to instable  
operation of the internal circuits. When the VIN pin voltage rises above 5.0V (TYP.), the UVLO function is released, the soft-start function activates,  
and output start operation begins. Stopping by UVLO is not shutdown; only pulse output is stopped and the internal circuits continue to operate.  
15/29  
XC9270/XC9271 Series  
OPERATIONAL EXPLANATION (Continued)  
<SYNC function>  
When an external CLK (±25% of free running frequency, on duty 25% to 75%) is input into the SYNC pin, operation is synchronized to the  
falling edge of the external CLK (external CLK synchronization function). When synchronized to the external CLK, the control mode is  
automatically PWM control. When the external CLK is fixed at "H" voltage or "L" voltage for about 3 cycles of the free running frequency, external  
CLK synchronization stops and operation at the free running frequency takes place.  
(1) Switching from free running frequency external CLK synchronization  
Operation at free running frequency  
Synchronized to external CLK  
Cycles at falling edge of external CLK  
Free running frequency  
external CLK synchronization switching delay (about 5 cycles)  
(2) Switching from external CLK synchronization free running frequency  
Synchronized to external CLK  
Synchronized to external CLK  
When there is no pulse for about 3 cycles,  
switches to free running frequency  
16/29  
XC9270/XC9271  
Series  
NOTE ON USE  
1. For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated if IC is used  
beyond the absolute MAX. specifications.  
2. Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded.  
3. The DC/DC converter characteristics depend greatly on the externally connected components as well as on the characteristics of this IC, so  
refer to the specifications and standard circuit examples of each component when carefully considering which components to select. Be  
especially careful of the capacitor characteristics and use B characteristics (JIS standard) or X7R, X5R (EIA standard) ceramic capacitors.  
4. The DC/DC converter of this IC uses a current-limiting circuit to monitor the coil peak current. If the potential dropout voltage is large or the load  
current is large, the peak current will increase, which makes it easier for current limitation to be applied which in turn could cause the operation  
to become unstable. When the peak current becomes large, adjust the coil inductance and sufficiently check the operation. The following  
formula is used to show the peak current.  
Peak Current: Ipk = ( VIN – VOUT ) × OnDuty / ( 2 × L × fOSC ) + IOUT  
L: Coil Inductance [H]  
fOSC: Oscillation Frequency [Hz]  
IOUT: Load Current [A]  
5. If the difference between input voltage and output voltage is large, when the current limit circuit activates, the switching current might overlap  
and exceed the current limit spec. due to the circuit delay time.  
6. The ripple voltage could be increased when switching from discontinuous conduction mode to Continuous conduction mode. Please apply the  
ICs only after careful examination by the customer.  
7. In some cases, ripple voltage may increase in the XC9271 series when the load is light. This is for the purpose of charging the CBST, and is  
normal operation.  
8. The IC enters test mode when a 6V external power supply is applied to the SS pin. Do not apply an external power supply to the SS pin during use.  
9. The operation of the IC becomes unstable below the minimum operating voltage.  
10. The effects of ambient noise and the state of the circuit board may cause release from the current limiting state, and the latch time may  
lengthen or latch operation may not take place. Test sufficiently using the actual equipment.  
11. When operation changes from free running frequency to external CLK synchronization, the output voltage may fluctuate. Please apply the ICs  
only after careful examination by the customer.  
12. Instructions of pattern layouts  
The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high, please place the  
input capacitor(CIN1, CIN2) and the output capacitor (CL) as close to the IC as possible.  
(1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN1) be connected as close as possible to the VIN pin.  
