XC9265C1814R-G [TOREX]

IC REG BUCK 1.8V 0.2A SYNC 6USP;
XC9265C1814R-G
型号: XC9265C1814R-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

IC REG BUCK 1.8V 0.2A SYNC 6USP

文件: 总32页 (文件大小:1559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC9265Series  
ETR05053-007  
Ultra Low Power Synchronous Step-Down PFM DC/DC Converter  
GreenOperation Compatible  
GENERAL DESCRIPTION  
XC9265 series are Ultra Low Power synchronous-rectification type PFM step down DC/DC converters with a built-in 0.4Ω  
(TYP.) Pch driver and 0.4Ω (TYP.) Nch synchronous switching transistor, designed to allow the use of ceramic capacitor.  
PFM control enables a low quiescent current, making these products ideal for battery operated devices that require high  
efficiency and long battery life.  
Only inductor, CIN and C capacitors are needed as external parts to make a step down DC/DC circuit.  
L
Operation voltage range is from 2.0V to 6.0V. This product has fixed output voltage from 1.0V to 4.0V(accuracy: ±2.0%) in  
increments of 0.05V.  
During stand-by, all circuits are shutdown to reduce consumption to as low as 0.1μA(TYP.) or less.  
With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel MOS driver transistor is forced OFF when  
input voltage gets lower than UVLO detection voltage. Besides, XC9265 series has UVLO release voltage of 1.8V (Typ.).  
The product with C  
L
discharge function can discharge C capacitor during stand-by mode due to the internal resistance by turning  
L
on the internal switch between VOUT -GND. This enables output voltage restored to GND level fast.  
FEATURES  
APPLICATIONS  
Input Voltage Range  
:
:
:
2.0V~6.0V  
Wearable Devices  
Output Voltage Setting  
Output Current  
1.0V~4.0V (±2.0%, 0.05V increments)  
Smart meters  
200mA (XC9265A/C)  
50mA (XC9265B/D)  
Bluetooth units  
Driver Transistor  
:
0.4Ω (Pch Driver Tr)  
Energy Harvest devices  
Backup power supply circuits  
Portable game consoles  
Devices with 1 Lithium cell  
0.4Ω (Nch Synchronous rectifier Switch Tr)  
0.50μA @ VOUT(T)=1.8V (TYP.)  
PFM control  
Supply Current  
Control Method  
:
:
High Speed Transient  
PFM Switching Current  
:
:
50mV (VIN=3.6V, VOUT=1.8V, IOUT=10μA→50mA)  
330mA (XC9265A/C), 180mA (XC9265B/D)  
Function  
:
Short Protection  
CL Discharge (XC9265C/ D)  
UVLO  
Ceramic Capacitor Compatible  
-40 ~ 85  
Operation Ambient Temperature  
Package  
:
:
:
SOT-25, USP-6EL  
Environmentally Friendly  
EU RoHS compliant, Pb Free  
TYPICAL PERFORMANCE  
TYPICALAPPLICATION CIRCUIT  
CHARACTERISTICS  
Efficiency vs. Output Current  
X C 9 2 6 5 B 1 8 O1 Ux=TR1 -. G8 V( V)  
L
= μ1H0( V L F 3 0 2 5 1=210μMF(L-M1K10070BJM106)MA, ),C  
IN  
CL=22μF(JMK107BJ226MA)  
L
VIN  
VOUT  
100  
80  
60  
40  
20  
0
VIN  
CE  
LX  
CIN  
(Ceramic)  
CL  
(Ceramic)  
VOUT  
VIN=4.2V  
VIN=3.6V  
GND  
VIN=2.7V  
0.01  
0.1  
1
10  
100  
O u t p u t  
CO u rT(rme  
U
1/32  
XC9265 Series  
BLOCK DIAGRAM  
XC9265A / XC9265B Type  
PFM Comparator Unit  
VOUT  
CFB RFB1  
Short  
protection  
Current  
Sense  
PFM  
RFB2  
Comparator  
FB  
-
+
PFM  
Controller  
Synch  
Buffer  
Driver  
LX  
CE  
CE Controller Logic  
VREF  
VDD  
GND  
UVLO  
VIN start up  
Controller  
VIN  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
XC9265C / XC9265D Type  
PFM Comparator Unit  
CFB RFB1  
VOUT  
Short  
protection  
Current  
Sense  
CL  
Discharge  
PFM  
RFB2  
Comparator  
FB  
-
+
PFM  
Controller  
Synch  
Buffer  
Driver  
LX  
CE  
CE Controller Logic  
VREF  
VDD  
GND  
UVLO  
VIN start up  
Controller  
VIN  
* Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
2/32  
XC9265  
Series  
PRODUCT CLASSIFICATION  
Ordering information  
XC9265①②③④⑤⑥-⑦  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
IOUT=200mA Without CL Discharge  
IOUT=50mA Without CL Discharge  
IOUT=200mA With CL Discharge  
IOUT=50mA With CL Discharge  
A
B
C
D
Product Type  
Output Voltage : e.g. VOUT=1.80V=1, =8  
②③  
Output Voltage  
Output Voltage Type  
Packages (Order Unit)  
10 ~ 40  
Output Voltage Range: 1.0V~4.0V (0.05V increments)  
1
B
Output Voltage {x.x0V} (the 2nd decimal place is “0”)  
Output Voltage {x.x5V} (the 2nd decimal place is “5”)  
USP-6EL (3,000pcs/Reel)  
4R-G  
(*1)  
⑤⑥-⑦  
MR-G  
SOT-25 (3,000pcs/Reel)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
3/32  
XC9265 Series  
PIN CONFIGURATION  
LX  
VOUT  
5
4
1
2
LX  
VIN  
6
5
4
GND  
NC  
CE  
3 VOUT  
1
2
3
VIN  
GND  
CE  
USP-6EL  
(BOTTOM VIEW)  
SOT-25  
(TOP VIEW)  
* The dissipation pad for the USP-6EL package should be solder-plated in recommended  
mount pattern and metal masking so as to enhance mounting strength and heat release.  
The mount pattern should be connected to GND pin (No.2).  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
USP-6EL SOT-25  
1
5
LX  
GND  
VOUT  
CE  
Switching  
Ground  
2
3
4
5
6
2
4
3
-
Output Voltage  
Chip Enable  
No Connection  
Power Input  
NC  
1
VIN  
PIN FUNCTION ASSIGNMENT  
PIN  
SIGNAL  
STATUS  
NAME  
CE  
H
L
Operation (All Series)  
Standby (All Series)  
* Please do not leave the CE pin open.  
ABSOLUTE MAXIMUM RATINGS  
Ta=25˚C  
PARAMETER  
VIN Pin Voltage  
LX Pin Voltage  
VOUT Pin Voltage  
CE Pin Voltage  
SYMBOL  
VN  
RATINGS  
-0.3 ~ 7.0  
-0.3 ~ VIN + 0.3 or 7.0 (*1)  
