TVP5150PBSR [TI]

Ultralow-Power NTSC/PAL Video Decoder; 超低功耗NTSC / PAL视频解码器
TVP5150PBSR
型号: TVP5150PBSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Ultralow-Power NTSC/PAL Video Decoder
超低功耗NTSC / PAL视频解码器

解码器
文件: 总68页 (文件大小:1297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TVP5150PBS Ultralow-Power  
NTSC/PAL Video Decoder  
Data Manual  
Literature Number: SLES043A  
May 2006  
Printed on Recycled Paper  
Contents  
Section  
Page  
1
2
TVP5150 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Document Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
2
3
3
3
4
4
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Input Multiplexers and Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Programmable Gain Amplifier and Automatic Gain Control Circuit . . . . . . . . . . . . . . . . . . . . . . .  
A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Composite Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Adaptive Comb Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Color Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Luminance Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Chrominance Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Timing Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VBI Data Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VBI FIFO and Ancillary Data in Video Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Raw Video Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Output Formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Synchronization Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
AVID Cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Embedded Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
7
7
7
7
8
10  
11  
11  
11  
11  
13  
14  
14  
15  
17  
18  
19  
19  
20  
21  
22  
22  
23  
23  
25  
25  
26  
26  
26  
27  
28  
28  
28  
29  
29  
29  
3.9  
3.10  
3.11  
3.12  
3.13  
3.14  
3.15  
3.16  
3.17  
3.18  
2
I C Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
3.18.1  
3.18.2  
I C Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
I C Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.19  
3.20  
Clock Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Genlock Control (GLCO) and Real-Time Control (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.20.1  
3.20.2  
TVP5150 Genlock Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RTC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.21  
3.22  
Internal Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.1  
3.22.2  
3.22.3  
3.22.4  
3.22.5  
3.22.6  
3.22.7  
3.22.8  
3.22.9  
Video Input Source Selection #1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Analog Channel Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Operation Mode Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Miscellaneous Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Autoswitch Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Software Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Color Killer Threshold Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Luminance Processing Control #1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Luminance Processing Control #2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.10 Brightness Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.11  
Color Saturation Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
iii  
May 2006  
SLES043A  
Contents  
Section  
Page  
3.22.12 Hue Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.13 Contrast Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.14 Outputs and Data Rates Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.15 Luminance Processing Control #3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.16 Configuration Shared Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.17 Active Video Cropping Start Pixel MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.18 Active Video Cropping Start Pixel LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.19 Active Video Cropping Stop Pixel MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.20 Active Video Cropping Stop Pixel LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.21 Genlock and RTC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.22 Horizontal Sync (HSYNC) Start Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.23 Vertical Blanking Start Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.24 Vertical Blanking Stop Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.25 Chrominance Control #1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.26 Chrominance Control #2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.27 Interrupt Reset Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.28 Interrupt Enable Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.29 Interrupt Configuration Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.30 Video Standard Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.31 MSB of Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.32 LSB of Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.33 ROM Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.34 RAM Patch Code Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.35 Vertical Line Count MSB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.36 Vertical Line Count LSB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.37 Interrupt Status Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.38 Interrupt Active Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.39 Status Register #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.40 Status Register #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.41 Status Register #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.42 Status Register #4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.43 Status Register #5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.44 Closed Caption Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.45 WSS Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.46 VPS Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.47 VITC Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.48 VBI FIFO Read Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.49 Teletext Filter and Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.50 Teletext Filter Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.51 Interrupt Status Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.52 Interrupt Enable Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.53 Interrupt Configuration Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.54 VDP Configuration RAM Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.55 VDP Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.56 FIFO Word Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.57 FIFO Interrupt Threshold Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.58 FIFO Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.59 Line Number Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
30  
30  
30  
31  
31  
32  
32  
32  
32  
33  
33  
34  
34  
34  
35  
36  
37  
38  
38  
38  
38  
39  
39  
39  
39  
39  
40  
40  
41  
42  
42  
42  
43  
43  
44  
44  
45  
45  
46  
46  
47  
48  
48  
50  
50  
51  
51  
51  
iv  
SLES043A  
May 2006  
Section  
Page  
3.22.60 Pixel Alignment Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.61 FIFO Output Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.62 Automatic Initialization Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.63 Full Field Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.64 Line Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.22.65 Full Field Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
51  
52  
52  
52  
53  
54  
55  
55  
55  
55  
55  
56  
56  
57  
58  
58  
59  
4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.1  
4.2  
Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . . . . . . . . . . . . .  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.2.1  
Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.3  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.3.1  
4.3.2  
4.3.3  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Analog Processing and A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.1 Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
v
May 2006  
SLES043A  
Figures  
Figure  
List of Figures  
Page  
2−1  
2−2  
3−1  
3−2  
3−3  
3−4  
3−5  
3−6  
3−7  
3−8  
3−9  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TVP5150 PBS-Package Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Composite Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Comb Filters Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Chroma Trap Filter Frequency Response, NTSC ITU−R BT.601 Sampling . . . . . . . . . . . . . . . . . . .  
Chroma Trap Filter Frequency Response, PAL ITU−R BT.601 Sampling . . . . . . . . . . . . . . . . . . . . .  
Color Low-Pass Filter With Notch Filter Characteristics, NTSC/PAL ITU−R BT.601 Sampling . . .  
Peaking Filter Response, NTSC/PAL ITU−R BT.601 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4:2:2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8-Bit YCbCr 4:2:2 and ITU−R BT.656 Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8-bit 4:2:2, Timing With 2x Pixel Clock (SCLK) Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4
5
8
9
10  
10  
10  
11  
14  
14  
16  
17  
18  
22  
22  
23  
33  
57  
57  
58  
3−10 Horizontal Synchronization Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3−11 AVID Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3−12 Reference Clock Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3−13 GLCO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3−14 RTC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3−15 Horizontal Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4−1  
4−2  
5−1  
Clocks, Video Data, and Sync Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
I C Host Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
vi  
SLES043A  
May 2006  
List of Tables  
Table  
Page  
2−1  
3−1  
3−2  
3−3  
3−4  
3−5  
3−6  
3−7  
3−8  
3−9  
3−10  
3−11  
3−12  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Data Types Supported by the VDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ancillary Data Format and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Summary of Line Frequencies, Data Rates, and Pixel Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
EAV and SAV Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Write Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
12  
13  
14  
18  
19  
19  
20  
23  
25  
27  
33  
49  
2
I C Terminal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Read Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Analog Channel and Video Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Digital Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Clock Delays (SCLKs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VBI Configuration RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
vii  
May 2006  
SLES043A  
Features  
1
TVP5150 Features  
D
D
D
D
Accepts NTSC (N, 4.43), PAL (B, D, G, H, I,  
M, N) Video Data  
D
Subcarrier Genlock Output For  
Synchronizing Color Subcarrier Of External  
Encoder. Standard Programmable Video  
Output Format:  
− ITU−R BT.656, 8-Bit 4:2:2 With Embedded  
Syncs  
Supports ITU−R BT.601 Standard Sampling  
High-Speed 9-Bit A/D Converter  
Two Composite Inputs or One S-Video  
Input  
D
D
MacrovisionE Copy Protection Detection  
D
Fully Differential CMOS Analog  
Preprocessing Channels With Clamping  
and AGC For Best S/N Performance  
Advanced Programmable Video Output  
Formats:  
− 2x Oversampled Raw VBI Data During  
Active Video  
− Sliced VBI Data During Horizontal  
Blanking Or Active Video  
D
D
D
D
Ultralow Power Consumption: 113 mW  
Typical  
32-Pin TQFP Package  
Power-Down Mode: <1 mW  
D
D
VBI Modes Supported  
− Teletext (NABTS, WST) Closed-Caption  
Decode With FIFO  
− Wide Screen Signaling, Video Program  
System, CGMS, Vertical Interval Time  
Code  
− Custom Configuration Mode That Allows  
The User To Program The Slice Engine  
For Unique VBI Data Signals  
Brightness, Contrast, Saturation, Hue, and  
2
Sharpness Control Through I C  
D
Complementary 4-Line (3-H Delay) Adaptive  
Comb Filters For Both Cross-Luminance  
And Cross-Chrominance Noise Reduction  
D
D
D
Patented Architecture For Locking To  
Weak, Noisy, Or Unstable Signals  
Single 14.318-MHz Crystal for All Standards  
Power-on Reset  
Internal PLL For Line-Locked Clock and  
Sampling  
Table 1−1.  
Figure 1−1.  
MicroStar BGA is a trademark of Texas Instruments.  
Other trademarks are the property of their respective owners.  
1
May 2006  
SLES043A  
Introduction  
2
Introduction  
2.1 Description  
The TVP5150 device is an ultralow-power video decoder for NTSC and PAL video signals. Available in a space  
saving 32-pin TQFP package, the TVP5150 device converts NTSC and PAL video signals to 8-bit ITU−R  
BT.656 format. Discrete syncs are also available. The optimized architecture of the TVP5150 device allows  
for ultralow-power consumption. The device consumes 113 mW of power in typical operation and consumes  
less than 1 mW in power-down mode, considerably increasing battery life in portable applications. The device  
2
uses just one crystal for all supported standards. The TVP5150 device can be programmed using an I C serial  
interface. The device uses a 1.8-V supply for its analog and digital supplies, and a 3.3-V supply for its I/O.  
The TVP5150 device converts baseband analog NTSC and PAL video into digital YUV 4:2:2 component video.  
Luminance/chrominance (Y/C) composite and S-video inputs are also supported. The TVP5150 device  
includes one 9-bit A/D converter with 2x sampling. Sampling is ITU−R BT.601 (27.0 MHz, generated off the  
14.318-MHz crystal or oscillator input) and is line-locked for correct pixel alignment. The output formats can  
be 8-bit 4:2:2 or 8-bit ITU−R BT.656 with embedded synchronization.  
The TVP5150 device utilizes Texas Instruments patented technology for locking to weak, noisy, or unstable  