(2) In order to stabilize GND voltage level, we recommend that a by-pass capacitor (CIN2) be connected as close as possible to the GND pin.  
(3) Please mount each external component as close to the IC as possible.  
(4) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.  
(5) Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of  
switching may result in instability of the IC.  
(6) Because this product contains an internal driver, heat is generated due to the IOUT current and ON resistance of the N-ch MOS driver transistor.  
<Reference Pattern Layout>  
Front  
Back  
17/29  
XC9270/XC9271 Series  
NOTE ON USE (Continued)  
13. In general, semiconductor components have a possibility to have variation of electrical specifications due to the (cosmic) radiation exposure.  
Therefore this product has the same possibility. Please inform us in advance if your system might have a possibility to be exposed to the  
(cosmic) radiation in the production process (assembly, test, etc.).  
14. Torex places an importance on improving our products and their reliability.  
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.  
18/29  
XC9270/XC9271  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output current  
XC9270x083/XC9271x083  
(VIN=12V, VOUT=1.8V)  
XC9270x083/XC9271x083  
(VIN=12V, VOUT=5V)  
L=22μH(CLF12555-220M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=22μH(CLF12555-220M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XC9271  
XC9270  
XC9271  
XC9270  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
XC9270x083/XC9271x083  
(VIN=24V , VOUT=5V)  
XC9270x083/XC9271x083  
(VIN=24V , VOUT=12V)  
L=22μH(CLF12555-220M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=30μH(CLF12555-300M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XC9271  
XC9270  
XC9271  
XC9270  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
XC9270x085/XC9271x085  
(VIN=12V, VOUT=1.8V)  
XC9270x085/XC9271x085  
(VIN=12V, VOUT=5V)  
L=15μH(CLF12555-150M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=15μH(CLF12555-150M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XC9271  
XC9270  
XC9271  
XC9270  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
XC9270x085/XC9271x085  
(VIN=24V , VOUT=5V)  
XC9270x085/XC9271x085  
(VIN=24V , VOUT=12V)  
L=22μH(CLF12555-220M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=15μH(CLF12555-150M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XC9271  
XC9270  
XC9271  
XC9270  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
19/29  
XC9270/XC9271 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(2) Output Voltage vs. Output Currnt  
XC9270x083/XC9271x083  
(VIN=12V, VOUT=1.8V)  
XC9270x083/XC9271x083  
(VIN=12V, VOUT=5V)  
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),  
L=22μH(CLF12555-220M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
5.60  
2.20  
XC9271  
XC9270  
XC9271  
2.10  
2.00  
5.40  
XC9270  
5.20  
5.00  
4.80  
4.60  
4.40  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
XC9270x083/XC9271x083  
(VIN=24V , VOUT=5V)  
XC9270x083/XC9271x083  
(VIN=24V, VOUT=12V)  
L=30μH(CLF12555-300M), CIN1=10μF(GRM32ER71H106KA12L),  
L=22μH(CLF12555-220M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
13.00  
5.60  
12.80  
12.60  
12.40  
12.20  
12.00  
11.80  
11.60  
11.40  
11.20  
11.00  
XC9271  
XC9270  
XC9271  
XC9270  
5.40  
5.20  
5.00  
4.80  
4.60  
4.40  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
XC9270x085/XC9271x085  
(VIN=12V, VOUT=1.8V)  
XC9270x085/XC971x085  
(VIN=12V , VOUT=5V)  
L=15μH(CLF12555-150M), CIN 1=10μF(GRM32ER71H106KA12L),  
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
5.60  
2.20  
XC9271  
XC9271  
XC9270  
2.10  
2.00  
5.40  
XC9270  
5.20  
5.00  
4.80  
4.60  
4.40  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
XC9270x085/XC9271x085  
(VIN=24V , VOUT=5V)  
XC9270x085/XC9271x085  
(VIN=24V, VOUT=12V)  
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
13.00  
L=15μH(CLF12555-150M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
6.00  
5.80  
5.60  
5.40  
5.20  
5.00  
4.80  
4.60  
4.40  
4.20  
4.00  
XC9271  
XC9270  
12.80  
12.60  