-0.3 ~ VIN + 0.3 or 7.0 (*1)  
-0.3 ~ 7.0  
UNITS  
V
V
V
V
VLX  
VOUT  
VCE  
LX Pin Current  
ILX  
1000  
mA  
250  
SOT-25  
600 (40mm x 40mm Standard board) (*2)  
Power Dissipation  
Pd  
760 (JESD51-7 Board)  
mW  
120  
750 (40mm x 40mm Standard board) (*2)  
-40 ~ 85  
USP-6EL  
(DAF)  
Operating Ambient Temperature  
Storage Temperature  
Topr  
Tstg  
˚C  
˚C  
-55 ~ 125  
* All voltages are described based on the GND.  
(*1) The maximum value is the lower of either VIN + 0.3V or 7.0V.  
(*2) The power dissipation figure shown is PCB mounted and is for reference only.  
Please refer to PACKAGING INFORMATION for the mounting condition.  
4/32  
XC9265  
Series  
ELECTRICAL CHARACTERISTICS  
XC9265Axxx Type, without CL discharge function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS CIRCUIT  
Input Voltage  
VIN  
-
V
Resistor connected with LX pin.  
(*2)  
Output Voltage  
VOUT(E)  
Voltage which LX pin changes L” to “Hlevel  
while VOUT is decreasing.  
E1  
1.8  
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “Hlevel  
while VIN is increasing.  
UVLO Release Voltage  
VUVLO(E)  
VHYS(E)  
Iq  
1.65  
0.11  
1.95  
0.24  
V
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
VUVLO(E) - Voltage which LX pin changes H” to “L”  
level while VIN is decreasing.  
UVLO Hysteresis  
Voltage  
0.15  
E2  
VIN=VCE=VOUT(T)+0.5V (*1)  
VIN=2.0V, if VOUT(T)1.5V (*1)  
,
Supply Current  
,
μA  
VOUT=VOUT(T)+0.5V (*1), LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
Resistor connected with LX pin.  
VIN=VCE=5.0V,  
Standby Current  
ISTB  
ILEAKH  
ILEAKL  
IPFM  
-
0.1  
0.1  
0.1  
330  
1.0  
1.0  
1.0  
400  
μA  
μA  
μA  
mA  
LX SW HLeak Current  
LX SW LLeak Current  
PFM Switching Current  
-
-
260  
Maximum Duty Ratio(*3)  
Efficiency (*4)  
MAXDTY  
EFFI  
100  
-
93  
-
%
%
%
%
Ω
-
-
-
-
-
-
-
VOUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
Efficiency (*4)  
EFFI  
93  
-
VOUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
VOUT(T)=1.8V (*1), IOUT=30mA.  
Efficiency (*4)  
EFFI  
87  
-
0.65  
-
LX SW “Pch”  
ON Resistance (*5)  
LX SW “Nch”  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
0.4  
0.4 (*6)  
RLXN  
Ω
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/℃  
(VOUTΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “Hlevel  
while VCE=0.21.5V.  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
V
V
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes H” to “Llevel  
while VCE=1.50.2V.  
VCEL  
GND  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
Short Protection  
VSHORT  
Voltage which LX pin changes H” to “Llevel  
0.4  
0.5  
0.6  
V
Threshold Voltage  
while VOUT= VOUT(T)+0.1V0V(*1)  
.
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN VLX pin measurement voltage) / 100mA  
(*6) Designed value  
5/32  
XC9265 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9265Bxxx Type, without CL discharge function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
CIRCUIT  
Input Voltage  
VIN  
-
V
Resistor connected with LX pin.  
(*2)  
Output Voltage  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
Supply Current  
VOUT(E)  
Voltage which LX pin changes L” to “Hlevel  
while VOUT is decreasing.  
E1  
1.8  
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “Hlevel  
while VIN is increasing.  
VUVLO(E)  
VHYS(E)  
Iq  
1.65  
0.11  
1.95  
0.24  
V
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
VUVLO(E) - Voltage which LX pin changes H” to “L”  
level while VIN is decreasing.  
0.15  
E2  
VIN=VCE=VOUT(T)+0.5V (*1)  
VIN=2.0V, if VOUT(T)1.5V (*1)  
,
,
μA  
VOUT=VOUT(T)+0.5V (*1), LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
Standby Current  
ISTB  
ILEAKH  
ILEAKL  
IPFM  
-
0.1  
0.1  
0.1  
180  
1.0  
1.0  
1.0  
250  
μA  
μA  
μA  
mA  
LX SW HLeak Current  
LX SW LLeak Current  
PFM Switching Current  
-
-
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
Resistor connected with LX pin.  
VIN=VCE=5.0V,  
115  
Maximum Duty Ratio (*3)  
Efficiency (*4)  
MAXDTY  
EFFI  
100  
-
95  
-
%
%
%
%
Ω
-
-
-
-
-
-
-
VOUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
Efficiency (*4)  
EFFI  
95  
-
VOUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
VOUT(T)=1.8V (*1), IOUT=30mA.  
Efficiency (*4)  
EFFI  
89  
-
0.65  
-
LX SW “Pch”  
ON Resistance (*5)  
LX SW “Nch”  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
0.4  
0.4 (*6)  
RLXN  
Ω
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/℃  
(VOUTΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “Hlevel while  
VCE=0.21.5V.  
CE “High” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
V
V
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes H” to “Llevel while  
VCE=1.50.2V.  
CE “Low” Voltage  
VCEL  
GND  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
Short Protection  
VSHORT  
Voltage which LX pin changes H” to “Llevel while  
0.4  
0.5  
0.6  
V
Threshold Voltage  
VOUT= VOUT(T)+0.1V0V(*1)  
.
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN VLX pin measurement voltage) / 100mA  
(*6) Designed value  
6/32  
XC9265  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9265CxxxTypewith CL Discharge Function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
V
CIRCUIT  
