TPS92612 [TI]

150mA 单通道 LED 线性驱动器;
TPS92612
型号: TPS92612
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

150mA 单通道 LED 线性驱动器

驱动 驱动器
文件: 总23页 (文件大小:1543K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS92612  
ZHCSL42 APRIL 2020  
具有保护功能的 TPS92612 40V150mA 单通道线性 LED 驱动器(恒流  
源)  
1 特性  
3 说明  
1
单通道高精度电流源:  
随着 LED 光源的广泛应用,简单的 LED 驱动器越来  
越受欢迎。与分立式解决方案相比,低成本单片解决方  
案可降低系统级组件数量,并显著提高电流精度和可靠  
性。  
–40°C +125°C 范围内电流精度为 ±4.6%  
可通过外部感应电阻器调节电流  
最大电流高达 150mA  
宽输入电压范围:4.5V 40V  
TPS92612 器件是一款单通道高侧线性 LED 驱动器,  
具有宽电源电压范围。这是一种简单而巧妙的解决方  
案,能够为单个 LED 灯串提供恒定电流。它支持通过  
长电缆连接非板载 LEDTPS92612 器件也可在其他  
应用中用作一般恒流源或限流器。  
通过输入 PWM 占空比进行亮度控制  
低压降电压(包含电流感应压降)  
最大压降:10mA 时为 150mV  
最大压降:70mA 时为 400mV  
最大压降:150mA 时为 700mV  
器件信息(1)  
低静态电流:典型值 200µA  
器件号  
TPS92612  
封装  
SOT-23 (5)  
封装尺寸(标称值)  
保护:  
2.9mm × 1.6mm  
LED 短路保护,具有自动恢复功能  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
热关断  
与外部电阻器实现热共享  
典型应用图  
工作结温范围:–40°C +150°C  
4.5 œ 40V  
2 应用  
LED 驱动器、恒流源或限流器,可用于:  
R(SNS)  
TPS92612  
洗衣机和烘干机  
冰箱和冷冻柜  
气体检测仪  
IN  
SUPPLY  
PWM  
C(SUPPLY)  
PWM  
C(OUT)  
工厂自动化和控制  
楼宇自动化  
OUT  
GND  
医疗  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFG3  
 
 
TPS92612  
ZHCSL42 APRIL 2020  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 8  
7.4 Device Functional Modes.......................................... 9  
Application and Implementation ........................ 10  
8.1 Application Information............................................ 10  
8.2 Typical Application .................................................. 10  
Power Supply Recommendations...................... 14  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 3  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Timing Requirements................................................ 4  
6.7 Typical Characteristics.............................................. 5  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
8
9
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Example .................................................... 15  
11 器件和文档支持 ..................................................... 16  
11.1 接收文档更新通知 ................................................. 16  
11.2 支持资源................................................................ 16  
11.3 ....................................................................... 16  
11.4 静电放电警告......................................................... 16  
11.5 Glossary................................................................ 16  
12 机械、封装和可订购信息....................................... 16  
7
4 修订历史记录  
日期  
修订版本  
说明  
2020 4 月  
*
初始发行版。  
2
Copyright © 2020, Texas Instruments Incorporated  
 