12.40  
12.20  
12.00  
11.80  
11.60  
11.40  
11.20  
11.00  
XC9271  
XC9270  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
20/29  
XC9270/XC9271  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(3) Ripple Voltage vs. Output Current  
XC9270x083/XC9271x083  
(VIN=12V , VOUT=5V)  
XC9270x085/XC9271x085  
(VIN=12V , VOUT=5V)  
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
XC9271  
XC9270  
XC9271  
XC9270  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
(4) FB Voltage vs. Ambient Temperature  
(5) UVLO Voltage vs. Ambient Temperature  
XC9270/XC9271  
XC9270/XC9271  
VIN=12V  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
0.812  
0.810  
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
0.790  
0.788  
Detection  
Release  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[℃]  
Ambient Temperature :Ta[℃]  
(6) Oscillation Frequency vs. Ambient Temperature  
XC9270x083/XC9271x083  
XC9270x085/XC9271x085  
VIN=12V  
VIN=12V  
350  
550  
540  
530  
520  
510  
500  
490  
480  
470  
460  
450  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[℃]  
Ambient Temperature :Ta[℃]  
(7) SupplyCurrent vs. Ambient Temperature  
XC9270x083/XC9271x083  
XC9270x085/XC9271x085  
VIN=30V  
VIN=30V  
600  
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[℃]  
Ambient Temperature :Ta[℃]  
21/29  
XC9270/XC9271 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(8) Stand-byCurrent vs. Ambient Temperature  
(9) LxSW ON Resistance vs. Ambient Temperature  
XC9270/XC9271  
XC9270/XC9271  
VIN=30V  
5
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
Ambient Temperature :Ta[℃]  
Ambient Temperature :Ta[℃]  
(10) MaxDuty vs. Ambient Temperature  
(11) PFMSwitch Current vs. Ambient Temperature  
XC9270/XC9271  
XC9271  
VIN=12V  
92.0  
90.0  
88.0  
86.0  
84.0  
82.0  
80.0  
78.0  
350  
300  
250  
200  
150  
100  
50  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature :Ta[℃]  
Ambient Temperature :Ta[℃]  
(12) CE "H" Voltage vs. Ambient Temperature  
(13) CE "L" Voltage vs. Ambient Temperature  
XC9270/XC9271  
XC9270/XC9271  
3.0  
3.0  
VIN=30V  
VIN=12V  
VIN=7V  
VIN=30V  
VIN=12V  
VIN=7V  
2.5  
2.0  
1.5  
1.0  
0.5  
2.5  
2.0  
1.5  
1.0  
0.5  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[℃]  
Ambient Temperature :Ta[℃]  
(14)Internal Soft-Start Time vs. Ambient Temperature  
XC9270x083/XC9271x083  
XC9270x085/XC9271x085  
VIN=12V  
VIN=12V  
3.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[℃]  
Ambient Temperature :Ta[℃]  
22/29  
XC9270/XC9271  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) External Soft-Start Time vs. Ambient Temperature  
XC9270x083/XC9271x083  
XC9270x085/XC9271x085  
VIN=12V  
VIN=12V  
35  
20  
18  
16  
14  
12  
10  
8
30  
25  
20  
15  
10  
5
6
4
2
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature :Ta[℃]  
Ambient Temperature :Ta[℃]  
23/29  
XC9270/XC9271 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(16) Load Transient Response  
XC9270x083/XC9271x083  
XC9270x083/XC9271x083  
VIN =12V, VOUT=5V, IOUT=300mA 1A  
VIN=12V, VOUT=5V, IOUT=1A 300mA  
L=22μH(CLF12555-220M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
1ms/div  
1ms/div  
VOUT : 500mV/div  
VOUT : 500mV/div  
IOUT =300mA1A  
IOUT =1A300mA  
XC9270x083/XC9271x083  
XC9270x083/XC9271x083  
VIN =12V, VOUT=5V, IOUT=1A 2A  
VIN=12V, VOUT=5V, IOUT=2A 1A  
L=22μH(CLF12555-220M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
1ms/div  
1ms/div  
VOUT: 500mV/div  
VOUT : 500mV/div  
IOUT =1A2A  
IOUT =2A1A  
XC9270x085/XC9271x085  
XC9270x085/XC9271x085  
VIN =12V, VOUT=5V, IOUT=300mA 1A  
VIN=12V, VOUT=5V, IOUT=1A 300mA  
L=15μH(CLF12555-150M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
1ms/div  
1ms/div  
V
OUT: 500mV/div  
VOUT : 500mV/div  
IOUT =300mA1A  
IOUT =1A300mA  
XC9270x085/XC9271x085  
XC9270x085/XC9271x085  
VIN =12V, VOUT=5V, IOUT=1A 2A  
VIN=12V, VOUT=5V, IOUT=2A 1A  
L=15μH(CLF12555-150M), CIN 1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
1ms/div  
1ms/div  
VOUT: 500mV/div  
VOUT : 500mV/div  
IOUT =1A2A  
IOUT =2A1A  
24/29  
XC9270/XC9271  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(17) Rising Response Time  