Input Voltage  
VIN  
-
Resistor connected with LX pin.  
(*2)  
Output Voltage  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
Supply Current  
VOUT(E)  
Voltage which LX pin changes L” to “Hlevel  
while VOUT is decreasing.  
E1  
1.8  
V
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “Hlevel  
while VIN is increasing.  
VUVLO(E)  
VHYS(E)  
Iq  
1.65  
0.11  
1.95  
0.24  
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
VUVLO(E) - Voltage which LX pin changes H” to “L”  
level while VIN is decreasing.  
0.15  
E2  
V
VIN=VCE=VOUT(T)+0.5V (*1)  
VIN=2.0V, if VOUT(T)1.5V (*1)  
,
,
μA  
VOUT=VOUT(T)+0.5V (*1), LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
Standby Current  
ISTB  
ILEAKH  
ILEAKL  
IPFM  
-
0.1  
0.1  
0.1  
330  
1.0  
1.0  
1.0  
400  
μA  
μA  
μA  
mA  
LX SW HLeak Current  
LX SW LLeak Current  
PFM Switching Current  
-
-
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
Resistor connected with LX pin.  
VIN=VCE=5.0V,  
260  
Maximum Duty Ratio (*3)  
Efficiency (*4)  
MAXDTY  
EFFI  
100  
-
93  
-
%
%
%
%
Ω
-
-
-
-
-
-
-
VOUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
Efficiency (*4)  
EFFI  
93  
-
VOUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
VOUT(T)=1.8V (*1), IOUT=30mA.  
Efficiency (*4)  
EFFI  
87  
-
0.65  
-
LX SW “Pch”  
ON Resistance (*5)  
LX SW “Nch”  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
0.4  
0.4 (*6)  
RLXN  
Ω
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/℃  
(VOUTΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “Hlevel while  
VCE=0.21.5V.  
CE “High” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
V
V
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes H” to “Llevel while  
VCE=1.50.2V.  
CE “Low” Voltage  
VCEL  
GND  
CE “High” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
CE “Low” Current  
Short Protection  
VSHORT  
Voltage which LX pin changes H” to “Llevel while  
0.4  
55  
0.5  
80  
0.6  
V
Threshold Voltage  
VOUT= VOUT(T)+0.1V0V(*1)  
.
CL Discharge  
RDCHG  
VIN=VOUT=5.0V, VCE=0V, LX=Open.  
105  
Ω
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN VLX pin measurement voltage) / 100mA  
(*6) Designed value  
7/32  
XC9265 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9265Dxxx Type, with CL Discharge function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
V
CIRCUIT  
Input Voltage  
VIN  
-
Resistor connected with LX pin.  
(*2)  
Output Voltage  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
Supply Current  
VOUT(E)  
Voltage which LX pin changes L” to “Hlevel  
while VOUT is decreasing.  
E1  
1.8  
V
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “Hlevel  
while VIN is increasing.  
VUVLO(E)  
VHYS(E)  
Iq  
1.65  
0.11  
1.95  
0.24  
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
VUVLO(E) - Voltage which LX pin changes H” to “L”  
level while VIN is decreasing.  
0.15  
E2  
V
VIN=VCE=VOUT(T)+0.5V (*1)  
VIN=2.0V, if VOUT(T)1.5V (*1)  
,
,
μA  
VOUT=VOUT(T)+0.5V (*1), LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
Standby Current  
ISTB  
ILEAKH  
ILEAKL  
IPFM  
-
0.1  
0.1  
0.1  
180  
1.0  
1.0  
1.0  
250  
μA  
μA  
μA  
mA  
LX SW HLeak Current  
LX SW LLeak Current  
PFM Switching Current  
-
-
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
Resistor connected with LX pin.  
VIN=VCE=5.0V,  
115  
Maximum Duty Ratio (*3)  
Efficiency (*4)  
MAXDTY  
EFFI  
100  
-
95  
-
%
%
%
%
Ω
-
-
-
-
-
-
-
VOUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
Efficiency (*4)  
EFFI  
95  
-
VOUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V,  
VOUT(T)=1.8V (*1), IOUT=30mA.  
Efficiency (*4)  
EFFI  
89  
-
0.65  
-
LX SW “Pch”  
ON Resistance (*5)  
LX SW “Nch”  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
0.4  
0.4 (*6)  
RLXN  
Ω
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/℃  
(VOUTΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “Hlevel while  
VCE=0.21.5V.  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
V
V
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes H” to “Llevel while  
VCE=1.50.2V.  
VCEL  
GND  
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
Short Protection  
VSHORT  
Voltage which LX pin changes H” to “Llevel while  
0.4  
55  
0.5  
80  
0.6  
V
Threshold Voltage  
VOUT= VOUT(T)+0.1V0V(*1)  
.
CL Discharge  
RDCHG  
VIN=VOUT=5.0V, VCE=0V, LX=Open.  
105  
Ω
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN VLX pin measurement voltage) / 100mA  
(*6) Designed value  
8/32  
XC9265  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9265 series voltage chart  
SYMBOL  
PARAMETER  
UNITS: V  
E1  
E2  
Output Voltage  
UNITS: V  
Supply Current  
UNITS: μA  
OUTPUT  
MIN.  
MAX.  
TYP.  
MAX.  
VOLTAGE  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
0.980  
1.029  
1.078  
1.127  
1.176  
1.225  
1.274  
1.323  
1.372  
1.421  
1.470  
1.519  
1.568  
1.617  
1.666  
1.715  
1.764  
1.813  
1.862  
1.911  
1.960  
2.009  
2.058  
2.107  
2.156  
2.205  
2.254  
2.303  
2.352  
2.401  
2.450  
2.499  
2.548  
2.597  
2.646  
2.695  
2.744  
2.793  
1.020  
1.071  
1.122  
1.173  
1.224  
1.275  
1.326  
1.377  
1.428  
1.479  
1.530  
1.581  
1.632  
1.683  
1.734  
1.785  
1.836  
1.887  
1.938  
1.989  
2.040  
