TPS1H100-Q1 [TI]

具有可调节电流限制的 40V、100mΩ、汽车类单通道智能高侧开关;
TPS1H100-Q1
型号: TPS1H100-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节电流限制的 40V、100mΩ、汽车类单通道智能高侧开关

开关
文件: 总51页 (文件大小:1854K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
TPS1H100-Q1 40V100mΩ 单通道智能高侧电源开关  
1 特性  
欠压锁定 (UVLO) 保护  
具备自恢复功能的热关断/热振荡  
接地失效保护和失电保护  
对外部电路提供反向电池保护  
1
符合汽车类 应用要求  
具有符合 AEC-Q100 标准的下列特性:  
器件温度等级 1–40°C 125°C 的环境工作  
温度范围  
诊断  
器件 HBM ESD 分类等级 H3A  
器件 CDM ESD 分类等级 C4B  
开启和关闭状态输出的开路和电池短路检测  
过载和接地短路检测以及电流限制  
提供功能安全  
提供文档以帮助创建功能安全系统设计  
具有全面诊断功能的单通道智能高侧电源开关  
热关断/热振荡检测  
14 引脚热增强型 PWP 封装  
2 应用  
版本 A:开漏状态输出  
适用于子模块的高侧电源开关  
版本 B:电流感应模拟输出  
适用于低功率灯的电源开关  
高侧继电器和电磁阀  
宽工作电压范围:3.5V 40V  
超低待机电流,低于 0.5µA  
PLC 数字输出电源开关  
一般阻性、感性和容性负载  
工作结温范围,-40°C 150°C  
输入控制,兼容 3.3V 5V 逻辑  
高精度电流感应,电流为 1A 时为 ±30mA,  
电流为 5mA 时为 ±4mA  
3 说明  
TPS1H100-Q1 是一款具有全方位保护的高侧电源开  
关,它集成有 NMOS 功率 FET 和电荷泵,专用于对  
各类阻性、感性和容性负载进行智能控制。精确的电流  
检测和可编程电流限制 特性 使该器件从市场中脱颖而  
出。  
利用外部电阻器实现可编程电流限制(在 0.5A 时  
±20%)  
用于对 MCU 模拟或数字接口进行多路复用的诊断  
使能功能  
测试符合 AECQ100-12 A 级标准,  
经过 100 万次接地短路测试  
器件信息(1)  
通过 ISO7637-2 ISO16750-2 电瞬变抗扰度认证  
器件型号  
封装  
封装尺寸(标称值)  
保护  
TPS1H100-Q1  
HTSSOP (14)  
4.40mm × 5.00mm  
过载和短路保护  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
电感负载负电压钳位  
典型应用原理图  
VBAT  
VS  
Output  
Clamp  
IN  
Gate Drive and  
Clamp  
5 V  
ST  
Version A  
Logic and  
Protection  
DIAG_EN  
OUT  
MCU  
CS  
Version B  
Current Sense/  
Current Limit  
Load  
CL  
GND  
Dgnd  
Rgnd  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCM2  
 
 
 
 
 