signals. A chroma frequency control output is generated for synchronizing downstream video encoders.  
Complementary 3-line or 4-line adaptive comb filtering is available for both the luma and chroma data paths  
to reduce both cross-luma and cross-chroma artifacts; a chroma trap filter is also available.  
Video characteristics including hue, contrast, brightness, saturation, and sharpness may be programmed  
2
using the I C high speed serial interface. The TVP5150 device generates synchronization, blanking, field,  
lock, and clock signals in addition to digital video outputs. The TVP5150 device includes methods for  
advanced vertical blanking interval (VBI) data retrieval. The VBI data processor slices, parses, and performs  
error checking on Teletext, Closed Caption, and other data in several formats.  
The TVP5150 device detects copy-protected input signals according to the Macrovision7.1 standard.  
The main blocks of the TVP5150 device include:  
A/D converter with analog processor  
Y/C separation  
Chrominance processor  
Luminance processor  
Video clock/timing processor and power-down control  
Output formatter  
2
I C interface  
VBI data processor  
Macrovisiondetection for composite and S-video  
2.2 Applications  
Digital television  
PDA  
Notebook PCs  
Cell phones  
Video recorder/players  
Internet appliances/web pads  
Handheld games  
Macrovision is a trademark of Macrovision Corporation.  
Other trademarks are the property of their respective owners.  
2
SLES043A  
May 2006  
Introduction  
2.3 Trademarks  
CompactPCI is a trademark of PICMG – PCI Industrial Computer Manufacturers Group, Inc.  
Intel is a trademark of Intel Corporation.  
TI and MicroStar BGA are trademarks of Texas Instruments  
Other trademarks are the property of their respective owners  
2.4 Document Conventions  
Throughout this data manual, several conventions are used to convey information. These conventions are  
listed below:  
1. To identify a binary number or field, a lower case b follows the numbers. For example: 000b is a 3-bit binary  
field.  
2. To identify a hexadecimal number or field, a lower case h follows the numbers. For example: 8AFh is a  
12-bit hexadecimal field.  
3. All other numbers that appear in this document that do not have either a b or h following the number are  
assumed to be decimal format.  
4. If the signal or terminal name has a bar above the name (for example, RESETB), then this indicates the  
logical NOT function. When asserted, this signal is a logic low, 0, or 0b.  
5. RSVD indicates that the referenced item is reserved.  
2.5 Ordering Information  
PACKAGED DEVICES  
T
A
32TQFP-PBS  
0°C to 70°C  
TVP5150PBS  
3
May 2006  
SLES043A  
Introduction  
2.6 Functional Block Diagram  
MACROVISION  
DETECTION  
LUMINANCE  
PROCESSING  
M
U
X
AIP1A  
AIP1B  
A/D  
YOUT[7:0]  
AGC  
YUV 8-BIT 4:2:2  
CHROMINANCE  
PROCESSING  
VBI / DATA SLICER  
SCL  
SDA  
2
I C  
HOST PROCESSOR  
INTERFACE  
PDN  
XTAL1  
FID/GLCO  
XTAL2  
VSYNC/PALI  
INTERQ/GPCL/VBLK  
HSYNC  
SCLK  
AVID  
Figure 2−1. Functional Block Diagram  
2.7 Terminal Assignments  
The TVP5150 video decoder bridge is packaged in a 32-terminal PBS package. Figure 2−2 is the  
PBS-package terminal diagram. Table 2−1 gives a description of the terminals.  
4
SLES043A  
May 2006  
Introduction  
TQFP PACKAGE  
(TOP VIEW)  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
HSYNC  
AVID  
YOUT2  
YOUT3  
INTERQ/GPCL/VBLK  
PDN  
YOUT4  
YOUT5  
REFP  
YOUT6  
REFM  
YOUT7/I2CSEL  
IO_DVDD  
SCLK  
CH1_AGND  
CH1_AVDD  
1
2
3
4
5
6
7
8
Figure 2−2. TVP5150 PBS-Package Terminal Diagram  
Table 2−1. Terminal Functions  
TERMINAL  
NAME NUMBER  
I/O  
DESCRIPTION  
Analog Section  
Analog input. Connect to the video analog input via 0.1-µF to 1-µF capacitor. The maximum input range is  
0−0.75 V , and may require an attenuator to reduce the input amplitude to the desired level. If not used,  
AIP1A  
1
2
I
I
PP  
connect to AGND via 0.1-µF capacitor.  
Analog input. Connect to the video analog input via 0.1-µF to 1-µF capacitor. The maximum input range is  
0−0.75 V , and may require an attenuator to reduce the input amplitude to the desired level. If not used,  
AIP1B  
PP  
connect to AGND via 0.1-µF capacitor.  
Analog ground  
CH1_AGND  
CH1_AVDD  
NSUB  
31  
32  
7
I
I
I
I
I
Analog supply. Connect to 1.8-V analog supply.  
Substrate. Connect to analog ground.  
PLL ground. Connect to analog ground.  
PLL supply. Connect to 1.8-V analog supply.  
PLL_AGND  
PLL_AVDD  
3
4
A/D reference ground. Connect to analog ground through 1-µF capacitor. Also recommended to connect  
directly to REFP through 1-µF capacitor.  
REFM  
REFP  
30  
29  
I
I
A/D reference supply. Connect to analog ground through 1-µF capacitor.  
5
May 2006  
SLES043A  
Introduction  
Table 2−1. Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Digital Section  
Active video indicator. This signal is high during the horizontal active time of the video output on the Y  
and UV terminals. AVID continues to toggle during vertical blanking intervals. This terminal can be  
placed in a high-impedance state.  
AVID  
26  
O
DGND  
DVDD  
19  
20  
I
I
Digital ground  
Digital supply. Connect to 1.8-V digital supply  
FID: Odd/even field indicator or vertical lock indicator. For the odd/even indicator, a 1 indicates the odd  
field.  
GLCO: This serial output carries color PLL information. A slave device can decode the information to  
allow chroma frequency control from the TVP5150 device. Data is transmitted at the SCLK rate in  
Genlock mode. In RTC mode, SCLK/4 is used.  
FID/GLCO  
HSYNC  
23  
25  
O
O
Horizontal synchronization signal  
INTREQ: Interrupt request output.  
GPCL: General-purpose control logic. This terminal has three functions:  
1. General-purpose output. In this mode the state of GPCL is directly programmed via I C.  
2
INTREQ/GPCL/  
VBLK  
27  
I/O 2. Vertical blank output. In this mode the GPCL terminal is used to indicate the vertical blanking interval  
2
of the output video. The beginning and end times of this signal are programmable via I C.  
3. Sync lock control input. In this mode when GPCL is high, the output clock frequencies and the sync  
timing are forced to nominal values.  
IO_DVDD  
PDN  
10  
28  
I
I
Digital supply. Connect to 3.3 V.  
Power-down terminal (active low). Puts the device in standby mode. Preserves the value of the  
registers.  
Active-low reset. RESETB can be used only when PDN = 1.  
When RESETB is pulled low, it resets all the registers, restarts the internal microprocessor.  
RESETB  
8
I
2
SCL  
21  
9
I/O I C serial clock (pullup to IO_DVDD with 1.2-kresistor)  
SCLK  
SDA  
O
System clock at either 1x or 2x the frequency of the pixel clock.  
2
22  
I/O I C serial data (pullup to IO_DVDD with 1.2-kresistor)  
VSYNC: Vertical synchronization signal  
PALI: PAL line indicator or horizontal lock indicator  
VSYNC/PALI  
24  
O
For the PAL line indicator, a 1 indicates a noninverted line, and a 0 indicates an inverted line.  
External clock reference. The user may connect XTAL1 to an oscillator or to one terminal of a crystal  
oscillator. The user may connect XTAL2 to the other terminal of the crystal oscillator or not connect  
XTAL2 at all. One single 14.318-MHz crystal or oscillator is needed for ITU−R BT.601 sampling, for all  
supported standards.  
XTAL1  
XTAL2  
5
6
I
O
12, 13,  
14, 15,  
YOUT[6:0]  
I/O Output decoded ITU−R BT.656 output/YUV 422 output with discrete sync.  
16, 17, 18  
2
I2CSEL: Determines address for I C (sampled at startup). A pullup or pulldown register is needed  
(>1 k) to program the terminal to the desired address.  
Logic 1: Address = 0xBA, Logic 0: Address = 0xB8  
YOUT(7)/I2CSEL  
11  
I/O  
YOUT7: MSB of output decoded ITU−R BT.656 output/YUV 422 output.  
6
SLES043A  
May 2006  
Functional Description  
3
Functional Description  
3.1 Input Multiplexers and Buffers  
The TVP5150 device has an analog input channel that accepts two video inputs, ac-coupled through 0.1-µF  
to 1-µF capacitors. The two analog input ports can be connected as follows:  
Two selectable composite video inputs or  
One S-video input  
2
The internal video multiplexers can be configured via I C. The internal nodes are grounded for zero channel  
crosstalk. The input buffers are continuous time amplifiers that allow an input range of up to 0.75 V . This  
PP  
allows the decoder to support input ranges of 0 to 1.5 V with an external attenuation of one-half.  
3.2 Clamp  
An internal clamping circuit restores the ac-coupled video signal to a fixed dc level. The clamping circuit  
provides line-by-line restoration of the video sync level to a fixed dc reference voltage. Two modes of clamping  
are provided, coarse and fine.  
In coarse mode, the most negative portion of the input signal (typically the sync tip) is clamped to a fixed  
dc level and remains on. This mode is used while the timing processor is searching for the horizontal sync.  
Fine clamp mode is enabled after the horizontal lock is achieved. This is enabled to prevent spurious level  
shifting caused by noise more negative than the sync tip on the input signal. If fine clamp mode is selected,  
then clamping is only enabled during the sync period.  
When in bottom level mode, the sync tip of the input signal is set to output code 0 of the A/D converter  
(ADC).  
When in mid-level mode, fine clamp restores the dc level of the signal to the mid-range of the ADC.  
S-video requires the fine clamp mode on the chroma channel for proper operation. The clamp can be  
completely disabled using software registers.  
3.3 Programmable Gain Amplifier and Automatic Gain Control Circuit  
The programmable gain amplifier (PGA) and the automatic gain control (AGC) circuit work together to make  
sure that the input signal is amplified sufficiently to ensure the proper input range for the ADC. The gain is  
controlled by a 4-bit gain code.  
Input video signal amplitude can vary significantly from the nominal level of 1 V (140 IRE). An AGC circuit  
PP  
adjusts the signal amplitude to utilize the maximum range of the A/D converter without clipping. The AGC  
adjusts the gain to achieve the desired sync amplitude. The PGA has a range of 0 to 12 dB.  
3.4 A/D Converter  
The ADC has 9 bits of resolution and runs at a maximum speed of 27 MHz. The clock input for the ADC comes  
from the PLL. The data is aligned to the pixel clock supplied from the PLL and matched in delay. The ADC uses  
the REFM and REFP terminals as the internal reference generator. For configuration of these terminals,  
please refer to Figure 5−1.  
3.5 Composite Processing Block Diagram  
The composite processing block process NTSC/PAL signals into the YCbCr color space. Figure 3−1 explains  
the basic architecture of this processing block.  
Figure 3−1 illustrates the luminance/chrominance (Y/C) separation process in the TVP5150 device. The  
composite video is multiplied by subcarrier signals in the quadrature modulator to generate color difference  
signals U and V. U and V are then low-pass filtered to achieve the desired bandwidth and to reduce crosstalk,  
by the color low-pass filters.  
7
May 2006  
SLES043A  
Functional Description  
An adaptive 4-line comb filter separates UV from Y based on the unique property of color phase shift from line  
to line. Chroma is remodulated through another quadrature modulator and subtracted from the line-delayed  
composite video to generate luma. This form of Y/C separation is completely complementary and thus loses  
no information. However, in some applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. In  
that case, notch filters can be turned on. To accommodate some viewing preferences, a peaking filter is also  
2
available in the luma path. Contrast, brightness, hue, saturation, and sharpness are programmable via I C.  
The Y/C separation is bypassed for S-video input. For S-video, the remodulation path is disabled. Since Y and  
C are already separated at the inputs, the only requirement is to digitize them and enable the same processing  
as the composite signal after Y/C separation.  
Gain Factor  
Peak  
Detector  
Bandpass  
X
Peaking  
Delay  
+
Delay  
Y
Line  
Delay  
Composite  
Y
U
V
Quadrature  
Modulation  
Contrast  
Brightness  
Saturation  
Adjust  
Notch  
Filter  
U
V
Notch  
Filter  
Color  
LPF  
U
V
3- or 4-Line  
Adaptive  
Comb  
Burst  
Accumulator  
(U)  
Quadrature  
Demodulation  
Composite  
Notch  
Filter  
Delay  
Filter  
Notch  
Filter  
Color  
LPF  
Delay  
Burst  
Accumulator  
(V)  
Figure 3−1. Composite Processing Block Diagram  
3.6 Adaptive Comb Filtering  
Y/C separation can be performed using adaptive 4-line (3-H delay), fixed 3-line, fixed 2-line comb filters, or  
a chroma trap filter. Characteristics of 4-line and 3-line comb filters are shown in Figure 3−2.  
8
SLES043A  
May 2006  
Functional Description  
The filter frequency plots show that both 4-line and 3-line (with filter coefficients [1,3,3,1]/8 and [1,2,1]/4) comb  
filters have zeros at 1/2 of the horizontal line frequency to separate the interleaved Y/C spectrum in NTSC.  
The 4-line comb filter has less cross-luma and cross-chroma noise due to slightly sharper filter cutoff. The  
4-line comb filter with filter coefficients [1,1,1,1]/4 has three zeros at 1/4, 2/4, and 3/4 of the horizontal line  
frequency. This is to be used for PAL only because of its 90_ U/V phase shifting from line to line. The comb  
filter can be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path,  
then chroma trap filters are used. TI’s patented adaptive comb filter algorithm reduces artifacts such as  
hanging dots at color boundaries and detects and properly handles false colors in high frequency luminance  
images such as a multiburst pattern or circle pattern. Adaptive comb filtering is the recommended mode of  
operation. The complete comb filter selection is shown in the chrominance control #1 register (see Section  
3.22.25).  
1.0  
0.8  
0.6  
3 line (1,2,1)/4  
0.4  
4 line (1,3,3,1)/8  
4 line (1,1,1,1)/4  
0.2  
0.0  
0
1
2
3
4
5
f − Frequency − MHz  
Figure 3−2. Comb Filters Frequency Response  
9
May 2006  