2.091  
2.142  
2.193  
2.244  
2.295  
2.346  
2.397  
2.448  
2.499  
2.550  
2.601  
2.652  
2.703  
2.754  
2.805  
2.856  
2.907  
0.5  
0.8  
0.5  
0.9  
0.6  
1.1  
0.7  
1.5  
9/32  
XC9265 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC9265 series voltage chart  
SYMBOL  
PARAMETER  
UNITS: V  
E1  
E2  
Output Voltage  
UNITS: V  
Supply Current  
UNITS: μA  
OUTPUT  
MIN.  
MAX.  
TYP.  
MAX.  
VOLTAGE  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
3.65  
3.70  
3.75  
3.80  
3.85  
3.90  
3.95  
4.00  
2.842  
2.891  
2.940  
2.989  
3.038  
3.087  
3.136  
3.185  
3.234  
3.283  
3.332  
3.381  
3.430  
3.479  
3.528  
3.577  
3.626  
3.675  
3.724  
3.773  
3.822  
3.871  
3.920  
2.958  
3.009  
3.060  
3.111  
3.162  
3.213  
3.264  
3.315  
3.366  
3.417  
3.468  
3.519  
3.570  
3.621  
3.672  
3.723  
3.774  
3.825  
3.876  
3.927  
3.978  
4.029  
4.080  
0.7  
1.5  
0.8  
2.1  
1.5  
3.0  
10/32  
XC9265  
Series  
TEST CIRCUITS  
< Test Circuit No.1 >  
< Test Circuit No.2 >  
Wave Form Measure Point  
Wave Form Measure Point  
IOUT  
L
VIN  
CE  
LX  
A
VIN  
CE  
LX  
CIN  
CIN  
Rpulldown  
CL  
V
V
VOUT  
VOUT  
GND  
GND  
※ꢀExternal Components  
※ꢀExternal Components  
ꢀꢀ L : 10uH  
ꢀꢀ CIN : 10uF (ceramic)  
ꢀꢀ CL : 22uF (ceramic)  
ꢀꢀR  
: 100Ω  
< Test Circuit No.3 >  
< Test Circuit No.4 >  
A
VIN  
CE  
LX  
VIN  
CE  
LX  
CIN  
CIN  
IS  
V
A
VOUT  
VOUT  
A
GND  
GND  
※ꢀExternal Components  
ꢀꢀCIN : 10uF  
※ꢀExternal Components  
ꢀꢀCIN : 10uF  
< Test Circuit No.5 >  
Wave Form Measure Point  
VIN  
CE  
LX  
CIN  
ICEH  
Rpulldown  
VOUT  
A
ICEL  
GND  
※ꢀExternal Components  
ꢀꢀCIN : 10uF  
ꢀꢀR : 100Ω  
11/32  
XC9265 Series  
TYPICAL APPLICATION CIRCUIT  
L
VIN  
VOUT  
VIN  
LX  
CIN  
(Ceramic)  
CL  
(Ceramic)  
VOUT  
CE  
GND  
Typical Examples】  
MANUFACTURE  
PRODUCT NUMBER  
VALUE  
TDK  
VLF302512M-100M  
LPS3015-103MRB  
1239AS-H-100M  
LMK107BJ106MA  
JMK107BJ226MA  
10μH  
10μH  
10μH  
L
Coilcraft  
Murata  
CIN  
CL  
TAIYO YUDEN  
TAIYO YUDEN  
10μF/10V  
22μF/6.3V  
* Take capacitance loss, withstand voltage, and other conditions into consideration when selecting components.  
* Characteristics are dependent on deviations in the coil inductance value. Test fully using the actual device.  
* A value of 10μH is recommended for the coil inductance.  
* If a tantalum or electrolytic capacitor is used for the load capacitance CL, ripple voltage will increase, and there is a possibility that operation will  
become unstable. Test fully using the actual device.  
12/32  
XC9265  
Series  
OPERATIONAL EXPLANATION  
The XC9265 series consists of a reference voltage supply, PFM comparator, Pch driver Tr, Nch synchronous rectification switch  
Tr, current sensing circuit, PFM control circuit, CE control circuit, and others. (Refer to the block diagram below.)  
PFM Comparator Unit  
CFB RFB1  
PFM Comparator Unit  
CFB RFB1  
VOUT  
VOUT  
Short  
protection  
Current  
Sense  
Short  
protection  
Current  
Sense  
CL  
Discharge  
PFM  
Comparator  
PFM  
Comparator  
RFB2  
RFB2  
FB  
FB  
-
-
+
PFM  
Controller  
+
PFM  
Controller  
Synch  
Buffer  
Driver  
Synch  
Buffer  
Driver  
LX  
LX  
CE  
CE Controller Logic  
VREF  
CE  
CE Controller Logic  
VREF  
VDD  
VDD  
GND  
GND  
UVLO  
VIN start up  
Controller  
UVLO  
VIN start up  
Controller  
VIN  
VIN  
XC9265Axxx/XC9265Bxxx  
XC9265Cxxx/XC9265xxx  
An ultra-low quiescent current circuit and synchronous rectification enable a significant reduction of dissipation in the IC, and the  
IC operates with high efficiency at both light loads and heavy loads. Current limit PFM is used for the control method, and even  
when switching current superposition occurs, increases of output voltage ripple are suppressed, allowing use over a wide voltage  
and current range. The IC is compatible with low-capacitance ceramic capacitors, and a small, high-performance step-down DC-  
DC converter can be created.  
The actual output voltage VOUT(E) in the electrical characteristics is the threshold voltage of the PFM comparator in the block  
diagram. Therefore the average output voltage of the step-down circuit, including peripheral components, depends on the ripple  
voltage. Before use, test fully using the actual device.  
VIN=VCE=3.6VVOUT=1.8VIOUT=5mAL=10μHCL=22uFTa=25℃  
VIN=VCE=3.6VVOUT=1.8VIOUT=30mAL=10μHCL=22uFTa=25℃  
VLX  
VLX  
VLX : 2[V/div]  
VOUT  
VOUT  
VOUT : 50[mV/div]  
VOUT(E)  
Voltage  
ILX  
ILX  
IPFM  
ILX : 100[mA/div]  
10[μs/div]  
10[μs/div]  
<Reference voltage supply (VREF)>  
Reference voltage for stabilization of the output voltage of the IC.  
<PFM control>  
(1) The feedback voltage (FB voltage) is the voltage that results from dividing the output voltage with the IC internal dividing  
resistors RFB1 and RFB2. The PFM comparator compares this FB voltage to VREF. When the FB voltage is lower than VREF, the PFM  
comparator sends a signal to the buffer driver through the PFM control circuit to turn on the Pch driver Tr. When the FB voltage is  
higher than VREF, the PFM comparator sends a signal to prevent the Pch driver Tr from turning on.  
(2) When the Pch driver Tr is on, the current sense circuit monitors the current that flows through the Pch driver Tr connected to the  
