TVP5150AM1PBSRHIK [TI]

Ultralow Power NTSC/PAL/SECAM Video Decoder w/Robust Sync Detector 32-TQFP 0 to 70;
TVP5150AM1PBSRHIK
型号: TVP5150AM1PBSRHIK
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Ultralow Power NTSC/PAL/SECAM Video Decoder w/Robust Sync Detector 32-TQFP 0 to 70

解码器
文件: 总79页 (文件大小:370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢉꢊ ꢋꢌ ꢍꢊꢎ ꢏ ꢂꢎ ꢏꢐ ꢌ ꢑꢀ ꢒꢓ ꢇꢂꢆꢔꢇ ꢒꢕ ꢓꢆꢈ ꢁ ꢖ ꢗ ꢐ ꢎ  
ꢘ ꢐ ꢙꢎ ꢗꢐ ꢌ ꢚꢖ ꢋꢛ ꢜ ꢎ ꢝꢞꢟꢋ ꢒꢠꢡꢙ ꢘ ꢐꢋꢐꢙꢋ ꢎꢌ  
Data Manual  
May 2004  
HPA Digital Audio Video  
SLES098  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
Contents  
Section  
1
Title  
Page  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1  
Product Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−2  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−3  
Related Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−3  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−4  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−5  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−5  
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Analog Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
Composite Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
Adaptive Comb Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
Color Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
Luminance Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−2  
Chrominance Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−2  
Timing Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−3  
VBI Data Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−3  
VBI FIFO and Ancillary Data in Video Stream . . . . . . . . . . . . . . . . . . . 2−4  
2.10 Raw Video Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−5  
2.11 Output Formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−5  
2.12 Synchronization Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−5  
2.13 AVID Cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−7  
2.14 Embedded Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−8  
2
2.15 I C Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−9  
2
2.15.1  
2.15.2  
I C Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−9  
2
I C Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−10  
2.15.2.1  
2.15.2.2  
2.15.2.3  
Read Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−10  
Read Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11  
I C Timing Requirements . . . . . . . . . . . . . . . . . 2−11  
2
2.16 Clock Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11  
2.17 Genlock Control and RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−12  
2.17.1  
2.17.2  
TVP5150A Genlock Control Interface . . . . . . . . . . . . . . . . . . 2−12  
RTC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−13  
2.18 Reset and Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−13  
2.19 Internal Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−13  
2.20 Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−16  
iii  
2.20.1  
2.20.2  
2.20.3  
2.20.4  
2.20.5  
2.20.6  
2.20.7  
2.20.8  
2.20.9  
Video Input Source Selection #1 Register . . . . . . . . . . . . . . 2−16  
Analog Channel Controls Register . . . . . . . . . . . . . . . . . . . . 2−17  
Operation Mode Controls Register . . . . . . . . . . . . . . . . . . . . 2−17  
Miscellaneous Control Register . . . . . . . . . . . . . . . . . . . . . . . 2−18  
Autoswitch Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−20  
Color Killer Threshold Control Register . . . . . . . . . . . . . . . . 2−20  
Luminance Processing Control #1 Register . . . . . . . . . . . . 2−21  
Luminance Processing Control #2 Register . . . . . . . . . . . . 2−22  
Brightness Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 2−22  
2.20.10 Color Saturation Control Register . . . . . . . . . . . . . . . . . . . . . 2−22  
2.20.11 Hue Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−23  
2.20.12 Contrast Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−23  
2.20.13 Outputs and Data Rates Select Register . . . . . . . . . . . . . . . 2−23  
2.20.14 Luminance Processing Control #3 Register . . . . . . . . . . . . 2−24  
2.20.15 Configuration Shared Pins Register . . . . . . . . . . . . . . . . . . . 2−25  
2.20.16 Active Video Cropping Start Pixel MSB Register . . . . . . . . 2−25  
2.20.17 Active Video Cropping Start Pixel LSB Register . . . . . . . . . 2−26  
2.20.18 Active Video Cropping Stop Pixel MSB Register . . . . . . . . 2−26  
2.20.19 Active Video Cropping Stop Pixel LSB Register . . . . . . . . . 2−26  
2.20.20 Genlock and RTC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−27  
2.20.21 Horizontal Sync (HSYNC) Start Register . . . . . . . . . . . . . . . 2−28  
2.20.22 Vertical Blanking Start Register . . . . . . . . . . . . . . . . . . . . . . . 2−29  
2.20.23 Vertical Blanking Stop Register . . . . . . . . . . . . . . . . . . . . . . . 2−29  
2.20.24 Chrominance Control #1 Register . . . . . . . . . . . . . . . . . . . . . 2−30  
2.20.25 Chrominance Control #2 Register . . . . . . . . . . . . . . . . . . . . . 2−31  
2.20.26 Interrupt Reset Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−32  
2.20.27 Interrupt Enable Register B . . . . . . . . . . . . . . . . . . . . . . . . . . 2−33  
2.20.28 Interrupt Configuration Register B . . . . . . . . . . . . . . . . . . . . . 2−34  
2.20.29 Video Standard Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−34  
2.20.30 Cb Gain Factor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−34  
2.20.31 Cr Gain Factor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−35  
2.20.32 Macrovision On Counter Register . . . . . . . . . . . . . . . . . . . . . 2−35  
2.20.33 Macrovision Off Counter Register . . . . . . . . . . . . . . . . . . . . . 2−35  
2.20.34 656 Revision Select Register . . . . . . . . . . . . . . . . . . . . . . . . . 2−35  
2.20.35 MSB of Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−35  
2.20.36 LSB of Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−36  
2.20.37 ROM Major Version Register . . . . . . . . . . . . . . . . . . . . . . . . . 2−36  
2.20.38 ROM Minor Version Register . . . . . . . . . . . . . . . . . . . . . . . . . 2−36  
2.20.39 Vertical Line Count MSB Register . . . . . . . . . . . . . . . . . . . . . 2−36  
2.20.40 Vertical Line Count LSB Register . . . . . . . . . . . . . . . . . . . . . 2−36  
2.20.41 Interrupt Status Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−37  
2.20.42 Interrupt Active Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−37  
2.20.43 Status Register #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−38  
2.20.44 Status Register #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−39  
iv  
2.20.45 Status Register #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−39  
2.20.46 Status Register #4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−40  
2.20.47 Status Register #5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−40  
2.20.48 Closed Caption Data Registers . . . . . . . . . . . . . . . . . . . . . . . 2−41  
2.20.49 WSS Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−41  
2.20.50 VPS Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−42  
2.20.51 VITC Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−42  
2.20.52 VBI FIFO Read Data Register . . . . . . . . . . . . . . . . . . . . . . . . 2−42  
2.20.53 Teletext Filter and Mask Registers . . . . . . . . . . . . . . . . . . . . 2−43  
2.20.54 Teletext Filter Control Register . . . . . . . . . . . . . . . . . . . . . . . . 2−44  
2.20.55 Interrupt Status Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−45  
2.20.56 Interrupt Enable Register A . . . . . . . . . . . . . . . . . . . . . . . . . . 2−46  
2.20.57 Interrupt Configuration Register A . . . . . . . . . . . . . . . . . . . . . 2−47  
2.20.58 VDP Configuration RAM Register . . . . . . . . . . . . . . . . . . . . . 2−47  
2.20.59 VDP Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−49  
2.20.60 FIFO Word Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−49  
2.20.61 FIFO Interrupt Threshold Register . . . . . . . . . . . . . . . . . . . . 2−50  
2.20.62 FIFO Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−50  
2.20.63 Line Number Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . 2−50  
2.20.64 Pixel Alignment Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−50  
2.20.65 FIFO Output Control Register . . . . . . . . . . . . . . . . . . . . . . . . 2−51  
2.20.66 Full Field Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−51  
2.20.67 Line Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−52  
2.20.68 Full Field Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−53  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
3
3.1  
Absolute Maximum Ratings Over Operating Free-Air Temperature  
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
3.2  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
3.2.1  
Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
3.3  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
3.3.1  
3.3.2  
3.3.3  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
Analog Processing and A/D Converters . . . . . . . . . . . . . . . . 3−2  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−3  
3.3.3.1  
3.3.3.2  
Clocks, Video Data, Sync Timing . . . . . . . . . . . 3−3  
I C Host Port Timing . . . . . . . . . . . . . . . . . . . . . 3−4  
2
4
Example Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
4.1  
Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
4.1.1  
4.1.2  
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
4.2  
Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
4.2.1  
4.2.2  
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
5
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−1  
5.1 Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−1  
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−1  
v
List of Illustrations  
Figure  
1−1  
2−1  
2−2  
2−3  
2−4  
2−5  
2−6  
2−7  
2−8  
2−9  
3−1  
3−2  
5−1  
Title  
Page  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−4  
Composite Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−2  
8-bit 4:2:2, Timing With 2x Pixel Clock (SCLK) Reference . . . . . . . . . . . . 2−6  
Horizontal Synchronization Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−7  
AVID Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−8  
Reference Clock Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11  
GLCO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−12  
RTC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−13  
Configuration Shared Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−19  
Horizontal Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−28  
Clocks, Video Data, and Sync Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−3  
2
I C Host Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−4  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−1  
List of Tables  
Table  
Title  
Page  
1−1  
2−1  
2−2  
2−3  
2−4  
2−5  
2−6  
2−7  
2−8  
2−9  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−5  
Data Types Supported by the VDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−3  
Ancillary Data Format and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−4  
Summary of Line Frequencies, Data Rates, and Pixel Counts . . . . . . . . 2−5  
EAV and SAV Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−8  
Write Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−9  
2
I C Terminal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−9  
Read Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−10  
Reset and Power Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−13  
Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−14  
2−10 Analog Channel and Video Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . 2−16  
2−11 Digital Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−18  
2−12 Clock Delays (SCLKs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−28  
2−13 VBI Configuration RAM For Signals With Pedestal . . . . . . . . . . . . . . . . . . 2−48  
vi  
1 Introduction  
The TVP5150A device is an ultralow power NTSC/PAL/SECAM video decoder. Available in a space saving 32-pin  
TQFP package, the TVP5150A decoder converts NTSC, PAL, and SECAM video signals to 8-bit ITU-R BT.656  
format. Discrete syncs are also available. The optimized architecture of the TVP5150A decoder allows for  
ultralow-power consumption. The decoder consumes 115 mW of power in typical operation and consumes less than  
1 mW in power-down mode, considerably increasing battery life in portable applications. The decoder uses just one  
2
crystal for all supported standards. The TVP5150A decoder can be programmed using an I C serial interface. The  
decoder uses a 1.8-V supply for its analog and digital supplies, and a 3.3-V supply for its I/O.  
The TVP5150A decoder converts baseband analog video into digital YCbCr 4:2:2 component video. Composite and  
S-video inputs are supported. The TVP5150A decoder includes one 9-bit analog-to-digital converter (ADC) with 2x  
sampling. Sampling is ITU-R BT.601 (27.0 MHz, generated from the 14.31818-MHz crystal or oscillator input) and  
is line-locked. The output formats can be 8-bit 4:2:2 or 8-bit ITU-R BT.656 with embedded synchronization.  
The TVP5150A decoder utilizes Texas Instruments patented technology for locking to weak, noisy, or unstable  
signals. A Genlock/real-time control (RTC) output is generated for synchronizing downstream video encoders.  
Complementary 4-line adaptive comb filtering is available for both the luma and chroma data paths to reduce both  
cross-luma and cross-chroma artifacts; a chroma trap filter is also available.  
Video characteristics including hue, contrast, brightness, saturation, and sharpness may be programmed using the  
2
industry standard I C serial interface. The TVP5150A decoder generates synchronization, blanking, lock, and clock  
signals in addition to digital video outputs. The TVP5150A decoder includes methods for advanced vertical blanking  
interval (VBI) data retrieval. The VBI data processor slices, parses, and performs error checking on teletext, closed  
caption, and other data in several formats.  
The TVP5150A decoder detects copy-protected input signals according to the Macrovisionstandard and detects  
Type 1, 2, 3, and colorstripe pulses.  
The main blocks of the TVP5150A decoder include:  
Robust sync detector  
ADC with analog processor  
Y/C separation using 4-line adaptive comb filter  
Chrominance processor  
Luminance processor  
Video clock/timing processor and power-down control  
Output formatter  
2
I C interface  
VBI data processor  
Macrovisiondetection for composite and S-video  
1.1 Features  
Accepts NTSC (M, 4.43), PAL (B, D, G, H, I, M, N), and SECAM (B, D, G, K, K1, L) video data  
Supports ITU-R BT.601 standard sampling  
High-speed 9-bit ADC  
Two composite inputs or one S-video input  
Macrovision is a trademark of Macrovision Corporation.  
Other trademarks are the property of their respective owners.  
1−1  
Fully differential CMOS analog preprocessing channels with clamping and automatic gain control (AGC)  
for best signal-to-noise (S/N) performance  
Ultralow power consumption: 115 mW typical  
32-pin TQFP package  
Power-down mode: <1 mW  
2
Brightness, contrast, saturation, hue, and sharpness control through I C  
Complementary 4-line (3-H delay) adaptive comb filters for both cross-luminance and cross-chrominance  
noise reduction  
Patented architecture for locking to weak, noisy, or unstable signals  
Single 14.31818-MHz crystal for all standards  
Internal phase-locked loop (PLL) for line-locked clock and sampling  
Subcarrier Genlock output for synchronizing color subcarrier of external encoder  
Standard programmable video output format:  
ITU-R BT.656, 8-bit 4:2:2 with embedded syncs  
8-bit 4:2:2 with discrete syncs  
Macrovisioncopy protection detection  
Advanced programmable video output formats:  
2x oversampled raw VBI data during active video  
Sliced VBI data during horizontal blanking or active video  
VBI modes supported  
Teletext (NABTS, WST)  