TPS92612  
www.ti.com.cn  
ZHCSL42 APRIL 2020  
5 Pin Configuration and Functions  
TPS92612 DBV Package  
5-Pin SOT-23  
Top View  
GND  
PWM  
1
2
3
5
OUT  
SUPPLY  
4
IN  
Not to scale  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
GND  
TPS92612  
1
4
5
2
3
I
Ground  
IN  
Current input  
OUT  
O
I
Constant-current output  
PWM input  
PWM  
SUPPLY  
I
Device supply voltage  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
45  
UNIT  
V
High-voltage input  
IN, PWM, SUPPLY  
OUT  
High-voltage output  
IN to OUT  
45  
V
V(IN) – V(OUT)  
V(SUPPLY) – V(IN)  
45  
V
SUPPLY to IN  
1
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
V
All pins  
±500  
±750  
Charged-device model (CDM), per JEDEC  
specification JESD22-C101(2)  
Corner pins (3, 4, and 5)  
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
Copyright © 2020, Texas Instruments Incorporated  
3
TPS92612  
ZHCSL42 APRIL 2020  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
4.5  
4.4  
0
NOM  
MAX  
40  
UNIT  
V
SUPPLY  
IN  
Device supply voltage  
Sense voltage  
PWM inputs  
40  
V
PWM  
OUT  
40  
V
Driver output  
0
40  
V
Operating ambient temperature, TA  
–40  
125  
°C  
6.4 Thermal Information  
TPS92612  
THERMAL METRIC  
DBV (SOT23)  
5 PINS  
200.7  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
104.4  
Junction-to-board thermal resistance  
45.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
17.5  
ψJB  
45.2  
6.5 Electrical Characteristics  
V(SUPPLY) = 5 V to 40 V, TJ = –40°C to +150°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BIAS  
V(POR_rising)  
V(POR_falling)  
I(Quiescent)  
Supply voltage POR rising threshold  
Supply voltage POR falling threshold  
Device standby current  
3.2  
4
V
V
2.2  
0.1  
3
PWM = HIGH  
0.2  
0.25  
mA  
LOGIC INPUTS (PWM)  
VIL(PWM) Input logic-low voltage, PWM  
VIH(PWM) Input logic-high voltage, PWM  
CONSTANT-CURRENT DRIVER  
1.045  
1.16  
1.1  
1.2  
1.155  
1.24  
V
V
I(OUT)  
Device output-current range  
100% duty cycle  
4
94  
150  
102  
mA  
mV  
Ω
TA = 25°C, V(SUPPLY) = 4.5 V to 18 V  
98  
98  
V(CS_REG)  
R(CS_REG)  
Sense-resistor regulation voltage  
Sense-resistor value  
TA = –40°C to +125°C, V(SUPPLY) = 4.5 V to 18 V  
93.5  
0.66  
102.5  
24.5  
150  
V(CS_REG) voltage included, current setting of 10 mA  
V(CS_REG) voltage included, current setting of 70 mA  
120  
250  
400  
V(DROPOUT)  
Voltage dropout from SUPPLY to OUT  
mV  
V(CS_REG) voltage included, current setting of 150  
mA  
430  
700  
DIAGNOSTICS  
Channel output V(OUT) short-to-ground  
rising threshold  
V(SG_th_rising)  
1.14  
0.82  
0.64  
1.2  
0.865  
1.08  
1.26  
0.91  
V
V
Channel output V(OUT) short-to-ground  
falling threshold  
V(SG_th_falling)  
I(Retry)  
Channel output V(OUT) short-to-ground  
retry current  
1.528  
mA  
THERMAL PROTECTION  
Thermal shutdown junction temperature  
threshold  
T(TSD)  
157  
172  
15  
187  
°C  
°C  
Thermal shutdown junction temperature  
hysteresis  
T(TSD_HYS)  
6.6 Timing Requirements  
MIN NOM MAX UNIT  
10 17 25 µs  
PWM rising edge delay, 50% PWM voltage to 10% of output current closed loop, t2 - t1 as shown  
in Figure 1  
t(PWM_delay_rising)  
4
Copyright © 2020, Texas Instruments Incorporated  
 