Lx pin. When the current reaches the set PFM switching current (IPFM), the current sense circuit sends a signal to the buffer driver  
through the PFM control circuit. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.  
(3) The on time (off time) of the Nch synchronous rectification switch Tr is dynamically optimized inside the IC. After the off time  
elapses and the PFM comparator detects that the VOUT voltage is higher than the set voltage, the PFM comparator sends a signal  
to the PFM control circuit that prevents the Pch driver Tr from turning on. However, if the VOUT voltage is lower than the set voltage,  
the PFM comparator starts Pch driver Tr on.  
By continuously adjusting the interval of the linked operation of (1), (2) and (3) above in response to the load current, the output  
voltage is stabilized with high efficiency from light loads to heavy loads  
13/32  
XC9265 Series  
OPERATIONAL EXPLANATION (Continued)  
.
<PFM Switching Current >  
The PFM switching current monitors the current that flows through the Pch driver Tr, and is a value that limits the Pch driver Tr  
current.  
The Pch driver Tr remains on until the coil current reaches the PFM switching current (IPFM). An approximate value for this on-  
time tON can be calculated using the following equation:  
tON = L × IPFM / (VIN VOUT  
)
<Maximum on-time function>  
To avoid excessive ripple voltage in the event that the coil current does not reach the PFM switching current within a certain  
interval even though the Pch driver Tr has turned on and the FB voltage is above VREF, the Pch driver Tr can be turned off at any  
timing using the maximum on-time function of the PFM control circuit. If the Pch driver Tr turns off by the maximum on-time function  
instead of the current sense circuit, the Nch synchronous rectification switch Tr will not turn on and the coil current will flow to the  
VOUT pin by means of the parasite diode of the Nch synchronous rectification switch Tr.  
<Through mode>  
When the VIN voltage is lower than the output voltage, through mode automatically activates and the Pch driver Tr stays on  
continuously.  
(1) In through mode, when the load current is increased and the current that flows through the Pch driver Tr reaches a load current  
that is several tens of mA lower than the set PFM switching current (IPFM), the current sense circuit sends a signal through the PFM  
control circuit to the buffer driver. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.  
(2) After the on-time (off-time) of the Nch synchronous rectification switch Tr, the Pch driver Tr turns on until the current reaches  
the set PFM switching current (IPFM) again.  
If the load current is large as described above, operations (1) and (2) above are repeated. If the load current is several tens of  
mA lower than the PFM switching current (IPFM), the Pch driver Tr stays on continuously.  
<VIN start mode>  
When the VIN voltage rises, VIN start mode stops the short-circuit protection function during the interval until the FB voltage  
approaches VREF. After the VIN voltage rises and the FB voltage approaches VREF by step-down operation, VIN start mode is  
released. In order to prevent an excessive rush current while VIN start mode is activated, the coil current flows to the VOUT pin by  
means of the parasitic diode of the Nch synchronous rectification Tr. In VIN start mode as well, the coil current is limited by the  
PFM switching current.  
<Short protection function>  
The short-circuit protection function monitors the VOUT pin voltage, and if the VOUT pin voltage drops below the Short Protection  
Threshold Voltage (VSHORT) due to a short circuit or overcurrent, the short circuit protection function operates.  
When the short-circuit protection function is activated, the Pch driver Tr and Nch Synchronous Switch Tr are held off. If the VOUT  
pin voltage exceeds the Short Protection Threshold Voltage (VSHORT) after the short-circuit protection function is activated, normal  
operation resumes.  
To cancel the short-circuit protection function, it is necessary to start the IC after putting the IC in the standby state with the CE  
function, or to raise the input voltage after setting the input voltage below the UVLO detection voltage (VUVLO(E)-VHYS(E)).  
14/32  
XC9265  
Series  
OPERATIONAL EXPLANATION (Continued)  
<UVLO function>  
When the VIN pin voltage drops below the UVLO detection voltage, the IC stops switching operation at any selected timing, turns  
off the Pch driver Tr and Nch synchronous rectification switch Tr (UVLO mode). When the VIN pin voltage recovers and rises above  
the UVLO release voltage, the IC restarts operation.  
<CL discharge function>  
On the XC9265 series, a CL discharge function is available as an option (XC9265C/XC9265D types). This function enables quick  
discharging of the CL load capacitance when Lvoltage is input into the CE pin by the Nch Tr connected between the VOUT-GND  
pins, or in UVLO mode. This prevents malfunctioning of the application in the event that a charge remains on CL when the IC is  
stopped. The discharge time is determined by CL and the CL discharge resistance RDCHG, including the Nch Tr (refer to the diagram  