Closed-caption decode with FIFO, and extended data services (EDS)  
Wide screen signaling, video program system, CGMS, vertical interval time code  
Gemstar 1x/2x electronic program guide compatible mode  
Custom configuration mode that allows the user to program the slice engine for unique VBI data signals  
Power-on reset  
1.2 Product Family  
This data manual covers three devices in the TVP5150A product family: the TVP5150APBS, the TVP5150AM1PBS,  
and the TVP5150AM1ZQC. The hardware for these three devices is identical. The following software changes are  
the differences between these two devices. For the remainder of this document, unless otherwise noted, TVP5150A  
refers to all three devices.  
TVP5150APBS  
ROM version 3.21  
SECAM is masked from the autoswitch process in the default mode of register 0x04  
Only supports ITU-R BT656.4 timing  
TVP5150AM1PBS/TVP5150AM1ZQC  
ROM version 4.00  
SECAM is unmasked from the autoswitch process in the default mode of register 0x04  
Addition of register 0x30 to select ITU-R BT656.3 or ITU-R BT656.4 timing  
1−2  
1.3 Applications  
The following is a partial list of suggested applications:  
Digital television  
PDA  
Notebook PCs  
Cell phones  
Video recorder/players  
Internet appliances/web pads  
Handheld games  
1.4 Related Products  
TVP5146 NTSC/PAL/SECAM 4x10-Bit Digital Video Decoder With MacrovisionDetection, YPbPr/RGB  
Inputs, 5-Line Comb Filter and SCART/Digital RGB Overlay SupportDecoder With Robust Sync Detector,  
Literature Number SLES084  
1.5 Ordering Information  
PACKAGED DEVICES  
32TQFP-PBS  
T
A
PACKAGE OPTION  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
TVP5150APBS  
Tray  
Tape and reel  
Tray  
TVP5150APBSR  
TVP5150AM1PBS  
TVP5150AM1PBSR  
TVP5150AM1ZQC  
TVP5150AM1ZQCR  
Tape and reel  
Tray  
Tape and reel  
1−3  
1.6 Functional Block Diagram  
MACROVISION  
DETECTION  
LUMINANCE  
PROCESSING  
M
U
X
AIP1A  
AIP1B  
A/D  
YOUT[7:0]  
YCbCr 8-BIT  
4:2:2  
AGC  
CHROMINANCE  
PROCESSING  
VBI / DATA SLICER  
SCL  
SDA  
2
I C  
HOST PROCESSOR  
INTERFACE  
PDN  
XTAL1  
XTAL2  
FID/GLCO  
VSYNC/PALI  
INTERQ/GPCL/VBLK  
HSYNC  
PCLK/SCLK  
AVID  
Figure 1−1. Functional Block Diagram  
1−4  
1.7 Terminal Assignments  
TQFP PACKAGE  
(TOP VIEW)  
ZQC PACKAGE  
(BOTTOM VIEW)  
32 31 30 29 28 27 26 25  
G
F
1
2
3
4
5
6
7
8
24  
AIP1A  
AIP1B  
VSYNC/PALI  
FID/GLCO  
SDA  
23  
22  
21  
20  
19  
18  
17  
E
D
C
B
A
PLL_AGND  
PLL_AVDD  
XTAL1/OSC  
XTAL2  
SCL  
DVDD  
DGND  
AGND  
YOUT0  
YOUT1  
RESETB  
9 10 11 12 13 14 15 16  
7
1
2
3
4
5
6
1.8 Terminal Functions  
Table 1−1. Terminal Functions  
TERMINAL  
NUMBER  
NAME  
I/O  
DESCRIPTION  
PBS  
ZQC  
Analog Section  
AGND  
7
1
E1  
A1  
I
I
Substrate. Connect to analog ground.  
Analog input. Connect to the video analog input via 0.1-µF capacitor. The maximum input range  
is 0−0.75 V , and may require an attenuator to reduce the input amplitude to the desired level.  
AIP1A  
PP  
If not used, connect to AGND via 0.1-µF capacitor. Refer to Figure 5−1.  
Analog input. Connect to the video analog input via 0.1-µF capacitor. The maximum input range  
is 0−0.75 V , and may require an attenuator to reduce the input amplitude to the desired level.  
AIP1B  
2
B1  
I
PP  
If not used, connect to AGND via 0.1-µF capacitor. Refer to Figure 5−1.  
Analog ground  
CH_AGND  
CH_AVDD  
31  
32  
A3  
A2  
I
I
Analog supply. Connect to 1.8-V analog supply.  
B2, B3, B6, C4,  
C5, D3−D6,  
E2−E5, F2, F5,  
F6  
NC  
No connect  
PLL_AGND  
PLL_AVDD  
3
4
C2  
C1  
I
I
PLL ground. Connect to analog ground.  
PLL supply. Connect to 1.8-V analog supply.  
1−5  
Table 1−1. Terminal Functions (Continued)  
TERMINAL  
NUMBER  
PBS ZQC  
Analog Section (continued)  
I/O  
DESCRIPTION  
NAME  
A/D reference ground. Connect to analog ground through 1-µF capacitor. Also, it is recommended to  
connect directly to REFP through 1-µF capacitor. Refer to Figure 5−1.  
REFM  
30  
29  
A4  
B4  
I
I
REFP  
A/D reference supply. Connect to analog ground through 1-µF capacitor. Refer to Figure 5−1.  
Digital Section  
Active video indicator. This signal is high during the horizontal active time of the video output. AVID  
toggling during vertical blanking intervals is controlled by bit 2 of the active video cropping start pixel  
LSB register at address 12h (see Section 2.20.17).  
AVID  
26  
A6  
O
DGND  
DVDD  
19  
20  
E6  
E7  
I
I
Digital ground  
Digital supply. Connect to 1.8-V digital supply  
FID: Odd/even field indicator or vertical lock indicator. For the odd/even indicator, a 1 indicates the odd  
field.  
GLCO: This serial output carries color PLL information. A slave device can decode the information to  
allow chroma frequency control from the TVP5150A decoder. Data is transmitted at the SCLK rate in  
Genlock mode. In RTC mode, SCLK/4 is used.  
FID/GLCO  
HSYNC  
23  
25  
27  
C6  
A7  
B5  
O
O
Horizontal synchronization signal  
INTREQ: Interrupt request output.  
GPCL/VBLK: General-purpose control logic. This terminal has two functions:  
1. GPCL: General-purpose output. In this mode the state of GPCL is directly programmed via I C.  
INTREQ/GPCL/  
VBLK  
2
I/O  
2. VBLK: Vertical blank output. In this mode the GPCL terminal indicates the vertical blanking interval  
2
of the output video. The beginning and end times of this signal are programmable via I C.  
IO_DVDD  
10  
9
G2  
G1  
I
Digital supply. Connect to 3.3 V.  
PCLK/SCLK  
O
System clock at either 1x or 2x the frequency of the pixel clock.  
Power-down terminal (active low). Puts the decoder in standby mode. Preserves the value of the  
registers.  
PDN  
28  
8
A5  
F1  
I
I
Active-low reset. RESETB can be used only when PDN = 1.  
When RESETB is pulled low, it resets all the registers and restarts the internal microprocessor.  
RESETB  
2
I/O I C serial clock (open drain)  
SCL  
SDA  
21  
22  
D7  
C7  
2
I/O I C serial data (open drain)  
VSYNC: Vertical synchronization signal  
PALI: PAL line indicator or horizontal lock indicator  
For the PAL line indicator:  
VSYNC/PALI  
24  
B7  
O
1 = Indicates a noninverted line  
0 = Indicates an inverted line  
External clock reference. The user may connect XTAL1 to an oscillator or to one terminal of a crystal  
oscillator. The user may connect XTAL2 to the other terminal of the crystal oscillator or not connect  
XTAL2 at all. One single 14.31818-MHz crystal or oscillator is needed for ITU-R BT.601 sampling, for  
all supported standards.  
XTAL1/OSC  
XTAL2  
5
6
D2  
D1  
I
O
12  
13  
14  
15  
16  
17  
18  
G3  
F4  
G4  
G5  
G6  
G7  
F7  
YOUT[6:0]  
I/O Output decoded ITU-R BT.656 output/YCbCr 4:2:2 output with discrete sync.  
2
I2CSEL: Determines address for I C (sampled during reset). A pullup or pulldown register is needed  
(>1 k) to program the terminal to the desired address.  
1 = Address is 0xBA  
YOUT7/I2CSEL  
11  
F3  
I/O  
0 = Address is 0xB8  
YOUT7: MSB of output decoded ITU-R BT.656 output/YCbCr 4:2:2 output.  
1−6  
2 Functional Description  
2.1 Analog Front End  
The TVP5150A decoder has an analog input channel that accepts two video inputs, which are ac-coupled. The  
decoder supports a maximum input voltage range of 0.75 V; therefore, an attenuation of one-half is needed for most  
input signals with a peak-to-peak variation of 1.5 V. The maximum parallel termination before the input to the device  
is 75 . Please refer to the applications diagram in Figure 5−1 for the recommended configuration. The two analog  
input ports can be connected as follows:  
Two selectable composite video inputs or  
One S-video input  
An internal clamping circuit restores the ac-coupled video signal to a fixed dc level.  
The programmable gain amplifier (PGA) and the AGC circuit work together to make sure that the input signal is  
amplified sufficiently to ensure the proper input range for the ADC.  
The ADC has 9 bits of resolution and runs at a maximum speed of 27 MHz. The clock input for the ADC comes from  
the PLL.  
2.2 Composite Processing Block Diagram  
The composite processing block processes NTSC/PAL/SECAM signals into the YCbCr color space. Figure 2−1  
explains the basic architecture of this processing block.  
Figure 2−1 illustrates the luminance/chrominance (Y/C) separation process in the TVP5150A decoder. The  
composite video is multiplied by subcarrier signals in the quadrature modulator to generate the color difference  
signals Cb and Cr. Cb and Cr are then low-pass (LP) filtered to achieve the desired bandwidth and to reduce crosstalk.  
An adaptive 4-line comb filter separates CbCr from Y. Chroma is remodulated through another quadrature modulator  
and subtracted from the line-delayed composite video to generate luma. Contrast, brightness, hue, saturation, and  
2
sharpness (using the peaking filter) are programmable via I C.  
The Y/C separation is bypassed for S-video input. For S-video, the remodulation path is disabled.  
2.3 Adaptive Comb Filtering  
The 4-line comb filter can be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the  
luma path, then chroma notch filters are used. TI’s patented adaptive 4-line comb filter algorithm reduces artifacts  
such as hanging dots at color boundaries and detects and properly handles false colors in high frequency luminance  
images such as a multiburst pattern or circle pattern.  
2.4 Color Low-Pass Filter  
In some applications, it is desirable to limit the Cb/Cr bandwidth to avoid crosstalk. This is especially true in case of  
video signals that have asymmetrical Cb/Cr sidebands. The color LP filters provided limit the bandwidth of the Cb/Cr  
signals.  
Color LP filters are needed when the comb filtering turns off, due to extreme color transitions in the input image.  
Please refer to Section 2.20.25, Chrominance Control #2 Register, for the response of these filters. The filters have  
three options that allow three different frequency responses based on the color frequency characteristics of the input  
video.  
2−1  
Gain Factor  
Peak  
Detector  
Bandpass  
X
Peaking  
Composite  
Delay  
+
Delay  
Y
Line  
Delay  
Y
Quadrature  
Modulation  
Contrast  
Brightness  
Saturation  
Adjust  
Cb  
Cr  
SECAM Luma  
Notch  
Filter  
Cb  
Cr  
Notch  
Filter  
SECAM Color  
Demodulation  
Color  
LPF 2  
Composite  
Cb  
4-Line  
Adaptive  
Comb  
Burst  
Accumulator  
(Cb)  
LP  
Filter  
Delay  
Filter  
LP  
Filter  
Color  
LPF 2  
Quadrature  
Modulation  
Delay  
Composite  
Cr  
Burst  
Accumulator  
(Cr)  
Figure 2−1. Composite Processing Block Diagram  
2.5 Luminance Processing  
The luma component is derived from the composite signal by subtracting the remodulated chroma information. A line  
delay exists in this path to compensate for the line delay in the adaptive comb filter in the color processing chain. The  
luma information is then fed into the peaking circuit, which enhances the high frequency components of the signal,  
thus improving sharpness.  
2.6 Chrominance Processing  
For NTSC/PAL formats, the color processing begins with a quadrature demodulator. The Cb/Cr signals then pass  
through the gain control stage for chroma saturation adjustment. An adaptive comb filter is applied to the demodulated  
signals to separate chrominance and eliminate cross-chrominance artifacts. An automatic color killer circuit is also  
included in this block. The color killer suppresses the chroma processing when the color burst of the video signal is  
weak or not present. The SECAM standard is similar to PAL except for the modulation of color which is FM instead  
of QAM.  
2−2  
2.7 Timing Processor  
The timing processor is a combination of hardware and software running in the internal microprocessor that serves  
to control horizontal lock to the input sync pulse edge, AGC and offset adjustment in the analog front end, vertical  
sync detection, and Macrovisiont detection.  
2.8 VBI Data Processor  
The TVP5150A VBI data processor (VDP) slices various data services like teletext (WST, NABTS), closed caption  
(CC), wide screen signaling (WSS), etc. These services are acquired by programming the VDP to enable standards  
in the VBI. The results are stored in a FIFO and/or registers. The teletext results are stored in a FIFO only. Table 2−1  
lists a summary of the types of VBI data supported according to the video standard. It supports ITU-R BT. 601  
sampling for each.  
Table 2−1. Data Types Supported by the VDP  
LINE MODE  
REGISTER (D0h−FCh)  
BITS [3:0]  
SAMPLING  
RATE (0Dh) NAME  
BIT 7  
DESCRIPTION  
0000b  
0000b  
0001b  
0001b  
0010b  
0010b  
0011b  
0011b  
0100b  
0100b  
0101b  
0101b  
0110b  
0110b  
0111b  
0111b  
1000b  
1000b  
1001b  
1001b  
1010b  
1010b  
1011b  
1011b  
1100b  
1100b  
1101b  
1110b  
1111b  
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
x
x
x
Reserved  
WST SECAM 6  
Teletext, SECAM  
Reserved  
x
WST PAL B 6  
Teletext, PAL, System B  
Reserved  
x
WST PAL C 6  
Teletext, PAL, System C  
Reserved  
x
WST, NTSC B 6  
Teletext, NTSC, System B  
Reserved  
x
NABTS, NTSC C 6  
Teletext, NTSC, System C  
Reserved  
x
NABTS, NTSC D 6  
Teletext, NTSC, System D (Japan)  
Reserved  
x
CC, PAL 6  
Closed caption PAL  
Reserved  
x
CC, NTSC 6  
Closed caption NTSC  
Reserved  
x
WSS, PAL 6  
Wide-screen signal, PAL  
Reserved  
x
WSS, NTSC 6  
Wide-screen signal, NTSC  
Reserved  
x
VITC, PAL 6  
Vertical interval timecode, PAL  
Reserved  
x
VITC, NTSC 6  
Vertical interval timecode, NTSC  
Reserved  
x
VPS, PAL 6  
Video program system, PAL  
Reserved  
x
x
Reserved  
Active Video  
Active video/full field  
2−3  
At powerup the host interface is required to program the VDP-configuration RAM (VDP-CRAM) contents with the  
lookup table (see Section 2.20.58). This is done through port address C3h. Each read from or write to this address  
will auto increment an internal counter to the next RAM location. To access the VDP-CRAM, the line mode registers  
(D0h−FCh) must be programmed with FFh to avoid a conflict with the internal microprocessor and the VDP in both  
writing and reading. Full field mode must also be disabled.  
Available VBI lines are from line 6 to line 27 of both field 1 and field 2. Each line can be any VBI mode.  
Output data is available either through the VBI-FIFO (B0h) or through dedicated registers at 90h−AFh, both of which  
2
are available through the I C port.  
2.9 VBI FIFO and Ancillary Data in Video Stream  
Sliced VBI data can be output as ancillary data in the video stream in the ITU-R BT.656 mode. VBI data is output during  
the horizontal blanking period following the line from which the data was retrieved. Table 2−2 shows the header format  
and sequence of the ancillary data inserted into the video stream. This format is also used to store any VBI data into  
the FIFO. The size of FIFO is 512 bytes. Therefore, the FIFO can store up to 11 lines of teletext data with the NTSC  
NABTS standard.  
Table 2−2. Ancillary Data Format and Sequence  
BYTE  
NO.  
D7  
(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(LSB)  
DESCRIPTION  
Ancillary data preamble  
0
1
2
3
4
5
6
7
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
NEP  
NEP  
NEP  
EP  
EP  
EP  
0
1
0
DID2  
F2  
N2  
DID1  
F1  
N1  
DID0  
F0  
N0  
Data ID (DID)  
F5  
N5  
F4  
N4  
F3  
N3  
Secondary data ID (SDID)  
Number of 32 bit data (NN)  
Internal data ID0 (IDID0)  
Video line # [7:0]  
0
0
0
Data  
error  
Match  
#1  
Match  
#2  
Video line # [9:8] Internal data ID1 (IDID1)  
st  
8
9
1. Data  
Data byte  
Data byte  
Data byte  
Data byte  
:
1
word  
word  
2. Data  
3. Data  
4. Data  
:
10  
11  
:
th  
N
m−1. Data  
m. Data  
Data byte  
Data byte  
Check sum  
Fill byte  
NEP  
1
EP  
0
CS[5:0]  
4(N+2)−1  
0
0
0
0
0
0
EP:  
Even parity for D0−D5  
NEP: Negated even parity  
DID:  
91h: Sliced data of VBI lines of first field  
53h: Sliced data of line 24 to end of first field  
55h: Sliced data of VBI lines of second field  
97h: Sliced data of line 24 to end of second field  
SDID:  
NN:  
This field holds the data format taken from the line mode register of the corresponding line.  