TPS92612  
www.ti.com.cn  
ZHCSL42 APRIL 2020  
Timing Requirements (continued)  
MIN NOM MAX UNIT  
PWM falling edge delay, 50% PWM voltage to 90% of output current open loop, t5 - t4 as shown  
in Figure 1  
t(PWM_delay_falling)  
t(DEVICE_STARTUP)  
15  
21  
30  
µs  
µs  
SUPPLY rising edge to 10% output current at 50-mA set current, t8 - t7 as shown  
in Figure 1  
100  
150  
175  
t(SG_deg)  
Output short-to-ground detection deglitch time  
Thermal over temperature deglitch timer  
Fault recovery deglitch timer  
80  
125  
50  
µs  
µs  
µs  
t(TSD_deg)  
t(Recover_deg)  
8.5  
16  
25  
SUPPLY  
PWM  
IOUT  
Input duty-cycle  
90%  
90%  
Output duty-cycle  
10%  
t1  
10%  
t6  
10%  
t8  
t7  
t2  
t3  
t4  
t5  
1. Output Timing Diagram  
6.7 Typical Characteristics  
250  
200  
I(OUT) setting = 10 mA  
I(OUT) setting = 70 mA  
I(OUT) setting = 150 mA  
100  
70  
200  
150  
100  
50  
50  
30  
20  
10  
7
5
3
2
0
4
10  
16  
22  
Supply Voltage (V)  
28  
34  
40  
0.6  
1
2
3
4
5
6 7 8 10  
20  
30  
R(SNS) (W)  
D001  
TA = 25 °C  
2. Output Current vs Supply Voltage  
3. Output Current vs Current-Sense Resistor  
版权 © 2020, Texas Instruments Incorporated  
5
 
TPS92612  
ZHCSL42 APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
240  
180  
150  
120  
90  
I(OUT) setting = 10 mA  
I(OUT) setting = 70 mA  
I(OUT) setting = 150 mA  
200  
160  
120  
80  
60  
-40èC  
25èC  
125èC  
40  
30  
0
0
0
0.5  
1
Dropout Voltage (V)  
1.5  
2
0
0.5  
1
Dropout Voltage (V)  
1.5  
2
D002  
D003  
TA = 25 °C  
4. Output Current vs Dropout Voltage  
I(OUT) setting = 150 mA  
5. Output Current vs Dropout Voltage  
250  
200  
150  
100  
50  
100%  
10%  
1%  
0.5%  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1%  
10%  
PWM Duty Cycle  
100%  
Temperature (oC)  
D005  
I(OUT) setting = 150 mA  
V(SUPPLY)-V(OUT) = 2 V  
f(PWM) = 200 Hz  
7. PWM Output Duty Cycle vs Input Duty Cycle  
6. Output Current vs Temperature  
Ch. 1 = SUPPLY  
f(PWM) = 200 Hz  
Ch. 2 = V(PWM)  
Ch. 4 = I(OUT)  
Ch. 1 = SUPPLY  
f(PWM) = 2 kHz  
Ch. 2 = V(PWM)  
Ch. 4 = I(OUT)  
Duty-cycle = 50%  
Duty-cycle = 50%  
8. PWM Dimming at 200 Hz  
9. PWM Dimming at 2 kHz  
6
版权 © 2020, Texas Instruments Incorporated  
TPS92612  
www.ti.com.cn  
ZHCSL42 APRIL 2020  
Typical Characteristics (接下页)  
Ch. 1 = SUPPLY  
Ch. 2 = V(OUT)  
Ch. 4 = I(OUT)  
Ch. 1 = SUPPLY  
Ch. 2 = V(OUT)  
Ch. 4 = I(OUT)  
10. LED Open-Circuit and Recovery  
11. LED Short-Circuit Protection and Recovery  
版权 © 2020, Texas Instruments Incorporated  
7
TPS92612  
ZHCSL42 APRIL 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS92612 device is a single-channel linear LED driver providing a simple current source with protection.  
The output current at OUT pin can be set by an external R(SNS) resistor. Current flows from the supply through  
the R(SNS) resistor into the integrated current regulation circuit and to the output through OUT pin. Brightness can  
be controlled by PWM pin.  
7.2 Functional Block Diagram  
4.5 œ 40V  
TPS92612  
R(SNS)  
IN  
SUPPLY  
Supply  
and  
Control  
PWM  
Output Driver  
OUT  
GND  
7.3 Feature Description  
7.3.1 Device Bias  
7.3.1.1 Power-On Reset (POR)  
The TPS92612 device has an internal power-on-reset (POR) function. When power is applied to the SUPPLY  
pin, the internal POR holds the device in the reset condition until V(SUPPLY) reaches V(POR_rising)  
.
7.3.2 Constant-Current Driver  
The TPS92612 device is a high-side constant-current driver. The device controls the output current through  
regulating the voltage drop on an external high-side current-sense resistor, R(SNS). An integrated error amplifier  
drives an internal power transistor to maintain the voltage drop on the current-sense resistor R(SNS) to V(CS_REG)  
and therefore regulates the current output to target value. When the output current is in regulation, the current  
value can be calculated by using 公式 1.  
V
(CS _REG)  
I(OUT)  
=
R(SNS)  
where  
V(CS_REG) = 98 mV (typical)  
(1)  
8
版权 © 2020, Texas Instruments Incorporated  
 
TPS92612  
www.ti.com.cn  
ZHCSL42 APRIL 2020  
Feature Description (接下页)  
When the SUPPLY-to-OUT voltage difference is below the required dropout voltage, V(DROPOUT), at a given  
output current, the TPS92612 is not able to deliver enough current output as set by the value of R(SNS), and the  
voltage across the current-sense resistor R(SNS) is less than V(CS_REG)  
.
7.3.3 PWM Control  
The pulse width modulation (PWM) input of the TPS92612 functions as enable for the output current. When the  
voltage applied on the PWM pin is higher than VIH(PWM), the output current is enabled. When the voltage applied  
on PWM pin is lower than VIL(PWM), the output current is disabled. Besides output current enable and disable  
function, the PWM input of TPS92612 also supports adjustment of the average current for LED brightness  
control. TI recommends a 200 Hz – 2 kHz PWM signal for brightness control, which is out of visible frequency  
range of human eyes.  
7.3.4 Protection  
7.3.4.1 Short-to-GND Protection  
The TPS92612 device has OUT short-to-GND protection. The device monitors the V(OUT) voltage when the  
output current is enabled and compares it with the internal reference voltage to detect a short-to-GND failure. If  
V(OUT) falls below V(SG_th_falling) longer than the deglitch time of t(SG_deg), the device asserts the short-to-GND fault.  
During the deglitching time period, if V(OUT) rises above V(SG_th_rising), the timer is reset.  
Once the device has detected a short-to-GND fault, the device turns off the output channel and retries  
automatically by sourcing a small current I(retry) from IN to OUT to pull up the loads continuously, regardless of  
the state of the PWM input. Once auto retry detects output voltage rising above V(SG_th_rising), the device clears  
the short-to-GND fault and resumes normal operation.  
7.3.4.2 Over Temperature Protection  
The TPS92612 device monitors device junction temperature. When the junction temperature reaches thermal  
shutdown threshold T(TSD), the output shuts down. Once the junction temperature falls below T(TSD) – T(TSD_HYS)  
the device recovers to normal operation.  
,
7.4 Device Functional Modes  
7.4.1 Undervoltage Lockout, V(SUPPLY)< V(POR_rising)  
When the TPS92612 device is in undervoltage lockout mode, the device disables all functions until the supply  
rises above the V(POR_rising) threshold.  
7.4.2 Normal State, V(SUPPLY) 4.5 V  
The device regulates output current in normal state. With enough voltage drop across SUPPLY and OUT, the  
device is able to drive the output in constant-current mode.  
版权 © 2020, Texas Instruments Incorporated  
9
TPS92612  
ZHCSL42 APRIL 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS92612 device is a constant-current regulator which can be used as a LED driver, general constant-  
current source or current limiter in industrial applications.  
Thermal performance is one of the design challenges for linear devices. To increase current-driving capability,  
the device supports heat sharing using an external parallel resistor, as shown in 15. This technique provides  
the low-cost solution of using external resistors to minimize thermal accumulation on the device itself, and still  
keeps high accuracy of the total current output.  
8.2 Typical Application  
8.2.1 Single LED Driver  
The TPS92612 offers a cost-effective and easy-to-use solution for LED driver applications. PWM input can be  
adopted for LED brightness adjust and LED ON/OFF control. The device also supports off-board LED connection  
with long cables.  
5 V  
R(SNS)  
TPS92612  
IN  
SUPPLY  
PWM  
C(SUPPLY)  
PWM  
Long wire impedence  
C(OUT)  
OUT  
GND  
12. Typical Application Diagram  
8.2.1.1 Design Requirements  
The input voltage is 5 V ± 5%. LED maximum forward voltage VF_MAX = 2.5 V, minimum forward voltage VF_MIN  
1.9 V, current I(LED) = 150 mA. LED is connected to device OUT pin through a 1-m long wire.  
=
8.2.1.2 Detailed Design Procedure  
STEP 1: Determine the current setting resistor, R(SNS) value by using 公式 2.  
V
(CS _REG)  
R(SNS)  
=
= 0.653W  
I(LED)  
where  
V(CS_REG) = 98 mV (typical)  
I(LED) = 150 mA  
(2)  
STEP 2: Power consumption analysis for the worst application conditions.  
10  
版权 © 2020, Texas Instruments Incorporated  
 
TPS92612  
www.ti.com.cn  
ZHCSL42 APRIL 2020  
Typical Application (接下页)  
Normally the thermal analysis is necessary for linear LED-driver applications to ensure that the operation junction  
temperature of TPS92612 is well managed. The total power consumption on the TPS92612 itself is one  
important factor determining operation junction temperature, and it can be calculated by using 公式 3. Based on  
the worst-case analysis for maximum power consumption on device, consider either optimizing PCB layout for  
better power dissipation as Layout describes or adding an extra heat-sharing resistor as described in Single-  
Channel LED Driver With Heat Sharing.  
PDEV = V  
- V CS _REG - V OUT ìI  
) + V(SUPPLY ìI(Quiescent  
) )  
(
)
SUPPLY  
LED  
(
)
(
)
(
)
(
)
(
PDEV _MAX = 5.25 - 0.098 -1.9 ì0.15 + 5.25ì0.00025 = 0.489W  
(
)
(
)
where  
V(CS_REG) = 98 mV (typical)  
I(Quiescent) = 250 µA (maximum)  
(3)  
In this application, the calculated result for maximum power consumption on the TPS92612 is 0.489 W at  
V(SUPPLY) = 5.25 V and I(LED) = 150 mA conditions.  
TI recommends to add capacitors C(SUPPLY) at SUPPLY and C(OUT) at OUT. TI recommends one 1-μF capacitor  
plus one 100-nF decoupling ceramic capacitor close to the SUPPLY pin for C(SUPPLY) and a 10-nF ceramic  
capacitor close to the OUT pin for C(OUT). The larger capacitor for C(SUPPLY) or C(OUT) is helpful for EMI and ESD  
immunity; however, large C(OUT) takes a longer time to charge up the capacitor and may affect PWM dimming  
performance.  
8.2.1.3 Application Curve  
A 1-μH inductor is connected between OUT and the LED to simulate the 1-m long cable.  
Ch. 1 = V(SUPPLY)  
Ch. 3 = V(OUT)  
Ch. 2 = V(PWM)  
Ch. 4 = I(OUT)  
Ch. 1 = V(SUPPLY)  
Ch. 3 = V(OUT)  
Ch. 2 = V(PWM)  
Ch. 4 = I(OUT)  
14. Output Current With PWM Input  
13. Output Current With PWM Input  
8.2.2 Single-Channel LED Driver With Heat Sharing  
Using parallel resistors, thermal performance can be improved by balancing current between the TPS92612  
device and the external resistors as follows. As the current-sense resistor controls the total LED string current,  
the LED string current I(LED) is set by V(CS_REG) / R(SNS), while the TPS92612 current I(DRIVE) and parallel resistor  
current I(P) combine to the total current.  
版权 © 2020, Texas Instruments Incorporated  
11  
 
 
TPS92612  
ZHCSL42 APRIL 2020  
www.ti.com.cn  
Typical Application (接下页)  
12 V  
R(SNS)  
I(DRIVE)  
I(LED)  
TPS92612  
SUPPLY  
IN  
C(SUPPLY)  
C(OUT)  
I(P)  
R(P)  
PWM  
GND  
OUT  
15. Heat Sharing With a Parallel Resistor  
8.2.2.1 Design Requirements  
The input voltage range is 12 V ± 10%, LED maximum forward voltage VF_MAX = 2.5 V, minimum forward voltage  
VF_MIN = 1.9 V, current I(LED) = 150 mA.  
8.2.2.2 Detailed Design Procedure  
In linear LED driver applications, the input and output voltage variation generates the most of the thermal  
concerns. The resistor current I(P), as indicated by Ohm's law, depends on the voltage across the external  
resistors. The TPS92612 controls the driver current I(DRIVE) to attain the desired total current. If I(P) increases, the  
TPS92612 device decreases I(DRIVE) to compensate, and vice versa. The parallel-resistor takes highest current  
and generates maximum heat at maximum supply voltage and minimum LED-string forward voltage.  
The parallel resistor value must be carefully calculated to ensure that 1) thermal dissipation for both the  
TPS92612 device and the resistor is within their thermal dissipation limits, and 2) device current at high voltage  
drop condition is above the minimal output-current requirement.  
STEP 1: Determine the current setting resistor, R(SNS) value by using 公式 4.  
V
(CS _REG)  
R(SNS)  
=
= 0.653W  
I(LED)  
where  
V(CS_REG) = 98 mV (typical)  
I(LED) = 150 mA  
(4)  
The calculated result for R(SNS) is 0.653 Ω.  
STEP 2: Calculate the parallel resistor, R(P) value by using 公式 5.  
The parallel resistor R(P) is recommended to consume 50% of the total current at maximum supply voltage and  
minimum LED-string forward voltage.  
V
(SUPPLY) - V(CS _ REG) - V  
13.2 - 0.098 - 3 ì1.9  
0.5 ì0.15  
(OUT)  
R(P)  
=
=
ö 100W  
0.5 ìI(LED)  
where  
V(CS_REG) = 98 mV (typical)  
I(LED) = 150 mA  
(5)  
The calculated result for R(P) is about 100 Ω at V(SUPPLY) = 13.2 V.  
STEP 3: Power consumption analysis for the worst application conditions.  
The total device power consumption can be calculated by 公式 6.  
12  
版权 © 2020, Texas Instruments Incorporated  
 
 
TPS92612  
www.ti.com.cn  
ZHCSL42 APRIL 2020  
Typical Application (接下页)  
÷
V(SUPPLY - V(CS _ REG - V(OUT  
)
)
)
PDEV = V  
- V CS _ REG - V OUT ì I  
-
LED  
+ V(SUPPLY ìI(Quiescent  
(
)
SUPPLY  
(
)
(
)
(
)
(
)
(
)
)
)
R(P  
÷
)
«
13.2 - 0.098 - 3 ì1.9  
100  
PDEV _ MAX = 13.2 - 0.098 - 3 ì1.9 ì 0.15 -  
+13.2ì0.00025 = 0.566W  
(
)
÷
(
)
«
where  
V(CS_REG) = 98 mV (typical)  
I(Quiescent) = 250 µA (maximum)  
(6)  
The calculated maximum power consumption on the TPS92612 device is 0.566 W at V(SUPPLY) = 13.2 V, V(OUT)  
3 × 1.9 V = 5.7 V and I(LED) = 150 mA.  
=
The power consumption on resistor R(P) can be calculated through 公式 7.  
2
V
- V(CS _ REG - V(OUT  
) )  
(
)
SUPPLY  
(
)
PRP  
=
(
)
R(P  
)
2
13.2 - 0.098 - 3 ì1.9  
(
)
PRP _ MAX  
=
= 0.548W  
(
)
100  
where  
V(CS_REG) = 98 mV (typical)  
(7)  
The calculated maximum power consumption on the 100 Ω, R(P) parallel resistor is 0.548 W at V(SUPPLY) = 13.2 V  
and V(OUT) = 3 × 1.9 V = 5.7 V.  
TI recommends adding capacitors C(SUPPLY) at SUPPLY and C(OUT) at OUT. One 1-μF capacitor plus one 100-nF  
decoupling ceramic capacitor close to the SUPPLY pin is recommended for C(SUPPLY), and a 10-nF ceramic  
capacitor close to the OUT pin is recommended for C(OUT). The larger capacitor for C(SUPPLY) or C(OUT) is helpful  
for EMI and ESD immunity, however large C(OUT) takes a longer time to charge up the capacitor and could affect  
PWM dimming performance.  
Note that the parallel resistor path cannot be shut down by PWM or fault protection. If PWM control is required,  
TI recommends an application circuit as shown in 16. A NPN bipolar transistor with a base current-limiting  
resistor, R1, can modulate the output current together with the device PWM function. The resistor value of R1  
needs to be calculated based on the applied PWM voltage and β value of selected NPN transistor.  
12 V  
R(SNS)  
I(LED)  
TPS92612  
SUPPLY  
I(DRIVE)  
IN  
C(SUPPLY)  
PWM  
I(P)  
R(P)  
PWM  
GND  
OUT  
C(OUT)  
R1  
PWM  
16. PWM Control With Heat Sharing Resistor  
版权 © 2020, Texas Instruments Incorporated  
13  
 
 
TPS92612  
ZHCSL42 APRIL 2020  
www.ti.com.cn  
Typical Application (接下页)  
8.2.2.3 Application Curve  
Ch. 1 = V(SUPPLY) Ch. 2 = V(OUT)  
Ch. 3 = I(P) Ch. 4 = I(LED)  
17. Constant Output Current With Heat Sharing Resistor  
9 Power Supply Recommendations  
The TPS92612 is designed to operate from a power system within the range specified in the Recommended  
Operating Conditions. The SUPPLY input must be protected from reverse voltage and overvoltage over 40 V.  
The impedance of the input supply rail must be low enough that the input current transient does not cause drop  
below LED string required forward voltage. If the input supply is connected with long wires, additional bulk  
capacitance may be required in addition to normal input capacitor.  
14  
版权 © 2020, Texas Instruments Incorporated  
TPS92612  
www.ti.com.cn  
ZHCSL42 APRIL 2020  
10 Layout  
10.1 Layout Guidelines  
Thermal dissipation is the primary consideration for TPS92612 layout. TI recommends good thermal dissipation  
area beneath the device for better thermal performance.  
10.2 Layout Example  
GND  
TPS92612  
OUT  
GND  
PWM  
SUPPLY  
IN  
SUPPLY  
18. TPS92612 Example Layout Diagram  
版权 © 2020, Texas Instruments Incorporated  
15  
TPS92612  
ZHCSL42 APRIL 2020  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
16  
版权 © 2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92612DBVR  
ACTIVE  
SOT-23  
DBV  
5
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
22SF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-May-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS92612DBVR  
SOT-23  
DBV  
5
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-May-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TPS92612DBVR  
5
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS92612-Q1

具有 150mA 输出和短路检测功能的汽车类单通道 LED 驱动器
TI

TPS92612DBVR

150mA 单通道 LED 线性驱动器 | DBV | 5 | -40 to 125
TI

TPS92612QDBVRQ1

具有 150mA 输出和短路检测功能的汽车类单通道 LED 驱动器 | DBV | 5 | -40 to 125
TI

TPS92613-Q1

具有 600mA 输出、开路和短路检测功能的汽车类单通道 LED 驱动器
TI

TPS92613QNDRRQ1

具有 600mA 输出、开路和短路检测功能的汽车类单通道 LED 驱动器 | NDR | 7 | -40 to 125
TI

TPS92620-Q1

具有热共享功能的汽车类双通道高电流 40V 高侧 LED 驱动器
TI

TPS92620QDRRRQ1

具有热共享功能的汽车类双通道高电流 40V 高侧 LED 驱动器 | DRR | 12 | -40 to 125
TI

TPS92622-Q1

具有热共享功能的汽车类双通道 40V 高侧 LED 驱动器
TI

TPS92622QDRRRQ1

具有热共享功能的汽车类双通道 40V 高侧 LED 驱动器 | DRR | 12 | -40 to 125
TI

TPS92623-Q1

具有热共享功能的汽车类三通道高侧 LED 驱动器
TI

TPS92623QPWPRQ1

具有热共享功能的汽车类三通道高侧 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92624-Q1

具有热共享功能的汽车类四通道高侧 LED 驱动器
TI