below). Using this time constant τ= CL×RDCHG, the discharge time of the output voltage is calculated by means of the equation  
below.  
V = VOUT × e - t /τ, or in terms of t, t = τIn(VOUT / V)  
V
VOUT  
: Output voltage after discharge  
: Set output voltage  
: Discharge time  
CL  
RDCHG  
: Value of load capacitance (CL)  
: Value of CL discharge resistance Varies by power supply voltage.  
Τ
: CL × RDCHG  
VOUT  
R
RDCHG = R + RON  
CE / UVLO  
RON  
Signal  
The CL discharge function is not available on the XC9265A/XC9265B types.  
15/32  
XC9265 Series  
NOTE ON USE  
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.  
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally  
connected components, so refer to the specifications of each component and be careful when selecting the components. Be  
especially careful of the characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics  
(JIS Standard) or an X7R/X5R (EIA Standard) ceramic capacitor.  
3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause  
the IC operation to become unstable, so reinforce the area around the GND pin of the IC in particular.  
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.  
5. When the voltage difference between VIN and VOUT is small, switching energy increases and there is a possibility that the ripple  
voltage will be too large. Before use, test fully using the actual device.  
6. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.  
7. If other than the recommended inductance and capacitance values are used, excessive ripple voltage or a drop in efficiency  
may result.  
8. If other than the recommended inductance and capacitance values are used, a drop in output voltage when the load is excessive  
may cause the short-circuit protection function to activate. Before use, test fully using the actual device.  
9. At high temperature, excessive ripple voltage may occur and cause a drop in output voltage and efficiency. Before using at high  
temperature, test fully using the actual device  
10. At light loads or when IC operation is stopped, leakage current from the Pch driver Tr may cause the output voltage to rise.  
11. The average output voltage may vary due to the effects of output voltage ripple caused by the load current. Before use, test  
fully using the actual device.  
12. If the CL capacitance or load current is large, the output voltage rise time will lengthen when the IC is started, and coil current  
overlay may occur during the interval until the output voltage reaches the set voltage (refer to the diagram below).  
VIN=VCE=06.0VVOUT=1.0VIOUT=200mAL=10μHCL=22uFTa=25℃  
XC9265A series  
VLX  
VLX : 10[V/div ]  
IPFM  
ILX  
IL : 200[mA/div ]  
VOUT : 1[V/div ]  
VIN : 5[V/div ]  
VOUT  
VIN  
Zoom  
200[μs/div]  
VLX  
ILX  
VLX : 10[V/div ]  
IL : 200[mA/div ]  
VOUT  
VIN  
VOUT : 1[V/div ]  
VIN : 5[V/div ]  
5[μs/div]  
13. When the IC is started, the short-circuit protection function does not operate during the interval until the VOUT voltage reaches  
a value near the set voltage.  
14. If the IC is started at a VIN voltage that activates through mode, it is possible that the short-circuit protection function will not  
operate. Before use, test fully using the actual device.  
15. If the load current is excessively large when the IC is started, it is possible that the VOUT voltage will not rise to the set voltage.  
Before use, test fully using the actual device.  
16/32  
XC9265  
Series  
NOTE ON USE (Continued)  
16. In actual operation, the maximum on-time depends on the peripheral components, input voltage, and load current. Before use,  
test fully using the actual device.  
17. When the VIN voltage is turned on and off continuously, excessive rush current may occur while the voltage is on. Before use,  
test fully using the actual device.  
18. When the VIN voltage is high, the Pch driver may change from on to off before the coil current reaches the PFM switching  
current (IPFM), or before the maximum on-time elapses. Before use, test fully using the actual device.  
19. When the IC change to the Through Mode at light load, the supply current of this IC can increase in some cases.  
20. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be  
exceeded.  
21. Torex places an importance on improving our products and their reliability.  
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their  
systems.  
22. The UVLO function can be activated when the UVLO hysteresis width gets to about 0mV and after several tens ms elapses  
at light loads.Before use, test fully using the actual device.  
17/32  
XC9265 Series  
NOTE ON USE (Continued)  
Instructions of pattern layouts  
1. To suppress fluctuations in the VIN potential, connect a bypass capacitor (CIN) in the shortest path between the VIN pin and  
ground pin.  
2. Please mount each external component as close to the IC as possible.  
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents  
at the time of switching may result in instability of the IC.  
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.  
Recommended Pattern Layout (USP-6EL)  
Top view  
Bottom view  
Recommended Pattern Layout (SOT-25)  
Top view  
Bottom view  
18/32  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=2.7V  