SLES043A  
Functional Description  
10  
5
10  
5
Notch3 Filter  
Notch3 Filter  
0
0
−5  
−10  
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
Notch1 Filter  
−15  
Notch1 Filter  
Notch2 Filter  
−20  
Notch2 Filter  
−25  
No Notch Filter  
−30  
−35  
−40  
No Notch Filter  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
f − Frequency − MHz  
f − Frequency − MHz  
Figure 3−3. Chroma Trap Filter Frequency  
Response, NTSC ITU−R BT.601 Sampling  
Figure 3−4. Chroma Trap Filter Frequency  
Response, PAL ITU−R BT.601 Sampling  
3.7 Color Low-Pass Filter  
In some applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. This is especially true in case  
of nonstandard video signals that have asymmetrical U/V sidebands. In this case, notch filters are provided  
that limit the bandwidth of the U/V signals.  
Notch filters are needed when the comb filtering turns off, due to extreme color transitions in the input image.  
The response of these notch filters is shown in Figure 3−5. The notch filters have three options that allow three  
different frequency responses based on the color frequency characteristics of the input video.  
10  
Notch2 Filter  
−3 dB @ 844 kHz  
0
No Notch Filter  
−3 dB @ 1.412 MHz  
−10  
Notch3 Filter  
−20  
−30  
−40  
−50  
−60  
−70  
−3 dB @ 554 kHz  
Notch1  
Filter −3 dB  
@ 1.03 MHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f − Frequency − MHz  
Figure 3−5. Color Low-Pass Filter With Notch Filter Characteristics, NTSC/PAL ITU−R BT.601 Sampling  
10  
SLES043A  
May 2006  
Functional Description  
3.8 Luminance Processing  
The luma component is derived from the composite signal by subtracting the remodulated chroma information.  
A line delay exists in this path to compensate for the line delay in the adaptive comb filter in the color processing  
chain. The luma information is then fed into the peaking circuit, which enhances the high frequency  
components of the signal as shown in Figure 3−6.  
7
Peak at  
f = 2.40 MHz  
6
5
Gain = 2  
Gain = 1  
4
3
Gain = 0.5  
2
1
0
Gain = 0  
5
−1  
0
1
2
3
4
6
7
f − Frequency − MHz  
Figure 3−6. Peaking Filter Response, NTSC/PAL ITU−R BT.601 Sampling  
3.9 Chrominance Processing  
For PAL/NTSC formats, the color processing begins with a quadrature demodulator extracting U and V  
components from the composite signal. The U/V signals then pass through the gain control stage for chroma  
saturation adjustment. An adaptive comb filter is applied to both U and V to eliminate cross-chrominance  
noise. Hue control is achieved with phase shift of the digitally controlled oscillator. An automatic color killer  
circuit is also included in this block. The color killer suppresses the chroma processing when the color burst  
of the video signal is weak or not present.  
3.10 Timing Processor  
The timing processor is a combination of hardware and software running in the internal microprocessor that  
serves to control horizontal lock to the input sync pulse edge, AGC and offset adjustment in the analog front  
end, vertical sync detection, and Macrovisiont detection.  
3.11 VBI Data Processor  
The TVP5150 VBI data processor (VDP) slices various data services like Teletext (WST, NABTS), Closed  
Caption (CC), wide screen signaling (WSS), etc. These services are acquired by programming the VDP to  
enable a standard(s) in the vertical blank interval. The results are stored in a FIFO and/or registers. The  
Teletext results are stored in a FIFO only. Listed in Table 3−1 is a summary of the types of vertical blank interval  
data supported according to the video standard. It supports ITU−R BT. 601 sampling for each. Thirteen  
standard modes are currently supported.  
11  
May 2006  
SLES043A  
Functional Description  
Table 3−1. Data Types Supported by the VDP  
LINE MODE  
REGISTER (D0h−FCh)  
BITS [3:0]  
SAMPLING  
RATE (0Dh) NAME  
BIT 7  
DESCRIPTION  
0000b  
0000b  
0001b  
0001b  
0010b  
0010b  
0011b  
0011b  
0100b  
0100b  
0101b  
0101b  
0110b  
0110b  
0111b  
0111b  
1000b  
1000b  
1001b  
1001b  
1010b  
1010b  
1011b  
1011b  
1100b  
1100b  
1101b  
1110b  
1111b  
x
x
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
1
x
x
x
x
Reserved  
Reserved  
Reserved  
x
x
WST PAL B 6  
Teletext, PAL, System B, ITU−R BT.601  
Reserved  
x
WST PAL C 6  
Teletext, PAL, System C, ITU−R BT.601  
Reserved  
x
WST, NTSC B 6  
Teletext, NTSC, System B, ITU−R BT.601  
Reserved  
x
NABTS, NTSC C 6  
Teletext, NTSC, System C, ITU−R BT.601  
Reserved  
x
NABTS, NTSC D 6  
Teletext, NTSC, System D (Japan), ITU−R BT.601  
Reserved  
x
CC, PAL 6  
Closed caption PAL, ITU−R BT.601  
Reserved  
x
CC, NTSC 6  
Closed caption NTSC, ITU−R BT.601  
Reserved  
x
WSS, PAL 6  
Wide-screen signal, PAL, ITU−R BT.601  
Reserved  
x
WSS, NTSC 6  
Wide-screen signal, NTSC, ITU−R BT.601  
Reserved  
x
VITC, PAL 6  
Vertical interval timecode, PAL, ITU−R BT.601  
Reserved  
x
VITC, NTSC 6  
Vertical interval timecode, NTSC, ITU−R BT.601  
Reserved  
x
VPS, PAL 6  
Video program system, PAL, ITU−R BT.601  
Reserved  
x
x
Reserved  
Active Video  
Active video/full field  
At powerup the host interface is required to program the VDP-configuration RAM (VDP-CRAM) contents with  
the lookup table (see Section 3.22.54). This is done through port address C3h. Each read from or write to this  
address will auto increment an internal counter to the next RAM location. To access the VDP-CRAM, the line  
mode registers (D0h−FCh) must be programmed with FFh to avoid a conflict with the internal microprocessor  
and the VDP in both writing and reading. Full field mode must also be disabled.  
Available VBI lines are from line 6 to line 27 of both field 1 and field 2. Each line can be any VBI mode. When  
changing modes, the VDP must allow the current transaction to complete through the delays of the VDP before  
switching the line mode register contents. It must also complete loading of the line mode registers before the  
next line starts processing. The switch pixel number is set through registers CBh and CCh (see Section  
3.22.60).  
Output data is available either through the VBI-FIFO (B0h) or through dedicated registers at 90h−AFh, both  
2
of which are available through the I C port.  
12  
SLES043A  
May 2006  
Functional Description  
3.12 VBI FIFO and Ancillary Data in Video Stream  
Sliced VBI data can be output as ancillary data in the video stream in the ITU−R BT.656 mode. VBI data is  
output during the horizontal blanking period following the line from which the data was retrieved. Table 3−2  
shows the header format and sequence of the ancillary data inserted into the video stream. This format is also  
used to store any VBI data into the FIFO. The size of FIFO is 512 bytes. Therefore, the FIFO can store up to  
11 lines of teletext data with the NTSC NABTS standard.  
Table 3−2. Ancillary Data Format and Sequence  
BYTE  
NO.  
D7  
(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(LSB)  
DESCRIPTION  
Ancillary data preamble  
0
1
2
3
4
5
6
7
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
NEP  
NEP  
NEP  
EP  
EP  
EP  
0
1
0
DID2  
F2  
N2  
DID1  
F1  
N1  
DID0  
F0  
N0  
Data ID (DID)  
F5  
N5  
F4  
N4  
F3  
N3  
Secondary data ID (SDID)  
Number of 32 bit data (NN)  
Internal Data ID0 (IDID0)  
Video line # [7:0]  
0
0
0
Data  
error  
Match  
#1  
Match  
#2  
Video line # [9:8] Internal Data ID1 (IDID1)  
st  
8
9
1. Data  
Data byte  
Data byte  
Data byte  
Data byte  
:
1
word  
word  
2. Data  
3. Data  
4. Data  
:
10  
11  
:
th  
N
m−1. Data  
m. Data  
Data byte  
Data byte  
Check sum  
Fill byte  
NEP  
1
EP  
0
CS[5:0]  
4(N+2)  
0
0
0
0
0
0
EP:  
Even parity for D0−D5  
NEP: Negated even parity  
DID:  
91h: Sliced data of VBI lines of first field  
53h: Sliced data of line 24 to end of first field  
55h: Sliced data of VBI lines of second field  
97h: Sliced data of line 24 to end of second field  
SDID:  
NN:  
This field holds the data format taken from the line mode register of the corresponding line.  
Number of Dwords beginning with byte 8 through 4(N+2). This value is the number of Dwords  
where each Dword is 4 bytes.  
IDID0:  
IDID1:  
Transaction video line number [7:0]  
Bit 0/1 = Transaction video line number [9:8]  
Bit 2 = Match 2 flag  
Bit 3 = Match 1 flag  
Bit 4 = 1 if an error was detected in the EDC block. 0 if not.  
CS:  
Sum of D0−D7 of DID through last data byte.  
Fill byte: Fill bytes make a multiple of 4 bytes from byte 0 to last fill byte. For teletext modes, byte 8 is the  
sync pattern byte. Byte 9 is 1. Data (the first data byte).  
13  
May 2006  
SLES043A  
Functional Description  
3.13 Raw Video Data Output  
The TVP5150 device can output raw A/D video data at 2x sampling rate for external VBI slicing. This is  
transmitted as an ancillary data block during the active horizontal portion of the line and during vertical  
blanking.  
3.14 Output Formatter  
The YUV digital output can be programmed as 8-bit 4:2:2 or 8-bit ITU−R BT.656 parallel interface standard.  
Table 3−3. Summary of Line Frequencies, Data Rates, and Pixel Counts  
HORIZONTAL  
LINE RATE (kHz)  
PIXELS PER  
LINE  
ACTIVE PIXELS SCLK FREQUENCY  
STANDARDS  
NTSC (M, 4.43), ITU−R BT.601  
PER LINE  
(MHz)  
27.00  
27.00  
15.73426  
15.625  
858  
864  
720  
PAL (B, D, G, H, I), ITU−R BT.601  
720  
Y0  
U0  
V0  
Y1  
Y2  
U1  
V1  
Y3  
Y4  
U2  
V2  
Y5  
Y716  
U358  
V358  
Y717  
Y718  
U359  
V359  
Y719  
= Luminance-Only Sample  
= Luminance and Chrominance Sample  
Timing is for 13.5-MHz sampling  
Figure 3−7. 4:2:2 Sampling  
The different formats that are supported and the corresponding sampling frequencies are listed as follows:  
DATA CLOCK  
FREQUENCY  
EMBEDDED SYNCS,  
VBI DATA, RAW DATA  
STANDARDS  
SUPPORTED  
MODES  
TERMINALS  
Syncs optional  
Y(7−0) YCbCr VBI optional (edge prog)  
Raw data optional  
NTSC/PAL  
YUV output  
8-bit ITU−R BT.601  
8-bit 4:2:2  
SCLK  
SCLK  
Syncs optional  
Y(7−0) YCbCr VBI optional (edge prog)  
Raw data optional  
Any standard  
YUV output  
The following diagram explains the different modes.  
SCLK  
YOUT[7:0]  
U0  
Y0  
V0  
Y1  
U1  
Y2  
U359 Y718 V359 Y719  
Numbering shown is for 13.5-MHz sampling  
Figure 3−8. 8-Bit YCbCr 4:2:2 and ITU−R BT.656 Mode Timing  
14  
SLES043A  
May 2006  
Functional Description  
3.15 Synchronization Signals  
Nondata stream embedded syncs are provided via the following signals:  
VSYNC (vertical sync)  
FID/VLK (field indicator or vertical lock indicator)  
GPCL/VBLK (general-purpose I/O or vertical blanking indicator)  
PALI/HLK (PAL switch indicator or horizontal lock indicator)  
HSYNC (horizontal sync)  
AVID (active video indicator)  
In hardware, VSYNC, FID, PALI, and VBLK are software-set and programmable to the SCLK pixel count. This  
allows any possible alignment to the internal pixel count and line count. The proper settings for a 525-/625-line  
video output are given as an example below.  
15  
May 2006  
SLES043A  
Functional Description  
525-Line  
525  
1
2
3
4
5
6
7
8
9
10  
11  
20  
21  
22  
Composite  
Video  
VSYNC  
FID  
GPCL/VBLK  
0 +  
VBLK Start  
0 +  
VBLK Stop  
262 263 264 265 266 267 268 269 270 271 272 273  
282 283 284  
Composite  
Video  
VSYNC  
FID  
GPCL/VBLK  
0 +  
VBLK Start  
0 +  
VBLK Stop  
625-Line  
310 311 312 313 314 315 316 317 318 319 320  
333 334 335 336  
Composite  
Video  
VSYNC  
FID  
GPCL/VBLK  
0 +  
VBLK Start  
0 +  
VBLK Stop  
622 623 624 625  
1
2
3
4
5
6
7
20  
21  
22  
23  
Composite  
Video  
VSYNC  
FID  
GPCL/VBLK  
0 +  
VBLK Start  
0 +  
VBLK Stop  
Notes:  
1. Line numbering conforms to ITU−R BT.470  
Figure 3−9. 8-bit 4:2:2, Timing With 2x Pixel Clock (SCLK) Reference  
16  
SLES043A  
May 2006  
Functional Description  
ITU−R BT.656 timing shown without embedded syncs.  
NTSC 601 1436 1437 1438 1439 1440 1441  
1455 1456  
1459 1460  
1713 1714 1715  
1725 1726 1727  
0
0
1
1
2
2
3
3
1583 1584  
1587 1588  
1711 1712  
1723 1724  
PAL 601  
1436 1437 1438 1439 1440 1441  
Cb  
0
Y
0
Cr  
0
Y
1
ITU 656  
Cb  
Y
Cr  
Y
FF  
00  
10  
80  
00  
00  
XX  
10  
80  
10  
FF  
359  
718  
359 719  
Datastream  
HSYNC  
AVID  
0 +  
HSYNC Start  
0 +  
AVID Stop  
0 +  
AVID Start  
NOTE: AVID rising edge occurs 4 SCLK cycles early when in ITU−R BT.656 output  
mode.  
Figure 3−10. Horizontal Synchronization Signals  
3.16 AVID Cropping  
AVID or active video cropping provides a means to decrease bandwidth of the video output. This is  
accomplished by horizontally blanking a number of AVID pulses and by vertically blanking a number of lines  
per frame. The horizontal AVID cropping is controlled using registers 11h and 12h for start pixels MSB and  
LSB, respectively.  
Registers 13h and 14h provide access to stop pixels MSB and LSB, respectively. The vertical AVID cropping  
is controlled using the vertical blanking (VBLK) start and stop registers at addresses 18h and 19h. Figure 3−11  
shows an AVID application.  
17  
May 2006  
SLES043A  
Functional Description  
Active Video Area  
AVID Cropped  
Area  
AVID Start  
AVID Stop  
HSYNC  
Figure 3−11. AVID Application  
3.17 Embedded Syncs  
Standards with embedded syncs insert SAV and EAV codes into the datastream on the rising and falling edges  
of AVID. These codes contain the V and F bits which also define vertical timing. F and V are software  
programmable and change after SAV but before EAV, so that the new value always appears on EAV first.  
Table 3−4 gives the format of the SAV and EAV codes.  
H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line and  
field counter varies depending on the standard.  
The P bits are protection bits:  
P3 = V xor H  
P2 = F xor H  
P1 = F xor V  
P0 = F xor V xor H  
Table 3−4. EAV and SAV Sequence  
8-BIT DATA  
D7 (MSB)  
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
D0  
1
Preamble  
Preamble  
Preamble  
Status word  
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
V
H
P3  
P2  
P1  
P0  
18  
SLES043A  
May 2006  
Functional Description  
2
3.18 I C Host Interface  
2
The I C standard consists of two signals, serial input/output data line (SDA) and input/output clock line (SCL),  