Number of Dwords beginning with byte 8 through 4(N+2). This value is the number of Dwords where  
each Dword is 4 bytes.  
IDID0:  
Transaction video line number [7:0]  
2−4  
IDID1:  
CS:  
Bit 0/1 = Transaction video line number [9:8]  
Bit 2 = Match 2 flag  
Bit 3 = Match 1 flag  
Bit 4 = 1 if an error was detected in the EDC block. 0 if not.  
Sum of D0−D7 of DID through last data byte.  
Fill byte: Fill bytes make a multiple of 4 bytes from byte 0 to last fill byte. For teletext modes, byte 8 is the sync pattern  
byte. Byte 9 is 1. Data (the first data byte).  
2.10 Raw Video Data Output  
The TVP5150A decoder can output raw A/D video data at 2x sampling rate for external VBI slicing. This is transmitted  
as an ancillary data block during the active horizontal portion of the line and during vertical blanking.  
2.11 Output Formatter  
The YCbCr digital output can be programmed as 8-bit 4:2:2 or 8-bit ITU-R BT.656 parallel interface standard.  
Table 2−3. Summary of Line Frequencies, Data Rates, and Pixel Counts  
HORIZONTAL  
LINE RATE (kHz)  
PIXELS PER  
LINE  
ACTIVE PIXELS SCLK FREQUENCY  
STANDARDS  
NTSC (M, 4.43), ITU-R BT.601  
PER LINE  
(MHz)  
27.00  
27.00  
27.00  
27.00  
27.00  
15.73426  
15.625  
858  
864  
858  
864  
864  
720  
PAL (B, D, G, H, I), ITU-R BT.601  
PAL (M), ITU-R BT.601  
720  
15.73426  
15.625  
720  
PAL (N), ITU-R BT.601  
720  
SECAM, ITU-R BT.601  
15.625  
720  
2.12 Synchronization Signals  
External (discrete) syncs are provided via the following signals:  
VSYNC (vertical sync)  
FID/VLK (field indicator or vertical lock indicator)  
GPCL/VBLK (general-purpose I/O or vertical blanking indicator)  
PALI/HLK (PAL switch indicator or horizontal lock indicator)  
HSYNC (horizontal sync)  
AVID (active video indicator)  
VSYNC, FID, PALI, and VBLK are software-set and programmable to the SCLK pixel count. This allows any possible  
alignment to the internal pixel count and line count. The default settings for a 525-/625-line video output are given  
as an example below.  
2−5  
525-Line  
525  
1
2
3
4
5
6
7
8
9
10  
11  
20  
21  
22  
Composite  
Video  
VSYNC  
FID  
GPCL/VBLK  
VBLK Start  
VBLK Stop  
262 263 264 265 266 267 268 269 270 271 272 273  
282 283 284  
Composite  
Video  
VSYNC  
FID  
GPCL/VBLK  
VBLK Start  
VBLK Stop  
625-Line  
310 311 312 313 314 315 316 317 318 319 320  
333 334 335 336  
Composite  
Video  
VSYNC  
FID  
GPCL/VBLK  
VBLK Start  
VBLK Stop  
622 623 624 625  
1
2
3
4
5
6
7
20  
21  
22  
23  
Composite  
Video  
VSYNC  
FID  
GPCL/VBLK  
VBLK Start  
VBLK Stop  
NOTE: Line numbering conforms to ITU-R BT.470.  
Figure 2−2. 8-bit 4:2:2, Timing With 2x Pixel Clock (SCLK) Reference  
2−6  
ITU-R BT.656 timing.  
NTSC 601 1436 1437 1438 1439 1440 1441  
1455 1456  
1459 1460  
1713 1714 1715  
1725 1726 1727  
0
0
1
1
2
2
3
3
1583 1584  
1587 1588  
1711 1712  
1723 1724  
PAL 601  
SECAM  
1436 1437 1438 1439 1440 1441  
1436 1437 1438 1439 1440 1441  
17 17 17 17  
24 25 26 27  
1479 1480  
1721 1722 1723  
1607 1608  
1719 1720  
Y
1
Cb  
0
Y
0
Cr  
0
ITU 656  
Cb  
Y
Cr  
Y
FF  
00  
10  
80  
00  
00  
XX  
10  
80  
10  
FF  
359  
718  
359 719  
Datastream  
HSYNC  
AVID  
HSYNC Start  
AVID Stop  
AVID Start  
NOTE: AVID rising edge occurs 4 SCLK cycles early when in the ITU-R BT.656 output mode.  
Figure 2−3. Horizontal Synchronization Signals  
2.13 AVID Cropping  
AVID or active video cropping provides a means to decrease bandwidth of the video output. This is accomplished  
by horizontally blanking a number of AVID pulses and by vertically blanking a number of lines per frame. The  
horizontal AVID cropping is controlled using registers 11h and 12h for start pixels MSB and LSB, respectively.  
Registers 13h and 14h provide access to stop pixels MSB and LSB, respectively. The vertical AVID cropping is  
controlled using the vertical blanking (VBLK) start and stop registers at addresses 18h and 19h. Figure 2−4 shows  
an AVID application.  
2−7  
Active Video Area  
AVID Cropped  
Area  
AVID Start  
AVID Stop  
HSYNC  
Figure 2−4. AVID Application  
2.14 Embedded Syncs  
Standards with embedded syncs insert SAV and EAV codes into the datastream at the beginning and end of horizontal  
blanking. These codes contain the V and F bits which also define vertical timing. F and V change on EAV. Table 2−4  
gives the format of the SAV and EAV codes.  
H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line and field  
counter varies depending on the standard. Please refer to ITU-R BT.656 for more information on embedded syncs.  
The P bits are protection bits:  
P3 = V xor H  
P2 = F xor H  
P1 = F xor V  
P0 = F xor V xor H  
Table 2−4. EAV and SAV Sequence  
8-BIT DATA  
D7 (MSB)  
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
D0  
1
Preamble  
Preamble  
Preamble  
Status word  
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
V
H
P3  
P2  
P1  
P0  
2−8  
2
2.15 I C Host Interface  
2
The I C standard consists of two signals, serial input/output data line (SDA) and input/output clock line (SCL), which  
carry information between the devices connected to the bus. A third signal (I2CSEL) is used for slave address  
2
selection. Although the I C system can be multimastered, the TVP5150A decoder functions as a slave device only.  
Both SDA and SCL must be connected to a positive supply voltage via a pullup resistor. When the bus is free, both  
lines are high. The slave address select terminal (I2CSEL) enables the use of two TVP5150A decoders tied to the  
2
same I C bus. At power up, the status of the I2CSEL is polled. Depending on the write and read addresses to be used  
for the TVP5150A decoder, it can either be pulled low or high through a resistor. This terminal is multiplexed with  
YOUT7 and hence must not be tied directly to ground or IO_DVDD. Table 2−6 summarizes the terminal functions of  
2
the I C-mode host interface.  
Table 2−5. Write Address Selection  
I2CSEL  
WRITE ADDRESS  
0
1
B8h  
BAh  
2
Table 2−6. I C Terminal Description  
SIGNAL  
TYPE  
I
DESCRIPTION  
I2CSEL (YOUT7)  
Slave address selection  
Input/output clock line  
Input/output data line  
SCL  
SDA  
I/O (open drain)  
I/O (open drain)  
Data transfer rate on the bus is up to 400 kbits/s. The number of interfaces connected to the bus is dependent on  
the bus capacitance limit of 400 pF. The data on the SDA line must be stable during the high period of the SCL except  
for start and stop conditions. The high or low state of the data line can only change with the clock signal on the SCL  
2
line being low. A high-to-low transition on the SDA line while the SCL is high indicates an I C start condition. A  
2
low-to-high transition on the SDA line while the SCL is high indicates an I C stop condition.  
Every byte placed on the SDA must be 8 bits long. The number of bytes which can be transferred is unrestricted. Each  
2
byte must be followed by an acknowledge bit. The acknowledge-related clock pulse is generated by the I C master.  
2
2.15.1 I C Write Operation  
Data transfers occur utilizing the following illustrated formats.  
2
An I C master initiates a write operation to the TVP5150A decoder by generating a start condition (S) followed by  
2
the TVP5150A I C address (as shown below), in MSB first bit order, followed by a 0 to indicate a write cycle. After  
receiving an acknowledge from the TVP5150A decoder, the master presents the subaddress of the register, or the  
first of a block of registers it wants to write, followed by one or more bytes of data, MSB first. The TVP5150A decoder  
2
acknowledges each byte after completion of each transfer. The I C master terminates the write operation by  
generating a stop condition (P).  
Step 1  
0
2
I C Start (master)  
S
Step 2  
7
6
5
4
3
2
1
0
2
I C General address (master)  
1
0
1
1
1
0
X
0
Step 3  
9
2
I C Acknowledge (slave)  
A
Step 4  
7
6
5
4
3
2
1
0
2
I C Write register address (master)  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
2−9  
Step 5  
9
2
I C Acknowledge (slave)  
A
Step 6  
7
6
5
4
3
2
1
0
2
I C Write data (master)  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Step 7  
9
2
I C Acknowledge (slave)  
A
Step 8  
0
2
I C Stop (master)  
P
Repeat steps 6 and 7 until all data have been written.  
2
2.15.2 I C Read Operation  
2
The read operation consists of two phases. The first phase is the address phase. In this phase, an I C master initiates  
2
a write operation to the TVP5150A decoder by generating a start condition (S) followed by the TVP5150A I C address,  
in MSB first bit order, followed by a 0 to indicate a write cycle. After receiving acknowledges from the TVP5150A  
decoder, the master presents the subaddress of the register or the first of a block of registers it wants to read. After  
the cycle is acknowledged, the master terminates the cycle immediately by generating a stop condition (P).  
Table 2−7. Read Address Selection  
I2CSEL  
READ ADDRESS  
0
1
B9h  
BBh  
2
The second phase is the data phase. In this phase, an I C master initiates a read operation to the TVP5150A decoder  
2
by generating a start condition followed by the TVP5150A I C address (as shown below for a read operation), in MSB  
2
first bit order, followed by a 1 to indicate a read cycle. After an acknowledge from the TVP5150A decoder, the I C  
2
master receives one or more bytes of data from the TVP5150A decoder. The I C master acknowledges the transfer  
at the end of each byte. After the last data byte desired has been transferred from the TVP5150A decoder to the  
master, the master generates a not acknowledge followed by a stop.  
2.15.2.1Read Phase 1  
Step 1  
0
2
I C Start (master)  
S
Step 2  
7
6
5
4
3
2
1
0
2
I C General address (master)  
1
0
1
1
1
0
X
0
Step 3  
9
2
I C Acknowledge (slave)  
A
Step 4  
7
6
5
4
3
2
1
0
2
I C Read register address (master)  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
Step 5  
9
2
I C Acknowledge (slave)  
A
Step 6  
0
2
I C Stop (master)  
P
2−10  
2.15.2.2Read Phase 2  
Step 7  
0
2
I C Start (master)  
S
Step 8  
7
6
5
4
3
2
1
0
2
I C General address (master)  
1
0
1
1
1
0
X
1
Step 9  
9
2
I C Acknowledge (slave)  
A
Step 10  
7
6
5
4
3
2
1
0
2
I C Read data (slave)  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Step 11  
9
2
I C Not acknowledge (master)  
A
Step 12  
0
2
I C Stop (master)  
P
Repeat steps 10 and 11 for all bytes read. Master does not acknowledge the last read data received.  
2
2.15.2.3I C Timing Requirements  
2
The TVP5150A decoder requires delays in the I C accesses to accommodate its internal processor’s timing. In  
2
2
accordance with I C specifications, the TVP5150A decoder holds the I C clock line (SCL) low to indicate the wait  
2
2
2
period to the I C master. If the I C master is not designed to check for the I C clock line held-low condition, then the  
maximum delays must always be inserted where required. These delays are of variable length; maximum delays are  
indicated in the following diagram:  
Normal register writing address 00h−8Fh (addresses 90h−FFh do not require delays)  
Slave address  
(B8h)  
Data  
(XXh)  
Start  
Ack  
Subaddress  
Ack  
Ack  
Wait 64 µs  
Stop  
The 64-µs delay is for all registers that do not require a reinitialization. Delays may be more for some registers.  
2.16 Clock Circuits  
An internal line-locked PLL generates the system and pixel clocks. A 14.31818-MHz clock is required to drive the PLL.  
This may be input to the TVP5150A decoder on terminal 5 (XTAL1), or a crystal of 14.31818-MHz fundamental  
resonant frequency may be connected across terminals 5 and 6 (XTAL2). Figure 2−5 shows the reference clock  
configurations. For the example crystal circuit shown (a parallel-resonant crystal with 14.31818-MHz fundamental  
frequency), the external capacitors must have the following relationship:  
C
= C = 2C − C  
,
L1  
L2  
L
STRAY  
where C  
configurations.  
is the terminal capacitance with respect to ground. Figure 2−5 shows the reference clock  
STRAY  
TVP5150A  
TVP5150A  
14.31818-MHz  
Crystal  
C
C
L1  
L2  
14.31818-MHz  
TTL Clock  
5
6
5
6
XTAL1  
XTAL1  
XTAL2  
XTAL2  
Figure 2−5. Reference Clock Configurations  
2−11  
2.17 Genlock Control and RTC  
A Genlock control (GLCO) function is provided to support a standard video encoder to synchronize its internal color  
oscillator for properly reproduced color with unstable timebase sources like VCRs.  
The frequency control word of the internal color subcarrier digital control oscillator (DTO) and the subcarrier phase  
reset bit are transmitted via terminal 23 (GLCO). The frequency control word is a 23-bit binary number. The frequency  
of the DTO can be calculated from the following equation:  
Fctrl  
x
=
Fdto  
Fsclk  
23  
2
where F  
SCLK.  
is the frequency of the DTO, F is the 23-bit DTO frequency control, and F  
is the frequency of the  
dto  
ctrl  
sclk  
2.17.1 TVP5150A Genlock Control Interface  
2
A write of 1 to bit 4 of the chrominance control register at I C subaddress 1Ah causes the subcarrier DTO phase reset  
bit to be sent on the next scan line on GLCO. The active low reset bit occurs 7 SCLKs after the transmission of the  
last bit of DCO frequency control. Upon the transmission of the reset bit, the phase of the TVP5150A internal  
subcarrier DCO is reset to zero.  
A Genlock slave device can be connected to the GLCO terminal and uses the information on GLCO to synchronize  
its internal color phase DCO to achieve clean line and color lock.  
Figure 2−6 shows the timing diagram of the GLCO mode.  
SCLK  
GLCO  
MSB  
21  
LSB  
0
22  
>128 SCLK  
23 SCLK  
7 SCLK  
23-Bit Frequency Control  
1 SCLK  
1 SCLK  
DCO Reset Bit  
Start Bit  
Figure 2−6. GLCO Timing  
2−12  
2.17.2 RTC Mode  
Figure 2−7 shows the timing diagram of the RTC mode. Clock rate for the RTC mode is 4 times slower than the GLCO  
clock rate. For PLL frequency control, the upper 22 bits are used. Each frequency control bit is 2 clock cycles long.  
The active low reset bit occurs 6 CLKs after the transmission of the last bit of PLL frequency control.  
M
S
B
L
S
B
RTC  
21  
0
128 CLK  
16 CLK  
2 CLK  
44 CLK  
1 CLK  
22-Bit Fsc Frequency Control  
PAL  
Switch  
2 CLK  
Start  
Bit  
3 CLK  
1 CLK  
Reset  
Bit  
Figure 2−7. RTC Timing  
2.18 Reset and Power Down  
Terminals 8 (RESETB) and 28 (PDN) work together to put the TVP5150A decoder into one of the two modes.  
Table 2−8 shows the configuration.  
Table 2−8. Reset and Power Down Modes  
PDN  
RESETB  
CONFIGURATION  
Reserved (unknown state)  
Powers down the decoder  
Resets the decoder  
0
0
1
1
0
1
0
1
Normal operation  
2.19 Internal Control Registers  
The TVP5150A decoder is initialized and controlled by a set of internal registers which set all device operating  
2
parameters. Communication between the external controller and the TVP5150A decoder is through I C. Table 2−9  
shows the summary of these registers. The reserved registers must not be written. Reserved bits in the defined  
registers must be written with 0s, unless otherwise noted. The detailed programming information of each register is  
described in the following sections.  
2−13  
Table 2−9. Registers Summary  
REGISTER FUNCTION  
ADDRESS  
00h  
DEFAULT  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
Video input source selection #1  
Analog channel controls  
Operation mode controls  
Miscellaneous controls  
Autoswitch mask:  
01h  
15h  
02h  
00h  
03h  
01h  
TVP5150A  
04h  
04h  
FCh  
DCh  
00h  
10h  
60h  
00h  
80h  
80h  
00h  
80h  
47h  
00h  
08h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TVP5150AM1  
Reserved  
05h  
Color killer threshold control  
Luminance processing control #1  
Luminance processing control #2  
Brightness control  
06h  
07h  
08h  
09h  
Color saturation control  
Hue control  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
Contrast control  
Outputs and data rates select  
Luminance processing control #3  
Configuration shared pins  
Reserved  
Active video cropping start MSB  
Active video cropping start LSB  
Active video cropping stop MSB  
Active video cropping stop LSB  
Genlock/RTC  
11h  
00h  