VIN=2.7V  
VIN=4.2V  
VIN=4.2V  
VIN=3.6V  
VIN=3.6V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=4.2V  
VIN=3.6V  
VIN=4.2V  
VIN=3.6V  
VIN=2.7V  
VIN=2.7V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=4.2V  
VIN=4.2V  
VIN=3.6V  
VIN=3.6V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
19/32  
XC9265 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(1) Efficiency vs. Output Current  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=4.2V  
VIN=4.2V  
VIN=3.6V  
VIN=3.6V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
(2) Output Voltage vs. Output Current  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
VIN=2.7V,3.6V,4.2V  
VIN=2.7V,3.6V,4.2V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
VIN=2.7V,3.6V,4.2V  
VIN=2.7V,3.6V,4.2V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
20/32  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(2) Output Voltage vs. Output Current  
XC9265A301  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
CL=44μF(JMK107BJ226MA×2)  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
VIN=3.6V,4.2V  
VIN=3.6V,4.2V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
VIN=3.6V,4.2V  
VIN=3.6V,4.2V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN=4.2V  
VIN=3.6V  
VIN=2.7V  
VIN=3.6V  
VIN=2.7V  
VIN=4.2V  
0
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
21/32  
XC9265 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(3) Ripple Voltage vs. Output Current  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN=2.7V,3.6V,4.2V  
VIN=4.2V  
VIN=3.6V  
VIN=2.7V  
0
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN=4.2V  
VIN=3.6V  
VIN=4.2V  
VIN=3.6V  
0
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN=4.2V  
VIN=3.6V  
VIN=4.2V  
VIN=3.6V  
0
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current : IOUT (mA)  
Output Current : IOUT (mA)  
22/32  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Output Voltage Vs. Ambient Temperature  
XC9265x301  
XC9265x181  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
VIN=5.0V  
VIN=5.0V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
(5) Supply Current vs. Ambient Temperature  
XC9265x301  
XC9265x181  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN=2.3V  
VIN=3.5V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
(6) Stand-by Current vs. Ambient Temperature  
XC9265x301  
XC9265x181  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
V=5.0V,3.6V,2.3V  
V=5.0V,3.6V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
23/32  
XC9265 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(7) UVLO Release Voltage vs. Ambient Temperature  
XC9265x181  
XC9265x301  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
VRELEASE (T) =1.8V  
VRELEASE (T) =1.8V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
XC9265A181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
VIN=5.0V,3.6V  
VIN=5.0V,3.6V  
VIN=2.3V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(8) PFM Switching Current vs. Ambient Temperature  
XC9265B181  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B301  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
500  
500  
400  
300  
200  
100  
0
400  
VIN=5.0V  
VIN=3.6V  
VIN=5.0V  
VIN=3.6V  
VIN=2.3V  
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
24/32  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(9) Maximum Frequency vs. Ambient Temperature  
XC9265A101  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A251  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
VIN=5.0V  
VIN=4.2V  
VIN=5.0V  
VIN=3.6V  
VIN=3.6V  
VIN=2.7V  
VIN=2.0V  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
XC9265A401  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B101  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
VIN=6.0V  
VIN=5.0V  
VIN=3.6V  
VIN=5.5V  
VIN=5.0V  
VIN=2.7V  
VIN=2.0V  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
XC9265B401  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B251  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
VIN=6.0V  
VIN=5.0V  
VIN=4.2V  
VIN=3.6V  
VIN=5.5V  
VIN=5.0V  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta()  
Ambient Temperature: Ta()  
25/32  
XC9265 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(10) Pch Driver ON Resistance vs. Ambient Temperature  
(11) Nch Driver ON Resistance vs. Ambient Temperature  
XC9265  
XC9265  
VIN=VCE,VOUT=0V,ILX=100mA  
VIN=VCE  
1.2  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Topr=85  
Topr=25℃  
Topr=-40℃  
Topr=85℃  
Topr=25℃  
Topr=-40℃  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Input Voltage : VIN (V)  
Input Voltage : VIN (V)  
(12) Lx SW "H" Leakage Current vs. Ambient Temperature  
(13) Lx SW "L" Leakage Current vs. Ambient Temperature  
XC9265  
XC9265  
VOUT=VCE=0V,VLX=0V  
VOUT=VCE=0V,VLX=5.0V  
3.0  
3.0  
VIN =5.0V  
VIN =5.0V  
2.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(14) CE "High" Voltage vs. Ambient Temperature  
(15) CE "Low" Voltage vs. Ambient Temperature  
XC9265  
XC9265  
1.0  
1.0  
0.8  
0.8  
0.6  
0.6  
VIN=5.0V  
VIN=5.0V  
VIN=3.6V  
0.4  
0.4  
0.2  
0.0  
VIN=3.6V  
VIN=2.0V  
VIN=2.0V  
0.2  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