XC9270x083/XC9271x083  
XC9270x083/XC9271x083  
VIN=0 12V, VOUT=5V, IOUT=1mA  
VIN=0 24V, VOUT=5V, IOUT=1mA  
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
1ms/div  
1ms/div  
VIN: 012V  
VIN: 024V  
V
OUT : 2V/div  
VOUT : 2V/div  
XC9270x085/XC9271x085  
XC9270x085/XC9271x085  
VIN=0 12V, VOUT=5V, IOUT=1mA  
VIN=0 24V, VOUT=5V, IOUT=1mA  
L=15μH(CLF12555-150M),  
C
IN1=10μF(GRM32ER71H106KA12L),  
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
VIN: 012V  
1ms/div  
1ms/div  
V
IN: 024V  
VOUT : 2V/div  
VOUT: 2V/div  
(18) Input Transient Response  
XC9270x083/XC9271x083  
XC9270x083/XC9271x083  
VIN=12V 30V, VOUT=5V, IOUT=1A  
VIN=30V 12V, VOUT=5V, IOUT=1A  
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
1ms/div  
1ms/div  
V
OUT : 200mV/div  
VOUT : 200mV/div  
VIN=12V30V  
V
IN=30V12V  
XC9270x085/XC9271x085  
XC9270x085/XC9271x085  
VIN=12V 30V, VOUT=5V, IOUT=1A  
VIN=30V 12V, VOUT=5V, IOUT=1A  
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),  
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)  
1ms/div  
1ms/div  
VOUT: 200mV/div  
VOUT : 200mV/div  
V
IN=12V30V  
V
IN=30V12V  
25/29  
XC9270/XC9271 Series  
PACKAGING INFORMATION  
SOP-8FD (unit: mm)  
0.22±0.03  
4.9±0.1  
0.1  
(1.27)  
0.42±0.09  
(3.3)  
BOTTOM VIEW  
SOP-8FD Reference Pattern Layout (unit: mm)  
SOP-8FD Reference Metal Mask Design (unit: mm)  
0.5  
3.0  
0.6  
3.3  
1.27  
1.27  
26/29  
XC9270/XC9271  
Series  
●ꢀSOP-8FD Power Dissipation  
Power dissipation data for the SOP-8FD is shown in this page.  
The value of power dissipation varies with the mount board conditions.  
Please use this data as the reference data taken in the following condition.  
1. Measurement Condition  
40.0  
28.9  
Condition Mount on a board  
Ambient Natural convection  
Soldering Lead (Pb) free  
Board Dimensions 40 x 40 mm  
(1600 mm2 in one side)  
Copper (Cu) traces occupy 50% of the board  
area In top and back faces  
Package heat-sink is tied to the copper traces  
Material Glass Epoxy (FR-4)  
Thickness 1.6mm  
Through-hole 4 x 0.8 Diameter  
2.54  
1.4  
Evaluation Board (Unit mm)  
2.Power Dissipation vs. Ambient Temperature  
Board Mount (Tj max = 125  
)
Ambient Temperature  
Power Dissipation Pd mW  
Thermal Resistance  
66.67  
W
(℃/  
(℃)  
)
25  
1500  
300  
105  
Pd vs Ta  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
25  
45  
65  
85  
105  
125  
Ambient Temperature Ta ()  
27/29  
XC9270/XC9271 Series  
MARKING RULE  
represents products series  
MARK  
PRODUCT SERIES  
XC9270******-G  
XC9271******-G  
SOP-8FD  
C
D
8
6
7
5
① ② ③  
④ ⑤  
represents products type  
MARK  
PRODUCT SERIES  
XC9270A*****-G  
XC9271A*****-G  
XC9270B*****-G  
XC9271B*****-G  
A
B
2
3
4
1
represents FB voltage and oscillation frequency  
OSCILLATION  
FREQUENCY  
MARK  
VOLTAGE (V)  
PRODUCT SERIES  
3
5
3
5
300kHz  
500kHz  
300kHz  
500kHz  
XC9270*083**-G  
XC9270*085**-G  
XC9271*083**-G  
XC9271*085**-G  
0.8  
0.8  
④⑤ represents production lot number  
01090A0Z119ZA1A9AAAZB1ZZ in order.  
(G, I, J, O, Q, W excluded)  
* No character inversion used.  
28/29  
XC9270/XC9271  
Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions. Do not use the product for the above use unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent  
personal injury and/or property damage resulting from such failure, customers are required to  
incorporate adequate safety measures in their designs, such as system fail safes, redundancy and  
fire prevention features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
29/29  

相关型号:

XC9271B085QR-G

Switching Regulator,
TOREX

XC9272A0614R-G

IC REG BUCK 0.6V 50MA SYNC 6USP
TOREX

XC9272A06B4R-G

IC REG BUCK 0.65V 50MA SYNC 6USP
TOREX

XC9272A0714R-G

IC REG BUCK 0.7V 50MA SYNC 6USP
TOREX

XC9272A0814R-G

IC REG BUCK 0.8V 50MA SYNC 6USP
TOREX

XC9272A08B4R-G

IC REG BUCK 0.85V 50MA SYNC 6USP
TOREX

XC9272A0914R-G

IC REG BUCK 0.9V 50MA SYNC 6USP
TOREX

XC9272A09B4R-G

IC REG BUCK 0.95V 50MA SYNC 6USP
TOREX

XC9272B0614R-G

IC REG BUCK 0.6V 50MA SYNC 6USP
TOREX

XC9272B06B4R-G

IC REG BUCK 0.65V 50MA SYNC 6USP
TOREX

XC9272B0714R-G

IC REG BUCK 0.7V 50MA SYNC 6USP
TOREX

XC9272B0814R-G

IC REG BUCK 0.8V 50MA SYNC 6USP
TOREX