00h  
00h  
00h  
01h  
80h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
12h  
13h  
14h  
15h  
Horizontal sync start  
16h  
Reserved  
17h  
Vertical blanking start  
Vertical blanking stop  
Chrominance processing control #1  
Chrominance processing control #2  
Interrupt reset register B  
Interrupt enable register B  
Interrupt configuration register B  
Reserved  
18h  
00h  
00h  
0Ch  
14h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh−27h  
28h  
Video standard  
00h  
R/W  
Reserved  
29h−2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
Cb gain factor  
R
Cr gain factor  
R
Macrovision on counter  
Macrovision off counter  
656 revision select (TVP5150AM1 only)  
0Fh  
01h  
00h  
R/W  
R/W  
R/W  
R = Read only  
W = Write only  
R/W = Read and write  
2−14  
Table 2−9. Registers Summary (Continued)  
REGISTER FUNCTION  
ADDRESS  
31h−7Fh  
80h  
DEFAULT  
R/W  
Reserved  
MSB of device ID  
51h  
50h  
R
R
LSB of device ID  
81h  
ROM major version:  
TVP5150A  
82h  
82h  
03h  
04h  
R
R
TVP5150AM1  
ROM minor version:  
TVP5150A  
83h  
83h  
21h  
00h  
R
R
R
R
R
R
R
R
R
R
R
TVP5150AM1  
Vertical line count MSB  
Vertical line count LSB  
Interrupt status register B  
Interrupt active register B  
Status register #1  
84h  
85h  
86h  
87h  
88h  
Status register #2  
89h  
Status register #3  
8Ah  
Status register #4  
8Bh  
Status register #5  
8Ch  
Reserved  
8Dh−8Fh  
90h−93h  
94h−99h  
9Ah−A6h  
A7h−AFh  
B0h  
Closed caption data registers  
WSS data registers  
VPS data registers  
VITC data registers  
VBI FIFO read data  
Teletext filter 1  
R
R
R
R
R
B1h−B5h  
B6h−BAh  
BBh  
00h  
00h  
00h  
R/W  
R/W  
R/W  
Teletext filter 2  
Teletext filter enable  
Reserved  
BCh−BFh  
C0h  
Interrupt status register A  
Interrupt enable register A  
Interrupt configuration  
VDP configuration RAM data  
Configuration RAM address low byte  
Configuration RAM address high byte  
VDP status register  
FIFO word count  
00h  
00h  
04h  
DCh  
0Fh  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
C1h  
C2h  
C3h  
C4h  
C5h  
C6h  
C7h  
R
FIFO interrupt threshold  
FIFO reset  
C8h  
80h  
00h  
00h  
4Eh  
00h  
R/W  
W
C9h  
Line number interrupt  
Pixel alignment register low byte  
Pixel alignment register high byte  
CAh  
R/W  
R/W  
R/W  
CBh  
CCh  
R = Read only  
W = Write only  
R/W = Read and write  
2−15  
Table 2−9. Registers Summary (Continued)  
REGISTER FUNCTION  
ADDRESS  
CDh  
DEFAULT  
R/W  
FIFO output control  
Reserved  
01h  
R/W  
CEh  
Full field enable  
CFh  
00h  
R/W  
R/W  
R/W  
D0h  
D1h−FBh  
00h  
FFh  
Line mode registers  
Full field mode register  
Reserved  
FCh  
7Fh  
FDh−FFh  
R = Read only  
W = Write only  
R/W = Read and write  
2.20 Register Definitions  
2.20.1 Video Input Source Selection #1 Register  
Address  
Default  
00h  
00h  
7
6
5
4
3
2
1
0
Channel 1 source  
selection  
Reserved  
Black output  
Reserved  
S-video selection  
Channel 1 source selection:  
0 = AIP1A selected (default)  
1 = AIP1B selected  
Table 2−10. Analog Channel and Video Mode Selection  
ADDRESS 00  
INPUT(S) SELECTED  
BIT 1  
BIT 0  
Composite  
S-Video  
AIP1A (default)  
AIP1B  
0
1
x
0
0
1
AIP1A (luma), AIP1B (chroma)  
Black output:  
0 = Normal operation (default)  
1 = Force black screen output (outputs synchronized)  
a. Forced to 10h in normal mode  
b. Forced to 01h in extended mode  
2−16  
2.20.2 Analog Channel Controls Register  
Address  
Default  
01h  
15h  
7
6
5
4
3
2
1
0
Reserved  
1
Automatic offset control  
Automatic gain control  
Automatic offset control:  
00 = Disabled  
01 = Automatic offset enabled (default)  
10 = Reserved  
11 = Offset level frozen to the previously set value  
Automatic gain control (AGC):  
00 = Disabled (fixed gain value)  
01 = AGC enabled (default)  
10 = Reserved  
11 = AGC frozen to the previously set value  
2.20.3 Operation Mode Controls Register  
Address  
Default  
02h  
00h  
7
6
5
4
3
2
1
0
Color burst  
reference enable  
White peak  
disable  
Color subcarrier  
PLL frozen  
Luma peak  
disable  
Reserved  
TV/VCR mode  
Power down mode  
Color burst reference enable  
0 = Color burst reference for AGC disabled (default)  
1 = Color burst reference for AGC enabled  
TV/VCR mode  
00 = Automatic mode determined by the internal detection circuit. (default)  
01 = Reserved  
10 = VCR (nonstandard video) mode  
11 = TV (standard video) mode  
With automatic detection enabled, unstable or nonstandard syncs on the input video forces the detector into the VCR  
mode. This turns off the comb filters and turns on the chroma trap filter.  
White peak disable  
0 = White peak protection enabled (default)  
1 = White peak protection disabled  
Color subcarrier PLL frozen:  
0 = Color subcarrier PLL increments by the internally generated phase increment. (default)  
GLCO pin outputs the frequency increment.  
1 = Color subcarrier PLL stops operating.  
GLCO pin outputs the frozen frequency increment.  
Luma peak disable  
0 = Luma peak processing enabled (default)  
1 = Luma peak processing disabled  
Power down mode:  
0 = Normal operation (default)  
1 = Power down mode. A/Ds are turned off and internal clocks are reduced to minimum.  
2−17  
2.20.4 Miscellaneous Control Register  
Address  
Default  
03h  
01h  
7
6
5
4
3
2
1
0
HSYNC, VSYNC/PALI,  
AVID, FID/GLCO  
output enable  
GPCL output  
enable  
Lock status  
(HVLK)  
YCbCr output  
enable (TVPOE)  
Vertical blanking  
on/off  
Clock output  
enable  
VBKO  
GPCL pin  
VBKO (pin 27) function select:  
0 = GPCL (default)  
1 = VBLK  
GPCL (data is output based on state of bit 5):  
0 = GPCL outputs 0 (default)  
1 = GPCL outputs 1  
GPCL output enable:  
0 = GPCL is inactive (default)  
1 = GPCL is output  
NOTE: GPCL must not be programmed to be 0 when register 0Fh bit 1 is 1 (GPCL/VBLK).  
Lock status (HVLK) (configured along with register 0Fh, please see Figure 2−8 for the relationship between the  
configuration shared pins):  
0 = Terminal VSYNC/PALI outputs the PAL indicator (PALI) signal and terminal FID/GLCO outputs the field  
ID (FID) signal (default) (if terminals are configured to output PALI and FID in register 0Fh)  
1 = Terminal VSYNC/PALI outputs the horizontal lock indicator (HLK) and terminal FID outputs the vertical  
lock indicator (VLK) (if terminals are configured to output PALI and FID in register 0Fh)  
These are additional functionalities that are provided for ease of use.  
YCbCr output enable:  
0 = YOUT[7:0] high impedance (default)  
1 = YOUT[7:0] active  
HSYNC, VSYNC/PALI, active video indicator (AVID), and FID/GLCO output enables:  
0 = HSYNC, VSYNC/PALI, AVID, and FID/GLCO are high-impedance (default).  
1 = HSYNC, VSYNC/PALI, AVID, and FID/GLCO are active.  
Vertical blanking on/off:  
0 = Vertical blanking (VBLK) off (default)  
1 = Vertical blanking (VBLK) on  
Clock output enable:  
0 = SCLK output is high impedance.  
1 = SCLK output is enabled (default).  
NOTE: When enabling the outputs, ensure the clock output is not accidently disabled.  
Table 2−11. Digital Output Control  
Register 03h, Bit 3  
(TVPOE)  
Register C2h, Bit 2  
(VDPOE)  
YCbCr Output  
Notes  
0
X
1
X
0
1
High impedance After both YCbCr output enable bits are programmed.  
High impedance After both YCbCr output enable bits are programmed.  
Active  
After both YCbCr output enable bits are programmed.  
NOTE: VDPOE default is 1 and TVPOE default is 0.  
2−18  
0F(Bit 2)  
VSYNC/PALI  
0F(Bit 4)  
LOCK24B  
VSYNC  
0
M
U
X
PALI  
0
1
VSYNC/PALI/HLK/HVLK  
M
U
X
Pin 24  
HLK  
0
1
PALI/HLK/HVLK  
1
M
U
X
HLK/HVLK  
HVLK  
HVLK  
VLK  
1
0
M
U
X
VLK/HVLK  
FID  
1
0
M
U
X
FID/VLK/HVLK  
GLCO  
0
1
M
U
X
FID/GLCO/VLK/HVLK  
Pin 23  
0F(Bit 6)  
LOCK23  
0F(Bit 3)  
FID/GLCO  
03(Bit 4)  
HVLK  
VBLK  
GPCL  
1
0
M
U
X
VBLK/GPCL  
INTREQ  
1
0
M
U
X
INTREQ/GPCL//VBLK  
Pin 27  
SCLK  
PCLK  
0
1
M
U
X
PCLK/SCLK  
Pin 9  
03(Bit 7)  
VBKO  
0F(Bit 1)  
INTREQ/GPCL/VBLK  
0F(Bit 0)  
SCLK/PCLK  
Figure 2−8. Configuration Shared Pins  
NOTE: Also refer to the configuration shared pins register at subaddress 0Fh.  
2−19  
2.20.5 Autoswitch Mask Register  
Address  
Device  
Default  
04h  
TVP5150A  
FCh  
TVP5150AM1  
DCh  
7
6
5
4
3
2
1
0
Reserved  
SEC_OFF  
N443_OFF  
PALN_OFF  
PALM_OFF  
Reserved  
N443_OFF:  
0 = NTSC443 is unmasked from the autoswitch process. Autoswitch does switch to NTSC443.  
1 = NTSC443 is masked from the autoswitch process. Autoswitch does not switch to NTSC443. (default)  
PALN_OFF:  
0 = PAL-N is unmasked from the autoswitch process. Autoswitch does switch to PAL-N.  
1 = PAL-N is masked from the autoswitch process. Autoswitch does not switch to PAL-N. (default)  
PALM_OFF:  
0 = PAL-M is unmasked from the autoswitch process. Autoswitch does switch to PAL-M.  
1 = PAL-M is masked from the autoswitch process. Autoswitch does not switch to PAL-M. (default)  
SEC_OFF:  
0 = SECAM is unmasked from the autoswitch process. Autoswitch does switch to SECAM. (default for  
TVP5150AM1)  
1 = SECAM is masked from the autoswitch process. Autoswitch does not switch to SECAM. (default for  
TVP5150A)  
2.20.6 Color Killer Threshold Control Register  
Address  
Default  
06h  
10h  
7
6
5
4
3
2
1
0
Reserved  
Automatic color killer  
Color killer threshold  
Automatic color killer:  
00 = Automatic mode (default)  
01 = Reserved  
10 = Color killer enabled, the CbCr terminals are forced to a zero color state.  
11 = Color killer disabled  
Color killer threshold:  
11111 = −30 dB (minimum)  
10000 = −24 dB (default)  
00000 = −18 dB (maximum)  
2−20  
2.20.7 Luminance Processing Control #1 Register  
Address  
Default  
07h  
60h  
7
6
5
4
3
2
1
0
2x luma output  
enable  
Disable raw  
header  
Luma bypass enabled  
during vertical blanking  
Luminance signal delay with respect to  
chrominance signal  
Pedestal not present  
2x luma output enable:  
0 = Output depends on bit 4, luminance bypass enabled during vertical blanking (default).  
1 = Outputs 2x luma samples during the entire frame. This bit takes precedence over bit 4.  
Pedestal not present:  
0 = 7.5 IRE pedestal is present on the analog video input signal.  
1 = Pedestal is not present on the analog video input signal (default).  
Disable raw header:  
0 = Insert 656 ancillary headers for raw data  
1 = Disable 656 ancillary headers and instead force dummy ones (0x40) (default)  
Luminance bypass enabled during vertical blanking:  
0 = Disabled. If bit 7, 2x luma output enable, is 0, then normal luminance processing occurs and YCbCr  
samples are output during the entire frame (default).  
1 = Enabled. If bit 7, 2x luma output enable, is 0, then normal luminance processing occurs and YCbCr  
samples are output during VACTIVE and 2x luma samples are output during VBLK. Luminance bypass  
occurs for the duration of the vertical blanking as defined by registers 18h and 19h.  
Luminance bypass occurs for the duration of the vertical blanking as defined by registers 18h and 19h.  
Luma signal delay with respect to chroma signal in pixel clock increments (range −8 to +7 pixel clocks):  
1111 = −8 pixel clocks delay  
1011 = −4 pixel clocks delay  
1000 = −1 pixel clocks delay  
0000 = 0 pixel clocks delay (default)  
0011 = 3 pixel clocks delay  
0111 = 7 pixel clocks delay  
2−21  
2.20.8 Luminance Processing Control #2 Register  
Address  
Default  
08h  
00h  
7
6
5
4
3
2
1
0
Reserved  
Luminance filter select  
Reserved  
Peaking gain  
Mac AGC control  
Luminance filter select:  
0 = Luminance comb filter enabled (default)  
1 = Luminance chroma trap filter enabled  
Peaking gain (sharpness):  
00 = 0 (default)  
01 = 0.5  
10 = 1  
11 = 2  
Information on peaking frequency: ITU-R BT.601 sampling rate: all standards—peaking center frequency is 2.6 MHz  
Mac AGC control:  
00 = Auto mode  
01 = Auto mode  
10 = Force Macrovision AGC pulse detection off  
11 = Force Macrovision AGC pulse detection on  
2.20.9 Brightness Control Register  
Address  
Default  
09h  
80h  
7
6
5
4
3
2
1
0
Brightness control  
Brightness control:  
1111 1111 = 255 (bright)  
1000 0000 = 128 (default)  
0000 0000 = 0 (dark)  
2.20.10 Color Saturation Control Register  
Address  
Default  
0Ah  
80h  
7
6
5
4
3
2
1
0
Saturation control  
Saturation control:  
1111 1111 = 255 (maximum)  
1000 0000 = 128 (default)  
0000 0000 = 0 (no color)  
2−22  
2.20.11 Hue Control Register  
(does not apply to SECAM)  
Address  
Default  
0Bh  
00h  
7
6
5
4
3
2
1
0
Hue control  
Hue control:  
0111 1111 = +180 degrees  
0000 0000 = 0 degrees (default)  
1000 0000 = −180 degrees  
2.20.12 Contrast Control Register  
Address  
Default  
0Ch  
80h  
7
6
5
4
3
2
1
0
Contrast control  
Contrast control:  
1111 1111 = 255 (maximum contrast)  
1000 0000 = 128 (default)  
0000 0000 = 0 (minimum contrast)  
2.20.13 Outputs and Data Rates Select Register  
Address  
Default  
0Dh  
47h  
7
6
5
4
3
2
1
0
YCbCr output code  
range  
Reserved  
CbCr code format  
YCbCr data path bypass  
YCbCr output format  
YCbCr output code range:  
0 = ITU-R BT.601 coding range (Y ranges from 16 to 235. U and V range from 16 to 240)  
1 = Extended coding range (Y, U, and V range from 1 to 254) (default)  
CbCr code format:  
0 = Offset binary code (2s complement + 128) (default)  
1 = Straight binary code (2s complement)  
YCbCr data path bypass:  
00 = Normal operation (default)  
01 = Decimation filter output connects directly to the YCbCr output pins. This data is similar to the digitized  
composite data, but the HBLANK area is replaced with ITU-R BT.656 digital blanking.  
10 = Digitized composite (or digitized S-video luma). A/D output connects directly to the YCbCr output pins.  
11 = Reserved  
2−23  
YCbCr output format:  
000 = 8-bit 4:2:2 YCbCr with discrete sync output  
001 = Reserved  
010 = Reserved  
011 = Reserved  
100 = Reserved  
101 = Reserved  
110 = Reserved  
111 = 8-bit ITU-R BT.656 interface with embedded sync output (default)  
2.20.14 Luminance Processing Control #3 Register  
Address  
Default  
0Eh  
00h  
7
6
5
4
3
2
1
0
Reserved  
Luminance trap filter select  
Luminance filter stop band bandwidth (MHz):  
00 = No notch (default)  
01 = Notch 1  
10 = Notch 2  
11 = Notch 3  
Luminance filter select [1:0] selects one of the four chroma trap (notch) filters to produce luminance signal by  
removing the chrominance signal from the composite video signal. The stopband of the chroma trap filter is centered  
at the chroma subcarrier frequency with stopband bandwidth controlled by the two control bits. Please refer to the  
following table for the stopband bandwidths. The WCF bit is controlled in the chrominance control #2 register, see  
Section 2.20.25.  
WCF  
FILTER SELECT  
NTSC/PAL/SECAM ITU-R BT.601  
00  
01  
10  
11  
00  
01  
10  
11  
1.2214  
0.8782  
0.7297  
0.4986  
1.4170  
1.0303  
0.8438  
0.5537  
0
1
2−24  
2.20.15 Configuration Shared Pins Register  
Address  
Default  
0Fh  
08h  
7
6
5
4
3
2
1
0
Reserved  
LOCK23  
Reserved  
LOCK24B  
FID/GLCO  
VSYNC/PALI  
INTREQ/GPCL/VBLK  
SCLK/PCLK  
LOCK23 (pin 23) function select:  
0 = FID (default, if bit 3 is selected to output FID)  
1 = Lock indicator (indicates whether the device is locked vertically)  
LOCK24B (pin 24) function select:  
0 = PALI (default, if bit 2 is selected to output PALI)  
1 = Lock indicator (indicates whether the device is locked horizontally)  
FID/GLCO (pin 23) function select (also refer to register 03h for enhanced functionality):  
0 = FID  
1 = GLCO (default)  
VSYNC/PALI (pin 24) function select (also refer to register 03h for enhanced functionality):  
0 = VSYNC (default)  
1 = PALI  
INTREQ/GPCL/VBLK (pin 27) function select:  
0 = INTREQ (default)  
1 = GPCL or VBLK depending on bit 7 of register 03h  
SCLK/PCLK (pin 9) function select:  
0 = SCLK (default)  
1 = PCLK (1x pixel clock frequency)  
Please see Figure 2−8 for the relationship between the configuration shared pins.  
2.20.16 Active Video Cropping Start Pixel MSB Register  
Address  
Default  
11h  
00h  
7
6
5
4
3
2
1
0
AVID start pixel MSB [7:0]  
Active video cropping start pixel MSB [9:2], set this register first before setting register 12h. The TVP5150A decoder  