26/32  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(16) CL Discharge vs. Ambient Temperature  
(17) Short Protection Threshold vs. Ambient Temperature  
XC9265C/D  
XC9265  
VIN=VOUT,VCE=0V  
VIN=VCE  
600  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIN=5.0V,3.6V,2.0V  
500  
400  
300  
VIN=6.0V  
VIN=4.0V  
VIN=2.0V  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta ()  
Ambient Temperature: Ta ()  
(18) Rising Output Voltage  
XC9265A181  
XC9265A181  
VIN=VCE=03.6V,IOUT=10uA  
VIN=VCE=03.6V,IOUT=100mA  
VOUT  
VOUT  
VIN  
VIN  
VLX  
VLX  
ILx  
ILx  
VOUT:1V/div,VIN:5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
VOUT:1V/div,VIN:5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265B181  
XC9265B181x  
XC9265B181  
VIN=VCE=03.6V,IOUT=10uA  
VIN=VCE=03.6V,IOUT=50mA  
VOUT  
VOUT  
VIN  
VIN  
VLX  
VLX  
ILx  
ILx  
VOUT:1V/div,VIN:5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
VOUT:1V/div,VIN:5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA),  
CL=22μF(JMK107BJ226MA)  
27/32  
XC9265 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(19) Load Transient Response  
XC9625A301  
XC9265A301  
VIN=3.6V, IOUT=10uA100mA  
VIN=3.6V IOUT=10uA100mA  
VOUT  
VOUT  
VLX  
VLX  
ILx  
ILx  
Iout  
Iout  
VOUT:200mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
VOUT:200mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
XC9265B301  
XC9265B301  
VIN=3.6V, IOUT=10uA50mA  
VIN=3.6V, IOUT=10uA50mA  
VOUT  
VOUT  
VLX  
VLX  
ILx  
ILx  
Iout  
Iout  
VOUT:200mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
VOUT:200mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
XC9265A181  
VIN=3.6V, IOUT=10uA100mA  
VOUT  
XC9265A181  
VIN=3.6V IOUT=10uA100mA  
VOUT  
VLX  
VLX  
ILx  
ILx  
Iout  
Iout  
VOUT:100mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
VOUT:100mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
28/32  
XC9265  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(19) Load Transient Response  
XC9265B181  
XC9265B181  
VIN=3.6V IOUT=10uA50mA  
VIN=3.6V IOUT=10uA50mA  
VOUT  
VOUT  
VLX  
VLX  
ILx  
ILx  
Iout  
Iout  
VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=44μF(JMK107BJ226MA×2)  
VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div  
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),  
CL=22μF(JMK107BJ226MA)  
29/32  
XC9265 Series  
PACKAGING INFORMATION  
For the latest package information go to, www.torexsemi.com/technical-support/packages  
PACKAGE  
SOT-25  
OUTLIN / LAND PATTERN  
SOT-25 PKG  
THERMAL CHARACTERISTICS  
SOT-25 Power Dissipiation  
USP-6EL Power Dissipation  
USP-6EL(DAF)  
USP-6EL PKG  
30/32  
XC9265  
Series  
MARKING RULE  
MARKrepresents product series  
SOT-25(Under dot)  
MARK  
C
PRODUCT SERIES  
5
4
XC9265A/B/C/D*****-G  
SOT-25 Under dot  
MARKrepresents output voltage  
PRODUCT SERIES  
1
2
3
MARK  
OUTPUT VOLTAGE  
1.9 2.9 3.9 1.95 2.95 3.95  
1.0 2.0  
0
1
-
-
拡大  
Zoom  
3.0 4.0 1.05 2.05 3.05  
-
-
-
-
-
-
-
-
-
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
-
1.15 2.15 3.15  
1.25 2.25 3.25  
1.35 2.35 3.35  
1.45 2.45 3.45  
1.55 2.55 3.55  
1.65 2.65 3.65  
1.75 2.75 3.75  
1.85 2.85 3.85  
3
-
4
-
XC9265A/B*****-G  
5
-
6
-
7
-
USP-6EL  
USP-6EL  
8
-
-
9
1.8 2.8 3.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
A
B
C
D
E
F
H
K
L
-
2.9 3.9  
-
1.95 2.95 3.95  
1
2
3
6
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
3.0 4.0 1.05 2.05 3.05  
-
-
-
-
-
-
-
-
5
4
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
-
-
-
-
-
-
-
1.15 2.15 3.15  
1.25 2.25 3.25  
1.35 2.35 3.35  
1.45 2.45 3.45  
1.55 2.55 3.55  
1.65 2.65 3.65  
1.75 2.75 3.75  
XC9265C/D*****-G  
M
1.8 2.8 3.8  
-
1.85 2.85 3.85  
-
MARKrepresents output voltage range  
OUTPUT  
MARK  
PRODUCT SERIES  
VOLTAGE  
A
B
C
D
E
F
1.01.8V  
1.92.8V  
2.93.8V  
3.94.0V  
1.01.8V  
1.92.8V  
2.93.8V  
3.94.0V  
1.051.85V  
1.952.85V  
2.953.85V  
3.95V  
XC9265A/C**1**-G  
XC9265B/D**1**-G  
XC9265A/C**B**-G  
XC9265B/D**B**-G  
H
K
P
R
S
T
U
V
X
Y
1.051.85V  
1.952.85V  
2.953.85V  
3.95V  
MARK④⑤ represents production lot number  
01090A0Z119ZA1A9AAAZB1ZZ  
(G, I, J, O, Q, W excluded and no character inversion used)  
31/32  
XC9265 Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions. Do not use the product for the above use unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal  
injury and/or property damage resulting from such failure, customers are required to incorporate  
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention  
features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
32/32  

相关型号:

XC9265C181MR-G

IC REG BUCK 1.8V 0.2A SYNC SOT25
TOREX

XC9265D2914R-G

Switching Regulator,
TOREX

XC9265D3914R-G

Switching Regulator,
TOREX

XC9268

36V Operation 600mA Synchronous Step-Down DC/DC Converters
TOREX

XC9268B75CER-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters
TOREX

XC9268B75CPR-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters
TOREX

XC9268B75DER-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters
TOREX

XC9268B75DPR-G

36V Operation 600mA Synchronous Step-Down DC/DC Converters
TOREX

XC9271A083QR-G

Switching Regulator,
TOREX

XC9271A085QR-G

Switching Regulator,
TOREX

XC9271B083QR-G

Switching Regulator,
TOREX

XC9271B085QR-G

Switching Regulator,
TOREX