 
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 31  
Application and Implementation ........................ 32  
8.1 Application Information............................................ 32  
8.2 Typical Application ................................................. 32  
Power Supply Recommendations...................... 37  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
8
9
10 Layout................................................................... 37  
10.1 Layout Guidelines ................................................. 37  
10.2 Layout Example .................................................... 37  
10.3 Thermal Considerations........................................ 38  
11 器件和文档支持 ..................................................... 39  
11.1 接收文档更新通知 ................................................. 39  
11.2 社区资源................................................................ 39  
11.3 ....................................................................... 39  
11.4 静电放电警告......................................................... 39  
11.5 Glossary................................................................ 39  
12 机械、封装和可订购信息....................................... 39  
6.6 Timing Requirements – Current Sense  
Characteristics ........................................................... 8  
6.7 Switching Characteristics.......................................... 9  
6.8 Typical Characteristics............................................ 11  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 16  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (June 2018) to Revision D  
Page  
特性 部分添加了提供功能安全的链接.................................................................................................................................. 1  
Changes from Revision B (June 2015) to Revision C  
Page  
Changed the Pin Functions table to alphabetical order and created separate columns for the Version A and Version  
B devices ................................................................................................................................................................................ 3  
Added tablenotes to the Electrical Characteristics table ........................................................................................................ 7  
添加了接收文档更新通知 .............................................................................................................................................. 39  
Changes from Revision A (January 2015) to Revision B  
Page  
Updated Figure 6 and Figure 7 ............................................................................................................................................ 10  
Updated Figure 38................................................................................................................................................................ 25  
Updated Figure 39 ............................................................................................................................................................... 26  
Updated Figure 40 ............................................................................................................................................................... 27  
添加了社区资源..................................................................................................................................................................... 39  
Changes from Original (October 2014) to Revision A  
Page  
将器件状态从预览更新为生产数.......................................................................................................................................... 1  
2
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
5 Pin Configuration and Functions  
PWP Package Version A  
14-Pin HTSSOP  
Top View  
NC  
GND  
IN  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
ST  
CL  
DIAG_EN  
NC  
Thermal  
Pad  
NC  
OUT  
OUT  
OUT  
VS  
VS  
8
VS  
Not to scale  
PWP Package Version B  
14-Pin HTSSOP  
Top View  
NC  
GND  
IN  
1
2
3
4
5
6
7
14  
13  
12  
CS  
CL  
DIAG_EN  
NC  
Thermal  
Pad  
NC  
11  
10  
9
OUT  
OUT  
OUT  
VS  
VS  
8
VS  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VER. A  
VER. B  
Programmable current-limit pin. Connect to device GND if external  
current limit is not used.  
CL  
CS  
13  
12  
13  
14  
12  
O
O
I
Current-sense output. Leave floating if not used.  
Enable and disable pin for diagnostic functions. Connect to device GND  
if not used.  
DIAG_EN  
GND  
2
3
2
3
I
Ground pin  
IN  
Input control for channel activation  
NC  
1, 4, 11  
5, 6, 7  
14  
1, 4, 11  
5, 6, 7  
O
O
I
No-connect pin; leave floating.  
OUT  
Output, connected to load (NMOS source)  
Open-drain diagnostic status output. Leave floating if not used.  
Power supply; battery voltage  
ST  
VS  
8, 9, 10  
8, 9, 10  
Thermal pad  
Thermal pad. Connect to device GND or leave floating.  
Copyright © 2014–2019, Texas Instruments Incorporated  
3
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)(3)  
MIN  
MAX  
UNIT  
V
Supply voltage(4), t < 400 ms  
Reverse polarity voltage(5)  
Continuous drain current  
Reverse current on GND  
Reverse current on GND, t < 120 s  
Voltage on IN/DIAG_EN pin  
Current on IN /DIAG_EN pin  
Voltage on ST pin  
48  
–18  
V
Internally limited  
A
–50  
–250  
–0.3  
–30  
20  
20  
7
mA  
mA  
V
2
mA  
V
–0.3  
–30  
7
Current on ST pin  
10  
2
mA  
KHz  
V
IN pin PWM frequency  
Voltage on CL pin  
–0.3  
–2  
7
Current on CL pin  
30  
6.5  
30  
70  
125  
150  
150  
mA  
V
Voltage on CS pin  
–2.7  
–2  
Current on CS pin  
mA  
mJ  
°C  
°C  
°C  
Inductive load switch-off energy dissipation, single pulse(6)  
Operating ambient temperature  
Operating junction temperature  
Storage temperature, Tstg  
–40  
–40  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND.  
(3) Absolute negative voltage on these terminals is not to go below –0.3 V.  
(4) Absolute maximum voltage, withstand 48-V load dump voltage for 400 ms.  
(5) Reverse polarity condition: t < 60 s, reverse current < Irev1, GND pin 1-kΩ resistor in parallel with diode.  
(6) Test condition: VS = 13.5 V, L = 8 mH, R = 0 Ω, TJ = 150°C. FR4 2s2p board, 2- × 70-μm Cu, 2- × 35-μm Cu. 600-mm2 thermal pad  
copper area.  
6.2 ESD Ratings  
VALUE  
±5000  
±4000  
±750  
UNIT  
Human body model (HBM) AEC-Q100 Classification Level H3A(1) VS, OUT, GND  
Electrostatic  
discharge  
V(ESD)  
Human body model (HBM) AEC-Q100 Classification Level H2(1)  
Charged device model (CDM), per AEC Q100-011(2)  
Other pins  
V
(1) The human-body model is a 107-pF capacitor discharged through a 1.5-kΩ resistor into each terminal.  
(2) The charged-device model is tested according to AEC_Q100-011C.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
5
MAX  
40  
5
UNIT  
VS  
Operating voltage  
V
V
Voltage on IN/DIAG_EN pin  
Voltage on ST pin  
0
0
5
V
Io,nom  
TJ  
Nominal DC load current  
Operating junction temperature range  
0
4
A
–40  
150  
°C  
4
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
6.4 Thermal Information  
TPS1H100-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
14 PINS  
41  
(2)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
29.7  
25.1  
0.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
24.8  
2.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The thermal data is based on JEDEC standard high-K profile – JESD 51-7. The copper pad is soldered to the thermal land pattern. Also,  
correct attachment procedure must be incorporated.  
80  
4-layer PCB  
2-layer PCB  
70  
60  
50  
40  
30  
20  
0
100  
200  
300  
400  
500  
600  
700  
800  
Copper Area (mm2)  
D025  
(1) 4-layer board: FR4 2s2p board, 2.8-mil copper (top/bottom), 1.4-mil copper (internal layers). 76.4- × 114.3- × 1.5-mm  
board size.  
(2) 2-layer board: FR4 2s0p board, 2.8-mil copper (top/bottom). 76.4- × 114.3- × 1.5-mm board size.  
Figure 1. RθJA Value vs Copper Area  
Copyright © 2014–2019, Texas Instruments Incorporated  
5
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics  
5 V < VS < 40 V; –40°C < TJ < 150°C unless otherwise specified  
PARAMETER  
OPERATING VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
VS,nom  
Nominal operating voltage  
5
40  
5
V
V
RDS(on) value increases maximum 20%,  
compared to 5 V, see RDS(on) parameter  
VS,op  
Extended operating voltage  
3.5  
VS,UVR  
VS,UVF  
VUV,hys  
Undervoltage restart  
VS rises up, VS > VS,UVR, device turn on  
VS falls down, VS < VS,UVF, device shuts off  
3.5  
3
3.7  
3.2  
0.5  
4
V
V
V
Undervoltage shutdown  
3.5  
Undervoltage shutdown, hysteresis  
OPERATING CURRENT  
VIN = 5 V, VDIAG_EN = 0 V, no load  
5
mA  
Inom Nominal operating current  
VIN = 5 V, VDIAG_EN = 0 V, 10-Ω load  
10 mA  
VS = 13.5 V, VIN = VDIAG_EN = VCS = VCL  
VOUTPUT = 0 V, TJ = 25°C  
=
=
0.5  
5
µA  
µA  
Ioff  
Standby current  
VS = 13.5 V, VIN = VDIAG_EN = VCS = VCL  
VOUTPUT = 0 V, TJ = 125°C  
Ioff,diag  
toff,deg  
Standby current with diagnostic enabled VIN = 0 V, VDIAG_EN = 5 V  
1.2 mA  
ms  
IN from high to low, if deglitch time > toff,deg  
,
Standby mode deglitch time(1)  
2
enters into standby mode.  
VS = 13.5 V, VIN = VOUTPUT = 0, TJ = 25°C  
0.5  
3
µA  
µA  
Ileak,out  
Off-state output leakage current  
VS = 13.5 V, VIN = VOUTPUT = 0, TJ = 125°C  
POWER STAGE  
VS > 5 V, TJ = 25°C  
VS > 5 V, TJ = 150°C  
VS = 3.5 V, TJ = 25°C  
80  
100 mΩ  
166 mΩ  
120 mΩ  
RDS-ON  
On-state resistance  
Ilim,nom  
Internal current limit  
7
13  
A
A
Internal current limit, thermal cycling condition  
5
External current limit, thermal cycling  
condition; Percentage of current limit set  
value  
Ilim,tsd  
Current limit during thermal shutdown  
50%  
Clamp drain-to-source voltage internally  
clamped  
VDS  
50  
70  
V
OUTPUT DIODE CHARACTERISTICS  
VF  
Drain-to-source diode voltage  
VIN = 0, IOUT = 0.2 A  
0.7  
4
V
A
t < 60 s, VS = 13.5 V, GND pin 1-kΩ resistor  
in parallel with diode. TJ = 25°C. See Irev1 test  
condition (Figure 6).  
Continuous reverse current when  
reverse polarity(2)  
Irev1  
Continuous reverse current when  
VOUT > VS + Vdiode  
t < 60 s, VS = 13.5 V. TJ = 25°C. See Irev2  
test condition (Figure 7).  
Irev2  
2
A
(2)  
LOGIC INPUT (IN AND DIAG_EN)  
Vlogic,h Input or DIAG_EN high-level voltage  
Vlogic,l  
Vlogic,hys  
Rpd,in  
2
V
V
Input or DIAG_EN low-level voltage  
Input or DIAG_EN hysteresis voltage  
Input pulldown resistor  
0.8  
250  
500  
150  
mV  
kΩ  
kΩ  
Rpd,diag  
Diag pulldown resistor  
(1) Value is specified by design, not subject to production test.  
(2) Value is based on the minimum value of the 10 pcs/3 lots samples.  
6
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
Electrical Characteristics (continued)  
5 V < VS < 40 V; –40°C < TJ < 150°C unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DIAGNOSTICS  
Iloss,gnd  
Vol,off  
Iol,off  
tol,off  
Loss-of-ground output leakage current  
100  
2.6  
µA  
V
Open-load detection threshold in off-  
state  
VIN = 0 V, When VS – VOUT < Vol,off, duration  
longer than tol,off. Open load detected.  
1.4  
1.8  
Off-state output sink current with open  
load  
VIN = 0 V, VS = VOUT = 13.5 V, TJ = 125°C.  
–50  
µA  
µs  
Open-load detection-threshold deglitch VIN = 0 V, When VS – VOUT < Vol,off, duration  
time in off state  
600  
6
longer than tol,off. Open load detected.  
VIN = 5 V, when IOUT < Iol,on, duration longer  
than tol,on. Open load detected.  
Version A only  
Open-load detection threshold in on  
state  
Iol,on  
2
10 mA  
µs  
VIN = 5 V, when IOUT < Iol,on, duration longer  
than tol,on. Open load detected.  
Version A only  
Open-load detection-threshold deglitch  
time in on-state  
tol,on  
700  
IST = 2 mA  
Version A only  
VST  
Status low output voltage  
0.4  
V
TSD  
Thermal shutdown threshold  
175  
155  
60  
TSD,rst  
Tsw  
Thermal shutdown status reset  
Thermal swing shutdown threshold  
°C  
Hysteresis for resetting the thermal  
shutdown and swing  
Thys  
10  
CURRENT SENSE (VERSION B) AND CURRENT LIMIT  
K
Current sense current ratio  
Current limit current ratio  
500  
KCL  
2000  
I
I
I
I
I
I
I
load 5 mA  
load 25 mA  
load 50 mA  
load 0.1 A  
load 1 A  
–80  
–10  
–7  
80  
10  
7
dK/K  
Current-sense accuracy  
%
%
–5  
5
–3  
3
limit 0.5 A  
limit 1.6 A  
–20  
–14  
0
20  
14  
4
dKCL/KCL  
External current-limit accuracy(3)(4)  
VCS,lin  
IOUT,lin  
Linear current sense voltage range(1)  
Linear output current range(1)  
V
V
V
S 5 V  
V
A
S 5 V, VCS,lin 4 V  
S 7 V  
0
4
4.3  
4.75  
4.9  
VCS,H  
Current-sense fault high voltage  
V
Min(VS  
0.8, 4.3)  
VS 5 V  
4.9  
ICS,H  
Current sense fault condition current  
Current limit internal threshold voltage(1)  
VCS = 4.3 V, VS > 7 V  
10  
mA  
V
VCL,th  
1.233  
VIN = 5 V, Rload = 10 Ω, VDIAG_EN = 0 V, TJ =  
125°C  
1
1
µA  
µA  
Current sense leakage current in  
disabled mode  
ICS,leak  
VIN = 0 V, VDIAG_EN = 0 V, TJ = 125°C  
(3) External current-limit accuracy is only applicable to overload conditions greater than 1.5× the current-limit setting.  
(4) External current-limit setting is recommended to be higher than 500 mA.  
Copyright © 2014–2019, Texas Instruments Incorporated  
7
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
MAX UNIT  
6.6 Timing Requirements – Current Sense Characteristics(1)  
MIN NOM  
CS settling time  
from DIAG disabled value.  
VIN = 5 V, Iload 5 mA. VDIAG_EN from 5 to 0 V. CS to 10% of sense  
tCS,off1  
tCS,on1  
10  
10  
µs  
µs  
CS settling time  
from DIAG enabled value.  
VIN = 5 V, Iload 5 mA. VDIAG_EN from 0 to 5 V. CS to 90% of sense  
VDIAG_EN = 5 V, Iload 5 mA. IN from 5 to 0 V. CS to 10% of sense  
value.  
10  
180  
150  
µs  
µs  
µs  
CS settling time  
from IN falling edge  
tCS,off2  
VDIAG_EN = 5 V, Iload 5 mA. IN from 5 to 0 V. Current limit triggered.  
CS settling time  
from IN rising edge  
VVS = 13.5 V, VDIAG_EN = 5 V, Iload 100 mA. VIN from 0 to 5 V. CS to  
90% of sense value.  
tCS,on2  
(1) Value specified by design, not subject to production test.  
In  
Iout  
Diag-En  
CS  
Tcs, on2  
Tcs, off1  
Tcs, on1 Tcs, off2  
Figure 2. CS Delay Characteristics  
Open  
Load  
Open Load  
Vcs,H  
In  
CS  
ST  
Tol,off  
Tol,on  
Tol,off  
Figure 3. Open-Load Blanking Time Characteristics  
VS  
IS  
IN  
IIN  
ST  
IST  
DIAG_EN  
OUT  
IDIAG  
IOUT  
CL  
ICL  
GND  
CS  
ICS  
Figure 4. Pin Current and Voltage Conventions  
8
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
6.7 Switching Characteristics  
VVS = 13.5 V, Rload = 10 Ω, over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
Turn-on delay time  
Turn-off delay time  
Slew rate on  
TEST CONDITIONS  
IN rising edge to VOUT = 10%, DIAG_EN high  
IN falling edge to VOUT = 90%, DIAG_EN high  
VOUT = 10% to 90%, DIAG_EN high  
MIN  
20  
TYP  
MAX  
50  
UNIT  
µs  
td,ON  
td,OFF  
dV/dtON  
20  
50  
µs  
0.1  
0.5  
V/µs  
V/µs  
V/µs  
dV/dtOFF Slew rate off  
Slew rate on and off matching  
VOUT = 90% to 10%, DIAG_EN high  
0.1  
0.5  
–0.15  
0.15  
(1) Value specified by design, not subject to production test.  
In  
90%  
90%  
Vout  
10%  
10%  
Td,ON dV/dtON  
Td,OFF dV/dtOFF  
Figure 5. Switching Characteristics Diagram  
Copyright © 2014–2019, Texas Instruments Incorporated  
9
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
DRAIN  
Output  
Clamp  
SOURCE  
Load  
GND  
VBAT  
Rgnd  
Dgnd  
Figure 6. Irev1 Test Condition  
DRAIN  
Output  
Clamp  
VBAT  
Load  
SOURCE  
GND  
Rgnd  
Dgnd  
Figure 7. Irev2 Test Condition  
10  
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
6.8 Typical Characteristics  
All the following data are based on the mean value of the three lots samples, VVS = 13.5 V if not specified.  
4
3.8  
3.6  
3.4  
3.2  
3
10  
8
Vs,uvr  
Vs,uvf  
Inom(no load)  
Inom(10-O load)  
6
4
2
0
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
D001  
D002  
Figure 8. VVS,UVR and VVS,UVF  
Figure 9. Inom With No Load and 10-Ω Load  
0.3  
0.25  
0.2  
1.2  
1
Ioff  
Ileak,out  
0.8  
0.6  
0.4  
0.2  
0
0.15  
0.1  
0.05  
0
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
D003  
D004  
Figure 10. Ioff and Ileak,out  
Figure 11. Ioff,diag  
1.8  
1.6  
1.4  
1.2  
1
0.9  
0.8  
0.7  
0.6  
0.5  
Vlogic,h  
Vlogic,l  
0.8  
0.6  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
D005  
D006  
Figure 12. Vlogic,h and Vlogic,l  
Figure 13. VF  
Copyright © 2014–2019, Texas Instruments Incorporated  
11  
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
All the following data are based on the mean value of the three lots samples, VVS = 13.5 V if not specified.  
65  
60  
55  
50  
130  
115  
100  
85  
Rdson_VS_3P5V  
Rdson_VS_5V  
Rdson_VS_13P5  
Rdson_VS_40V  
70  
55  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
-40  
-15  
-15  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
D007  
D008  
Figure 14. VDS, clamp  
Figure 15. RDSON  
11  
45  
40  
35  
30  
25  
20  
10.5  
10  
9.5  
TD_On  
TD_Off  
9
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
-40  
10  
35 60  
Temperature (°C)  
85  
110 125  
D009  
D010  
Figure 16. Ilim,nom  
Figure 17. TDon and TDoff  
0.4  
0.38  
0.36  
0.34  
0.32  
0.3  
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
dV/dtON  
dV/dtOFF  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
-40  
10  
35 60  
Temperature (°C)  
85  
110 125  
D011  
D012  
Figure 18. dV/dtON and dV/dtOFF  
Figure 19. VCS,h  
12  
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
Typical Characteristics (continued)  
All the following data are based on the mean value of the three lots samples, VVS = 13.5 V if not specified.  
1.95  
9
8
7
6
5
1.9  
1.85  
1.8  
1.75  
1.7  
-40  
-15  
-10  
-10  
10  
35 60  
Temperature (°C)  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
D013  
D014  
Figure 20. Vol,off  
Figure 21. Iol,on  
20%  
10%  
8%  
15%  
10%  
5%  
6%  
4%  
2%  
0
0
-2%  
-4%  
-6%  
-8%  
-10%  
-5%  
-10%  
-15%  
-20%  
-40  
20  
50  
Temperature (°C)  
80  
110 125  
-40  
-10  
20 50  
Temperature (°C)  
80  
110 125  
D015  
D017  
Figure 22. KCS = 5 mA, 13.5 V  
Figure 23. KCS = 25 mA, 13.5 V  
10%  
8%  
10%  
8%  
6%  
6%  
4%  
4%  
2%  
2%  
0
0
-2%  
-4%  
-6%  
-8%  
-10%  
-2%  
-4%  
-6%  
-8%  
-10%  
-40  
20  
50  
Temperature (°C)  
80  
110 125  
-40  
-10  
20 50  
Temperature (°C)  
80  
110 125  
D019  
D016  
Figure 24. KCS = 50 mA, 13.5 V  
Figure 25. KCS = 100 mA, 13.5 V  
Copyright © 2014–2019, Texas Instruments Incorporated  
13  
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
All the following data are based on the mean value of the three lots samples, VVS = 13.5 V if not specified.  
10%  
10%  
8%  
8%  
6%  
6%  
4%  
4%  
2%  
2%  
0
0
-2%  
-4%  
-6%  
-8%  
-10%  
-2%  
-4%  
-6%  
-8%  
-10%  
-40  
-10  
20 50  
Temperature (°C)  
80  
110 125  
-40  
-10  
20 50  
Temperature (°C)  
80  
110 125  
D018  
D020  
Figure 26. KCS = 1 A, 13.5 V  
Figure 27. KCL = 0.5 A, 13.5 V  
10%  
8%  
6%  
4%  
2%  
0
-2%  
-4%  
-6%  
-8%  
-10%  
-40  
-10  
20 50  
Temperature (°C)  
80  
110 125  
D021  
Figure 28. KCL = 1.6 A, 13.5 V  
14  
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
7 Detailed Description  
7.1 Overview  
The TPS1H100-Q1 is a single-channel, fully-protected, high-side power switch with an integrated NMOS power  
FET and charge pump. Full diagnostics and high-accuracy current-sense features enable intelligent control of the  
load. A programmable current-limit function greatly improves the reliability of the whole system. The device  
diagnostic reporting has two versions to support both digital status and analog current-sense output, both of  
which can be set to the high-impedance state when diagnostics are disabled, for multiplexing the MCU analog or  
digital interface among devices.  
For version A, the digital status report is implemented with an open-drain structure. When a fault condition  
occurs, it pulls down to GND. A 3.3- or 5-V external pullup is required to match the microcontroller supply level.  
For version B, high-accuracy current sensing allows a better real-time monitoring effect and more-accurate  
diagnostics without further calibration. A current mirror is used to source 1 / K of the load current, which is  
reflected as voltage on the CS pin. K is a constant value across the temperature and supply voltage. The current-  
sensing function operates normally within a wide linear region from 0 to 4 V. The CS pin can also report a fault  
by pulling up the voltage of VCS,h  
.
The external high-accuracy current limit allows setting the current limit value by application. It highly improves the  
reliability of the system by clamping the inrush current effectively under start-up or short-circuit conditions. Also, it  
can save system costs by reducing PCB trace, connector size, and the preceding power-stage capacity. An  
internal current limit is also implemented in this device. The lower value of the external or internal current-limit  
value is applied.  
An active drain and source voltage clamp is built in to address switching off the energy of inductive loads, such  
as relays, solenoids, pumps, motors, and so forth. During the inductive switching-off cycle, both the energy of the  
power supply (EBAT) and the load (ELOAD) are dissipated on the high-side power switch itself. With the benefits of  
process technology and excellent IC layout, the TPS1H100-Q1 device can achieve excellent power dissipation  
capacity, which can help save the external free-wheeling circuitry in most cases. See Inductive-Load Switching-  
Off Clamp for more details.  
Short-circuit reliability is critical for smart high-side power-switch devices. The standard of AEC-Q100-012 is to  
determine the reliability of the devices when operating in a continuous short-circuit condition. Different grade  
levels are specified according to the pass cycles. This device is qualified with the highest level, Grade A, 1  
million times short-to-GND certification.  
The TPS1H100-Q1 device can be used as a high-side power switch for a wide variety of resistive, inductive, and  
capacitive loads, including the low-wattage bulbs, LEDs, relays, solenoids, and heaters.  
Copyright © 2014–2019, Texas Instruments Incorporated  
15  
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
7.2 Functional Block Diagram  
DRAIN (VS)  
Internal LDO  
Internal  
Reference  
IN  
Charge Pump  
Gate Driver  
VDS Clamp  
DIAG_EN  
Open Load  
Detection  
ST  
Diagnostics  
and Protection  
Current Limit  
CL  
SOURCE(OUT)  
Thermal  
Monitor  
Current Sense  
CS  
GND  
7.3 Feature Description  
7.3.1 Accurate Current Sense  
For version B, the high-accuracy current-sense function is internally implemented, which allows a better real-time  
monitoring effect and more-accurate diagnostics without further calibration. A current mirror is used to source  
1 / K of the load current, flowing out to the external resistor between the CS pin and GND, and reflected as  
voltage on the CS pin.  
K is the ratio of the output current and the sense current. It is a constant value across the temperature and  
supply voltage. Each device was internally calibrated while in production, so post-calibration by users is not  
required in most cases.  
16  
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
Feature Description (continued)  
4 A  
1 A  
dK/K = 3%  
100 mA  
dK/K = 5%  
50 mA  
dK/K = 7%  
25 mA  
dK/K = 10%  
5 mA  
dK/K = 80%  
0 A  
Figure 29. Current-Sense Accuracy  
Ensure the CS voltage is in the linear region (0 to 4 V) during normal operation. Calculate RCS with Equation 1.  
VCS VCS ì K  
RCS  
=
=
ICS  
Iout  
(1)  
Also, when a fault condition occurs, CS works as a diagnostics report pin. When an open load or short to battery  
occurs in the on-state, VCS almost equals 0. When current limit, thermal shutdown/swing, open load, or short to  
battery in the off-state occurs, the voltage is pulled up to VCS,h. Figure 30 shows a typical current-sense voltage  
according to the operating conditions, including fault conditions.  
Copyright © 2014–2019, Texas Instruments Incorporated  
17  
 