updates the AVID start values only when register 12h is written to. This start pixel value is relative to the default values  
of the AVID start pixel.  
2−25  
2.20.17 Active Video Cropping Start Pixel LSB Register  
Address  
Default  
12h  
00h  
7
6
5
4
3
2
1
0
Reserved  
AVID active  
AVID start pixel LSB [1:0]  
AVID active:  
0 = AVID out active in VBLK (default)  
1 = AVID out inactive in VBLK  
Active video cropping start pixel LSB [1:0]: The TVP5150A decoder updates the AVID start values only when this  
register is written to.  
AVID start [9:0] (combined registers 11h and 12h):  
01 1111 1111 = 511  
00 0000 0001 = 1  
00 0000 0000 = 0 (default)  
11 1111 1111 = −1  
10 0000 0000 = −512  
2.20.18 Active Video Cropping Stop Pixel MSB Register  
Address  
Default  
13h  
00h  
7
6
5
4
3
2
1
0
AVID stop pixel MSB  
Active video cropping stop pixel MSB [9:2], set this register first before setting the register 14h. The TVP5150A  
decoder updates the AVID stop values only when register 14h is written to. This stop pixel value is relative to the  
default values of the AVID stop pixel.  
2.20.19 Active Video Cropping Stop Pixel LSB Register  
Address  
Default  
14h  
00h  
7
6
5
4
3
2
1
0
Reserved  
AVID stop pixel LSB  
Active video cropping stop pixel LSB [1:0]: The number of pixels of active video must be an even number. The  
TVP5150A decoder updates the AVID stop values only when this register is written to.  
AVID stop [9:0] (combined registers 13h and 14h):  
01 1111 1111 = 511  
00 0000 0001 = 1  
00 0000 0000 = 0 (default) (see Figure 2−3 and Figure 2−4)  
11 1111 1111 = −1  
10 0000 0000 = −512  
2−26  
2.20.20 Genlock and RTC Register  
Address  
Default  
15h  
01h  
7
6
5
4
3
2
1
0
Reserved  
F/V bit control  
Reserved  
GLCO/RTC  
F/V bit control  
BIT 5  
BIT 4  
NUMBER OF LINES  
Standard  
F BIT  
V BIT  
ITU-R BT.656 ITU-R BT.656  
Nonstandard even  
Nonstandard odd  
Standard  
Force to 1  
Toggles  
Switch at field boundary  
Switch at field boundary  
0
0
0
ITU-R BT.656 ITU-R BT.656  
1
Nonstandard  
Standard  
Toggles  
Switch at field boundary  
ITU-R BT.656 ITU-R BT.656  
1
1
0
1
Nonstandard  
Illegal  
Pulse mode  
Switch at field boundary  
GLCO/RTC. The following table helps in understanding the different modes.  
BIT 2  
BIT 1  
BIT 0  
GENLOCK/RTC MODE  
GLCO  
0
0
1
1
X
X
X
X
0
1
0
1
RTC output mode 0 (default)  
GLCO  
RTC output mode 1  
All other values are reserved.  
Figure 2−6 shows the timing of GLCO and Figure 2−7 shows the timing of RTC.  
2−27  
2.20.21 Horizontal Sync (HSYNC) Start Register  
Address  
Default  
16h  
80h  
7
6
5
4
3
2
1
0
HSYNC start  
HSYNC start:  
1111 1111 = −127 x 4 pixel clocks  
1111 1110 = −126 x 4 pixel clocks  
1000 0001 = −1 x 4 pixel clocks  
1000 0000 = 0 pixel clocks (default)  
0111 1111 = 1 x 4 pixel clocks  
0111 1110 = 2 x 4 pixel clocks  
0000 0000 = 128 x 4 pixel clocks  
BT.656 EAV Code  
BT.656 SAV Code  
U
Y
V
Y
F
F
0
0
0
0
X
Y
8
0
1
0
8
0
1
0
F
F
0
0
0
0
X
Y
U
Y
YOUT  
[7:0]  
HSYNC  
AVID  
128 SCLK  
Start of  
Digital Line  
Start of Digital  
Active Line  
N
hbhs  
N
hb  
Figure 2−9. Horizontal Sync  
Table 2−12. Clock Delays (SCLKs)  
STANDARD  
NTSC  
N
N
hb  
hbhs  
16  
272  
284  
280  
PAL  
20  
40  
SECAM  
Detailed timing information is also available in Section 2.12, Synchronization Signals.  
2−28  
2.20.22 Vertical Blanking Start Register  
Address  
Default  
18h  
00h  
7
6
5
4
3
2
1
0
Vertical blanking start  
Vertical blanking (VBLK) start:  
0111 1111 = 127 lines after start of vertical blanking interval  
0000 0001 = 1 line after start of vertical blanking interval  
0000 0000 = Same time as start of vertical blanking interval (default) (see Figure 2−2)  
1111 1111 = 1 line before start of vertical blanking interval  
1000 0000 = 128 lines before start of vertical blanking interval  
Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this register  
determines the timing of the GPCL/VBLK signal when it is configured to output vertical blank (see register 03h). The  
setting in this register also determines the duration of the luma bypass function (see register 07h).  
2.20.23 Vertical Blanking Stop Register  
Address  
Default  
19h  
00h  
7
6
5
4
3
2
1
0
Vertical blanking stop  
Vertical blanking (VBLK) stop:  
0111 1111 = 127 lines after stop of vertical blanking interval  
0000 0001 = 1 line after stop of vertical blanking interval  
0000 0000 = Same time as stop of vertical blanking interval (default) (see Figure 2−2)  
1111 1111 = 1 line before stop of vertical blanking interval  
1000 0000 = 128 lines before stop of vertical blanking interval  
Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this register  
determines the timing of the GPCL/VBLK signal when it is configured to output vertical blank (see register 03h). The  
setting in this register also determines the duration of the luma bypass function (see register 07h).  
2−29  
2.20.24 Chrominance Control #1 Register  
Address  
Default  
1Ah  
0Ch  
7
6
5
4
3
2
1
0
Chrominance adaptive  
comb filter enable (ACE)  
Chrominance comb filter  
enable (CE)  
Reserved  
Color PLL reset  
Automatic color gain control  
Color PLL reset:  
0 = Color PLL not reset (default)  
1 = Color PLL reset  
Color PLL phase is reset to zero and the color PLL reset bit then immediately returns to zero. When this bit is set,  
the subcarrier PLL phase reset bit is transmitted on terminal 23 (GLCO) on the next line (NTSC or PAL).  
Chrominance adaptive comb filter enable (ACE):  
0 = Disable  
1 = Enable (default)  
Chrominance comb filter enable (CE):  
0 = Disable  
1 = Enable (default)  
Automatic color gain control (ACGC):  
00 = ACGC enabled (default)  
01 = Reserved  
10 = ACGC disabled  
11 = ACGC frozen to the previously set value  
2−30  
2.20.25 Chrominance Control #2 Register  
Address  
Default  
1Bh  
14h  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
WCF  
Chrominance filter select  
Wideband chroma filter (WCF):  
0 = Disable  
1 = Enable (default)  
Chrominance filter select:  
00 = No notch (default)  
01 = Notch 1  
10 = Notch 2  
11 = Notch 3  
Chrominance output bandwidth (MHz):  
WCF  
FILTER SELECT  
NTSC/PAL/SECAM ITU-R BT.601  
00  
01  
10  
11  
00  
01  
10  
11  
1.2214  
0.8782  
0.7297  
0.4986  
1.4170  
1.0303  
0.8438  
0.5537  
0
1
2−31  
2.20.26 Interrupt Reset Register B  
Address  
Default  
1Ch  
00h  
7
6
5
4
3
2
1
0
Software  
initialization  
reset  
Macrovision  
detect changed  
reset  
Field rate  
changed reset  
Line alternation  
changed reset  
Color lock  
H/V lock  
TV/VCR  
Reserved  
changed reset changed reset changed reset  
Interrupt reset register B is used by the external processor to reset the interrupt status bits in interrupt status  
register B. Bits loaded with a 1 allow the corresponding interrupt status bit to reset to 0. Bits loaded with a 0 have no  
effect on the interrupt status bits.  
Software initialization reset:  
0 = No effect (default)  
1 = Reset software initialization bit  
Macrovision detect changed reset:  
0 = No effect (default)  
1 = Reset Macrovision detect changed bit  
Field rate changed reset:  
0 = No effect (default)  
1 = Reset field rate changed bit  
Line alternation changed reset:  
0 = No effect (default)  
1 = Reset line alternation changed bit  
Color lock changed reset:  
0 = No effect (default)  
1 = Reset color lock changed bit  
H/V lock changed reset:  
0 = No effect (default)  
1 = Reset H/V lock changed bit  
TV/VCR changed reset [TV/VCR mode is determined by counting the total number of lines/frame. The mode switches  
to VCR for nonstandard number of lines]:  
0 = No effect (default)  
1 = Reset TV/VCR changed bit  
2−32  
2.20.27 Interrupt Enable Register B  
Address  
Default  
1Dh  
00h  
7
6
5
4
3
2
1
0
Software initialization  
occurred enable  
Macrovision  
detect changed  
Field rate  
changed  
Line alternation  
changed  
Color lock  
changed  
H/V lock  
changed  
TV/VCR  
changed  
Reserved  
Interrupt enable register B is used by the external processor to mask unnecessary interrupt sources for interrupt B.  
Bits loaded with a 1 allow the corresponding interrupt condition to generate an interrupt on the external pin.  
Conversely, bits loaded with 0s mask the corresponding interrupt condition from generating an interrupt on the  
external pin. This register only affects the external pin, it does not affect the bits in the interrupt status register. A given  
condition can set the appropriate bit in the status register and not cause an interrupt on the external pin. To determine  
if this device is driving the interrupt pin either AND interrupt status register B with interrupt enable register B or check  
the state of interrupt B in the interrupt B active register.  
Software initialization occurred enable:  
0 = Disabled (default)  
1 = Enabled  
Macrovision detect changed:  
0 = Disabled (default)  
1 = Enabled  
Field rate changed:  
0 = Disabled (default)  
1 = Enabled  
Line alternation changed:  
0 = Disabled (default)  
1 = Enabled  
Color lock changed:  
0 = Disabled (default)  
1 = Enabled  
H/V lock changed:  
0 = Disabled (default)  
1 = Enabled  
TV/VCR changed:  
0 = Disabled (default)  
1 = Enabled  
2−33  
2.20.28 Interrupt Configuration Register B  
Address  
Default  
1Eh  
00h  
7
6
5
4
3
2
1
0
Reserved  
Interrupt polarity B  
Interrupt polarity B:  
0 = Interrupt B is active low (default).  
1 = Interrupt B is active high.  
Interrupt polarity B must be same as interrupt polarity A bit at bit 0 of the interrupt configuration register A at address  
C2h.  
Interrupt configuration register B is used to configure the polarity of interrupt B on the external interrupt pin. When  
the interrupt B is configured for active low, the pin is driven low when active and high-impedance when inactive  
(open-drain). Conversely, when the interrupt B is configured for active high, it is driven high for active and driven low  
for inactive.  
2.20.29 Video Standard Register  
Address  
Default  
28h  
00h  
7
6
5
4
3
2
1
0
Reserved  
Video standard  
Video standard:  
0000 = Autoswitch mode (default)  
0001 = Reserved  
0010 = (M) NTSC ITU-R BT.601  
0011 = Reserved  
0100 = (B, G, H, I, N) PAL ITU-R BT.601  
0101 = Reserved  
0110 = (M) PAL ITU-R BT.601  
0111 = Reserved  
1000 = (Combination-N) PAL ITU-R BT.601  
1001 = Reserved  
1010 = NTSC 4.43 ITU-R BT.601  
1011 = Reserved  
1100 = SECAM ITU-R BT.601  
With the autoswitch code running, the user can force the device to operate in a particular video standard mode and  
sample rate by writing the appropriate value into this register.  
2.20.30 Cb Gain Factor Register  
Address  
2Ch  
7
6
5
4
3
2
1
0
Cb gain factor  
This is a read-only register that provides the gain applied to the Cb in the YCbCr data stream.  
2−34  
2.20.31 Cr Gain Factor Register  
Address  
2Dh  
7
6
5
4
3
2
1
0
Cr gain factor  
This is a read-only register that provides the gain applied to the Cr in the YCbCr data stream.  
2.20.32 Macrovision On Counter Register  
Address  
Default  
2Eh  
0Fh  
7
6
5
4
3
2
1
0
Macrovision on counter  
This register allows the user to determine how many consecutive frames in which the Macrovision AGC pulses have  
to be detected before the decoder decides that the Macrovision AGC pulses are present.  
2.20.33 Macrovision Off Counter Register  
Address  
Default  
2Fh  
01h  
7
6
5
4
3
2
1
0
Macrovision off counter  
This register allows the user to determine how many consecutive frames in which the Macrovision AGC pulses are  
not detected before the decoder decides that the Macrovision AGC pulses are not present.  
2.20.34 656 Revision Select Register  
NOTE: This register exists only for the TVP5150AM1.  
Address  
Default  
30h  
00h  
7
6
5
4
3
2
1
0
656 revision  
select  
Reserved  
656 revision select:  
0 = Adheres to ITU-R BT.656.4 timing (default for TVP5150AM1, this is the only option for TVP5150A).  
1 = Adheres to ITU-R BT.656.3 timing.  
2.20.35 MSB of Device ID Register  
Address  
Default  
80h  
51h  
7
6
5
4
3
2
1
0
MSB of device ID  
This register identifies the MSB of the device ID. Value = 0x51.  
2−35  
2.20.36 LSB of Device ID Register  
Address  
Default  
81h  
50h  
7
6
5
4
3
2
1
0
LSB of device ID  
This register identifies the LSB of the device ID. Value = 0x50.  
2.20.37 ROM Major Version Register  
Address  
Device  
Default  
82h  
TVP5150A  
03h  
TVP5150AM1  
04h  
7
6
5
4
3
2
1
0
ROM major version  
This register can contain a number from 0x01 to 0xFF.  
Value = 0x03 for TVP5150A  
Value = 0x04 for TVP5150AM1  
2.20.38 ROM Minor Version Register  
Address  
Device  
Default  
83h  
TVP5150A  
21h  
TVP5150AM1  
00h  
7
6
5
4
3
2
1
0
ROM minor version  
This register can contain a number from 0x01 to 0xFF.  
Value = 0x21 for TVP5150A  
Value = 0x00 for TVP5150AM1  
2.20.39 Vertical Line Count MSB Register  
Address  
84h  
7
6
5
4
3
2
1
0
Reserved  
Vertical line count MSB  
Vertical line count bits [9:8]  
2.20.40 Vertical Line Count LSB Register  
Address  
85h  
7
6
5
4
3
2
1
0
Vertical line count LSB  
Vertical line count bits [7:0]  
Registers 84h and 85h can be read and combined to extract the detected number of lines per frame. This can be used  
with nonstandard video signals such as a VCR in fast-forward or rewind modes to synchronize the downstream video  
circuitry.  
2−36  
2.20.41 Interrupt Status Register B  
Address  
86h  
7
6
5
4
3
2
1
0
Software  
initialization  
Macrovision detect  
changed  
Command  
ready  
Field rate  
changed  
Line alternation  
changed  
Color lock  
changed  
H/V lock  
changed  
TV/VCR  
changed  
Software initialization:  
0 = Software initialization is not ready (default).  
1 = Software initialization is ready.  
Macrovision detect changed:  
0 = Macrovision detect status has not changed (default).  
1 = Macrovision detect status has changed.  
Command ready:  
0 = TVP5150A is not ready to accept a new command (default).  
1 = TVP5150A is ready to accept a new command.  
Field rate changed:  
0 = Field rate has not changed (default).  
1 = Field rate has changed.  
Line alternation changed:  
0 = Line alteration has not changed (default).  
1 = Line alternation has changed.  
Color lock changed:  
0 = Color lock status has not changed (default).  
1 = Color lock status has changed.  
H/V lock changed:  
0 = H/V lock status has not changed (default).  
1 = H/V lock status has changed.  
TV/VCR changed:  
0 = TV/VCR status has not changed (default).  
1 = TV/VCR status has changed.  
Interrupt status register B is polled by the external processor to determine the interrupt source for interrupt B. After  
an interrupt condition is set, it can be reset by writing to the interrupt reset register B at subaddress 1Ch with a 1 in  
the appropriate bit.  
2.20.42 Interrupt Active Register B  
Address  
87h  
7
6
5
4
3
2
1
0
Reserved  
Interrupt B  
Interrupt B:  
0 = Interrupt B is not active on the external terminal (default).  
1 = Interrupt B is active on the external terminal.  
The interrupt active register B is polled by the external processor to determine if interrupt B is active.  
2−37  
2.20.43 Status Register #1  
Address  
88h  
7
6
5
4
3
2
1
0
Peak white  
detect status  
Line-alternating  
status  
Field rate  
status  
Lost lock  
detect  
Color subcarrier  
lock status  
Vertical sync  
lock status  
Horizontal sync  
lock status  
TV/VCR status  
Peak white detect status:  
0 = Peak white is not detected.  
1 = Peak white is detected.  
Line-alternating status:  
0 = Nonline alternating  
1 = Line alternating  
Field rate status:  
0 = 60 Hz  
1 = 50 Hz  
Lost lock detect:  
0 = No lost lock since status register #1 was last read.  
1 = Lost lock since status register #1 was last read.  
Color subcarrier lock status:  
0 = Color subcarrier is not locked.  
1 = Color subcarrier is locked.  
Vertical sync lock status:  
0 = Vertical sync is not locked.  
1 = Vertical sync is locked.  
Horizontal sync lock status:  
0 = Horizontal sync is not locked.  
1 = Horizontal sync is locked.  