which carry information between the devices connected to the bus. A third signal (I2CSEL) is used for slave  
2
address selection. Although the I C system can be multimastered, the TVP5150 device functions as a slave  
device only.  
Both SDA and SCL must be connected to a positive supply voltage via a pullup resistor. When the bus is free,  
both lines are high. The slave address select terminal (I2CSEL) enables the use of two TVP5150 devices tied  
2
to the same I C bus. At power up, the status of the I2CSEL is polled. Depending on the write and read  
addresses to be used for the TVP5150 device, it can either pulled low or high through a resistor. This terminal  
is multiplexed with YOUT7 and hence must not be tied directly to ground or V . Table 3−6 summarizes the  
DD  
2
terminal functions of the I C-mode host interface.  
Table 3−5. Write Address Selection  
I2CSEL  
WRITE ADDRESS  
0
1
B8h  
BAh  
2
Table 3−6. I C Terminal Description  
SIGNAL  
TYPE  
I
DESCRIPTION  
I2CSEL (YOUT7)  
Slave address selection  
Input/output clock line  
Input/output data line  
SCL  
SDA  
I/O (open drain)  
I/O (open drain)  
Data transfer rate on the bus is up to 400 kbits/s. The number of interfaces connected to the bus is dependent  
on the bus capacitance limit of 400 pF. The data on the SDA line must be stable during the high period of the  
SCL except for start and stop conditions. The high or low state of the data line can only change with the clock  
signal on the SCL line being low. A high-to-low transition on the SDA line while the SCL is high indicates an  
2
2
I C start condition. A low-to-high transition on the SDA line while the SCL is high indicates an I C stop  
condition.  
Every byte placed on the SDA must be 8 bits long. The number of bytes which can be transferred is  
unrestricted. Each byte must be followed by an acknowledge bit. The acknowledge-related clock pulse is  
2
generated by the I C master.  
2
3.18.1 I C Write Operation  
Data transfers occur utilizing the following illustrated formats.  
2
An I C master initiates a write operation to the TVP5150 device by generating a start condition (S) followed  
2
by the TVP5150 I C address (as shown below), in MSB first bit order, followed by a 0 to indicate a write cycle.  
After receiving an acknowledge from the TVP5150 device, the master presents the subaddress of the register,  
or the first of a block of registers it wants to write, followed by one or more bytes of data, MSB first. The  
2
TVP5150 device acknowledges each byte after completion of each transfer. The I C master terminates the  
write operation by generating a stop condition (P).  
Step 1  
0
2
I C Start (master)  
S
Step 2  
7
6
5
4
3
2
1
0
2
I C General address (master)  
1
0
1
1
1
0
X
0
Step 3  
9
2
I C Acknowledge (slave)  
A
19  
May 2006  
SLES043A  
Functional Description  
Step 4  
7
6
5
4
3
2
1
0
2
I C Write register address (master)  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
Step 5  
9
2
I C Acknowledge (slave)  
A
Step 6  
7
6
5
4
3
2
1
0
2
I C Write data (master)  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Step 7  
9
2
I C Acknowledge (slave)  
A
Step 8  
0
2
I C Stop (master)  
P
Repeat steps 6 and 7 until all data have been written.  
2
3.18.2 I C Read Operation  
2
The read operation consists of two phases. The first phase is the address phase. In this phase, an I C master  
initiates a write operation to the TVP5150 device by generating a start condition (S) followed by the TVP5150  
2
I C address, in MSB first bit order, followed by a 0 to indicate a write cycle. After receiving acknowledges from  
the TVP5150 device, the master presents the subaddress of the register or the first of a block of registers it  
wants to read. After the cycle is acknowledged, the master terminates the cycle immediately by generating  
a stop condition (P).  
Table 3−7. Read Address Selection  
I2CSEL  
READ ADDRESS  
0
1
B9h  
BBh  
2
The second phase is the data phase. In this phase, an I C master initiates a read operation to the TVP5150  
2
device by generating a start condition followed by the TVP5150 I C address (as shown below for a read  
operation), in MSB first bit order, followed by a 1 to indicate a read cycle. After an acknowledge from the  
2
2
TVP5150 device, the I C master receives one or more bytes of data from the TVP5150 device. The I C master  
acknowledges the transfer at the end of each byte. After the last data byte desired has been transferred from  
the TVP5150 device to the master, the master generates a not acknowledge followed by a stop.  
3.18.2.1 Read Phase 1  
Step 1  
0
2
I C Start (master)  
S
Step 2  
7
6
5
4
3
2
1
0
2
I C General address (master)  
1
0
1
1
1
0
X
0
Step 3  
9
2
I C Acknowledge (slave)  
A
Step 4  
7
6
5
4
3
2
1
0
2
I C Read register address (master)  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
Step 5  
9
2
I C Acknowledge (slave)  
A
20  
SLES043A  
May 2006  
Functional Description  
Step 6  
0
2
I C Stop (master)  
P
3.18.2.2 Read Phase 2  
Step 7  
0
2
I C Start (master)  
S
Step 8  
7
6
5
4
3
2
1
0
2
I C General address (master)  
1
0
1
1
1
0
X
1
Step 9  
9
2
I C Acknowledge (slave)  
A
Step 10  
7
6
5
4
3
2
1
0
2
I C Read data (slave)  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Step 11  
9
2
I C Not Acknowledge (master)  
A
Step 12  
0
2
I C Stop (master)  
P
Repeat steps 10 and 11 for all bytes read. Master does not acknowledge the last read data received.  
2
3.18.2.3 I C Timing Requirements  
2
The TVP5150 device requires delays in the I C accesses to accommodate its internal processor’s timing. In  
2
2
accordance with I C specifications, the TVP5150 device holds the I C clock line (SCL) low to indicate the wait  
2
2
2
period to the I C master. If the I C master is not designed to check for the I C clock line held-low condition,  
then the maximum delays must always be inserted where required. These delays are of variable length;  
maximum delays are indicated in the following diagram:  
Normal register writing address 00h−8Fh (addresses 90h−FFh do not require delays)  
Slave address  
(B8h)  
Data  
(XXh)  
Start  
Ack  
Subaddress  
Ack  
Ack  
Wait 64 µs  
Stop  
3.19 Clock Circuits  
An internal line-locked phase-locked loop (PLL) generates the system and pixel clocks. The PLL minimizes  
jitter and process and environmental variability. It is capable of operating off a single crystal frequency with  
a high supply rejection ratio. A 14.318-MHz clock is required to drive the PLL. This may be input to the  
TVP5150 device on terminal 5 (XTAL1), or a crystal of 14.318-MHz fundamental resonant frequency may be  
connected across terminals 5 and 6 (XTAL2). Figure 3−12 shows the reference clock configurations. For the  
example crystal circuit shown (a parallel-resonant crystal with 14.318-MHz fundamental frequency), the  
external capacitors must have the following relationship:  
C
= C = 2C − C  
,
L1  
L2  
L
STRAY  
where C  
is the terminal capacitance with respect to ground. Please note that with the crystal oscillator,  
STRAY  
an external 100-kresistor can be optionally put across XTAL1 and XTAL2 terminals. Figure 3−12 shows the  
reference clock configurations.  
21  
May 2006  
SLES043A  
Functional Description  
14.318-MHz or  
27-MHz Crystal  
TVP5150  
TVP5150  
C
L1  
5
6
5
6
14.318-MHz or  
27-MHz Clock  
XTAL1  
XTAL1  
R
C
L2  
XTAL2  
XTAL2  
NOTE: 100-kresistor R is optional  
Figure 3−12. Reference Clock Configurations  
3.20 Genlock Control (GLCO) and Real-Time Control (RTC)  
A Genlock control function is provided to support a standard video encoder to synchronize its internal color  
phase DCO for a clean video line and color lock.  
The frequency control word of the internal color subcarrier digital control oscillator (DCO) and the subcarrier  
phase reset bit are transmitted via terminal 23 (GLCO). The frequency control word is a 23-bit binary number.  
The frequency of the DCO can be calculated from the following equation:  
Fctrl  
x
=
Fdco  
Fsclk  
23  
2
where F  
of the SCLK.  
is the frequency of the DCO, F is the 23-bit DCO frequency control, and F  
is the frequency  
dco  
ctrl  
sclk  
3.20.1 TVP5150 Genlock Control Interface  
2
A write of 1 to bit 4 of the chrominance control register at I C subaddress 1Ah causes the subcarrier DTO  
phase reset bit to be sent on the next scan line on GLCO. The active low reset bit occurs 7 SCLKs after the  
transmission of the last bit of DCO frequency control. Upon the transmission of the reset bit, the phase of the  
TVP5150 internal subcarrier DCO is reset to zero.  
A Genlock slave device can be connected to the GLCO terminal and use the information on GLCO to  
synchronize its internal color phase DCO to achieve clean line and color lock.  
Figure 3−13 shows the timing diagram of the GLCO mode.  
SCLK  
GLCO  
MSB  
21  
LSB  
0
22  
>128 SCLK  
23 SCLK  
7 SCLK  
23-Bit Frequency Control  
1 SCLK  
1 SCLK  
DCO Reset Bit  
Start Bit  
Figure 3−13. GLCO Timing  
22  
SLES043A  
May 2006  
Functional Description  
3.20.2 RTC Mode  
Figure 3−14 shows the timing diagram of the RTC mode. Clock rate for the RTC mode is 4 times slower than  
the GLCO clock rate. For PLL frequency control, the upper 22 bits are used. Each frequency control bit is 2  
clock cycles long. The active low reset bit occurs 6 CLKs after the transmission of the last bit of PLL frequency  
control.  
M
S
B
L
S
B
RTC  
21  
0
128 CLK  
16 CLK  
2 CLK  
44 CLK  
1 CLK  
22-Bit Fsc Frequency Control  
PAL  
Switch  
2 CLK  
Start  
Bit  
3 CLK  
1 CLK  
Reset  
Bit  
Figure 3−14. RTC Timing  
3.21 Internal Control Registers  
The TVP5150 device is initialized and controlled by a set of internal registers which set all device operating  
2
parameters. Communication between the external controller and the TVP5150 device is through I C.  
Table 3−8 shows the summary of these registers. The reserved registers must not be written. However,  
reserved bits in the defined registers must be written with 0s. The detailed programming information of each  
register is described in the following sections.  
Table 3−8. Registers Summary  
REGISTER FUNCTION  
Video input source selection #1  
ADDRESS  
00h  
DEFAULT  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Analog channel controls  
Operation mode controls  
Miscellaneous controls  
Autoswitch mask  
01h  
15h  
02h  
00h  
03h  
01h  
04h  
00h  
Software reset  
05h  
00h  
Color killer threshold control  
Luminance processing control #1  
Luminance processing control #2  
Brightness control  
06h  
10h  
07h  
20h  
08h  
00h  
09h  
80h  
Color saturation control  
Hue control  
0Ah  
0Bh  
0Ch  
0Dh  
80h  
00h  
Contrast control  
80h  
Outputs and data rates select  
47h  
R = Read only  
W = Write only  
R/W = Read and write  
23  
May 2006  
SLES043A  
Functional Description  
Table 3−8. Registers Summary (Continued)  
REGISTER FUNCTION  
Luminance processing control #3  
ADDRESS  
0Eh  
DEFAULT  
R/W  
R/W  
R/W  
00h  
08h  
Configuration shared pins  
Reserved  
0Fh  
10h  
Active video cropping start MSB  
Active video cropping start LSB  
Active video cropping stop MSB  
Active video cropping stop LSB  
Genlock/RTC  
11h  
00h  
00h  
00h  
00h  
01h  
80h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
12h  
13h  
14h  
15h  
Horizontal sync start  
Reserved  
16h  
17h  
Vertical blanking start  
Vertical blanking stop  
Chrominance processing control #1  
Chrominance processing control #2  
Interrupt reset register B  
Interrupt enable register B  
Interrupt configuration register B  
Reserved  
18h  
00h  
00h  
0Ch  
14h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh−27h  
28h  
Video standard  
00h  
R/W  
Reserved  
29h–7Fh  
80h  
MSB of device ID  
51h  
50h  
02h  
10h  
R
R
R
R
R
R
R
R
R
R
R
R
R
LSB of device ID  
81h  
ROM version  
82h  
RAM patch-code version  
Vertical line count MSB  
Vertical line count LSB  
Interrupt status register B  
Interrupt active register B  
Status register #1  
83h  
84h  
85h  
86h  
87h  
00h  
88h  
Status register #2  
89h  
Status register #3  
8Ah  
Status register #4  
8Bh  
Status register #5  
8Ch  
Reserved  
8Dh−8Fh  
90h−93h  
94h−99h  
9Ah−A6h  
A7h−AFh  
B0h  
Closed caption data registers  
WSS data registers  
VPS data registers  
R
R
R
VITC data registers  
VBI FIFO read data  
Teletext filter 1  
R
R
B1h−B5h  
B6h−BAh  
00h  
00h  
R/W  
R/W  
Teletext filter 2  
R = Read only  
W = Write only  
R/W = Read and write  
24  
SLES043A  
May 2006  
Functional Description  
Table 3−8. Registers Summary (Continued)  
REGISTER FUNCTION  
ADDRESS  
BBh  
DEFAULT  
R/W  
Teletext filter enable  
00h  
R/W  
Reserved  
BCh−BFh  
C0h  
Interrupt status register A  
Interrupt enable register A  
Interrupt configuration  
VDP configuration RAM data  
Configuration RAM address low byte  
Configuration RAM address high byte  
VDP status register  
00h  
00h  
04h  
DCh  
0Fh  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
C1h  
C2h  
C3h  
C4h  
C5h  
C6h  
FIFO word count  
C7h  
FIFO interrupt threshold  
FIFO reset  
C8h  
80h  
00h  
00h  
59h  
03h  
01h  
00h  
00h  
FFh  
7Fh  
R/W  
W
C9h  
Line number interrupt  
Pixel alignment register low byte  
Pixel alignment register high byte  
FIFO output control  
CAh  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CBh  
CCh  
CDh  
Automatic initialization  
Full field enable  
CEh  
CFh  
Line mode registers  
D0h−FBh  
FCh  
Full field mode register  
Reserved  
FDh−FFh  
R = Read only  
W = Write only  
R/W = Read and write  
3.22 Register Definitions  
3.22.1 Video Input Source Selection #1 Register  
Address  
00h  
7
6
5
4
3
2
1
0
Channel 1 source  
selection  
Reserved  
S-video selection  
Channel 1 source selection:  
0 = AIP1A selected (default)  
1 = AIP1B selected  
Table 3−9. Analog Channel and Video Mode Selection  
ADDRESS 00  
INPUT(S) SELECTED  
BIT 1  
BIT 0  
Composite  
S-Video  
AIP1A (default)  
AIP1B  
0
1
x
0
0
1
1A luma, 2A chroma  
25  
May 2006  
SLES043A  
Functional Description  
3.22.2 Analog Channel Controls Register  
Address  
01h  
7
6
5
4
3
2
1
0
Reserved  
1