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (continued)  
Current Sense  
Voltage  
Vcs,H  
ADC Full Scale  
Range  
Max Normal  
Operating Current  
Open Load Current  
Operating  
Range  
On-state:  
open load/short to battery  
On-state: Current limit, thermal fault  
Off-state: Open load/ short to battery  
Over  
current  
Normal  
Figure 30. Voltage Indication on the Current-Sense Pin  
VBAT  
VS  
Iout/K  
Iout/Kcl  
CURRENT  
CLAMP  
t
Iout  
Vcs,H  
FAULT  
+
CS  
OUT  
CL  
Vcl,th  
Rcs  
RCL  
Figure 31. Current-Sense and Current-Limit Block Diagram  
7.3.2 Programmable Current Limit  
A high-accuracy current limit allows higher reliability, which protects the power supply during short circuit or  
power up. Also, it can save system costs by reducing PCB traces, connector size, and the capacity of the  
preceding power stage.  
Current limit offers protection from overstressing to the load and integrated power FET. Current limit holds the  
current at the set value, and pulls up the CS pin to VCS,h as a diagnostic report. The two current-limit thresholds  
are:  
External programmable current limit -- An external resistor is used to convert a proportional load current into a  
voltage, which is compared with an internal reference voltage, Vth,cl. When the voltage on the CL pin exceeds  
Vth.cl, a closed loop steps in immediately. VGS voltage regulates accordingly, leading to the Vds voltage  
regulation. When the closed loop is set up, the current is clamped at the set value. The external  
programmable current limit provides the capability to set the current-limit value by application.  
18  
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
Feature Description (continued)  
Internal current limit -- The internal current limit is fixed and typically 10 A. To use the internal current limit for  
large-current applications, tie the CL pin directly to the device GND.  
Both the internal current limit (Ilim,nom) and external programmable current limit are always active when VVS is  
powered and IN is high. The lower one (of Ilim,nom and the external programmable current limit) is applied as the  
actual current limit.  
Note that if a GND network is used (which leads to the level shift between the device GND and board GND), the  
CL pin must be connected with device GND. Calculate RCL with Equation 2.  
VCL,th  
VCL,th ì KCL  
Iout  
ICL  
=
=
ç RCL =  
RCL  
KCL  
Iout  
(2)  
For better protection from a hard short-to-GND condition (when VS and input are high and a short to GND  
happens suddenly), an open-loop fast-response behavior is set to turn off the channel, before the current-limit  
closed loop is set up. The open-loop response time is around 1 µs. With this fast response, the device can  
achieve better inrush-suppression performance.  
7.3.3 Inductive-Load Switching-Off Clamp  
When an inductive load is switching off, the output voltage is pulled down to negative, due to the inductance  
characteristics. The power FET may break down if the voltage is not clamped during the current-decay period. To  
protect the power FET in this situation, internally clamp the drain-to-source voltage, namely VDS,clamp, the clamp  
diode between the drain and gate.  
VDS,clamp = VBAT œ VOUT  
(3)  
During the current-decay period (TDECAY), the power FET is turned on for inductance-energy dissipation. Both the  
energy of the power supply (EBAT) and the load (ELOAD) are dissipated on the high-side power switch itself, which  
is called EHSD. If resistance is in series with inductance, some of the load energy is dissipated in the resistance.  
EHSD = EBAT + ELOAD = EBAT +EL œ ER  
(4)  
From the high-side power switch’s view, EHSD equals the integration value during the current-decay period.  
TDECAY  
EHSD  
=
VDS,clamp ì IOUT(t)dt  
0
(5)  
(6)  
(7)  
R ì IOUT(MAX) + VOUT  
L
«
÷
÷
TDECAY  
=
ì ln  
R
VOUT  
»
ÿ
Ÿ
VBAT + VOUT  
R ì IOUT(MAX) + VOUT  
ì R ì IOUT(MAX) œ VOUT ln  
EHSD = L ì  
÷
÷
R2  
VOUT  
Ÿ
«
When R approximately equals 0, EHSD can be given simply as:  
VBAT + VOUT  
1
EHSD  
=
ì L ì I2  
OUT(MAX)  
R2  
(8)  
2
Copyright © 2014–2019, Texas Instruments Incorporated  
19  
 