TV/VCR status. TV mode is determined by detecting standard line-to-line variations and specific chroma SCH phases  
based on the standard input video format. VCR mode is determined by detecting variations in the chroma SCH phases  
compared to the chroma SCH phases of the standard input video format.  
0 = TV  
1 = VCR  
2−38  
2.20.44 Status Register #2  
Address  
89h  
7
6
5
4
3
2
1
0
Weak signal  
detection  
PAL switch  
polarity  
Field sequence  
status  
AGC and offset frozen  
status  
Reserved  
Macrovision detection  
Weak signal detection:  
0 = No weak signal  
1 = Weak signal mode  
PAL switch polarity of first line of odd field:  
0 = PAL switch is 0  
1 = PAL switch is 1  
Field sequence status:  
0 = Even field  
1 = Odd field  
AGC and offset frozen status:  
0 = AGC and offset are not frozen.  
1 = AGC and offset are frozen.  
Macrovision detection:  
000 = No copy protection  
001 = AGC process present (Macrovision Type 1 present)  
010 = Colorstripe process Type 2 present  
011 = AGC process and colorstripe process Type 2 present  
100 = Reserved  
101 = Reserved  
110 = Colorstripe process Type 3 present  
111 = AGC process and color stripe process Type 3 present  
2.20.45 Status Register #3  
Address  
8Ah  
7
6
5
4
3
2
1
0
Front-end AGC gain value (analog and digital)  
Represents 8 bits (MSB) of a 10-bit value  
This register provides the front-end AGC gain value of both analog and digital gains.  
2−39  
2.20.46 Status Register #4  
Address  
8Bh  
7
6
5
4
3
2
1
0
Subcarrier to horizontal (SCH) phase  
SCH (color PLL subcarrier phase at 50% of the falling edge of horizontal sync of line one of odd field; step size  
360_/256):  
0000 0000 = 0.00_  
0000 0001 = 1.41_  
0000 0010 = 2.81_  
1111 1110 = 357.2_  
1111 1111 = 358.6_  
2.20.47 Status Register #5  
Address  
8Ch  
7
6
5
4
3
2
1
0
Autoswitch mode  
Reserved  
Video standard  
Sampling rate  
This register contains information about the detected video standard and the sampling rate at which the device is  
currently operating. When autoswitch code is running, this register must be tested to determine which video standard  
has been detected.  
Autoswitch mode:  
0 = Stand-alone (forced video standard) mode  
1 = Autoswitch mode  
Video standard:  
VIDEO STANDARD [3:1]  
SR  
VIDEO STANDARD  
Reserved  
BIT 3  
BIT2  
0
BIT1  
BIT 0  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
(M) NTSC ITU-R BT.601  
Reserved  
0
0
(B, G, H, I, N) PAL ITU-R BT.601  
Reserved  
1
1
(M) PAL ITU-R BT.601  
Reserved  
1
1
PAL-N ITU-R BT.601  
Reserved  
0
0
NTSC 4.43 ITU-R BT.601  
Reserved  
0
0
SECAM ITU-R BT.601  
Sampling rate (SR):  
0 = Reserved  
1 = ITU-R BT.601  
2−40  
2.20.48 Closed Caption Data Registers  
Address  
90h−93h  
Address  
7
6
5
4
3
2
1
0
90h  
91h  
92h  
93h  
Closed caption field 1 byte 1  
Closed caption field 1 byte 2  
Closed caption field 2 byte 1  
Closed caption field 2 byte 2  
These registers contain the closed caption data arranged in bytes per field.  
2.20.49 WSS Data Registers  
Address  
94h−99h  
NTSC  
ADDRESS  
94h  
7
6
5
4
3
2
1
0
BYTE  
b5  
b4  
b3  
b2  
b1  
b0  
WSS field 1 byte 1  
WSS field 1 byte 2  
WSS field 1 byte 3  
WSS field 2 byte 1  
WSS field 2 byte 2  
WSS field 2 byte 3  
95h  
b13  
b12  
b11  
b19  
b5  
b10  
b18  
b4  
b9  
b8  
b7  
b6  
96h  
b17  
b3  
b16  
b2  
b15  
b1  
b14  
b0  
97h  
98h  
b13  
b12  
b11  
b19  
b10  
b18  
b9  
b8  
b7  
b6  
99h  
b17  
b16  
b15  
b14  
These registers contain the wide screen signaling (WSS) data for NTSC.  
Bits 0−1 represent word 0, aspect ratio  
Bits 2−5 represent word 1, header code for word 2  
Bits 6−13 represent word 2, copy control  
Bits 14−19 represent word 3, CRC  
PAL/SECAM  
ADDRESS  
94h  
7
6
5
4
3
2
1
0
BYTE  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b9  
b0  
b8  
WSS field 1 byte 1  
WSS field 1 byte 2  
95h  
b13  
b12  
b11  
b10  
96h  
Reserved  
97h  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b9  
b0  
b8  
WSS field 2 byte 1  
WSS field 2 byte 2  
98h  
b13  
b12  
b11  
b10  
99h  
Reserved  
PAL/SECAM:  
Bits 0−3 represent group 1, aspect ratio  
Bits 4−7 represent group 2, enhanced services  
Bits 8−10 represent group 3, subtitles  
Bits 11−13 represent group 4, others  
2−41  
2.20.50 VPS Data Registers  
Address  
9Ah–A6h  
ADDRESS  
9Ah  
7
6
5
4
3
2
1
0
VPS byte 1  
VPS byte 2  
VPS byte 3  
VPS byte 4  
VPS byte 5  
VPS byte 6  
VPS byte 7  
VPS byte 8  
VPS byte 9  
VPS byte 10  
VPS byte 11  
VPS byte 12  
VPS byte 13  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
These registers contain the entire VPS data line except the clock run-in code or the start code.  
2.20.51 VITC Data Registers  
Address  
A7h–AFh  
ADDRESS  
A7h  
7
6
5
4
3
2
1
0
VITC byte 1, frame byte 1  
VITC byte 2, frame byte 2  
VITC byte 3, seconds byte 1  
VITC byte 4, seconds byte 2  
VITC byte 5, minutes byte 1  
VITC byte 6, minutes byte 2  
VITC byte 7, hour byte 1  
VITC byte 8, hour byte 2  
VITC byte 9, CRC  
A8h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
These registers contain the VITC data.  
2.20.52 VBI FIFO Read Data Register  
Address  
B0h  
7
6
5
4
3
2
1
0
FIFO read data  
This address is provided to access VBI data in the FIFO through the host port. All forms of teletext data come directly  
from the FIFO, while all other forms of VBI data can be programmed to come from the registers or from the FIFO.  
Current status of the FIFO can be found at address C6h and the number of bytes in the FIFO is located at address  
C7h. If the host port is to be used to read data from the FIFO, then the output formatter must be disabled at address  
CDh bit 0. The format used for the VBI FIFO is shown in Section 2.9.  
2−42  
2.20.53 Teletext Filter and Mask Registers  
Address  
Default  
B1h–BAh  
00h  
ADDRESS  
B1h  
7
6
5
4
3
2
1
0
Filter 1 mask 1  
Filter 1 pattern 1  
Filter 1 pattern 2  
Filter 1 pattern 3  
Filter 1 pattern 4  
Filter 1 pattern 5  
Filter 2 pattern 1  
Filter 2 pattern 2  
Filter 2 pattern 3  
Filter 2 pattern 4  
Filter 2 pattern 5  
B2h  
Filter 1 mask 2  
Filter 1 mask 3  
Filter 1 mask 4  
Filter 1 mask 5  
Filter 2 mask 1  
Filter 2 mask 2  
Filter 2 mask 3  
Filter 2 mask 4  
Filter 2 mask 5  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
For an NABTS system, the packet prefix consists of five bytes. Each byte contains four data bits (D[3:0]) interlaced  
with four Hamming protection bits (H[3:0]):  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D[3]  
H[3]  
D[2]  
H[2]  
D[1]  
H[1]  
D[0]  
H[0]  
Only the data portion D[3:0] from each byte is applied to a teletext filter function with the corresponding pattern bits  
P[3:0] and mask bits M[3:0]. Hamming protection bits are ignored by the filter.  
For a WST system (PAL or NTSC), the packet prefix consists of two bytes so that two patterns are used. Patterns  
3, 4, and 5 are ignored.  
The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1 in the LSB of mask 1  
means that the filter module must compare the LSB of nibble 1 in the pattern register to the first data bit on the  
transaction. If these match, then a true result is returned. A 0 in a bit of mask 1 means that the filter module must ignore  
that data bit of the transaction. If all 0s are programmed in the mask bits, then the filter matches all patterns returning  
a true result (default 00h).  
Pattern and mask for each byte and filter are referred as <1,2><P,M><1,2,3,4,5> where:  
<1,2> identifies the filter 1 or 2  
<P,M> identifies the pattern or mask  
<1,2,3,4,5> identifies the byte number  
2−43  
2.20.54 Teletext Filter Control Register  
Address  
Default  
BBh  
00h  
7
6
5
4
3
2
1
0
Reserved  
Filter logic  
Mode  
TTX filter 2 enable  
TTX filter 1 enable  
Filter logic: allows different logic to be applied when combining the decision of filter 1 and filter 2 as follows:  
00 = NOR (Default)  
01 = NAND  
10 = OR  
11 = AND  
Mode:  
0 = Teletext WST PAL mode B (2 header bytes) (default)  
1 = Teletext NABTS NTSC mode C (5 header bytes)  
TTX filter 2 enable:  
0 = Disabled (default)  
1 = Enabled  
TTX filter 1 enable:  
0 = Disabled (default)  
1 = Enabled  
If the filter matches or if the filter mask is all 0s, then a true result is returned.  
2−44  
2.20.55 Interrupt Status Register A  
Address  
Default  
C0h  
00h  
7
6
5
4
3
2
1
0
Lock state interrupt Lock interrupt  
Reserved  
FIFO threshold interrupt  
Line interrupt  
Data interrupt  
The interrupt status register A can be polled by the host processor to determine the source of an interrupt. After an  
interrupt condition is set it can be reset by writing to this register with a 1 in the appropriate bit(s).  
Lock state interrupt:  
0 = TVP5150A is not locked to the video signal (default).  
1 = TVP5150A is locked to the video signal.  
Lock interrupt:  
0 = A transition has not occurred on the lock signal (default).  
1 = A transition has occurred on the lock signal.  
FIFO threshold interrupt:  
0 = The amount of data in the FIFO has not yet crossed the threshold programmed at address C8h (default).  
1 = The amount of data in the FIFO has crossed the threshold programmed at address C8h.  
Line interrupt:  
0 = The video line number has not yet been reached (default).  
1 = The video line number programmed in address CAh has occurred.  
Data interrupt:  
0 = No data is available (default).  
1 = VBI data is available either in the FIFO or in the VBI data registers.  
2−45  
2.20.56 Interrupt Enable Register A  
Address  
Default  
C1h  
00h  
7
6
5
4
3
2
1
0
Lock interrupt  
enable  
Cycle complete  
interrupt enable  
Bus error  
interrupt enable  
FIFO threshold  
interrupt enable  
Line interrupt  
enable  
Data interrupt  
enable  
Reserved  
Reserved  
The interrupt enable register A is used by the host processor to mask unnecessary interrupt sources. Bits loaded with  
a 1 allow the corresponding interrupt condition to generate an interrupt on the external pin. Conversely, bits loaded  
with a 0 mask the corresponding interrupt condition from generating an interrupt on the external pin. This register only  
affects the interrupt on the external terminal, it does not affect the bits in interrupt status register A. A given condition  
can set the appropriate bit in the status register and not cause an interrupt on the external terminal. To determine if  
this device is driving the interrupt terminal either perform a logical AND of interrupt status register A with interrupt  
enable register A, or check the state of the interrupt A bit in the interrupt configuration register at address C2h.  
Lock interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Cycle complete interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Bus error interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
FIFO threshold interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Line interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Data interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
2−46  
2.20.57 Interrupt Configuration Register A  
Address  
Default  
C2h  
04h  
7
6
5
4
3
2
1
0
YCbCr enable  
(VDPOE)  
Reserved  
Interrupt A  
Interrupt polarity A  
YCbCr enable (VDPOE):  
0 = YCbCr pins are high impedance.  
1 = YCbCr pins are active if other conditions are met (default).  
Interrupt A (read-only):  
0 = Interrupt A is not active on the external pin (default).  
1 = Interrupt A is active on the external pin.  
Interrupt polarity A:  
0 = Interrupt A is active low (default).  
1 = Interrupt A is active high.  
Interrupt configuration register A is used to configure the polarity of the external interrupt terminal. When interrupt  
A is configured as active low, the terminal is driven low when active and high-impedance when inactive (open  
collector). Conversely, when the terminal is configured as active high, it is driven high when active and driven low  
when inactive.  
2.20.58 VDP Configuration RAM Register  
Address  
Default  
C3h  
DCh  
C4h  
0Fh  
C5h  
00h  
Address  
7
6
5
4
3
2
1
0
C3h  
C4h  
Configuration data  
RAM address (7:0)  
RAM  
address 8  
C5h  
Reserved  
The configuration RAM data is provided to initialize the VDP with initial constants. The configuration RAM is 512 bytes  
organized as 32 different configurations of 16 bytes each. The first 12 configurations are defined for the current VBI  
standards. An additional 2 configurations can be used as a custom programmed mode for unique standards like  
Gemstar.  
Address C3h is used to read or write to the RAM. The RAM internal address counter is automatically incremented  
with each transaction. Addresses C5h and C4h make up a 9-bit address to load the internal address counter with a  
specific start address. This can be used to write a subset of the RAM for only those standards of interest. Registers  
D0h−FBh must all be programmed with FFh, before writing or reading the configuration RAM. Full field mode (CFh)  
must be disabled as well.  
The suggested RAM contents are shown below. All values are hexadecimal.  
2−47  
Table 2−13. VBI Configuration RAM For Signals With Pedestal  
Index  
Reserved  
Address  
000  
010  
020  
030  
040  
050  
060  
070  
080  
090  
0A0  
0B0  
0C0  
0D0  
0E0  
0F0  
100  
110  
0
1
2
3
4
E7  
27  
E7  
27  
E7  
A7  
04  
04  
0
5
6
7
8
9
A
B
0
0
0
0
0
0
0
0
0
0
0
0
0
C
0
0
0
0
0
0
0
0
0
0
0
0
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
E
F
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
26 e6  
Reserved  
2B A6  
Reserved  
22 A6  
Reserved  
23 69  
Reserved  
22 69  
Reserved  
23 69  
Reserved  
02 A6  
Reserved  
02 69  
Reserved  
42 A6  
Reserved  
43 69  
Reserved  
49 A6  
Reserved  
49 69  
Reserved  
0D A6  
WST SECAM 6  
Reserved  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
5B  
38  
0
AA  
AA  
AA  
AA  
AA  
AA  
2A  
2A  
55  
00  
0
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
C5  
3F  
0
FF  
FF  
FF  
FF  
FF  
FF  
3F  
3F  
FF  
00  
0
2E  
2E  
2E  
2E  
2E  
2E  
51  
51  
71  
71  
8F  
8F  
CE  
20  
20  
20  
20  
20  
20  
6E  
6E  
6E  
6E  
6D  
6D  
2B  
b4  
72  
98  
93  
93  
93  
7B  
8C  
CD  
7C  
85  
94  
DA  
0e  
10  
0D  
0D  
0D  
0D  
09  
09  
0F  
08  
08  
08  
0B  
10  
10  
10  
10  
15  
10  
27  
27  
3A  
39  
4C  
4C  
60  
WST PAL B 6  
Reserved  
WST PAL C 6  
Reserved  
WST NTSC 6  
Reserved  
NABTS, NTSC 6  
Reserved  
NABTS, NTSC-J 6  
Reserved  
CC, PAL/SECAM 6  
Reserved  
CC, NTSC 6  
Reserved  
WSS, PAL/SECAM 6  
Reserved  
120  
130  
140  
150  
160  
170  
180  
190  
1A0  
1B0  
1C0  
1D0  
WSS, NTSC C  
Reserved  
0
VITC, PAL/SECAM 6  
Reserved  
0
VITC, NTSC 6  
Reserved  
0
0
0
0
0
VPS, PAL 6  
Reserved  
AA  
AA  
FF  
FF  
BA  
Reserved  
Programmable  
Reserved  
Custom 1  
Reserved  
Custom 2  
Programmable  
2−48  
2.20.59 VDP Status Register  
Address  
C6h  
7
6
5
4
3
2
1
0
FIFO full error FIFO empty TTX available CC field 1 available CC field 2 available WSS available VPS available VITC available  
The VDP status register indicates whether data is available in either the FIFO or data registers, and status information  
about the FIFO. Reading data from the corresponding register does not clear the status flags automatically. These  
flags are only reset by writing a 1 to the respective bit. However, bit 6 is updated automatically.  
FIFO full error:  
0 = No FIFO full error  
1 = FIFO was full during a write to FIFO.  
The FIFO full error flag is set when the current line of VBI data can not enter the FIFO. For example, if the FIFO has  
only 10 bytes left and teletext is the current VBI line, the FIFO full error flag is set, but no data is written because the  
entire teletext line will not fit. However, if the next VBI line is closed caption requiring only 2 bytes of data plus the  
header, this goes into the FIFO. Even if the full error flag is set.  
FIFO empty:  
0 = FIFO is not empty.  
1 = FIFO is empty.  
TTX available:  
0 = Teletext data is not available.  
1 = Teletext data is available.  
CC field 1 available:  
0 = Closed caption data from field 1 is not available.  
1 = Closed caption data from field 1 is available.  
CC field 2 available:  