Automatic offset control  
Automatic gain control  
Automatic offset control:  
00 = Disabled  
01 = Automatic offset enabled (default)  
10 = Reserved  
11 = Clamping level frozen to the previously set value  
Automatic gain control (AGC):  
00 = Disabled (fixed gain value)  
01 = AGC enabled (default)  
10 = Reserved  
11 = AGC frozen to the previously set value  
3.22.3 Operation Mode Controls Register  
Address  
02h  
7
6
5
4
3
2
1
0
Reserved  
Color subcarrier PLL frozen  
Reserved  
Power down mode  
Color subcarrier PLL frozen:  
0 = Color subcarrier PLL increments by the internally generated phase increment. (default)  
GLCO pin outputs the frequency increment.  
1 = Color subcarrier PLL stops operating.  
GLCO pin outputs the frozen frequency increment.  
Power down mode:  
0 = Normal operation (default)  
1 = Power down mode. A/Ds are turned off and internal clocks are reduced to minimum.  
3.22.4 Miscellaneous Control Register  
Address  
03h  
7
6
5
4
3
2
1
0
HSYNC, VSYNC/PALI,  
AVID, FID/GLCO  
output enable  
GPCL I/O mode  
select  
Lock status  
(HVLK)  
YUV output  
enable (TVPOE)  
Vertical blanking  
on/off  
Clock output  
enable  
VBKO  
GPCL pin  
VBKO (pin 27) function select:  
0 = GPCL (default)  
1 = VBLK  
GPCL (data is output based on state of bit 5):  
0 = GPCL outputs 0 (default)  
1 = GPCL outputs 1  
GPCL I/O mode select:  
0 = GPCL is input (default)  
1 = GPCL is output  
26  
SLES043A  
May 2006  
Functional Description  
Lock status (HVLK) (configured along with register 0Fh):  
0 = Terminal VSYNC/PALI outputs. PAL indicator (PALI) signal and terminal FID/GLCO outputs field ID  
(FID) signal (default) (if terminals are configured to output PALI and FID in register 0Fh)  
1 = Terminal VSYNC/PALI outputs horizontal lock indicator (HLK) and terminal FID outputs vertical lock  
indicator (VLK) (if terminals are configured to output PALI and FID in register 0Fh)  
These are additional functionalities that are provided for ease of use.  
YUV output enable:  
0 = Y(OUT7:0) high impedance (default)  
1 = Y(OUT7:0) active  
HSYNC, VSYNC/PALI, active video indicator (AVID), and FID/GLCO output enables:  
0 = HSYNC, VSYNC/PALI, AVID, and FID/GLCO are high-impedance (default).  
1 = HSYNC, VSYNC/PALI, AVID, and FID/GLCO are active.  
Vertical blanking on/off:  
0 = Vertical blanking (VBLK) off (default)  
1 = Vertical blanking (VBLK) on  
Clock output enable:  
0 = SCLK output is high impedance.  
1 = SCLK output is enabled (default).  
Table 3−10. Digital Output Control  
Terminal 28  
(AVID)  
Register 03h, Register C2h,  
Bit 3 (TVPOE) Bit 2 (VDPOE)  
YUV Output  
Notes  
Active after  
reset  
After reset and before YUV output enable bits are programmed.  
TVPOE defaults to 1 and VDPOE is 1.  
1 during reset  
X
X
X
X
High impedance After reset and before YUV output enable bits are programmed.  
after reset TVPOE defaults to 0 and VDPOE is 1.  
0 during reset  
X
X
X
0
X
1
X
0
1
High impedance After both YUV output enable bits are programmed.  
High impedance After both YUV output enable bits are programmed.  
Active  
After both YUV output enable bits are programmed.  
3.22.5 Autoswitch Mask Register  
Address  
04h  
7
6
5
4
3
2
1
0
Reserved  
N443_OFF  
PALN_OFF  
PALM_OFF  
Reserved  
N443_OFF:  
0 = NTSC443 is masked from the autoswitch process. Autoswitch does not switch to NTSC443.  
1 = Normal operation (default)  
PALN_OFF:  
0 = PAL-N is masked from the autoswitch process. Autoswitch does not switch to PAL-N.  
1 = Normal operation (default)  
PALM_OFF:  
0 = PAL-M is masked from the autoswitch process. Autoswitch does not switch to PAL-M.  
1 = Normal operation (default)  
27  
May 2006  
SLES043A  
Functional Description  
3.22.6 Software Reset Register  
Address  
05h  
7
6
5
4
3
2
1
0
Reserved  
Reset  
Reset:  
0 = Normal operation (default)  
1 = Reset device  
3.22.7 Color Killer Threshold Control Register  
Address  
06h  
7
6
5
4
3
2
1
0
Reserved  
Automatic color killer  
Color killer threshold  
Automatic color killer:  
00 = Automatic mode (default)  
01 = Reserved  
10 = Color killer enabled, the UV terminals are forced to a zero color state.  
11 = Color killer disabled  
Color killer threshold:  
11111 = −30 dB (minimum)  
10000 = −24 dB (default)  
00000 = −18 dB (maximum)  
3.22.8 Luminance Processing Control #1 Register  
Address  
07h  
7
6
5
4
3
2
1
0
Disable raw  
header  
Luma bypass during  
vertical blank  
Luminance signal delay with respect to  
chrominance signal  
Luma bypass mode  
Pedestal not present  
Luma bypass mode:  
0 = Input video bypasses the chroma trap and comb filters. Chroma outputs are forced to zero (default).  
1 = Input video bypasses the whole luma processing. Raw A/D data is output alternatively as UV data and  
Y data at SCLK rate. The output data is properly clipped to comply to ITU−R BT.601 coding range. Only  
valid for 8-bit YUV output format (YUV output format = 100 or 111 at register 0Dh).  
Pedestal not present:  
0 = 7.5 IRE pedestal is present on the analog video input signal (default).  
1 = Pedestal is not present on the analog video input signal.  
Disable raw header:  
0 = Insert 656 ancillary headers for raw data.  
1 = Disable 656 ancillary headers and instead force dummy ones (0x40) (default).  
Luminance bypass enabled during vertical blanking:  
0 = Disabled (default)  
1 = Enabled  
Luminance bypass occurs for the duration of the vertical blanking as defined by registers 18h and 19h. This  
feature may be used to prevent distortion of test and data signals present during the vertical blanking interval.  
28  
SLES043A  
May 2006  
Functional Description  
Luma signal delay with respect to chroma signal in pixel clock increments (range −8 to +7 pixel clocks):  
1111 = −8 pixel clocks delay  
1011 = −4 pixel clocks delay  
1000 = −1 pixel clocks delay  
0000 = 0 pixel clocks delay (default)  
0011 = 3 pixel clocks delay  
0111 = 7 pixel clocks delay  
3.22.9 Luminance Processing Control #2 Register  
Address  
08h  
7
6
5
4
3
2
1
0
Reserved  
Luminance filter select  
Reserved  
Peaking gain  
Reserved  
Luminance filter select:  
0 = Luminance comb filter enabled (default)  
1 = Luminance chroma trap filter enabled  
Peaking gain:  
00 = 0 (default)  
01 = 0.5  
10 = 1  
11 = 2  
Information on peaking frequency: ITU−R BT.601 sampling rate: all standards—2.6 MHz  
3.22.10 Brightness Control Register  
Address  
09h  
7
6
5
4
3
2
1
0
Brightness control  
Brightness control:  
1111 1111 = 255 (bright)  
1000 1011 = 139 (ITU−R BT.601 level)  
1000 0000 = 128 (default)  
0000 0000 = 0 (dark)  
3.22.11 Color Saturation Control Register  
Address  
0Ah  
7
6
5
4
3
2
1
0
Saturation control  
Saturation control:  
1111 1111 = 255 (maximum)  
1000 0000 = 128 (default)  
0000 0000 = 0 (no color)  
29  
May 2006  
SLES043A  
Functional Description  
3.22.12 Hue Control Register  
Address  
0Bh  
7
6
5
4
3
2
1
0
Hue control  
Hue control:  
0111 1111 = +180 degrees  
0000 0000 = 0 degrees (default)  
1000 0000 = −180 degrees  
3.22.13 Contrast Control Register  
Address  
0Ch  
7
6
5
4
3
2
1
0
Contrast control  
Contrast control:  
1111 1111 = 255 (maximum contrast)  
1000 0000 = 128 (default)  
0000 0000 = 0 (minimum contrast)  
3.22.14 Outputs and Data Rates Select Register  
Address  
0Dh  
7
6
5
4
3
2
1
0
Reserved  
YUV output code range  
UV code format  
YUV data path bypass  
YUV output format  
YUV output code range:  
0 = ITU−R BT.601 coding range (Y ranges from 16 to 235. U and V range from 16 to 240)  
1 = Extended coding range (Y, U, and V range from 1 to 254) (default)  
UV code format:  
0 = Offset binary code (2s complement + 128) (default)  
1 = Straight binary code (2s complement)  
YUV data path bypass:  
00 = Normal operation (default)  
01 = Digital composite output pins connected to decimation filter output, decoder function bypassed,  
data output alternately as Y and UV buses at the SCLK rate.  
10 = YUV output pins connected to A/D output, decoder function bypassed, data output at SCLK rate.  
11 = Reserved  
YUV output format:  
000 = 8-bit 4:2:2 YUV with discrete sync output  
001 = Reserved  
010 = Reserved  
011 = Reserved  
100 = Reserved  
101 = Reserved  
110 = Reserved  
111 = 8-bit ITU−R BT.656 interface with embedded sync output (default)  
30  
SLES043A  
May 2006  
Functional Description  
3.22.15 Luminance Processing Control #3 Register  
Address  
0Eh  
7
6
5
4
3
2
1
0
Reserved  
Luminance trap filter select  
Luminance filter stop band bandwidth (MHz):  
00 = No notch (default)  
01 = Notch 1  
10 = Notch 2  
11 = Notch 3  
Luminance filter select [1:0] selects one of the four chroma trap filters to produce luminance signal by removing  
the chrominance signal from the composite video signal. The stopband of the chroma trap filter is centered  
at the chroma subcarrier frequency with stopband bandwidth controlled by the two control bits. Please refer  
to Figure 3−5, for the frequency responses of the filters.  
3.22.16 Configuration Shared Pins  
Address  
0Fh  
7
6
5
4
3
2
1
0
Reserved  
LOCK23  
LOCK24A  
LOCK24B  
FID/GLCO  
VSYNC/PALI  
INTREQ/GPCL/VBLK  
SCLK/PCLK  
LOCK23 (pin 23) function select:  
0 = FID (default, if bit 3 is selected to output FID)  
1 = Lock indicator (Indicates whether device is locked both horizontally and vertically)  
LOCK24A (pin 24) function select:  
0 = VSYNC (default, if bit 2 is selected to output VSYNC)  
1 = Lock indicator (Indicates whether device is locked both horizontally and vertically)  
LOCK24B (pin 24) function select:  
0 = PALI (default, if bit 2 is selected to output PALI)  
1 = Lock indicator (Indicates whether device is locked both horizontally and vertically)  
FID/GLCO (pin 23) function select (also refer to register 03h for enhanced functionality):  
0 = FID  
1 = GLCO (default)  
VSYNC/PALI (pin 24) function select (also refer to register 03h for enhanced functionality):  
0 = VSYNC (default)  
1 = PALI  
INTREQ/GPCL/VBLK (pin 27) function select:  
0 = INTREQ (default)  
1 = GPCL or VBLK depending on bit 7 of register 03h  
SCLK/PCLK (pin 9) function select:  
0 = SCLK (default)  
1 = PCLK (1x pixel clock frequency)  
31  
May 2006  
SLES043A  
Functional Description  
3.22.17 Active Video Cropping Start Pixel MSB  
Address  
11h  
7
6
5
4
3
2
1
0
AVIDST_MSB [9:2]  
Active video cropping start pixel MSB [9:2], set this register first before setting register 12h. The TVP5150  
device updates the AVID start values only when register 12h is written to.  
3.22.18 Active Video Cropping Start Pixel LSB  
Address  
12h  
7
6
5
4
3
2
1
0
Reserved  
AVID active  
AVIDST_LSB [1:0]  
AVID active:  
0 = AVID out active in VBLK (default)  
1 = AVID out inactive in VBLK  
Active video cropping start pixel LSB [1:0]: The TVP5150 device updates the AVID start values only when this  
register is written to.  
AVID start [9:0] (combined registers 11h and 12h):  
01 1111 1111 = 511  
00 0000 0001 = 1  
00 0000 0000 = 0 (default)  
11 1111 1111 = −1  
10 0000 0000 = −512  
3.22.19 Active Video Cropping Stop Pixel MSB  
Address  
13h  
7
6
5
4
3
2
1
0
AVID stop pixel MSB  
Active video cropping stop pixel MSB [9:2], set this register first before setting the register 14h. The TVP5150  
device updates the AVID stop values only when register 14h is written to.  
3.22.20 Active Video Cropping Stop Pixel LSB  
Address  
14h  
7
6
5
4
3
2
1
0
Reserved  
AVID stop pixel LSB  
Active video cropping stop pixel LSB [1:0]: The number of pixels of active video must be an even number. The  
TVP5150 device updates the AVID stop values only when this register is written to.  
AVID stop [9:0] (combined registers 13h and 14h):  
01 1111 1111 = 511  
00 0000 0001 = 1  
00 0000 0000 = 0 (default) (see Figure 3−10)  
11 1111 1111 = −1  
10 0000 0000 = −512  
32  
SLES043A  
May 2006  
Functional Description  
3.22.21 Genlock and RTC Register  
Address  
15h  
7
6
5
4
3
2
1
0
Reserved  
CDTO_SW  
Reserved  
GLCO/ RTC  
CDTO_LSB_Switch (CDTO_SW):  
0 = CDTO_LSB is forced to 0  
1 = CDTO_LSB is forced to 1 (default)  
GLCO/RTC:  
0 = GLCO output  
1 = RTC output (default)  
Figure 3−13 shows the timing of GLCO and Figure 3−14 shows the timing of RTC.  
3.22.22 Horizontal Sync (HSYNC) Start Register  
Address  
16h  
7
6
5
4
3
2
1
0
HSYNC start  
HSYNC start:  
1111 1111 = −127 x 4 pixel clocks  
1111 1110 = −126 x 4 pixel clocks  
1111 1101 = −125 x 4 pixel clocks  
1000 0000 = 0 pixel clocks (default)  
0111 1111 = 1 x 4 pixel clocks  
0111 1110 = 2 x 4 pixel clocks  
0000 0000 = 128 x 4 pixel clocks  
BT.656 EAV Code  
BT.656 SAV Code  
U
Y
V
Y
0
F
F
0
0
0
0
0
0
X
Y
Z
0
8
0
0
1
0
0
8
0
0
1
0
0
F
F
0
0
0
0
0
0
X
Y
Z
U
Y
YOUT  
[7:0]  
HSYNC  
AVID  
128 SCLK  
Start of  
Digital Line  
Start of Digital  
Active Line  
N
hbhs  
N
hb  
Figure 3−15. Horizontal Sync  
Table 3−11. Clock Delays (SCLKs)  
STANDARD  
NTSC 601  
PAL 601  
N
N
hb  
hbhs  
32  
272  
284  
24  
33  
May 2006  
SLES043A  
Functional Description  
Detailed timing information is also available in Section 3.15, Synchronization Signals.  
3.22.23 Vertical Blanking Start Register  
Address  
18h  
7
6
5
4
3
2
1
0
Vertical blanking start  
Vertical blanking (VBLK) start:  
0111 1111 = 127 lines after start of vertical blanking interval  
0000 0001 = 1 line after start of vertical blanking interval  
0000 0000 = Same time as start of vertical blanking interval (default) (see Figure 3−9)  
1000 0001 = 1 line before start of vertical blanking interval  
1111 1111 = 128 lines before start of vertical blanking interval  
Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this  
register determines the timing of the GPCL/VBLK signal when it is configured to output vertical blank (see  
register 03h). The setting in this register also determines the duration of the luma bypass function (see register  
07h).  
3.22.24 Vertical Blanking Stop Register  
Address  
19h  
7
6
5
4
3
2
1
0
Vertical blanking stop  
Vertical blanking (VBLK) stop:  
0111 1111 = 127 lines after stop of vertical blanking interval  
0000 0001 = 1 line after stop of vertical blanking interval  
0000 0000 = Same time as stop of vertical blanking interval (default) (see Figure 3−9)  