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (continued)  
VBAT  
DRAIN  
IN  
L
-
-
SOURCE  
+
GND  
Figure 32. Driving Inductive Load  
INPUT  
VBAT  
VOUT  
IOUT  
VDS, clamp  
EHSD  
tDECAY  
Figure 33. Inductive-Load Switching-Off Diagram  
As discussed previously, when switching off, battery energy and load energy are dissipated on the high-side  
power switch, which leads to the large thermal variation. For each high-side power switch, the upper limit of the  
maximum safe power dissipation depends on the device intrinsic capacity, ambient temperature, and board  
dissipation condition. TI provides the upper limit of single-pulse energy that devices can tolerate under the test  
condition: VVS = 13.5 V, inductance from 0.1 mH to 400 mH, R = 0 Ω, FR4 2s2p board, 2- × 70-μm copper, 2- ×  
35-μm copper, thermal pad copper area 600 mm2.  
For one dedicated inductance, see Figure 34. If the maximum switching-off current is lower than the current  
value shown on the curve, the internal clamp function can be used for the demagnetization energy dissipation. If  
not, external free-wheeling circuitry is necessary for device protection.  
20  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
Feature Description (continued)  
12  
11  
10  
9
TA = 25°C  
TA = 125°C  
8
7
6
5
4
3
2
1
0
0.1 0.2  
0.5  
1
2 3 4 5 7 10 20 30 50 100 200 400  
Inductance Range (mH)  
D026  
Figure 34. Maximum Current vs Inductance Range  
7.3.4 Full Protections and Diagnostics  
Table 1 is when DIAG_EN enabled. When DIAG_EN is low, current sense or ST is disabled accordingly. The  
output is in high-impedance mode. Refer to Table 2 for details.  
Table 1. Fault Table  
ST  
CS  
(Version B)  
CONDITIONS  
IN  
OUT  
CRITERION  
Diagnostics Recovery  
(Version A)  
L
H
H
L
H
L
H
H
L
0
Normal  
In linear region  
VCS,h  
Short to GND  
Current limit triggered.  
AUTO  
AUTO  
AUTO  
Open load(1)  
Short to battery  
Reverse polarity  
Version A: Output current < Iol,on  
Version B: Judged by users  
H
L
H
H
L (deglitch)  
Almost 0  
VCS,h (deglitch)  
VCS,h  
VVS – VOUT < Vol,off  
TSD triggered  
Tsw triggered  
L (deglitch)  
Recovery when  
temp < TSD,rst  
Thermal shutdown  
Thermal swing  
H
H
L
L
VCS,h  
AUTO  
(1) Need external pullup resistor during off-state  
Table 2. DIAG_EN Logic Table  
DIAG_EN IN Condition  
Protections and Diagnostics  
See Table 1  
See Table 1  
ON  
HIGH  
OFF  
Diagnostics disabled, protection normal  
CS or ST is high Impedance  
ON  
LOW  
Diagnostics disabled, no protections  
CS or ST is high impedance  
OFF  
Copyright © 2014–2019, Texas Instruments Incorporated  
21  
 