0 = Closed caption data from field 2 is not available.  
1 = Closed caption data from field 2 is available.  
WSS available:  
0 = WSS data is not available.  
1 = WSS data is available.  
VPS available:  
0 = VPS data is not available.  
1 = VPS data is available.  
VITC available:  
0 = VITC data is not available.  
1 = VITC data is available.  
2.20.60 FIFO Word Count Register  
Address  
C7h  
7
6
5
4
3
2
1
0
Number of words  
This register provides the number of words in the FIFO. 1 word equals 2 bytes.  
2−49  
2.20.61 FIFO Interrupt Threshold Register  
Address  
Default  
C8h  
80h  
7
6
5
4
3
2
1
0
Number of words  
This register is programmed to trigger an interrupt when the number of words in the FIFO exceeds this value (default  
80h). This interrupt must be enabled at address C1h. 1 word equals 2 bytes.  
2.20.62 FIFO Reset Register  
Address  
Default  
C9h  
00h  
7
6
5
4
3
2
1
0
Any data  
Writing any data to this register resets the FIFO and clears any data present.  
2.20.63 Line Number Interrupt Register  
Address  
Default  
CAh  
00h  
7
6
5
4
3
2
1
0
Field 1 enable  
Field 2 enable  
Line number  
This register is programmed to trigger an interrupt when the video line number matches this value in bits 5:0. This  
interrupt must be enabled at address C1h. The value of 0 or 1 does not generate an interrupt.  
Field 1 enable:  
0 = Disabled (default)  
1 = Enabled  
Field 2 enable:  
0 = Disabled (default)  
1 = Enabled  
Line number: (default 00h)  
2.20.64 Pixel Alignment Registers  
Address  
Default  
CBh  
4Eh  
CCh  
00h  
Address  
7
6
5
4
3
2
1
0
CBh  
CCh  
Switch pixel [7:0]  
Reserved  
Switch pixel [9:8]  
These registers form a 10-bit horizontal pixel position from the falling edge of sync, where the VDP controller initiates  
the program from one line standard to the next line standard; for example, the previous line of teletext to the next line  
of closed caption. This value must be set so that the switch occurs after the previous transaction has cleared the delay  
in the VDP, but early enough to allow the new values to be programmed before the current settings are required.  
2−50  
2.20.65 FIFO Output Control Register  
Address  
Default  
CDh  
01h  
7
6
5
4
3
2
1
0
Reserved  
Host access enable  
2
This register is programmed to allow I C access to the FIFO or allowing all VDP data to go out the video port.  
Host access enable:  
0 = Output FIFO data to the video output Y[9:2]  
2
1 = Allow I C access to the FIFO data (default)  
2.20.66 Full Field Enable Register  
Address  
Default  
CFh  
00h  
7
6
5
4
3
2
1
0
Reserved  
Full field enable  
This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in the line  
mode registers programmed with FFh are sliced with the definition of register FCh. Values other than FFh in the line  
mode registers allow a different slice mode for that particular line.  
Full field enable:  
0 = Disable full field mode (default)  
1 = Enable full field mode  
2−51  
2.20.67 Line Mode Registers  
Address  
Default  
D0h  
00h  
D1h−FBh  
FFh  
ADDRESS  
D0h  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EBh  
ECh  
EDh  
EEh  
EFh  
F0h  
F1h  
F2h  
F3h  
F4h  
F5h  
F6h  
F7h  
F8h  
F9h  
FAh  
FBh  
7
6
5
4
3
2
1
0
Line 6 Field 1  
Line 6 Field 2  
Line 7 Field 1  
Line 7 Field 2  
Line 8 Field 1  
Line 8 Field 2  
Line 9 Field 1  
Line 9 Field 2  
Line 10 Field 1  
Line 10 Field 2  
Line 11 Field 1  
Line 11 Field 2  
Line 12 Field 1  
Line 12 Field 2  
Line 13 Field 1  
Line 13 Field 2  
Line 14 Field 1  
Line 14 Field 2  
Line 15 Field 1  
Line 15 Field 2  
Line 16 Field 1  
Line 16 Field 2  
Line 17 Field 1  
Line 17 Field 2  
Line 18 Field 1  
Line 18 Field 2  
Line 19 Field 1  
Line 19 Field 2  
Line 20 Field 1  
Line 20 Field 2  
Line 21 Field 1  
Line 21 Field 2  
Line 22 Field 1  
Line 22 Field 2  
Line 23 Field 1  
Line 23 Field 2  
Line 24 Field 1  
Line 24 Field 2  
Line 25 Field 1  
Line 25 Field 2  
Line 26 Field 1  
Line 26 Field 2  
Line 27 Field 1  
Line 27 Field 2  
2−52  
These registers program the specific VBI standard at a specific line in the video field.  
Bit 7:  
0 = Disable filtering of null bytes in closed caption modes  
1 = Enable filtering of null bytes in closed caption modes (default)  
In teletext modes, bit 7 enables the data filter function for that particular line. If it is set to 0, then the data filter passes  
all data on that line.  
Bit 6:  
0 = Send VBI data to registers only.  
1 = Send VBI data to FIFO and the registers. Teletext data only goes to FIFO. (default)  
Bit 5:  
0 = Allow VBI data with errors in the FIFO  
1 = Do not allow VBI data with errors in the FIFO (default)  
Bit 4:  
0 = Do not enable error detection and correction  
1 = Enable error detection and correction (when bits [3:0] = 1 2, 3, and 4 only) (default)  
Bits [3:0]:  
0000 = WST SECAM  
0001 = WST PAL B  
0010 = WST PAL C  
0011 = WST NTSC  
0100 = NABTS NTSC  
0101 = TTX NTSC  
0110 = CC PAL  
0111 = CC NTSC  
1000 = WSS PAL  
1001 = WSS NTSC  
1010 = VITC PAL  
1011 = VITC NTSC  
1100 = VPS PAL  
1101 = Custom 1  
1110 = Custom 2  
1111 = Active video (VDP off) (default)  
A value of FFh in the line mode registers is required for any line to be sliced as part of the full field mode.  
2.20.68 Full Field Mode Register  
Address  
Default  
FCh  
7Fh  
7
6
5
4
3
2
1
0
Full field mode  
This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual line settings  
take priority over the full field register. This allows each VBI line to be programmed independently but have the  
remaining lines in full field mode. The full field mode register has the same definitions as the line mode registers  
(default 7Fh).  
2−53  
2−54  
3 Electrical Specifications  
3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless  
otherwise noted)  
Supply voltage range: IO_DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V  
DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V  
PLL_AVDD to PLL_AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V  
CH_AVDD to CH_AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V  
Digital input voltage range, V to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V  
I
Input voltage range, XTAL1 to PLL_GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V  
Analog input voltage range A to CH_AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to 2.0 V  
I
Digital output voltage range, V to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V  
O
Operating free-air temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
3.2 Recommended Operating Conditions  
MIN NOM  
MAX  
UNIT  
IO_DVDD  
DVDD  
Digital I/O supply voltage  
Digital supply voltage  
3.0  
3.3  
1.8  
1.8  
1.8  
3.6  
2.0  
V
V
1.65  
PLL_AVDD  
CH_AVDD  
Analog PLL supply voltage  
Analog core supply voltage  
Analog input voltage (ac-coupling necessary)  
Digital input voltage high  
1.65  
2.0  
V
1.65  
0
2.0  
V
V
V
V
V
V
0.75  
V
I(P-P)  
0.7 IO_DVDD  
V
IH  
Digital input voltage low  
0.3 IO_DVDD  
V
IL  
XTAL input voltage high  
0.7 PLL_AVDD  
V
IH_XTAL  
IL_XTAL  
XTAL input voltage low  
0.3 PLL_AVDD  
V
I
I
I
I
High-level output current  
2
−2  
4
mA  
mA  
mA  
mA  
°C  
OH  
Low-level output current  
OL  
SCLK high-level output current  
SCLK low-level output current  
Operating free-air temperature  
OH_SCLK  
OL_SCLK  
−4  
70  
T
0
A
3.2.1 Crystal Specifications  
CRYSTAL SPECIFICATIONS  
MIN  
NOM  
14.31818  
50  
MAX  
UNIT  
MHz  
ppm  
Frequency  
Frequency tolerance  
3−1  
3.3 Electrical Characteristics  
DVDD = 1.8 V, PLL_AVDD = 1.8 V, CH_AVDD = 1.8 V, IO_DVDD = 3.3 V  
For minimum/maximum values: T = 0°C to 70°C, and for typical values: T = 25°C unless otherwise noted  
A
3.3.1 DC Electrical Characteristics  
PARAMETER  
A
TEST CONDITIONS  
(see NOTE 1)  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
3.3-V I/O digital supply current  
1.8-V digital supply current  
Color bar input  
Color bar input  
Color bar input  
Color bar input  
Color bar input  
4.8  
25.3  
5.4  
mA  
mA  
mA  
mA  
mW  
DD(IO_D)  
DD(D)  
1.8-V analog PLL supply current  
1.8-V analog core supply current  
Total power dissipation, normal mode  
DD(PLL_A)  
DD(CH_A)  
24.4  
115  
P
150  
1
TOT  
Total power dissipation, power-down mode  
(see Note 2)  
P
Color bar input  
By design  
mW  
DOWN  
C
Input capacitance  
8
pF  
V
i
V
V
V
V
Output voltage high  
I
I
I
I
= 2 mA  
= −2 mA  
= 4 mA  
0.8 IO_DVDD  
0.8 IO_DVDD  
OH  
OH  
OL  
OH  
OL  
Output voltage low  
0.22 IO_DVDD  
V
OL  
SCLK output voltage high  
SCLK output voltage low  
High-level input current  
Low-level input current  
V
OH_SCLK  
OL_SCLK  
= −2 mA  
0.22 IO_DVDD  
V
I
I
V = V  
20  
20  
µA  
µA  
IH  
I
IH  
V = V  
IL  
I
IL  
NOTES: 1. Measured with a load of 15 pF.  
2. Assured by device characterization.  
3.3.2 Analog Processing and A/D Converters  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
500  
10  
MAX  
UNIT  
kΩ  
pF  
Zi  
Input impedance, analog video inputs  
Input capacitance, analog video inputs  
By design  
By design  
C
i
Vi(pp)  
G  
Input voltage range  
C
= 0.1 µF  
0
0
0.75  
12  
V
coupling  
Gain control range  
DC differential nonlinearity  
DC integral nonlinearity  
Frequency response  
Signal-to-noise ratio  
Noise spectrum  
dB  
LSB  
LSB  
dB  
dB  
dB  
°
DNL  
INL  
Fr  
A/D only  
A/D only  
6 MHz  
0.5  
1
−0.9  
50  
−3  
SNR  
NS  
6 MHz, 1.0 V  
P-P  
50% flat field  
50  
DP  
Differential phase  
1.5  
0.5%  
DG  
Differential gain  
The 0.75-V maximum applies to the sync-chroma amplitude, not sync-white. The recommended termination resistors are 37.4 as seen in  
Chapter 5.  
3−2  
3.3.3 Timing  
3.3.3.1 Clocks, Video Data, Sync Timing  
TEST CONDITIONS  
(see NOTE 2)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Duty cycle PCLK  
50%  
18.5  
18.5  
4
t
1
t
2
t
3
t
4
t
5
t
6
PCLK high time  
PCLK low time  
PCLK fall time  
PCLK rise time  
Output hold time  
Output delay time  
ns  
ns  
ns  
ns  
ns  
ns  
10% to 90%  
90% to 10%  
4
2
3
8
NOTE 3: Measured with a load of 15 pF.  
t
t
2
1
PCLK  
t
t
4
3
V
V
OH  
Y, C, AVID,  
VS, HS, FID  
Valid Data  
Valid Data  
OL  
t
5
t
6
Figure 3−1. Clocks, Video Data, and Sync Timing  
3−3  
2
3.3.3.2 I C Host Port Timing  
PARAMETER  
TEST CONDITIONS  
MIN  
1.3  
0.6  
0.6  
0.6  
100  
0
TYP  
MAX  
UNIT  
µs  
t
t
t
t
t
t
t
t
Bus free time between STOP and START  
Setup time for a (repeated) START condition  
Hold time (repeated) START condition  
Setup time for a STOP condition  
Data setup time  
1
2
3
4
5
6
7
8
µs  
µs  
ns  
ns  
Data hold time  
0.9  
µs  
Rise time VC1(SDA) and VC0(SCL) signal  
Fall time VC1(SDA) and VC0(SCL) signal  
Capacitive load for each bus line  
250  
ns  
250  
ns  
C
400  
400  
pF  
kHz  
b
2
f
I C clock frequency  
I2C  
Stop Start  
Stop  
VC1 (SDA)  
VC0 (SCL)  
Data  
t
t3  
1
t5  
t3  
t6  
t4  
t2  
t
t
7
8
2
Figure 3−2. I C Host Port Timing  
3−4  
4 Example Register Settings  
The following example register settings are provided only as a reference. These settings, given the assumed input  
connector, video format, and output format, set up the TVP5150A decoder and provide video output. Example register  
settings for other features and the VBI data processor are not provided here.  
4.1 Example 1  
4.1.1 Assumptions  
Device:  
TVP5150AM1  
Input connector:  
Video format:  
Composite (AIP1A)  
NTSC-M, PAL (B, G, H, I), or SECAM  
NOTE: NTSC-443, PAL-N, and PAL-M are masked from the autoswitch process by default.  
See the autoswitch mask register at address 04h.  
Output format:  
8-bit ITU-R BT.656 with embedded syncs  
4.1.2 Recommended Settings  
2
Recommended I C writes: For this setup, only one write is required. All other registers are set up by default.  
2
I C register address 03h = Miscellaneous controls register address  
2
I C data 09h = Enables YCbCr output and the clock output  
NOTE: HSYNC, VSYNC/PALI, AVID, and FID/GLCO are high impedance by default. See the  
miscellaneous control register at address 03h.  
4.2 Example 2  
4.2.1 Assumptions  
Device:  
TVP5150AM1  
Input connector:  
Video format:  
Output format:  
S-video (AIP1A (luma), AIP1B (chroma))  
NTSC-M, 443, PAL (B, G, H, I, M, N) or SECAM (B, D,G, K, KI, L)  
8-bit 4:2:2 YCbCr with discrete sync outputs  
4.2.2 Recommended Settings  
2
Recommended I C writes: This setup requires additional writes to output the discrete sync 4:2:2 data outputs, the  
HSYNC, and the VSYNC, and to autoswitch between all video formats mentioned above.  
2
I C register address 00h = Video input source selection #1 register  
2
I C data 01h = Selects the S-Video input, AIP1A (luma), and AIP1B (chroma)  
2
I C register address 03h = Miscellaneous controls register address  
2
I C data 0Dh = Enables the YCbCr output data, HSYNC, VSYNC/PALI, AVID, and FID/GLCO  
2
I C register address 04h = Autoswitch mask register  
2
I C data C0h = Unmask NTSC-443, PAL-N, and PAL-M from the autoswitch process  
2
I C register address 0Dh = Outputs and data rates select register  
2
I C data 40h = Enables 8-bit 4:2:2 YCbCr with discrete sync output  
4−1  
4−2  
5 Application Information  
5.1 Application Example  
C2  
C1  
1uF  
1uF  
C3  
1uF  
PDN  
PDN  
INTERQ/GPCL  
AVID  
HSYNC  
INTERQ/GPCL  
AVID  
HSYNC  
0.1uF  
R1  
AVDD  
C4  
0.1uF  
IO_DVDD  
CH1_IN  
37.4  
R2  
C11  
R3  
1.2K  
R4  
37.4 Ω  
1.2K  
0.1uF  
1
2
3
4
5
6
7
8
24  
VSYNC/PALI  
FID/GLCO  
SDA  
R5  
VSYNC/PALI  
FID/GLCO  
AIP1A  
AIP1B  
VSYNC/PALI  
FID/GLCO  
SDA  
C5  
23  
22  
21  
20  
19  
18  
17  
CH2_IN  
37.4 Ω  
PLL_AGND  
PLL_AVDD  
XTAL1/OSC  
XTAL2  
AVDD  
SCL  
DVDD  
SCL  
DVDD  
TVP5150A  
R6  
37.4 Ω  
C6  
DGND  
C7  
AGND  
RESETB  
YOUT0  
YOUT1  
0.1uF  
0.1uF  
S1  
OSC  
1
2
OSC_IN  
Y1  
PCLK/SCLK  
PCLK/SCLK  
RESETB  
14.31818MHz  
IO_DVDD  
C8  
C9  
YOUT[7:0]  
C10  
0.1uF  
IO_DVDD  
CL1  
CL2  
R7  
2
Implies I C address is BAh. If B8h is to be used,  
10K  
connect pulldown resistor to digital ground.  
NOTE: The use of INTERQ/GPCL/AVID/HSYNC and VSYNC is optional. These are outputs and can be left floating.  
When OSC is connected through S1, remove the capacitors for the crystal.  
PDN needs to be high, if device has to be always operational.  
RESETB is operational only when PDN is high. This allows an active low reset to the device.  
Figure 5−1. Application Example  
5−1  
5−2  
6 Mechanical Data  
PBS (S-PQFP-G32)  
PLASTIC QUAD FLATPACK  
0,23  
0,17  
M
0,50  
24  
0,08  
17  
25  
16  
32  
9
0,13 NOM  
1
8
3,50 TYP  
Gage Plane  
5,05  
SQ  
4,95  
0,25  
7,10  
SQ  
0,10 MIN  
6,90  
0°ā7°  
0,70  
0,40  
1,05  
0,95  
Seating Plane  
0,08  
1,20 MAX  
4087735/A 11/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
6−1  
ZQC (S−PBGA−N48)  
PLASTIC BALL GRID ARRAY  
4,10  
3,90  
SQ  
3,00 TYP  
0,50  
G
F
0,50  
E
D
C
B
A
3,00 TYP  
1
234  
567  
A1 Corner  
Bottom View  
0,77  
0,71  
1,00 MAX  
Seating Plane  
0,08  
0,35  
0,25  
0,25  
0,15  
0,05  
4204695/A 09/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. MicroStar JuniorBGA package configuration.  
D. Falls within JEDEC MO-225  
E. This package is lead free.  
MicroStar Junior is a trademark of Texas Instruments.  
6−2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Feb-2005  
PACKAGING INFORMATION  
Orderable Device  
TVP5150AM1PBS  
TVP5150AM1PBSR  
TVP5150AM1ZQC  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TQFP  
PBS  
32  
32  
48  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TQFP  
PBS  
ZQC  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
BGA MI  
CROSTA  
R JUNI  
OR  
360  
Pb-Free  
(RoHS)  
SNAGCU  
Level-3-260C-168 HR  
TVP5150AM1ZQCR  
ACTIVE  
BGA MI  
CROSTA  
R JUNI  
OR  
ZQC  
48  
2500  
Pb-Free  
(RoHS)  
SNAGCU  
Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MPQF027 – NOVEMBER 1995  
PBS (S-PQFP-G32)  
PLASTIC QUAD FLATPACK  
0,23  
0,17  
M
0,50  
0,08  
24  
17  
25  
32  
16  
9
0,13 NOM  
1
8
3,50 TYP  
Gage Plane  
5,05  
SQ  
4,95  
0,25  
7,10  
SQ  
0,10 MIN  
6,90  
0°7°  
0,70  
0,40  
1,05  
0,95  
Seating Plane  
0,08  
1,20 MAX  
4087735/A 11/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  