1000 0001 = 1 line before stop of vertical blanking interval  
1111 1111 = 128 lines before stop of vertical blanking interval  
Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this  
register determines the timing of the GPCL/VBLK signal when it is configured to output vertical blank (see  
register 03h). The setting in this register also determines the duration of the luma bypass function (see register  
07h).  
3.22.25 Chrominance Control #1 Register  
Address  
1Ah  
7
6
5
4
3
2
1
0
Chrominance adaptive  
comb filter enable (ACE)  
Chrominance comb filter  
enable (CE)  
Reserved  
Color PLL reset  
Automatic color gain control  
Color PLL reset:  
0 = Color PLL not reset (default)  
1 = Color PLL reset  
Color PLL phase is reset to zero and the color PLL reset bit then immediately returns to zero. When this bit  
is set, the subcarrier PLL phase reset bit is transmitted on terminal 23 (GLCO) on the next line (NTSC or PAL).  
Chrominance adaptive comb filter enable (ACE):  
34  
SLES043A  
May 2006  
Functional Description  
0 = Disable  
1 = Enable (default)  
Chrominance comb filter enable (CE):  
0 = Disable  
1 = Enable (default)  
Automatic color gain control (ACGC):  
00 = ACGC enabled (default)  
01 = Reserved  
10 = ACGC disabled  
11 = ACGC frozen to the previously set value  
3.22.26 Chrominance Control #2 Register  
Address  
1Bh  
7
6
5
4
3
2
1
0
Chrominance comb filter mode [3:0]  
Reserved  
WCF  
Chrominance filter select  
Chrominance comb filter mode [3:0] (CM[3:0]): Chrominance control #2 register 1Bh, bits 7−4  
ACE  
CE  
0
CM[3]  
CM[2]  
CM[1]  
CM[0]  
COMB FILTER SELECTION  
0
0
0
0
0
0
0
1
X
0
X
0
0
0
1
1
1
0
X
0
1
X
0
1
X
0
X
X
X
X
X
X
X
0
Comb filter disabled  
1
Fixed 3-line comb filter with (1, 2, 1)/4 coefficients  
Fixed 3-line comb filter with (1, 0, 1)/2 coefficients  
Fixed 2-line comb filter  
1
0
1
1
1
0
Fixed 4-line (1, 1, 1, 1)/4 comb filter  
1
0
Fixed 4-line (1, 3, 3, 1)/8 comb filter  
1
1
Fixed 2-line comb filter  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Adaptive between 3-line (1, 2, 1)/4 and 2-line comb filter  
Adaptive between 3-line (1, 2, 1)/4 comb filter and no comb filter  
Adaptive between 3-line (1, 0, 1)/2 comb filter and 2-line comb filter  
Adaptive between 3-line (1, 0, 1)/2 comb filter and no comb filter  
Adaptive between 4-line (1, 1, 1, 1)/4 and 2-line comb filter  
Adaptive between 4-line (1, 1, 1, 1)/4 comb filter and no comb filter  
Adaptive between 4-line (1, 3, 3, 1)/8 comb filter and 2-line comb filter  
Adaptive between 4-line (1, 3, 3, 1)/8 comb filter and no comb filter  
1
0
0
1
1
0
1
0
1
1
0
1
1
0
1
0
1
1
0
1
1
1
1
1
1
1
0
1
Indicates default settings for NTSC  
Indicates default settings for PAL mode  
Wideband chroma filter (WCF):  
0 = Disable  
1 = Enable (default)  
Chrominance filter select:  
00 = No notch (default)  
01 = Notch 1  
10 = Notch 2  
11 = Notch 3  
35  
May 2006  
SLES043A  
Functional Description  
Chrominance output bandwidth (MHz):  
WCF  
FILTER SELECT  
NTSC ITU−R BT.601  
1.2214  
PAL ITU−R BT.601  
1.2214  
00  
01  
10  
11  
00  
01  
10  
11  
0.8782  
0.8782  
0
0.7297  
0.7297  
0.4986  
0.4986  
1.4170  
1.4170  
1.0303  
1.0303  
1
0.8438  
0.8438  
0.5537  
0.5537  
3.22.27 Interrupt Reset Register B  
Address  
1Ch  
7
6
5
4
3
2
1
0
Software  
initialization  
reset  
Macrovision  
detect changed  
reset  
Command  
ready reset  
Field rate  
changed reset  
Line alternation  
changed reset  
Color lock  
H/V lock  
TV/VCR  
changed reset changed reset changed reset  
Software initialization reset:  
0 = No effect (default)  
1 = Reset software initialization bit  
Macrovision detect changed reset:  
0 = No effect (default)  
1 = Reset macrovision detect changed bit  
Command ready reset:  
0 = No effect (default)  
1 = Reset command ready bit  
Field rate changed reset:  
0 = No effect (default)  
1 = Reset field rate changed bit  
Line alternation changed reset:  
0 = No effect (default)  
1 = Reset line alternation changed bit  
Color lock changed reset:  
0 = No effect (default)  
1 = Reset color lock changed bit  
H/V lock changed reset:  
0 = No effect (default)  
1 = Reset H/V lock changed bit  
TV/VCR changed reset [TV/VCR mode is determined by counting the total number of lines/frame. The mode  
switches to VCR for nonstandard number of lines]:  
0 = No effect (default)  
1 = Reset TV/VCR changed bit  
36  
SLES043A  
May 2006  
Functional Description  
Interrupt reset register B is used by the external processor to reset the interrupt status bits in interrupt status  
register B. Bits loaded with a 1 allow the corresponding interrupt status bit to reset to 0. Bits loaded with a 0  
have no effect on the interrupt status bits.  
3.22.28 Interrupt Enable Register B  
Address  
1Dh  
7
6
5
4
3
2
1
0
Software initialization  
occurred enable  
Macrovision  
detect changed  
Command  
ready enable  
Field rate  
changed  
Line alternation  
changed  
Color lock  
changed  
H/V lock  
changed  
TV/VCR  
changed  
Software initialization occurred enable:  
0 = Disabled (default)  
1 = Enabled  
Macrovision detect changed:  
0 = Disabled (default)  
1 = Enabled  
Command ready enable:  
0 = Disabled (default)  
1 = Enabled  
Field rate changed:  
0 = Disabled (default)  
1 = Enabled  
Line alternation changed:  
0 = Disabled (default)  
1 = Enabled  
Color lock changed:  
0 = Disabled (default)  
1 = Enabled  
H/V lock changed:  
0 = Disabled (default)  
1 = Enabled  
TV/VCR changed:  
0 = Disabled (default)  
1 = Enabled  
Interrupt enable register B is used by the external processor to mask unnecessary interrupt sources for  
interrupt B. Bits loaded with a 1 allow the corresponding interrupt condition to generate an interrupt on the  
external pin. Conversely, bits loaded with a 0 mask the corresponding interrupt condition from generating an  
interrupt on the external pin. This register only affects the external pin, it does not affect the bits in the interrupt  
status register. A given condition can set the appropriate bit in the status register and not cause an interrupt  
on the external pin. To determine if this device is driving the interrupt pin either AND interrupt status register  
B with interrupt enable register B or check the state of interrupt B in the interrupt B active register.  
37  
May 2006  
SLES043A  
Functional Description  
3.22.29 Interrupt Configuration Register B  
Address  
1Eh  
7
6
5
4
3
2
1
0
Reserved  
Interrupt polarity B  
Interrupt polarity B:  
0 = Interrupt B is active low (default).  
1 = Interrupt B is active high.  
Interrupt polarity B must be same as interrupt polarity A bit at bit 0 of the interrupt configuration register A at  
address C2h.  
Interrupt configuration register B is used to configure the polarity of interrupt B on the external interrupt pin.  
When the interrupt B is configured for active low, the pin is driven low when active and high-impedance when  
inactive (open-collector). Conversely, when the interrupt B is configured for active high, it is driven  
high-impedance for active and driven low for inactive.  
3.22.30 Video Standard Register  
Address  
28h  
7
6
5
4
3
2
1
0
Reserved  
Video standard  
Video standard:  
0000 = Autoswitch mode (default)  
0001 = Reserved  
0010 = (M) NTSC ITU−R BT.601  
0011 = Reserved  
0100 = (B, G, H, I, N) PAL ITU−R BT.601  
0101 = Reserved  
0110 = (M) PAL ITU−R BT.601  
0111 = Reserved  
1000 = (Combination-N) ITU−R BT.601  
1001 = Reserved  
1010 = NTSC 4.43 ITU−R BT.601  
1011 = Reserved  
1100 = Reserved  
With the autoswitch code running, the user can force the device to operate in a particular video standard mode  
and sample rate by writing the appropriate value into this register.  
3.22.31 MSB of Device ID Register  
Address  
80h  
7
6
5
4
3
2
1
0
MSB of device ID  
This register identifies the MSB of the device ID. Value = 0x51.  
3.22.32 LSB of Device ID Register  
Address  
81h  
7
6
5
4
3
2
1
0
LSB of device ID  
This register identifies the LSB of the device ID. Value = 0x50.  
38  
SLES043A  
May 2006  
Functional Description  
3.22.33 ROM Version Register  
Address  
82h  
7
6
5
4
3
2
1
1
1
0
ROM version: 0x01 for 1.0, 0x20 for 2.00  
Value = 0x02  
3.22.34 RAM Patch Code Version Register  
Address  
83h  
7
6
5
4
3
2
0
RAM patch code version: 0x10 for combined version 2-1, 0x20 for combined version 2-2  
Value = 0x10  
3.22.35 Vertical Line Count MSB Register  
Address  
84h  
7
6
5
4
3
2
0
Vertical line count MSB  
Reserved  
Vertical line count bits [9:8]  
3.22.36 Vertical Line Count LSB Register  
Address  
85h  
7
6
5
4
3
2
1
0
Vertical line count LSB  
Vertical line count bits [7:0]  
Registers 84h and 85h can be read and combined to extract the current vertical line count. This can be used  
with nonstandard video signals such as a VCR in fast-forward or rewind modes to synchronize the  
downstream video circuitry.  
3.22.37 Interrupt Status Register B  
Address  
86h  
7
6
5
4
3
2
1
0
Software  
initialization  
Macrovision detect  
changed  
Field rate  
changed  
Line alternation  
changed  
Color lock  
changed  
H/V lock  
changed  
TV/VCR  
changed  
Reserved  
Software initialization:  
0 = Software initialization is not ready (default).  
1 = Software initialization is ready.  
Macrovision detect changed:  
0 = Macrovision detect status has not changed (default).  
1 = Macrovision detect status has changed.  
Field rate changed:  
0 = Field rate has not changed (default).  
1 = Field rate has changed.  
39  
May 2006  
SLES043A  
Functional Description  
Line alternation changed:  
0 = Line alteration has not changed (default).  
1 = Line alternation has changed.  
Color lock changed:  
0 = Color lock status has not changed (default).  
1 = Color lock status has changed.  
H/V lock changed:  
0 = H/V lock status has not changed (default).  
1 = H/V lock status has changed.  
TV/VCR changed:  
0 = TV/VCR status has not changed (default).  
1 = TV/VCR status has changed.  
Interrupt status register B is polled by the external processor to determine the interrupt source for interrupt  
B. After an interrupt condition is set, it can be reset by writing to the interrupt reset register B at subaddress  
1Ch with a 1 in the appropriate bit.  
3.22.38 Interrupt Active Register B  
Address  
87h  
7
6
5
4
3
2
1
0
Reserved  
Interrupt B  
Interrupt B:  
0 = Interrupt B is not active on the external terminal (default).  
1 = Interrupt B is active on the external terminal.  
The interrupt active register B is polled by the external processor to determine if interrupt B is active.  
3.22.39 Status Register #1  
Address  
88h  
7
6
5
4
3
2
1
0
Peak white  
detect status  
Line-alternating  
status  
Field rate  
status  
Lost lock  
detect  
Color subcarrier  
lock status  
Vertical sync  
lock status  
Horizontal sync  
lock status  
TV/VCR status  
Peak white detect status:  
0 = Peak white is not detected.  
1 = Peak white is detected.  
Line-alternating status:  
0 = Nonline alternating  
1 = Line alternating  
Field rate status:  
0 = 60 Hz  
1 = 50 Hz  
Lost lock detect:  
40  
SLES043A  
May 2006  
Functional Description  
0 = No lost lock since status register #1 was last read.  
1 = Lost lock since status register #1 was last read.  
Color subcarrier lock status:  
0 = Color subcarrier is not locked.  
1 = Color subcarrier is locked.  
Vertical sync lock status:  
0 = Vertical sync is not locked.  
1 = Vertical sync is locked.  
Horizontal sync lock status:  
0 = Horizontal sync is not locked.  
1 = Horizontal sync is locked.  
TV/VCR status [TV/VCR mode is determined by counting the total number of lines/frame. The mode switches  
to VCR for nonstandard number of lines]:  
0 = TV  
1 = VCR  
3.22.40 Status Register #2  
Address  
89h  
7
6
5
4
3
2
1
0
Weak signal  
detection  
PAL switch  
polarity  
Field sequence  
status  
AGC and offset frozen  
status  
Reserved  
Reserved  
Macrovision detection  
Weak signal detection:  
0 = No weak signal  
1 = Weak signal mode  
PAL switch polarity of first line of odd field:  
0 = PAL switch is 0  
1 = PAL switch is 1  
Field sequence status:  
0 = Even field  
1 = Odd field  
AGC and offset frozen status:  
0 = AGC and offset are not frozen.  
1 = AGC and offset are frozen.  
Macrovision detection:  
00 = No copy protection  
01 = AGC pulses/pseudo-syncs present  
10 = AGC pulses/pseudo-syncs and 2-line color striping present  
11 = AGC pulses/pseudo-syncs and 4-line color striping present  
41  
May 2006  
SLES043A  
Functional Description  
3.22.41 Status Register #3  
Address  
8Ah  
7
6
5
4
3
2
1
0
AGC gain  
AGC gain:  
0000 0000 = −6 dB  
0100 0000 = −3 dB  
1000 0000 = 0 dB  
1100 0000 = 3 dB  
1111 1111 = 6 dB  
3.22.42 Status Register #4  
Address  
8Bh  
7
6
5
4
3
2
1
0
Subcarrier to horizontal (SCH) phase  
SCH (color PLL subcarrier phase at 50% of the falling edge of horizontal sync of line one of odd field; step  
size 360_/256):  
0000 0000 = 0.00_  
0000 0001 = 1.41_  
0000 0010 = 2.81_  
1111 1110 = 357.2_  
1111 1111 = 358.6_  
3.22.43 Status Register #5  
Address  
8Ch  
7
6
5
4
3
2
1
0
Autoswitch mode  
Reserved  
Video standard  
Sampling rate  
This register contains information about the detected video standard and the sampling rate at which the device  
is currently operating. When autoswitch code is running, this register must be tested to determine which video  
standard has been detected.  
Autoswitch mode:  
0 = Stand-alone (forced video standard) mode  
1 = Autoswitch mode  
42  
SLES043A  
May 2006  
Functional Description  
Video standard:  
VIDEO STANDARD [3:1]  
SR  
VIDEO STANDARD  
Reserved  
BIT 3  
BIT2  
0
BIT1  
BIT 0  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
(M) NTSC ITU−R BT.601  
Reserved  
0
0
(B, G, H, I, N) PAL ITU−R BT.601  
Reserved  
1
1
(M) PAL ITU−R BT.601  
Reserved  
1
1
(Combination-N) ITU−R BT.601  
Reserved  
0
0
NTSC 4.43 ITU−R BT.601  
Reserved  
0
0
Reserved  
Sampling rate (SR):  
0 = Reserved  
1 = ITU−R BT.601  
3.22.44 Closed Caption Data Registers  
Address  
90h−93h  
Address  
7
6
5
4
3
2
1
0
90h  
91h  
92h  
93h  
Closed caption field 1 byte 1  
Closed caption field 1 byte 2  
Closed caption field 2 byte 1  