 
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
7.3.4.1 Short-to-GND and Overload Detection  
In the on state, the short-to-GND fault is reported as the low status output or VCS,h on CS, when a current limit is  
triggered. The lower one of the internal and external set values is applied for the actual current limit. It is in auto-  
recovery when the fault condition is cleared. If not cleared, thermal shutdown triggers to protect the power FET.  
7.3.4.2 Open-Load Detection  
In the on state for version A, if the current flowing through the output is less than Iol,on, the device recognizes an  
open-load fault. For version B, faults are diagnosed by reading the voltage on the CS pin and judged by the user.  
A benefit of high-accuracy current sense down to a verylow current range, this device can achieve a very low  
open-load detection threshold, which correspondingly expands the normal operation region. TI suggests 10 mA  
as the upper limit for the open-load detection threshold and 25 mA as the lower limit for the normal operation  
current. In Figure 35, the recommended open-load detection region is shown as the dark-shaded region and the  
light-shaded region is for normal operation. As a guideline, do not overlap these two regions.  
Normal Operation  
Region  
27.5 mA  
10% Tolerance  
25 mA  
22.5 mA  
18 mA  
80% Tolerance  
On State, Open Load/  
Short to Battery  
10 mA  
2 mA  
Figure 35. On-State Open-Load Detection and Normal-Operation Diagram  
In the off state, if a load is connected, the output voltage is pulled to 0 V. In the case of an open load, the output  
voltage is close to the supply voltage, VS – VOUT < Vol,off. For version A, the ST pin goes low to indicate the fault  
to the MCU. For version B, the CS pin is pulled up to VCS,h. There is always a leakage current Iol,off present on  
the output, due to the internal logic control path or external humidity, corrosion, and so forth. Thus, TI  
recommends an external pullup resistor to offset the leakage current. This pullup current should be less than the  
output load current to avoid false detection in the normal operation mode. To reduce the standby current, TI  
recommends always to use a switch in series with? the pullup resistor. TI recommends Rpu 15 kΩ.  
VBAT  
VS  
OPEN LOAD  
Vol,off  
ST/CS  
FAULT  
Rpu  
OUT  
Figure 36. Open-Load Detection Circuit  
22  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
7.3.4.3 Short-to-Battery Detection  
Short-to-battery detectioin has the same detection mechanism and behavior as open-load detection, both in the  
on-state and off-state. See the fault truth table, Table 1, for more details. In the on-state, the reverse current  
flows through the FET instead of the body diode, leading to less power dissipation. Thus, the worst case for off-  
state is when reverse current occurs. In the off-state, if VOUT – VVS < VF, short to battery can be detected. (VF is  
the body diode forward voltage and typically 0.7 V.) However, the reverse current does not occur. If VOUT – VVS  
>
VF, short to battery can be detected, and the reverse current should be lower than Irev2 to ensure the survival of  
the device. TI recommends switching on the input for lower power dissipation or the reverse block circuitry for the  
supply. See Reverse Current Protection for more external protection circuitry information.  
7.3.4.4 Reverse-Polarity Detection  
Reverse-polarity detection has the same detection mechanism and behavior as open-load detection, both in the  
on-state and off-state. See the fault truth table, Table 1, for more details. In the on-state, the reverse current  
flows through the FET instead of the body diode, leading to less power dissipation. Thus, the worst case off-state  
is when reverse current occurs. In off-state, the reverse current should be lower than Irev1 to ensure the survival  
of the device. See Reverse Current Protection for more external protection circuitry information.  
7.3.4.5 Thermal Protection Behavior  
Both the absolute temperature thermal shutdown and the dynamic temperature thermal swing diagnostic and  
protection are built into the device to increase the maximum reliability of the power FET. Thermal swing is active  
when the temperature of the power FET is increasing sharply, that is ΔT = TDMOS – TLogic > Tsw, then the output is  
shut down, and the ST pin goes low, or the CS pin is pulled up to VCS,h. It auto-recovers and clears the fault  
signal until ΔT = TDMOS – TLogic < Tsw – Thys. Thermal swing function improves device reliability against repetitive  
fast thermal variation, as shown in Figure 37. Multiple thermal swings are triggered before thermal shutdown  
happens. Thermal shutdown is active when absolute temperature T > TSD. When active, the output is shut down,  
and the ST pin goes low, or the CS pin is pulled up to VCS,h. The output is auto-recovered when T < TSD – Thys  
;
the current limit is reduced to Ilim,tsd, or half of the programmable current limit value, to avoid repeated thermal  
shutdown. However, the thermal shutdown fault signal and half-current limit value are not cleared until the  
junction temperature decreases to less than TSD,rst  
.
Copyright © 2014–2019, Texas Instruments Incorporated  
23  
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
In  
TSD  
TSD  
Thys  
Thys  
TSD,r  
st  
TSD,rst  
Thys  
Tsw  
Junction  
Temperature  
Ilim  
1/2Ilim  
Output  
Current  
Vcs,H  
VCS  
ST  
Figure 37. Thermal Behavior  
7.3.4.6 UVLO Protection  
The device monitors the supply voltage VVS to prevent unpredicted behaviors in the event that the supply voltage  
is too low. When the supply voltage falls down to VVS,UVF, the output stage is shut down automatically. When the  
supply rises up to VVS,UVR, the device turns on.  
24  
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
7.3.4.7 Loss of GND Protection  
When loss of GND occurs, output is turned off regardless of whether the input signal is high or low.  
Case 1 (loss of device GND): Loss of GND protection is active when the Tab, IC_GND, and current limit GND are  
one trace connected to the board GND, as shown in Figure 38. Tab floating is also a choice.  
VBAT  
DRAIN  
IN  
5V  
ST  
Version A  
DIAG_EN  
SOURCE  
MCU  
CS  
Version B  
Load  
NC  
(Floating)  
CL  
Tab  
GND  
Figure 38. Loss of Device GND  
Copyright © 2014–2019, Texas Instruments Incorporated  
25  
 