相关型号:

TVP5150AM1ZQC

ULTRALOW POWER NTSC/PAL/SECAM VIDEO DECODER WITH REBUST SYNC DETECTOR
TI

TVP5150AM1ZQCR

ULTRALOW POWER NTSC/PAL/SECAM VIDEO DECODER WITH REBUST SYNC DETECTOR
TI

TVP5150APBS

ULTRALOW POWER NTSC/PAL/SECAM VIDEO DECODER WITH REBUST SYNC DETECTOR
TI

TVP5150APBSR

ULTRALOW POWER NTSC/PAL/SECAM VIDEO DECODER WITH REBUST SYNC DETECTOR
TI

TVP5150AZQC

暂无描述
TI

TVP5150AZQCR

Ultralow Power NTSC/PAL/SECAM Video Decoder w/Robust Sync Detector 48-BGA MICROSTAR JUNIOR
TI

TVP5150PBS

Ultralow-Power NTSC/PAL Video Decoder
TI

TVP5150PBSG4

COLOR SIGNAL DECODER, PQFP32, GREEN, PLASTIC, TQFP-32
TI

TVP5150PBSR

Ultralow-Power NTSC/PAL Video Decoder
TI

TVP5151

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5151IPBS

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5151IPBSQ1

COLOR SIGNAL DECODER, PQFP32, GREEN, PLASTIC, QFP-32
TI