Closed caption field 2 byte 2  
These registers contain the closed caption data arranged in bytes per field.  
3.22.45 WSS Data Registers  
Address  
94h−99h  
NTSC  
ADDRESS  
94h  
7
6
5
4
3
2
1
0
BYTE  
b5  
b4  
b3  
b2  
b1  
b0  
WSS field 1 byte 1  
WSS field 1 byte 2  
WSS field 1 byte 3  
WSS field 2 byte 1  
WSS field 2 byte 2  
WSS field 2 byte 3  
95h  
b13  
b12  
b11  
b19  
b5  
b10  
b18  
b4  
b9  
b8  
b7  
b6  
96h  
b17  
b3  
b16  
b2  
b15  
b1  
b14  
b0  
97h  
98h  
b13  
b12  
b11  
b19  
b10  
b18  
b9  
b8  
b7  
b6  
99h  
b17  
b16  
b15  
b14  
These registers contain the wide screen signaling (WSS) data for NTSC.  
Bits 0−1 represent word 0, aspect ratio  
Bits 2−5 represent word 1, header code for word 2  
Bits 6−13 represent word 2, copy control  
Bits 14−19 represent word 3, CRC  
43  
May 2006  
SLES043A  
Functional Description  
PAL  
ADDRESS  
94h  
7
6
5
4
3
2
1
0
BYTE  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b9  
b1  
b9  
b0  
b8  
b0  
b8  
WSS field 1 byte 1  
WSS field 1 byte 2  
WSS field 2 byte 1  
WSS field 2 byte 2  
95h  
b13  
b5  
b12  
b4  
b11  
b3  
b10  
b2  
96h  
b7  
b6  
97h  
b13  
b12  
b11  
b10  
98h  
Reserved  
Reserved  
99h  
PAL:  
Bits 0−3 represent group 1, aspect ratio  
Bits 4−7 represent group 2, enhanced services  
Bits 8−10 represent group 3, subtitles  
Bits 11−13 represent group 4, others  
3.22.46 VPS Data Registers  
Address  
9Ah–A6h  
ADDRESS  
9Ah  
7
6
5
4
3
2
1
0
VPS byte 1  
VPS byte 2  
VPS byte 3  
VPS byte 4  
VPS byte 5  
VPS byte 6  
VPS byte 7  
VPS byte 8  
VPS byte 9  
VPS byte 10  
VPS byte 11  
VPS byte 12  
VPS byte 13  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
These registers contain the entire VPS data line except the clock run-in code or the start code.  
3.22.47 VITC Data Registers  
Address  
A7h–AFh  
ADDRESS  
A7h  
7
6
5
4
3
2
1
0
VITC byte 1, frame byte 1  
VITC byte 2, frame byte 2  
VITC byte 3, seconds byte 1  
VITC byte 4, seconds byte 2  
VITC byte 5, minutes byte 1  
VITC byte 6, minutes byte 2  
VITC byte 7, hour byte 1  
VITC byte 8, hour byte 2  
VITC byte 9, CRC  
A8h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
These registers contain the VITC data.  
44  
SLES043A  
May 2006  
Functional Description  
3.22.48 VBI FIFO Read Data Register  
Address  
B0h  
7
6
5
4
3
2
1
0
FIFO read data  
This address is provided to access VBI data in the FIFO through the host port. All forms of teletext data come  
directly from the FIFO, while all other forms of VBI data can be programmed to come from the registers or from  
the FIFO. Current status of the FIFO can be found at address C6h and the number of bytes in the FIFO is  
located at address C7h. If the host port is to be used to read data from the FIFO, then the output formatter  
must be disabled at address CDh bit 0. The format used for the VBI FIFO is shown in Section 3.12.  
3.22.49 Teletext Filter and Mask Registers  
Address  
B1h–BAh  
ADDRESS  
B1h  
7
6
5
4
3
2
1
0
Filter 1 Mask 1  
Filter 1 Pattern 1  
Filter 1 Pattern 2  
Filter 1 Pattern 3  
Filter 1 Pattern 4  
Filter 1 Pattern 5  
Filter 2 Pattern 1  
Filter 2 Pattern 2  
Filter 2 Pattern 3  
Filter 2 Pattern 4  
Filter 2 Pattern 5  
B2h  
Filter 1 Mask 2  
Filter 1 Mask 3  
Filter 1 Mask 4  
Filter 1 Mask 5  
Filter 2 Mask 1  
Filter 2 Mask 2  
Filter 2 Mask 3  
Filter 2 Mask 4  
Filter 2 Mask 5  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
For an NABTS system, the packet prefix consists of five bytes. Each byte contains four data bits (D[3:0])  
interlaced with four Hamming protection bits (H[3:0]):  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D[3]  
H[3]  
D[2]  
H[2]  
D[1]  
H[1]  
D[0]  
H[0]  
Only the data portion D[3:0] from each byte is applied to a teletext filter function with corresponding pattern  
bits P[3:0] and mask bits M[3:0]. Hamming protection bits are ignored by the filter.  
For a WST system (PAL or NTSC), the packet prefix consists of two bytes so that two patterns are used.  
Patterns 3, 4, and 5 are ignored.  
The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1 in the LSB  
of mask 1 means that the filter module must compare the LSB of nibble 1 in the pattern register to the first data  
bit on the transaction. If these match, then a true result is returned. A 0 in a bit of mask 1 means that the filter  
module must ignore that data bit of the transaction. If all 0s are programmed in the mask bits, then the filter  
matches all patterns returning a true result (default 00h).  
Pattern and mask for each byte and filter are referred as <1,2><P,M><1,2,3,4,5> where:  
<1,2> identifies the filter 1 or 2  
<P,M> identifies the pattern or mask  
<1,2,3,4,5> identifies the byte number  
45  
May 2006  
SLES043A  
Functional Description  
3.22.50 Teletext Filter Control Register  
Address  
BBh  
7
6
5
4
3
2
1
0
Reserved  
Filter logic  
Mode  
TTX filter 2 enable  
TTX filter 1 enable  
Filter logic: allows different logic to be applied when combining the decision of filter 1 and filter 2 as follows:  
00 = NOR (Default)  
01 = NAND  
10 = OR  
11 = AND  
Mode:  
0 = Teletext WST PAL mode B (2 header bytes) (default)  
1 = Teletext NABTS NTSC mode C (5 header bytes)  
TTX filter 2 enable:  
0 = Disabled (default)  
1 = Enabled  
TTX filter 1 enable:  
0 = Disabled (default)  
1 = Enabled  
If the filter matches or if the filter mask is all 0s, then a true result is returned.  
3.22.51 Interrupt Status Register A  
Address  
C0h  
7
6
5
4
3
2
1
0
Lock state  
interrupt  
Cycle complete  
interrupt  
Bus error  
interrupt  
FIFO threshold  
interrupt  
Lock interrupt  
Reserved  
Line interrupt  
Data interrupt  
The interrupt status register A can be polled by the host processor to determine the source of an interrupt. After  
an interrupt condition is set it can be reset by writing to this register with a 1 in the appropriate bit(s).  
Lock state interrupt:  
0 = TVP5150 is not locked to the video signal.  
1 = TVP5150 is locked to the video signal.  
Lock interrupt:  
0 = A transition has not occurred on the lock signal.  
1 = A transition has occurred on the lock signal.  
Cycle complete interrupt:  
0 = Read or write cycle in progress  
1 = Read or write cycle complete  
Bus error interrupt:  
0 = No bus error  
1 = PHI interface detected an illegal access  
46  
SLES043A  
May 2006  
Functional Description  
FIFO threshold interrupt:  
0 = The amount of data in the FIFO has not yet crossed the threshold programmed at address C8h.  
1 = The amount of data in the FIFO has crossed the threshold programmed at address C8h.  
Line interrupt:  
0 = The video line number has not yet been reached.  
1 = The video line number programmed in address CAh has occurred.  
Data interrupt:  
0 = No data is available.  
1 = VBI data is available either in the FIFO or in the VBI data registers.  
3.22.52 Interrupt Enable Register A  
Address  
C1h  
7
6
5
4
3
2
1
0
Lock interrupt  
enable  
Cycle complete  
interrupt enable  
Bus error  
interrupt enable  
FIFO threshold  
interrupt enable  
Line interrupt  
enable  
Data interrupt  
enable  
Reserved  
Reserved  
The interrupt enable register A is used by the host processor to mask unnecessary interrupt sources. Bits  
loaded with a 1 allow the corresponding interrupt condition to generate an interrupt on the external pin.  
Conversely, bits loaded with a 0 mask the corresponding interrupt condition from generating an interrupt on  
the external pin. This register only affects the interrupt on the external terminal, it does not affect the bits in  
interrupt status register A. A given condition can set the appropriate bit in the status register and not cause  
an interrupt on the external terminal. To determine if this device is driving the interrupt terminal either perform  
a logical AND of interrupt status register A with interrupt enable register A, or check the state of the interrupt  
A bit in the interrupt configuration register at address C2h.  
Lock interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Cycle complete interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Bus error interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
FIFO threshold interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Line interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Data interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
47  
May 2006  
SLES043A  
Functional Description  
3.22.53 Interrupt Configuration Register A  
Address  
C2h  
7
6
5
4
3
2
1
0
YUV enable  
(VDPOE)  
Reserved  
Interrupt A  
Interrupt polarity A  
YUV enable (VDPOE):  
0 = YUV pins are high impedance.  
1 = YUV pins are active if other conditions are met (default).  
Interrupt A (read-only):  
0 = Interrupt A is not active on the external pin (default).  
1 = Interrupt A is active on the external pin.  
Interrupt polarity A:  
0 = Interrupt A is active low (default).  
1 = Interrupt A is active high.  
Interrupt configuration register A is used to configure the polarity of the external interrupt terminal. When  
interrupt A is configured as active low, the terminal is driven low when active and high-impedance when  
inactive (open collector). Conversely, when the terminal is configured as active high, it is driven high when  
active and driven low when inactive.  
3.22.54 VDP Configuration RAM Register  
Address  
C3h−C5h  
Address  
7
6
5
4
3
2
1
0
C3h  
C4h  
Configuration data  
RAM address (7:0)  
RAM  
address 8  
C5h  
Reserved  
The configuration RAM data is provided to initialize the VDP with initial constants. The configuration RAM is  
512 bytes organized as 32 different configurations of 16 bytes each. The first 12 configurations are defined  
for the current VBI standards. An additional 2 configurations can be used as a custom programmed mode for  
unique standards like Gemstar.  
Address C3h is used to read or write to the RAM. The RAM internal address counter is automatically  
incremented with each transaction. Addresses C5h and C4h make up a 9-bit address to load the internal  
address counter with a specific start address. This can be used to write a subset of the RAM for only those  
standards of interest. Registers D0h−FBh must all be programmed with FFh, before writing or reading the  
configuration RAM. Full field mode (CFh) must be disabled as well.  
The suggested RAM contents are shown below. All values are hexadecimal.  
48  
SLES043A  
May 2006  
Functional Description  
Table 3−12. VBI Configuration RAM  
Index  
Reserved  
Address  
000  
010  
020  
030  
040  
050  
060  
070  
080  
090  
0A0  
0B0  
0C0  
0D0  
0E0  
0F0  
100  
110  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
WST PAL B 6  
Reserved  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
5B  
38  
0
AA  
AA  
AA  
AA  
AA  
2A  
2A  
55  
00  
0
FF  
FF  
FF  
FF  
FF  
FF  
FF  
C5  
3F  
0
FF  
FF  
FF  
FF  
FF  
3F  
3F  
FF  
00  
0
27  
E7  
27  
E7  
A7  
04  
04  
0
2E  
2E  
2E  
2E  
2E  
51  
51  
71  
71  
8F  
8F  
CE  
20  
20  
20  
20  
20  
6E  
6E  
6E  
6E  
6D  
6D  
2B  
2B  
Reserved  
22 A6  
Reserved  
23 69  
Reserved  
22 69  
Reserved  
23 69  
Reserved  
02 A6  
Reserved  
02 69  
Reserved  
42 A6  
Reserved  
43 69  
Reserved  
49 A6  
Reserved  
49 69  
Reserved  
0D A6  
A6  
72  
98  
93  
93  
93  
7B  
8C  
CD  
7C  
85  
94  
DA  
10  
0D  
0D  
0D  
0D  
09  
09  
0F  
08  
08  
08  
0B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10  
10  
10  
15  
10  
27  
27  
3A  
39  
4C  
4C  
60  
0
0
0
0
0
0
0
0
0
0
0
0
WST PAL C 6  
Reserved  
WST NTSC 6  
Reserved  
NABTS, NTSC 6  
Reserved  
NABTS, NTSC-J 6  
Reserved  
CC, PAL 6  
Reserved  
CC, NTSC 6  
Reserved  
WSS, PAL 6  
Reserved  
120  
130  
140  
150  
160  
170  
180  
190  
1A0  
1B0  
WSS, NTSC C  
Reserved  
0
VITC, PAL 6  
Reserved  
0
VITC, NTSC 6  
Reserved  
0
0
0
0
0
VPS, PAL 6  
Custom  
AA  
AA  
FF  
FF  
BA  
Programmable  
Programmable  
Custom  
49  
May 2006  
SLES043A  
Functional Description  
3.22.55 VDP Status Register  
Address  
C6h  
7
6
5
4
3
2
1
0
FIFO full error FIFO empty TTX available CC field 1 available CC field 2 available WSS available VPS available VITC available  
The VDP status register indicates whether data is available in either the FIFO or data registers, and status  
information about the FIFO. Reading data from the corresponding register does not clear the status flags  
automatically. These flags are only reset by writing a 1 to the respective bit. However, bit 6 is updated  
automatically.  
FIFO full error:  
0 = No FIFO full error  
1 = FIFO was full during a write to FIFO.  
The FIFO full error flag is set when the current line of VBI data can not enter the FIFO. For example, if the FIFO  
has only 10 bytes left and teletext is the current VBI line, the FIFO full error flag is set, but no data is written  
because the entire teletext line will not fit. However, if the next VBI line is closed caption requiring only 2 bytes  
of data plus the header, this goes into the FIFO. Even if the full error flag is set.  
FIFO empty:  
0 = FIFO is not empty.  
1 = FIFO is empty.  
TTX available:  
0 = Teletext data is not available.  
1 = Teletext data is available.  
CC field 1 available:  
0 = Closed caption data from field 1 is not available.  
1 = Closed caption data from field 1 is available.  
CC field 2 available:  
0 = Closed caption data from field 2 is not available.  
1 = Closed caption data from field 2 is available.  
WSS available:  
0 = WSS data is not available.  
1 = WSS data is available.  
VPS available:  
0 = VPS data is not available.  
1 = VPS data is available.  
VITC available:  
0 = VITC data is not available.  
1 = VITC data is available.  
3.22.56 FIFO Word Count Register  
Address  
C7h  
7
6
5
4
3
2
1
0
Number of words  
50  
SLES043A  
May 2006  
Functional Description  
This register provides the number of words in the FIFO. 1 word equals 2 bytes.  
3.22.57 FIFO Interrupt Threshold Register  
Address  
C8h  
7
6
5
4
3
2
1
0
Number of words  
This register is programmed to trigger an interrupt when the number of words in the FIFO exceeds this value  
(default 80h). This interrupt must be enabled at address C1h. 1 word equals 2 bytes.  
3.22.58 FIFO Reset Register  
Address  
C9h  
7
6
5
4
3
2
1
0
Any data  
Writing any data to this register resets the FIFO and clears any data present.  
3.22.59 Line Number Interrupt Register  
Address  
CAh  
7
6
5
4
3
2
1
0
Field 1 enable  
Field 2 enable  
Line number  
This register is programmed to trigger an interrupt when the video line number matches this value in bits 5:0.  
This interrupt must be enabled at address C1h. The value of 0 or 1 does not generate an interrupt.  
Field 1 enable:  
0 = Disabled (default)  
1 = Enabled  
Field 2 enable:  
0 = Disabled (default)  
1 = Enabled  
Line number: (default 00h)  
3.22.60 Pixel Alignment Registers  
Address  
CBh−CCh  
Address  
7
6
5
4
3
2
1
0
CBh  
CCh  
Switch pixel [7:0]  
Reserved  
Switch pixel [9:8]  
These registers form a 10-bit horizontal pixel position from the falling edge of sync, where the VDP controller  
initiates the program from one line standard to the next line standard. For example, the previous line of teletext  
to the next line of closed caption. This value must be set so that the switch occurs after the previous transaction  
has cleared the delay in the VDP, but early enough to allow the new values to be programmed before the  
current settings are required.  
The default value is 0x1E and has been tested with every standard supported here. A new value is needed  
only if a custom standard is in use.  
51  
May 2006  
SLES043A  
Functional Description  
3.22.61 FIFO Output Control Register  
Address  
CDh  
7
6
5
4
3
2
1
0
Reserved  
Host access enable  
2
This register is programmed to allow I C access to the FIFO or allowing all VDP data to go out the video port.  
Host access enable:  
0 = Output FIFO data to the video output Y[9:2] (default)  
2
1 = Allow I C access to the FIFO data  
3.22.62 Automatic Initialization Register  
Address  
CEh  
7
6
5
4
3
2
1
0
Reserved  
Auto initialize  
Auto clock  
Reserved  
This register enables the VDP to preprogram the line mode registers for the most common standards based  
on the video standard, that is, PAL, NTSC.  
Auto initialize:  
0 = Disable initialization of teletext and closed caption standards (default)  
1 = Enable initialization of teletext and closed caption standards  
Auto clock:  
0 = Do not update bit 0 (default)  
1 = Enable VDP to update bit 0  
3.22.63 Full Field Enable Register  
Address  
CFh  
7
6
5
4
3
2
1
0
Reserved  
Full field enable  
This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in  
the line mode registers programmed with FFh are sliced with the definition of register FCh. Values other than  
FFh in the line mode registers allow a different slice mode for that particular line.  
Full field enable:  
0 = Disable full field mode (default)  
1 = Enable full field mode  
52  
SLES043A  
May 2006  
Functional Description  
3.22.64 Line Mode Registers  
Address  
D0h−FBh  
ADDRESS  
D0h  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EBh  
ECh  
EDh  
EEh  
EFh  
F0h  
F1h  
F2h  
F3h  
F4h  
F5h  
F6h  
F7h  
F8h  
F9h  
FAh  
FBh  
7
6
5
4
3
2
1
0
Line 6 Field 1  
Line 6 Field 2  
Line 7 Field 1  
Line 7 Field 2  
Line 8 Field 1  
Line 8 Field 2  
Line 9 Field 1  
Line 9 Field 2  
Line 10 Field 1  
Line 10 Field 2  
Line 11 Field 1  
Line 11 Field 2  
Line 12 Field 1  
Line 12 Field 2  
Line 13 Field 1  
Line 13 Field 2  
Line 14 Field 1  
Line 14 Field 2  
Line 15 Field 1  
Line 15 Field 2  
Line 16 Field 1  
Line 16 Field 2  
Line 17 Field 1  
Line 17 Field 2  
Line 18 Field 1  
Line 18 Field 2  
Line 19 Field 1  
Line 19 Field 2  
Line 20 Field 1  
Line 20 Field 2  
Line 21 Field 1  
Line 21 Field 2  
Line 22 Field 1  
Line 22 Field 2  
Line 23 Field 1  
Line 23 Field 2  
Line 24 Field 1  
Line 24 Field 2  
Line 25 Field 1  
Line 25 Field 2  
Line 26 Field 1  
Line 26 Field 2  
Line 27 Field 1  
Line 27 Field 2  
53  
May 2006  
SLES043A  
Functional Description  
These registers program the specific VBI standard at a specific line in the video field.  
Bit 7:  
0 = Disable filtering of null bytes in closed caption modes  
1 = Enable filtering of null bytes in closed caption modes (default)  
In teletext modes, bit 7 enables the data filter function for that particular line. If it is set to 0, then the data filter  
passes all data on that line.  
Bit 6:  
0 = Send VBI data to registers only.  
1 = Send VBI data to FIFO and the registers. Teletext data only goes to FIFO. (default)  
Bit 5:  
0 = Allow VBI data with errors in the FIFO  
1 = Do not allow VBI data with errors in the FIFO (default)  
Bit 4:  
0 = Do not enable error detection and correction  
1 = Enable error detection and correction (when bits [3:0] = 1 2, 3, and 4 only) (default)  
Bits [3:0]:  
0000 = Reserved  
0001 = WST PAL B  
0010 = WST PAL C  
0011 = WST NTSC  
0100 = NABTS NTSC  
0101 = TTX NTSC  
0110 = CC PAL  
0111 = CC NTSC  
1000 = WSS PAL  
1001 = WSS NTSC  
1010 = VITC PAL  
1011 = VITC NTSC  
1100 = VPS PAL  
1101 = Custom 1  
1110 = Custom 2  
1111 = Active video (VDP off) (default)  
A value of FFh in the line mode registers is required for any line to be sliced as part of the full field mode.  
3.22.65 Full Field Mode Register  
Address  
FCh  
7
6
5
4
3
2
1
0
Full field mode  
This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual line  
settings take priority over the full field register. This allows each VBI line to be programmed independently but  
have the remaining lines in full field mode. The full field mode register has the same definitions as the line mode  
registers (default 7Fh).  
54  
SLES043A  
May 2006  
Electrical Characteristics  
4
Electrical Characteristics  
4.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless  
otherwise noted)  
Supply voltage range: IOV  
to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V  
to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V  
DD  
DV  
DD  
PLL_AV  
CH1_AV  
to PLL_AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V  
to CH1_AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V  
DD  
DD  
Digital input voltage range, V to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V  
Input voltage range, XTAL1 to PLL_GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V  
I
Analog input voltage range A to CH1_AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to 2.0 V  
I
Digital output voltage range, V to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V  
O
Operating free-air temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
4.2 Recommended Operating Conditions  
MIN NOM  
MAX  
UNIT  
IODV  
DD  
Digital I/O supply voltage  
Digital supply voltage  
3.0  
1.65  
1.65  
1.65  
0
3.3  
1.8  
1.8  
1.8  
3.6  
1.95  
1.95  
1.95  
0.75  
V
V
DV  
DD  
PLL_AV  
Analog PLL supply voltage  
Analog core supply voltage  
Analog input voltage (ac-coupling necessary)  
Digital input voltage high  
V
DD  
CH1_AV  
V
DD  
V
V
V
V
V
V
I(P-P)  
0.7 IOV  
V
IH  
DD  
Digital input voltage low  
0.3 IOV  
V
IL  
DD  
XTAL input voltage high  
0.7 PLL_AV  
V
IH_XTAL  
IL_XTAL  
DD  
XTAL input voltage low  
0.3 PLL_AV  
V
DD  
2
I
I
I
I
High-level output current  
mA  
mA  
mA  
mA  
°C  
OH  
Low-level output current  
−2  
4
OL  
SCLK high-level output current  
SCLK low-level output current  
Operating free-air temperature  
OH_SCLK  
OL_SCLK  
−4  
70  
T
A
0
4.2.1 Crystal Specifications  
CRYSTAL SPECIFICATIONS  
MIN  
NOM  
14.31818  
50  
MAX  
UNIT  
MHz  
ppm  
Frequency  
Frequency tolerance  
4.3 Electrical Characteristics  
DV  
= 1.8 V, PLL_AV  
= 1.8 V, CH1_AV  
= 1.8 V, IOV = 3.3 V  
DD  
DD  
DD  
DD  
For minimum/maximum values: T = 0°C to 70°C, and for typical values: T = 25°C unless otherwise noted  
A
A
55  
May 2006  
SLES043A  
Electrical Characteristics  
4.3.1 DC Electrical Characteristics  
TEST CONDITIONS  
(see Note 1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
Digital I/O supply current  
Digital core supply current  
Analog PLL supply current  
Analog PLL supply current  
Total power dissipation, normal mode  
Total power dissipation, power-down mode  
Input capacitance  
Color bar input  
Color bar input  
Color bar input  
Color bar input  
Color bar input  
Color bar input  
By design  
6
21  
6
mA  
mA  
mA  
mA  
mW  
mW  
pF  
DD(IO_D)  
DD(D)  
DD(PLL_A)  
DD(CH1_A)  
25  
113  
0.9  
8
P
150  
TOT  
P
DOWN  
C
i
V
Output voltage high  
I
= 2 mA  
0.8 IOV  
V
OH  
OL  
OH  
OL  
DD  
V
Output voltage low  
I
= −2 mA  
0.22 IOV  
V
DD  
V
SCLK output voltage high  
I
= 2 mA  
0.8 IOV  
V
V
OH_SCLK  
OL_SCLK  
OH  
OL  
DD  
V
SCLK output voltage low  
I
= −4 mA  
0.22 IOV  
DD  
20  
20  
I
I
High-level input current (see Note 2)  
Low-level input current (see Note 2)  
V = V  
µA  
µA  
IH  
I
IH  
V = V  
IL  
I
IL  
NOTES: 1. Measured with a load of 15 pF.  
2. YOUT7 is a bidirectional terminal with an internal pulldown resistor. This terminal may sink more than the specified current when  
in the RESET mode.  
4.3.2 Analog Processing and A/D Converters  
PARAMETER  
Input impedance, analog video inputs  
Input capacitance, analog video inputs  
Input voltage range  
TEST CONDITIONS  
MIN  
TYP  
500  
10  
MAX  
UNIT  
kΩ  
pF  
Zi  
By design  
By design  
C
i
Vi(pp)  
G  
C
= 0.1 µF  
0
0
0.75  
12  
V
coupling  
Gain control range  
dB  
LSB  
LSB  
dB  
dB  
dB  
°
DNL  
INL  
Fr  
DC differential nonlinearity  
DC integral nonlinearity  
Frequency response  
A/D only  
A/D only  
6 MHz  
0.5  
1
−0.9  
50  
−3  
SNR  
NS  
Signal-to-noise ratio  
6 MHz, 1.0 V  
P-P  
Noise spectrum  
50% flat field  
50  
DP  
Differential phase  
1.5  
0.5%  
DG  
Differential gain  
56  
SLES043A  
May 2006  
Electrical Characteristics  
4.3.3 Timing  
4.3.3.1 Clocks, Video Data, Sync Timing  
PARAMETER  
TEST CONDITIONS  
(see NOTE 2)  
MIN  
TYP  
50%  
2.8  
MAX  
UNIT  
Duty cycle PCLK, SCLK  
See Note 3 (by de-  
sign)  
t
1
Delay time, SCLK falling edge to digital outputs  
8
ns  
NOTES: 3. C = 15 pF  
L
4. All outputs are 3.3 V.  
SCLK  
t
1
HSYNC/VSYNC/AVID/  
PALI/FID/Y[7:0]  
Figure 4−1. Clocks, Video Data, and Sync Timing  
2
4.3.3.2 I C Host Port Timing  
PARAMETER  
TEST CONDITIONS  
MIN  
1.3  
0.6  
0.6  
0.6  
100  
0
TYP  
MAX  
UNIT  
µs  
t
t
t
t
t
t
t
t
Bus free time between STOP and START  
1
2
3
4
5
6
7
8
Setup time for a (repeated) START condition  
Hold time (repeated) START condition  
Setup time for a STOP condition  
Data setup time  
µs  
µs  
ns  
ns  
Data hold time  
0.9  
µs  
Rise time VC1(SDA) and VC0(SCL) signal  
Fall time VC1(SDA) and VC0(SCL) signal  
Capacitive load for each bus line  
250  
ns  
250  
ns  
C
400  
400  
pF  
kHz  
b
2
f
I C clock frequency  
I2C  
Start  
Stop  
Stop  
VC1 (SDA)  
Data  
t
t
1
6
t
3
t
6
t
t
2
5
t
4
t
t
7
8
VC0 (SCL)  
2
Figure 4−2. I C Host Port Timing  
57  
May 2006  
SLES043A  
Application Information  
5
Application Information  
5.1 Application Example  
NOTE: X and (75 − X) is used since the maximum P−P signal allowed is 0.75V. Hence for a 140IRE signal, the signal  
must be divided by approximately half. Change X depending on the input signal range.  
C2  
C1  
1uF  
1uF  
C3  
1uF  
C11  
PDN  
PDN  
INTERQ/GPCL  
AVID  
HSYNC  
INTERQ/GPC  
AVID  
HSYNC  
R1  
X
0.1uF  
AVDD  
C4  
0.1uF  
C11  
IO_DVDD  
CH1_IN  
R2  
R3  
1.2K  
R4  
(75−X)  
X
1.2K  
R5  
0.1uF  
1
2
3
4
5
6
7
8
24  
VSYNC/PALI  
FID/GLCO  
SDA  
VSYNC/PALI  
FID/GLCO  
AIP1A  
AIP1B  
VSYNC/PALI  
FID/GLCO  
SDA  
C5  
23  
22  
21  
20  
19  
18  
17  
CH2_IN  
PLL_AGND  
PLL_AVDD  
XTAL1/OSC  
XTAL2  
AVDD  
SCL  
DVDD  
SCL  
DVDD  
TVP5150  
R6  
C6  
DGND  
(75−X)  
C7  
NSUB  
YOUT0  
YOUT1  
0.1uF  
RESETB  
0.1uF  
S1  
OSC  
1
2
OSC_IN  
Y1  
SCLK  
SCLK  
RESETB  
14.31818MHz  
IO_DVDD  
C8  
C9  
YOUT[7:0]  
C10  
0.1uF  
DVDD  
CL1  
CL2  
R7  
Implies I2C address is BAh. If B8h is to be used,  
connect pulldown resistor to digital ground.  
10K  
NOTE: The use of INTERQ/GPCL/AVID/HSYNC and VSYNC is optional. These are outputs and can be left floating.  
When OSC is connected through S1, remove the caps for the crystal.  
PDN needs to be high, if device has to be always operational.  
RESETB is operational only when PDN is high. This allows an active low reset to the device.  
CL1 and CL2 typical values used are 27 pF.  
Figure 5−1. Application Example  
58  
SLES043A  
May 2006  
Mechanical Data  
6
Mechanical Data  
The TVP5150 device is available in the 32-terminal PQFP package (PBS). The following figure shows the  
mechanical dimensions for the PBS package.  
PBS (S-PQFP-G32)  
PLASTIC QUAD FLATPACK  
0,23  
0,17  
M
0,50  
0,08  
24  
17  
25  
32  
16  
9
0,13 NOM  
1
8
3,50 TYP  
Gage Plane  
5,05  
SQ  
4,95  
0,25  
7,10  
SQ  
0,10 MIN  
6,90  
0°ā7°  
0,70  
0,40  
1,05  
0,95  
Seating Plane  
0,08  
1,20 MAX  
4087735/A 11/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
59  
May 2006  
SLES043A  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jan-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TVP5150PBSR  
TQFP  
PBS  
32  
1000  
330.0  
16.4  
7.2  
7.2  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jan-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TQFP PBS 32  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
TVP5150PBSR  
1000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TVP5151

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5151IPBS

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5151IPBSQ1

COLOR SIGNAL DECODER, PQFP32, GREEN, PLASTIC, QFP-32
TI

TVP5151IPBSR

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5151IPBSRQ1

IC COLOR SIGNAL DECODER, PQFP32, GREEN, PLASTIC, QFP-32, Color Signal Converter
TI

TVP5151IZQC

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5151IZQCR

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5151PBS

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5151PBSR

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5151ZQC

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5151ZQCR

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5154

4-CHANNEL LOW-POWER PAL/NTSC/SECAM VIDEO DECODER WITH INDEPENDENT SCALERS AND FAST LOCK
TI