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Case 2 (loss of module GND): When the whole ECU module GND is lost, protections are also active. At this  
condition, the load GND remains connected.  
VBAT  
DRAIN  
IN  
5V  
ST  
Version A  
DIAG_EN  
SOURCE  
MCU  
CS  
Version B  
Load  
NC  
(Floating)  
CL  
Tab  
GND  
Figure 39. Loss of Module GND  
26  
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
7.3.4.8 Loss of Power Supply Protection  
When loss of supply occurs, output is turned off regardless of whether the input is high or low. For a resistive or  
capacitive load, loss-o-supply protection is easy to achieve due to no more power. The worst case is a charged  
inductive load. In this case, the current is driven from all of the IOs to maintain the inductance output loop. TI  
recommends either the MCU serial resistor plus the GND network (diode and resistor in parallel) or external free-  
wheeling circuitry.  
VBAT  
IN  
DRAIN  
5V  
ST  
DIAG_EN  
CS  
SOURCE  
MCU  
D
L
NC  
(Floating)  
CL  
Z
GND  
Rgnd  
Dgnd  
Figure 40. Loss of Battery  
Copyright © 2014–2019, Texas Instruments Incorporated  
27  
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
7.3.4.9 Reverse Current Protection  
Method 1: Block diode connected with VS. Both the device and load are protected when in reverse polarity.  
VBAT  
DRAIN  
IN  
Output  
Clamp  
Gate drive  
and Clamp  
STATUS  
Version A  
Logic and  
Protection  
DIAG_EN  
SOURCE  
CS  
Version B  
Current Sense/  
Current Limit  
Load  
NC  
(Floating)  
CURRENT LIMIT  
GND  
Figure 41. Reverse Protection With Block Diode  
28  
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
Method 2 (GND network protection): Only the high-side device is protected under this connection. The load  
reverse loop is limited by the load itself. Note when reverse polarity happens, the continuous reverse current  
through the power FET should be less than Irev. Of the three types of ground pin networks, TI strongly  
recommends type 3 (the resistor and diode in parallel). No matter what types of connection are between the  
device GND and the board GND, if a GND voltage shift happens, ensure the following proper connections for the  
normal operation:  
Leave the NC pin floating or connect to the device GND. TI recommends to leave floating.  
Connect the current limit programmable resistor to the device GND.  
DRAIN  
IN  
Output  
Clamp  
Gate drive  
and Clamp  
STATUS  
Version A  
Logic and  
Protection  
DIAG_EN  
SOURCE  
CS  
Version B  
Current Sense/  
Current Limit  
Load  
NC  
(Floating)  
CURRENT LIMIT  
GND  
VBAT  
Rgnd  
Dgnd  
GND  
Network  
Figure 42. Reverse Protection With GND Network  
Type 1 (resistor): The higher resistor value contributes to a better current limit effect when the reverse  
battery or negative ISO pulses. However, it leads to higher GND shift during normal operation mode. Also,  
consider the resistor’s power dissipation.  
VGNDshift  
RGND  
Ç
Inom  
œV  
(9)  
(
(
)
)
CC  
RGND  
í
œI  
GND  
where  
VGNDshift is the maximum value for the GND shift, determined by the HSD and microcontroller. TI suggests a  
value 0.6 V.  
Inom is the nominal operating current.  
–VCC is the maximum reverse voltage seen on the battery line.  
–IGND is the maximum reverse current the ground pin can withstand, which is available in the Absolute  
Maximum Ratings.  
(10)  
If multiple high-side power switches are used, the resistor can be shared among devices.  
Type 2 (diode): A diode is needed to block the reverse voltage, which also brings a ground shift (600 mV).  
Copyright © 2014–2019, Texas Instruments Incorporated  
29  
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
However, an inductive load is not acceptable to avoid an abnormal status when switching off.  
Type 3 (resistor and diode in parallel (recommended)): A peak negative spike may occur when the  
inductive load is switching off, which may damage the HSD or the diode. So, TI recommends a resistor in  
parallel with the diode when driving an inductive load. The recommended selection are 1-kΩ resistor in  
parallel with an IF > 100-mA diode. If multiple high-side switches are used, the resistor and diode can be  
shared among devices.  
7.3.4.10 Protection for MCU I/Os  
In many conditions, such as the negative ISO pulse, or the loss of battery with an inductive load, a negative  
potential on the device GND pin may damage the MCU I/O pins [more likely, the internal circuitry connected to  
the pins]. Therefore, the serial resistors between MCU and HSD are required.  
Also, for proper protection against loss of GND, TI recommends 4.7 kΩ when using 3.3-V MCU I/Os; 10 kΩ is for  
5-V applications.  
VBAT  
DRAIN  
IN  
Output  
Clamp  
Gate drive  
and Clamp  
5V  
STATUS  
Version A  
Logic and  
Protection  
DIAG_EN  
SOURCE  
MCU  
CS  
Version B  
Current Sense/  
Current Limit  
Load  
NC  
(Floating)  
CURRENT  
LIMIT  
GND  
Rgnd  
Dgnd  
Figure 43. MCU IO Protections  
7.3.5 Diagnostic Enable Function  
The diagnostic enable pin, DIAG_EN, offers multiplexing of the microcontroller diagnostic input for current sense  
or digital status, by sharing the same sense resistor and ADC line or I/O port among multiple devices.  
30  
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
In addition, during the output-off period, the diagnostic disable function lowers the current consumption for the  
standby condition. The three working modes in the device are normal mode, standby mode, and standby mode  
with diagnostic. If off-state power saving is required in the system, the standby current is <500 nA with DIAG_EN  
low. If the off-state diagnostic is required in the system, the typical standby current is around 1 mA with  
DIAG_EN high.  
7.4 Device Functional Modes  
7.4.1 Working Mode  
The three working modes in the device are normal mode, standby mode, and standby mode with diagnostic. If an  
off-state power saving is required in the system, the standby current is less than 500 nA with DIAG_EN low. If an  
off-state diagnostic is required in the system, the typical standby current is around 1 mA with DIAG_EN high.  
Note that to enter standby mode requires IN low and t > toff,deg. toff,deg is the standby-mode deglitch time, which is  
used to avoid false triggering. Figure 44 shows a work-mode state-machine state diagram.  
Standby Mode  
(IN low, DIAG low)  
DIAG_EN low and  
IN high to low and  
t > toff,deg  
DIAG_EN  
high to low  
IN low to high  
DIAG_EN  
low to high  
IN high to low and  
DIAG_EN high and  
t > toff,deg  
Standby mode  
with diagnostic  
(IN low, DIAG high)  
Normal Mode  
(IN high)  
IN low to high  
Figure 44. Work-Mode State Machine  
Copyright © 2014–2019, Texas Instruments Incorporated  
31  
 
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The following discussion notes how to implement the device to distinguish the different fault modes and  
implement a ? transient-pulse immunity test.  
In some applications, open load, short to battery, and short to GND must be distinguished from each other. This  
requires two steps.  
8.2 Typical Application  
Figure 45 shows an example of how to design the external circuitry parameters.  
VBAT  
RSER  
DRAIN  
IN  
Output  
Clamp  
Gate drive  
and Clamp  
5V  
ST  
Version A  
Logic and  
Protection  
DIAG_EN  
SOURCE  
MCU  
RCS  
CS  
Version B  
Current Sense/  
Current Limit  
Load  
NC  
(Floating)  
CL  
RCL  
GND  
Rgnd  
Dgnd  
GND Network  
Figure 45. Typical Application Circuitry  
32  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
Typical Application (continued)  
8.2.1 Design Requirements  
VS range from 9 V to 16 V  
Nominal current of 2 A  
Current sense for fault monitoring  
Expected current limit value of 5 A  
Full diagnostics with 5-V MCU  
Reverse protection with GND network  
8.2.2 Detailed Design Procedure  
The RCS, VCS linear region is from 0 to 4 V. To keep the 2-A nominal current in the 0- to 3-V range, calculate the  
RCS as in Equation 11. To achieve better current sense accuracy, a 1% accuracy or better resistor is preferred.  
VCS VCS ì K  
3 ì 500  
RCS  
=
=
=
= 750 W  
ICS  
IOUT  
2
(11)  
RCL, VCL,th is the current-limit internal threshold, 1.233 V. To set the programmable current limit value at 5 A,  
calculate the RCL as in Equation 12.  
Vcl,th ì KCL  
1.233 ì 2000  
RCL  
=
=
= 493.2 W  
IOUT  
5
(12)  
TI recommends RSER = 10 kΩ for 5-V MCU.  
TI recommends a 1-kΩ resistor and 200-V, 0.2-A diode for the GND network.  
8.2.2.1 Distinguishing of Different Fault Modes  
Some applications require that open load, short to battery, and short to GND can be distinguished from each  
other. This requires two steps:  
1. In the on-state, for the current-sense version device (version B), on-state open load and short to battery are  
recognized as an extremely-low voltage level on the current-sense pin, whereas short to GND is reported as  
a pulled-up voltage VCS,h. Therefore, the user can find a short to GND (see Figure 46).  
2. If reported as an on-state open-load or short-to-battery fault in the first step, turn off the input signal. In the  
off-state, with an external pulldown resistor, open load and short to battery can be easily distinguished. When  
the output pulls down, the short to battery is still reported as an off-state fault condition, whereas the open  
load is ignored.  
Copyright © 2014–2019, Texas Instruments Incorporated  
33  
 
 
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Application (continued)  
Current Sense  
Voltage  
Vcs,H  
ADC Full Scale  
Range  
Max Normal  
Operating Current  
Open Load Current  
Operating  
Range  
On-state: Current limit, thermal fault  
Off-state: Open load/ short to battery  
On-state:  
open load/short to battery  
Over  
current  
Normal  
Figure 46. Step 1: Short-to-GND Detection in the On-State  
VBAT  
VS  
OPEN LOAD  
Vol,off  
ST/CS  
FAULT  
OUT  
Rpd  
Figure 47. Step 2: Short-to-Battery Detection in the Off-State  
8.2.2.2 AEC Q100-012 Test Grade A Certification  
Short-circuit reliability is critical for smart high-side power switch devices. The AEC-Q100-012 standard is used to  
determine the reliability of the devices when operating in a continuous short-circuit condition. Different grade  
levels are specified according to the pass cycles. This device is qualified with the highest level, Grade A, 1  
million times short-to-GND certification.  
Three test modes are defined in the AEC Q100-012 standard. See Table 3 for cold repetitive short-circuit test –  
long pulse, cold repetitive short-circuit test – short pulse, and hot repetitive short-circuit test.  
34  
Copyright © 2014–2019, Texas Instruments Incorporated  
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
Typical Application (continued)  
Table 3. Tests  
Test Items  
Test Condition  
–40°C, 10-ms pulse, cool down  
Test Cycles  
Cold repetitive short-circuit test – short pulse  
Cold repetitive short-circuit test – long pulse  
Hot repetitive short-circuit test  
1M  
–40°C, 300-ms pulse, cool down  
25°C, continuous short  
1M  
1M  
Different grade levels are specified according to the pass cycles. The TPS1H100-Q1 device gets the certification  
of Grade A level, 1 million short-to-GND cycles, which is the highest test standard in the market.  
Table 4. Grade Levels  
Grade  
Number of Cycles  
>1000000  
Lots,Samples Per Lot  
Number of Fails  
A
B
C
D
E
F
3, 10  
3, 10  
3, 10  
3, 10  
3, 10  
3, 10  
3, 10  
3, 10  
3, 10  
0
0
0
0
0
0
0
0
0
>300000 to 1000000  
>100000 to 300000  
>30000 to 100000  
>10000 to 30000  
>3000 to 10000  
>1000 to 3000  
300 to 1000  
G
H
O
<300  
8.2.2.3 EMC Transient Disturbances Test  
Due to the severe electrical conditions in the automotive environment, immunity capacity against electrical  
transient disturbances is required, especially for a high-side power switch, which is connected directly to the  
battery. Detailed test requirements are in accordance with the ISO 7637-2:2011 and ISO 16750-2:2010  
standards. The TPS1H100-Q1 device is tested and certificated by a third-party organization.  
Table 5. ISO 7637-2:2011(E) in 12-V System(1)(2)(3)(4)  
Test Pulse Severity Level  
and vs Accordingly  
Minimum  
Number of  
Pulses or Test  
Time  
Burst-Cycle Pulse-  
Repetition Time  
Function  
Performance  
Status  
Input  
Resistance  
()  
Test  
Item  
Pulse  
Duration (td)  
Level  
Vs/V  
MIN  
MAX  
Classification  
1
III  
III  
IV  
IV  
IV  
–112  
55  
2 ms  
50 µs  
500 pulses  
500 pulses  
10 pulses  
1h  
0.5 s  
0.2 s  
e s  
5 s  
10  
Status II  
Status II  
Status II  
Status II  
Status II  
2a  
2b  
3a  
3b  
2
0 to 0.05  
50  
10  
0.2 to 2 s  
0.1 µs  
0.5 s  
5 s  
–220  
150  
90 ms  
90 ms  
100 ms  
100 ms  
0.1 µs  
1h  
50  
(1) Tested both under input low condition and high condition.  
(2) Considering the worst test condition, it is tested without any filter capacitors in VS and VOUT  
.
(3) GND pin network is a 1-kΩ resistor in parallel with a diode BAS21-7-F.  
(4) Status II: The function does not perform as designed during the test, but returns automatically to normal operation after the test.  
Table 6. ISO 16750-2:2010(E) Load Dump Test B in 12-V System(1)(2)(3)(4)(5)  
Test Pulse Severity Level  
and vs Accordingly  
Minimum  
Number of  
Pulses or Test  
Time  
Burst Cycle/Pulse  
Repetition Time  
Function  
Performance  
Status  
Input  
Resistance  
()  
Test  
Item  
Pulse  
Duration (td)  
Level  
Vs/V  
MIN (s)  
MAX (s)  
Classification  
Test B  
45  
40 to 400 ms  
5 pulses  
60  
e
0.5 to 4  
Status II  
(1) Tested both under input low condition and high condition. [DIAG_EN, IN, and VS are all classified as inputs. Which one?  
(2) Considering the worst test condition, the device is tested without any filter capacitors on VS and OUT.  
(3) The GND pin network is a 1-kΩ resistor in parallel with a diode BAS21-7-F.  
(4) Status II: The function does not perform as designed during the test, but returns automatically to normal operation after the test.  
(5) Select a 45-V external suppressor.  
Copyright © 2014–2019, Texas Instruments Incorporated  
35  
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
8.2.3 Application Curves  
Figure 48 shows a test example of initial short-circuit inrush-current limit. Test conditions: VS = 13.5 V, input is  
from low to high, load is short-to-GND or with a 470-µF capacitive load, external current limit is 2 A. CH1 is the  
output current. CH3 is the input step.  
Figure 49 shows a test example of a hard short-circuit inrush-current limit. Test conditions: VS= 13.5 V, input is  
high, load is 5 µH + 100 mΩ, external current limit is 1 A. A short to GND suddenly happens.  
Input Step  
Fast loop response  
1.8 A inrush  
2 A inrush  
Closed loop response  
1 A inrush  
Figure 49. Hard Short-to-GND Waveform  
Figure 48. Initial Short-to-GND Waveform  
36  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
9 Power Supply Recommendations  
The device is qualified for both automotive and industrial applications. The normal power supply connection is a  
12-V automotive system or 24-V industrial system. The supply voltage should be within the range specified in the  
Recommended Operating Conditions.  
10 Layout  
10.1 Layout Guidelines  
To prevent thermal shutdown, TJ must be less than 150°C. If the output current is very high, the power  
dissipation may be large. The HTSSOP package has good thermal impedance. However, the PCB layout is very  
important. Good PCB design can optimize heat transfer, which is absolutely essential for the long-term reliability  
of the device.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat-  
flow path from the package to the ambient is through the copper on the PCB. Maximum copper is extremely  
important when there are not any heat sinks attached to the PCB on the other side of the board opposite the  
package.  
Add as many thermal vias as possible directly under the package ground pad to optimize the thermal  
conductivity of the board.  
All thermal vias should either be plated shut or plugged and capped on both sides of the board to prevent  
solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.  
10.2 Layout Example  
10.2.1 Without a GND Network  
Without a GND network, tie the thermal pad directly to the board GND copper for better thermal performance.  
14  
NC  
ST/CS  
CL  
1
2
3
4
5
6
7
13  
GND  
IN  
DIAG_EN  
12  
11  
Thermal  
Pad  
NC  
NC  
VS  
VS  
VS  
10  
OUT  
OUT  
OUT  
9
8
Figure 50. Layout Without a GND Network  
Copyright © 2014–2019, Texas Instruments Incorporated  
37  
TPS1H100-Q1  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Layout Example (continued)  
10.2.2 With a GND Network  
With a GND network, tie the thermal pad with a single trace through the GND network to the board GND copper.  
GND Network  
14  
NC  
ST/CS  
CL  
1
3
4
5
6
7
13  
GND  
IN  
DIAG_EN  
12  
11  
Thermal  
Pad  
NC  
NC  
VS  
VS  
VS  
10  
OUT  
OUT  
OUT  
9
8
Figure 51. Layout With a GND Network  
10.3 Thermal Considerations  
This device possesses thermal shutdown (TSD) circuitry as a protection from overheating. For continuous normal  
operation, the junction temperature should not exceed the thermal-shutdown trip point. If the junction temperature  
exceeds the thermal-shutdown trip point, the output turns off. When the junction temperature falls below the  
thermal-shutdown trip point, the output turns on again.  
Calculate the power dissipated by the device according to Equation 13.  
PT = IOUT2 ì RDSON + VS ìInom  
where  
PT = Total power dissipation of the device  
(13)  
After determining the power dissipated by the device, calculate the junction temperature from the ambient  
temperature and the device thermal impedance.  
TJ = TA + RqJA ìPT  
(14)  
38  
版权 © 2014–2019, Texas Instruments Incorporated  
 
TPS1H100-Q1  
www.ti.com.cn  
ZHCSDD8D OCTOBER 2014REVISED DECEMBER 2019  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2019, Texas Instruments Incorporated  
39  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS1H100AQPWPRQ1  
TPS1H100BQPWPRQ1  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
14  
14  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
1H100AQ  
1H100BQ  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS1H100AQPWPRQ1 HTSSOP PWP  
TPS1H100BQPWPRQ1 HTSSOP PWP  
14  
14  
2000  
2000  
330.0  
330.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS1H100AQPWPRQ1  
TPS1H100BQPWPRQ1  
HTSSOP  
HTSSOP  
PWP  
PWP  
14  
14  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 14  
4.4 x 5.0, 0.65 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224995/A  
www.ti.com  
PACKAGE OUTLINE  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X (0.6)  
NOTE 5  
2X (0.4)  
NOTE 5  
THERMAL  
PAD  
7
8
0.25  
1.2 MAX  
GAGE PLANE  
2.59  
1.89  
15  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
1
14  
DETAIL A  
TYPICAL  
2.6  
1.9  
4229706/A 06/2023  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.6)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
14X (1.5)  
(1.2) TYP  
14  
14X (0.45)  
1
(5)  
NOTE 9  
(R0.05) TYP  
SYMM  
(0.6)  
15  
(2.59)  
12X (0.65)  
7
8
(
0.2) TYP  
VIA  
SEE DETAILS  
(1.1) TYP  
SOLDER MASK  
DEFINED PAD  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4229706/A 06/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.6)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
14X (1.5)  
14X (0.45)  
14  
1
(R0.05) TYP  
(2.59)  
SYMM  
15  
BASED ON  
0.125 THICK  
STENCIL  
12X (0.65)  
7
8
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 12X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.91 X 2.90  
2.60 X 2.59 (SHOWN)  
2.37 X 2.36  
0.125  
0.15  
0.175  
2.20 X 2.19  
4229706/A 06/2023  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS1H100AQPWPRQ1

具有可调节电流限制的 40V、100mΩ、汽车类单通道智能高侧开关 | PWP | 14 | -40 to 125
TI

TPS1H100BQPWPRQ1

具有可调节电流限制的 40V、100mΩ、汽车类单通道智能高侧开关 | PWP | 14 | -40 to 125
TI

TPS1H200A-Q1

具有可调节电流限制的 40V、200mΩ、汽车类单通道智能高侧开关
TI

TPS1H200AQDGNRQ1

具有可调节电流限制的 40V、200mΩ、汽车类单通道智能高侧开关 | DGN | 8 | -40 to 125
TI

TPS1HA08-Q1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关
TI

TPS1HA08AQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08BQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08CQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08DQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08EQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HB08-Q1

具有可调节电流限制的 40V、8mΩ、汽车类单通道智能高侧开关
TI

TPS1HB08AQPWPRQ1

具有可调节电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI