TPS1HA08-Q1 [TI]

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关;
TPS1HA08-Q1
型号: TPS1HA08-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关

开关
文件: 总53页 (文件大小:2044K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
TPS1HA08-Q1 40V8mΩ 单通道智能高侧开关  
1 特性  
3 说明  
1
具有 8mΩ RON (TJ = 25°C) 的单通道智能高侧开关  
符合汽车类 应用的 16 通道 AFE:  
器件是一款适用于 12V 汽车系统的单通道智能高侧开  
关。该器件集成了强大的保护和诊断 功能 以确保在短  
路等有害事件中提供输出端口保护。该器件通过可靠的  
电流限制来防止故障,其中电流限制可设置为 80A 和  
20A(取决于器件型号),也可配置为通过立即关断开  
关或将输出电流调节为设置点来应对过流事件。高电流  
限制选项使其可用于需要大瞬态电流的负载,而低电流  
限制选项可为不需要高峰值电流的负载提供更好的保  
护。  
符合 AEC Q-100 标准  
器件温度等级 1–40°C +125°C 的环境工作  
温度范围  
可承受 40V 负载突降  
提供功能安全  
提供文档以帮助创建功能安全系统设计  
通过可选电流限制提高可靠性  
电流限制设置点为 20A 80A  
还可提供高精度模拟电流检测,可在进行不同的负载分  
布时改进诊断。通过向系统 MCU 报告负载电流、设备  
温度和电源电压,该器件可实现预测性维护和负载诊  
断,从而延长系统寿命。  
电流钳位或瞬时关断的过流响应  
强大的集成输出保护:  
集成热保护  
接地短路和电池短路保护  
电池反向时自动启动  
采用小型的 16 引脚 HTSSOP 封装,可减小 PCB 尺  
寸。  
发生失电和接地失效时自动关闭  
集成输出钳位对电感负载进行消磁  
可配置故障处理  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
可对模拟检测输出进行配置,以精确测量:  
TPS1HA08-Q1  
HTSSOP (16)  
5.00mm x 4.40mm  
负载电流  
电源电压  
器件温度  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
FLT 指示返回到 MCU  
开路负载和电池短路检测  
DIA_EN  
SEL1  
SEL2  
2 应用  
µC  
SNS  
ST  
车身控制模块  
白炽灯和 LED 照明  
LATCH  
EN  
TPS1HA08-Q1  
加热元件:  
座椅加热器  
火花塞  
12-V Battery  
VBB  
油箱加热器  
变速器控制单元  
汽车空调  
VOUT  
GND  
信息娱乐系统显示屏  
ADAS 模块  
Load  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDM4  
 
 
 
 
 
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
6.1 Recommended Connections for Unused Pins.......... 5  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 Switching Characteristics.......................................... 9  
7.7 SNS Timing Characteristics .................................... 10  
7.8 Typical Characteristics............................................ 12  
Parameter Measurement Information ................ 18  
9
Detailed Description ............................................ 19  
9.1 Overview ................................................................. 19  
9.2 Functional Block Diagram ....................................... 20  
9.3 Feature Description................................................. 21  
9.4 Device Functional Modes........................................ 36  
10 Application and Implementation........................ 38  
10.1 Application Information.......................................... 38  
10.2 Typical Application ............................................... 41  
11 Power Supply Recommendations ..................... 45  
12 Layout................................................................... 46  
12.1 Layout Guidelines ................................................. 46  
12.2 Layout Example .................................................... 46  
13 器件和文档支持 ..................................................... 47  
13.1 器件支持................................................................ 47  
13.2 ....................................................................... 47  
13.3 静电放电警告......................................................... 47  
13.4 Glossary................................................................ 47  
14 机械、封装和可订购信息....................................... 47  
7
8
4 修订历史记录  
Changes from Revision C (May 2019) to Revision D  
Page  
特性 部分添加了提供功能安全的链接.................................................................................................................................. 1  
Changes from Revision B (January 2019) to Revision C  
Page  
已添加 向特性 说明 部分添加了指向引用应用手册的链接................................................................................................... 1  
Removed the Product Preview note from Device Version B,D,E in the Device Comparison Table ...................................... 3  
Updated the Absolute Maximum Ratings and Electrical Characteristics tables in the Specifications section ....................... 6  
Updated 7 ........................................................................................................................................................................ 13  
已添加 paragragh to the Undervoltage Lockout (UVLO) section.......................................................................................... 22  
Added app note link to 41 title ........................................................................................................................................ 24  
Changes from Revision A (December 2018) to Revision B  
Page  
Deleted note from Device Version C in the Device Comparison Table ................................................................................ 3  
Changes from Original (September 2017) to Revision A  
Page  
已更改 从预告信息更改为生产数据.................................................................................................................................... 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
5 Device Comparison Table  
Device Version  
Full Device Number  
TPS1HA08A-Q1  
TPS1HA08B-Q1  
Current Limit (ICL  
)
Overcurrent Behavior  
Disable Switch Immediately  
Disable Switch Immediately  
Watchdog Feature  
Disabled  
A
B
20 A  
80 A  
Disabled  
Clamp Current at ICL until Thermal  
Shutdown  
C
TPS1HA08C-Q1  
20 A  
Disabled  
Clamp Current at ICL until Thermal  
Shutdown  
D
E
TPS1HA08D-Q1  
TPS1HA08E-Q1  
80 A  
20 A  
Disabled  
Enabled  
Disable Switch Immediately  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
 
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
PWP Package  
16-Pin HTSSOP  
Top View  
GND  
SNS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DIA_EN  
SEL2  
SEL1  
NC  
LATCH  
EN  
VBB  
ST  
NC  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
GND  
SNS  
1
O
I
Device ground  
Sense output  
2
3
LATCH  
EN  
Sets fault handling behavior (latched or auto-retry)  
Switch control input, active high  
Switch diagnostic feedback, active low  
Switch output  
4
I
5
ST  
O
O
--  
--  
I
6, 7, 8, 9, 10, 11  
VOUT  
NC  
12  
No Connect  
13  
NC  
No Connect  
14  
SEL1  
SEL2  
DIA_EN  
VBB  
Diagnostics Select 1  
15  
16  
I
Diagnostics Select 2  
I
Diagnostic enable, active high  
Power supply input  
Exposed pad  
I
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
6.1 Recommended Connections for Unused Pins  
The device is designed to provide an enhanced set of diagnostic and protection features. However, if the system  
design only allows for a limited number of I/O connections, some pins may be considered as optional.  
Table 1. Connections for Optional Pins  
PIN NAME  
CONNECTION IF NOT USED  
IMPACT IF NOT USED  
SNS  
Ground through 1-kΩ resistor Analog sense is not available.  
With LATCH unused, the device will auto-retry after a fault. If latched  
behavior is desired it is possible to use one microcontroller output to  
control the latch function of several high-side channels.  
Float or ground through  
RPROT resistor  
LATCH  
ST  
All faults are indicated by the analog SNS pin. The ST pin provides the  
additional benefits:  
Provide fault indication when DIA_EN = 0  
Provide fault indication regardless of SELx pin conditions  
Provide fault indication to a simple digital I/O (rather than ADC or  
comparator used with the SNS signal)  
Float  
Float or ground through  
RPROT resistor  
SEL1 selects between the VBB and TJ sensing features. With SEL1  
unused, only load diagnostics are available.  
SEL1  
SEL2  
Ground through RPROT  
resistor  
With SEL2 = 0 V, VBB measurement diagnostics are not available.  
Float or ground through  
RPROT resistor  
With DIA_EN unused, analog sense, open-load and short-to-battery  
diagnostics are not available.  
DIA_EN  
RPROT is used to protect the pins from excess current flow during reverse battery conditions, for more information  
please see the section on Reverse Battery protection.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
36  
UNIT  
V
VBB  
Maximum continuous supply voltage  
Load dump voltage  
VLD  
ISO16750-2:2010(E)  
40  
V
VRev  
VEN  
Reverse battery voltage, VREV 3 minutes  
Enable pin voltage  
–18  
–1  
–1  
–1  
–1  
–1  
V
7
7
7(2)  
V
VLATCH  
VST  
VDIA_EN  
VSNS  
LATCH pin voltage  
V
Status pin voltage  
V
Diagnostic Enable pin voltage  
Sense pin voltage  
7
V
7
V
VSEL1  
VSEL2  
,
Select pin voltage  
–1  
7
V
IGND  
Reverse ground current  
VBB < 0 V  
–50  
95  
mA  
mJ  
mJ  
°C  
Single pulse, LOUT = 5 mH, TA = 125°C  
Repetitive pulse, 10 Hz, LOUT = 5 mH, TA = 125°C  
ETOFF  
Energy dissipation during turn-off  
56  
TJ  
Maximum junction temperature  
Storage temperature  
150  
150  
Tstg  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) These pins are adjacent to pins that will handle high-voltages. In the event of a pin-to-pin short, there will not be device damage.  
7.2 ESD Ratings  
VALUE  
UNIT  
All pins except exposed pad and  
pins 6 to 11  
±2000  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
Exposed pad and pins 6 to 11  
All pins  
±4000  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
8
MAX  
UNIT  
VBB  
Nominal supply voltage  
Extended operating range  
Enable voltage  
18  
28  
V
V
V
V
V
(1)  
VBB  
3
VEN  
–1  
–1  
–1  
5.5  
5.5  
5.5  
VLATCH  
VDIA_EN  
LATCH voltage  
Diagnostic enable voltage  
VSEL1  
VSEL2  
,
Select voltage  
–1  
5.5  
V
VST  
Status voltage  
0
–1  
0
5.5  
VSNSclamp  
10  
V
V
A
VSNS  
IMAX  
Sense voltage  
Continuous load current  
TA = 70°C  
(1) Device will function within extended operating range, however some parametric values might not apply  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
7.4 Thermal Information  
TPS1HA08-Q1  
THERMAL METRIC(1)(2)  
PWP (HTSSOP)  
UNIT  
16 PINS  
32.8  
30.7  
9.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.6  
ψJB  
9.4  
RθJC(bot)  
1.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The thermal parameters are based on a 4-layer PCB according to the JESD51-5 and JESD51-7 standards.  
7.5 Electrical Characteristics  
VBB = 8 V to 18 V, TJ = –40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE AND CURRENT  
VClamp  
VUVLOF  
VUVLOR  
VDS clamp voltage  
40  
58  
3
V
V
V
VBB undervoltage lockout falling  
VBB undervoltage lockout rising  
2.5  
2.5  
3
VBB = 13.5 V, TJ = 25°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
0.5  
0.5  
3
µA  
µA  
µA  
µA  
µA  
mA  
VBB = 13.5 V, TJ = 85°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
Standby current (includes  
MOSFET leakage)  
ISB  
VBB = 13.5 V, TJ = 125°C,  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
VBB = 13.5 V, TJ = 25°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
0.01  
0.5  
3
IOUT(standby)  
Output leakage current  
VBB = 13.5 V, TJ = 125°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
VBB = 13.5 V, ISNS = 0 mA  
VEN = 0 V, VDIA_EN = 5 V, VOUT = 0V  
Current consumption in  
diagnostic mode  
IDIA  
3
6
VBB = 13.5 V  
VEN = VDIA_EN = 5 V, IOUT = 0 A, VSELX = 0 V  
IQ  
Quiescent current  
3
6
mA  
ms  
tSTBY  
Standby mode delay time  
VEN = VDIA_EN = 0 V to Standby  
20  
RON CHARACTERISTICS  
TJ = 25°C, 6 V VBB 28 V  
TJ = 150°C, 6 V VBB 28 V  
TJ = 25°C, 3 V VBB 6 V  
TJ = 25°C, -18 V VBB -8 V  
TJ = 105°C, -18 V VBB -8 V  
9
9
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
On-resistance  
Includes MOSFET and package  
RON  
20  
15  
On-resistance during reverse  
polarity  
RON(REV)  
20  
CURRENT SENSE CHARACTERISTICS  
Current sense ratio  
IOUT / ISNS  
KSNS  
4600  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VBB = 8 V to 18 V, TJ = –40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
–5  
TYP  
MAX  
5
UNIT  
mA  
%
4.35  
IOUT = 20 A  
IOUT = 8 A  
1.74  
0.65  
mA  
%
–5  
5
mA  
%
IOUT = 3 A  
–5  
5
Current sense current and  
current sense accuracy  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
=
ISNSI  
0.217  
0.065  
0.022  
mA  
%
IOUT = 1 A  
–5  
5
mA  
%
IOUT = 300 mA  
IOUT = 100 mA  
–12  
–42  
12  
42  
mA  
%
TJ SENSE CHARACTERISTICS  
TJ = –40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 150°C  
0.12  
0.85  
mA  
mA  
VDIA_EN = 5 V, VSEL1 = 5 V, VSEL2  
= 0 V  
ISNST  
Temperature sense current  
1.52  
mA  
2.25  
mA  
dISNST/dT  
Coefficient  
0.0112  
mA/°C  
VBB SENSE CHARACTERISTICS  
VBB = 3 V  
0.26  
0.69  
mA  
mA  
VBB = 8 V  
VDIA_EN = 5 V, VSEL1 = 5 V, VSEL2  
= 5 V  
ISNSV  
Voltage sense current  
Coefficient  
VBB = 13.5 V  
VBB = 18 V  
VBB = 28 V  
1.17  
mA  
1.56  
mA  
2.43  
mA  
dISNSV/dV  
0.0867  
mA/V  
SNS CHARACTERISTICS  
ISNSFH  
ISNS fault high level  
VDIA_EN = 5 V, VSEL1 = 0 V, VSEL2 = 0  
VDIA_EN = 0 V  
6
0
6.9  
5.9  
7.6  
1
mA  
µA  
V
ISNSleak  
VSNSclamp  
ISNS leakage  
VSNS clamp  
CURRENT LIMIT CHARACTERISTICS  
TJ = –40°C  
75.5  
68  
88.8  
80  
102.1  
92  
Device Version B/D  
TJ = 25°C  
TJ = 150°C  
TJ = –40°C  
TJ = 25°C  
TJ = 150°C  
A
A
51  
60  
69  
ICL  
Current Limit  
16  
22.2  
20  
27.8  
25  
Device Version A/C/E  
14.4  
10.8  
15  
18.8  
ST PIN CHARACTERISTICS  
VOL Open-load detection voltage  
VEN = 0 V, VDIA_EN = 5 V  
From falling edge of EN  
VEN= 5 V to 0 V, VDIA_EN = 5 V, VSELx = 00  
IOUT = 0 mA, VOUT = 4 V  
2
2.5  
4
V
OL and STB indication time -  
switch disabled  
tOL1  
300  
500  
700  
µs  
From rising edge of DIA_EN  
VEN = 0 V, VDIA_EN = 0 V to 5 V, VSELx = 00  
IOUT = 0 mA, VOUT = 4 V  
OL and STB indication time -  
switch disabled  
tOL2  
50  
50  
µs  
µs  
From rising edge of VOUT  
VEN = 0 V, VDIA_EN = 5 V, VSELx = 00  
IOUT = 0 mA, VOUT = 0 V to 4 V  
OL and STB indication time -  
switch disabled  
tOL3  
TABS  
THYS  
Thermal shutdown  
160  
°C  
°C  
Thermal shutdown hysteresis  
20  
2
Minimum time from fault shutdown to switch re-enable (for  
thermal shutdown, current limit, and energy limit)  
tRETRY  
tWD  
Retry time  
1
3
ms  
ms  
Watchdog timer  
Device version E  
350  
400  
450  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Electrical Characteristics (continued)  
VBB = 8 V to 18 V, TJ = –40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EN PIN CHARACTERISTICS(1)  
VIL, EN  
VIH, EN  
VIHYS, EN  
IIL, EN  
Input voltage low level  
0.8  
V
V
Input voltage high level  
Input voltage hysteresis  
Input current low level  
Input current high level  
No GND network Diode  
No GND network Diode  
VEN = 0.8 V  
2
250  
0.8  
2
mV  
µA  
µA  
MΩ  
IIH, EN  
REN  
VEN = 2.0 V  
Internal pulldown resistor  
1
(1)  
DIA_EN PIN CHARACTERISTICS  
VIL, DIA_EN  
VIH, DIA_EN  
VIHYS, DIA_EN  
IIL, DIA_EN  
IIH, DIA_EN  
RDIA_EN  
Input voltage low level  
Input voltage high level  
Input voltage hysteresis  
Input current low level  
Input current high level  
Internal pulldown resistor  
No GND network Diode  
No GND network Diode  
0.8  
0.8  
0.8  
V
V
2
2
2
250  
0.8  
2
mV  
µA  
µA  
MΩ  
VDIA_EN = 0.8 V  
VDIA_EN = 2.0 V  
1
(1)  
SEL1 AND SEL2 PIN CHARACTERISTICS  
VIL, SELx  
VIH, SELx  
VIHYS, SELx  
IIL, SELx  
Input voltage low level  
Input voltage high level  
Input voltage hysteresis  
Input current low level  
Input current high level  
No GND network Diode  
V
V
250  
0.8  
2
mV  
µA  
µA  
MΩ  
VSELx = 0.8 V  
VSELx = 2.0 V  
IIH, SELx  
RSELx  
Internal pulldown resistor  
1
(1)  
LATCH PIN CHARACTERISTICS  
VIL, LATCH  
VIH, LATCH  
VIHYS, LATCH  
IIL, LATCH  
IIH, LATCH  
RLATCH  
Input voltage low level  
Input voltage high level  
Input voltage hysteresis  
Input current low level  
Input current high level  
No GND network Diode  
No GND network Diode  
V
V
250  
0.8  
2
mV  
µA  
µA  
MΩ  
VLATCH = 0.8 V  
VLATCH = 2.0 V  
Internal pulldown resistor  
1
(1)  
ST PIN CHARACTERISTICS  
VOL, ST  
ISTleak  
Output voltage low level  
Leakage current  
IST = 1 mA  
VST = 5 V  
0.4  
2
V
µA  
(1) VBB = 3 to 28 V  
7.6 Switching Characteristics  
VBB = 13.5 V, TJ = –40°C to 150°C (unless otherwise noted)  
PARAMETER  
Turn-on delay time  
Turn-off delay time  
TEST CONDITIONS  
MIN  
20  
TYP  
70  
MAX  
UNIT  
tDR  
tDF  
VBB = 13.5 V, RL = 2.6 Ω  
VBB = 13.5 V, RL = 2.6 Ω  
100  
100  
µs  
µs  
20  
50  
VBB = 13.5 V, 20% to 80% of VOUT  
RL = 2.6 Ω  
,
,
SRR  
SRF  
VOUT rising slew rate  
VOUT falling slew rate  
0.1  
0.1  
0.35  
0.5  
0.7  
0.7  
V/µs  
V/µs  
VBB = 13.5 V, 80% to 20% of VOUT  
RL = 2.6 Ω  
tON  
Turn-on time  
VBB = 13.5 V, RL = 2.6 Ω  
VBB = 13.5 V, RL = 2.6 Ω  
200-µs enable pulse  
39  
39  
80  
75  
0
145  
145  
50  
µs  
µs  
tOFF  
Turn-off time  
tON - tOFF  
EON  
Turn-on and off matching  
–50  
µs  
Switching energy losses during turn-on VBB = 13.5 V, RL = 2.6 Ω  
Switching energy losses during turn-off VBB = 13.5 V, RL = 2.6 Ω  
0.4  
0.4  
mJ  
mJ  
EOFF  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
7.7 SNS Timing Characteristics  
VBB = 8 to 18 V, TJ = –40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SNS TIMING - CURRENT SENSE  
VEN = 5 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
tSNSION1  
tSNSION2  
tSNSION3  
tSNSIOFF1  
tSETTLEH  
tSETTLEL  
Settling time from rising edge of DIA_EN  
Settling time from rising edge of EN  
40  
180  
180  
20  
µs  
µs  
µs  
µs  
µs  
µs  
VEN = VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
VEN = 0 V to 5 V, VDIA_EN = 5 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from rising edge of EN  
VEN = 5 V, VDIA_EN = 5 V to 0 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from falling edge of DIA_EN  
Settling time from rising edge of load step  
Settling time from falling edge of load step  
VEN = 5 V, VDIA_EN = 5 V  
RSNS = 1 kΩ, IOUT = 1 A to 5 A  
20  
VEN = 5 V, VDIA_EN = 5 V  
RSNS = 1 kΩ, IOUT = 5 A to 1 A  
20  
SNS TIMING - TEMPERATURE SENSE  
VEN = 5 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ  
tSNSTON1  
tSNSTON2  
tSNSTOFF  
Settling time from rising edge of DIA_EN  
40  
70  
20  
µs  
µs  
µs  
VEN = 0 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ  
Settling time from rising edge of DIA_EN  
Settling time from falling edge of DIA_EN  
VEN = X, VDIA_EN = 5 V to 0 V  
RSNS = 1 kΩ  
SNS TIMING - VOLTAGE SENSE  
VEN = 5 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ  
tSNSVON1  
tSNSVON2  
tSNSVOFF  
Settling time from rising edge of DIA_EN  
40  
70  
20  
µs  
µs  
µs  
VEN = 0 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ  
Settling time from rising edge of DIA_EN  
Settling time from falling edge of DIA_EN  
VEN = X, VDIA_EN = 5 V to 0 V  
RSNS = 1 kΩ  
SNS TIMING - MULTIPLEXER  
VEN= X, VDIA_EN = 5 V  
VSEL1 = 5 V to 0 V, VSEL2 = 0 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from temperature sense to current  
sense  
60  
60  
60  
60  
60  
60  
µs  
µs  
µs  
µs  
µs  
µs  
VEN = X, VDIA_EN = 5 V  
VSEL1 = 5 V, VSEL2 = 0 V to 5 V  
RSNS = 1 kΩ  
Settling time from temperature sense to voltage  
sense  
VEN = X, VDIA_EN = 5 V  
VSEL1 = 5 V, VSEL2 = 5 V to 0 V  
RSNS = 1 kΩ  
Settling time from voltage sense to temperature  
sense  
tMUX  
VEN = X, VDIA_EN = 5 V  
VSEL1 = VSEL2 = 5 V to 0 V,  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from voltage sense to current sense  
VEN = X, VDIA_EN = 5 V  
VSEL1 = 0 V to 5 V, VSEL2 = 0 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from current sense to temperature  
sense  
VEN = X, VDIA_EN = 5 V  
VSEL1 = VSEL2 = 0 V to 5 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from current sense to voltage sense  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
VEN  
VDIA_EN  
IOUT  
ISNS  
tSNSION1  
tSNSION2  
tSNSION3  
tSNSIOFF1  
VEN  
VDIA_EN  
IOUT  
ISNS  
tSETTLEH  
tSETTLEL  
VEN  
VDIA_EN  
TJ  
ISNS  
tSNSTON1  
tSNSTON2  
tSNSTOFF  
NOTES: Rise and fall times of control signals are 100 ns. Control signals include: EN, DIA_EN, SEL1, SEL2.  
SEL1 and SEL2 must be set to the appropriate values.  
The temperature sense timing diagram can also be used to depict the voltage sense timings.  
1. SNS Timing Characteristics Definitions  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
(1)  
VEN  
50%  
50%  
90%  
10%  
90%  
tDR  
tDF  
VOUT  
10%  
tON  
tOFF  
Rise and fall time of VEN is 100 ns.  
2. Switching Characteristics Definitions  
7.8 Typical Characteristics  
2.7  
1.25  
VBB  
8 V  
13.5 V  
18 V  
2.65  
2.6  
1
0.75  
2.55  
2.5  
0.5  
0.25  
0
2.45  
-40  
-10  
20  
50 80  
Temperature (°C)  
110  
140  
-40  
-20  
0
20  
40  
Temperature (°C)  
60  
80  
100  
120  
SLVS  
SLVS  
VBB = 13.5 V to 0 V  
VEN = 5 V  
ROUT = 1 kΩ  
VDIAG__EN = 0 V  
VOUT = 0 V  
VEN = 0 V  
VDIAG_EN = 0 V  
3. Falling Undervoltage Lockout (VUVLOF) vs Temperature  
4. Standby Current (ISB) vs Temperature  
0.8  
5
4
3
2
8 V  
13.5 V  
18 V  
VBB  
8 V  
13.5 V  
18 V  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
SLVS  
SLVS  
VOUT = 0 V  
VEN = 0 V  
VDIAG_EN = 0 V  
IOUT = 0 A  
VEN = 5 V  
VSEL1 = VSEL2 = 0 V  
VDIAG_EN = 5 V  
RSNS = 1 kΩ  
5. Output Leakage Current (IOUT(standby)) vs Temperature  
6. Quiescent Current (IQ) vs Temperature  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
18  
20  
16  
12  
8
VBB  
8 V  
13.5 V  
18 V  
16  
14  
12  
10  
8
-40èC  
25èC  
60èC  
85èC  
4
105èC  
125èC  
150èC  
6
0
-40  
-15  
10  
35  
60  
85  
110  
135 150  
0
4
8
12  
16  
20  
24  
28  
Temperature (èC)  
VBB (V)  
SLVS  
SLVS  
IOUT = 200 mA  
VEN = 5 V  
VDIAG_EN = 0 V  
IOUT = 200 mA  
VEN = 5 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
RSNS = 1 kΩ  
RSNS = 1 kΩ  
7. On Resistance (RON) vs Temperature  
8. On Resistance (RON) vs VBB  
75  
73  
71  
69  
67  
65  
55  
54.5  
54  
53.5  
53  
52.5  
52  
51.5  
51  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
VEN = 0 V to 5 V  
VBB = 13.5 V  
Temperature (èC)  
VEN = 5 V to 0 V  
VBB = 13.5 V  
SLVS  
SLVS  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VDIAG_EN = 0 V  
9. Turn-on Delay Time (tDR) vs Temperature  
10. Turn-off Delay Time (tDF) vs Temperature  
0.5  
0.495  
0.49  
0.37  
0.36  
0.35  
0.34  
0.33  
0.32  
0.485  
0.48  
0.475  
0.47  
0.465  
0.46  
0.455  
0.45  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
VEN = 0 V to 5 V  
VBB = 13.5 V  
Temperature (èC)  
VEN = 5 V to 0 V  
VBB = 13.5 V  
SLVS  
SLVS  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VDIAG_EN = 0 V  
11. VOUT Slew Rate Rising (SRR) vs Temperature  
12. VOUT Slew Rate Falling (SRF) vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
76.5  
75  
73.5  
72  
70.5  
-40  
-15  
10  
35  
60  
85  
110  
135  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
VEN = 0 V to 5 V  
VBB = 13.5 V  
Temperature (èC)  
VEN = 5 V to 0 V  
VBB = 13.5 V  
SLVS  
SLVS  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VDIAG_EN = 0 V  
13. Turn-on Time (tON) vs Temperature  
14. Turn-off Time (tOFF) vs Temperature  
10  
8
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
-40èC  
25èC  
60èC  
85èC  
105èC  
125èC  
150èC  
6
4
0.08  
0.06  
0.04  
0.02  
0
2
0
-40  
-15  
10  
35  
60  
85  
110  
135 150  
0
100 200 300 400 500 600 700 800 900  
ILOAD (mA), VBB=13.5  
Temperature (èC)  
SLVS  
SLVS  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VEN = 0 V to 5 V  
and 5 V to 0 V  
VDIAG_EN = 0 V  
VSEL1 = VSEL2 = 0 V  
VEN = 5 V  
VDIAG_EN = 5 V  
RSNS = 1 kΩ  
VBB = 13.5 V  
VBB = 13.5 V  
16. Current Sense Output Current (ISNSI ) vs Load Current  
15. Turn-on and Turn-off Matching (tON - tOFF) vs  
(IOUT) across Temperature  
Temperature  
3
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
8 V  
13.5 V  
18 V  
VBB  
8 V  
13.5 V  
18 V  
2.5  
2
1.5  
1
0.08  
0.06  
0.04  
0.02  
0
0.5  
0
0
100 200 300 400 500 600 700 800 900  
ILOAD (mA)  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
VSEL2 = 0 V  
VEN = 0 V  
SLVS  
SLVS  
VSEL1 = VSEL2 = 0 V  
VEN = 5 V  
TA = 25°C  
VDIAG_EN = 5 V  
VSEL1 = 5 V  
RSNS = 1 kΩ  
VDIAG_EN = 5 V  
RSNS = 1 kΩ  
17. Current Sense Output Current (ISNSI) vs Load Current  
18. Temperature Sense Output Current (ISNST) vs  
(IOUT) across VBB  
Temperature  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
2.5  
6.95  
6.9  
-40èC  
25èC  
8 V  
13.5 V  
18 V  
60èC  
2
85èC  
6.85  
6.8  
105èC  
125èC  
1.5  
150èC  
6.75  
6.7  
1
0.5  
0
6.65  
6.6  
0
4
8
12  
16  
20  
24  
28  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
VBB (V)  
Temperature (èC)  
SLVS  
SLVS  
VSEL1 = VSEL2 = 5 V  
VEN = 0 V  
IOUT = 0 A  
VDIAG_EN = 5 V  
VSEL1 = VSEL2 = 0 V  
VEN = 0 V  
VDIAG_EN = 5 V  
RSNS = 1 kΩ  
RSNS = 500 Ω  
VOUT Floating  
19. Voltage Sense Output Current (ISNSV) vs VBB  
20. Fault High Output Current (ISNSFH) vs Temperature  
6.4  
6.3  
6.2  
6.1  
6
26  
24  
22  
20  
18  
16  
14  
12  
10  
8 V  
13.5 V  
18 V  
5.9  
5.8  
5.7  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
Temperature (èC)  
VOUT = 0 V  
VEN = 5 V  
SLVS  
SLVS  
VSEL1 = VSEL2 = 0 V  
VEN = 5 V  
VDIAG_EN = 5 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
VLATCH = 5 V  
RSNS = 10 kΩ  
IOUT = 4 A  
Device Version C  
21. Sense Pin Clamp Voltage (VSNSCLAMP) vs Temperature  
22. Current Limit (ICL) vs Temperature  
1.54  
1.535  
1.53  
2.85  
VBB  
8 V  
VBB  
8 V  
13.5 V  
18 V  
13.5 V  
18 V  
2.75  
1.525  
1.52  
2.65  
1.515  
1.51  
2.55  
2.45  
2.35  
1.505  
1.5  
1.495  
1.49  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
VOUT = 0 V to 5 V  
VSEL1 = VSEL2 = 0 V  
Temperature (èC)  
SLVS  
SLVS  
VEN = 0 V  
IOUT = 0 A  
VEN = 3.3 V to 0 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
VDIAG_EN= 5 V  
ROUT = 1 kΩ  
23. Open Load Detection Voltage (VOL) vs Temperature  
24. VIL vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
325  
320  
315  
310  
305  
300  
295  
290  
1.86  
VBB  
8 V  
VBB  
8 V  
13.5 V  
18 V  
1.85  
13.5 V  
18 V  
1.84  
1.83  
1.82  
1.81  
1.8  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
Temperature (èC)  
SLVS  
SLVS  
VEN = 0 V to 3.3 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
VEN = 0 V to 3.3 V  
and 3.3 V to 0 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
ROUT = 1 kΩ  
ROUT = 1 kΩ  
25. VIH vs Temperature  
26. VIHYS vs Temperature  
1.6  
3.6  
8 V  
13.5 V  
18 V  
8 V  
13.5 V  
18 V  
1.4  
1.2  
1
3.2  
2.8  
2.4  
2
0.8  
0.6  
0.4  
1.6  
1.2  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
Temperature (èC)  
SLVS  
SLVS  
VEN = 0.8 V  
ROUT = 1 kΩ  
VOUT = 0 V  
VDIAG_EN = 0 V  
VEN = 2 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
ROUT = 1 kΩ  
27. IIL vs Temperature  
28. IIH vs Temperature  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VDIA_EN = 5 V  
VSEL1 = VSEL2 = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VDIA_EN = 5 V  
VSEL1 = VSEL2 = 0 V  
29. Turn-on Time (tON  
)
30. Turn-off Time (tOFF) and Sense Settle Time (tSNSION2)  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VDIA_EN= 0 V to 5 V  
VSEL1 = VSEL2 = 0 V  
IOUT = 1 A to 5 A  
RSNS = 1 kΩ  
VDIA_EN = 5 V  
VSEL1 = VSEL2 = 0 V  
31. ISNS Settling Time (tSNSION1) on DIA_EN Transition  
32. ISNS Settling Time (tSETTLEH) on Rising Load Step  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
11  
IVBB (A)  
ST (V)  
SNS (V)  
EN (V)  
10  
9
8
7
6
5
4
3
2
1
0
-1  
-10  
-20  
0
0.0001  
0.0002  
0.0003  
0.0004  
0.0005  
Time (s)  
BPer  
VOUT = VBB  
VEN = 0 V  
RSNS = 1 kΩ  
VSEL1 = VSEL2 = 0 V  
VBB = 13.5 V  
VEN = 0 V to 5 V  
B Device Version  
TA = 25°C  
VOUT = 0 V  
VDIAG_EN = 5 V  
33. Open Load Detection Time (tOL2) on Rising DIAG_EN  
34. Short Circuit Behavior with B Device Version  
30  
24  
20  
16  
12  
8
15  
10  
5
15  
10  
5
IVBB (A)  
ST (V)  
SNS (V)  
EN (V)  
25  
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
4
IVBB  
VBB  
VOUT  
-25  
0
0
-30  
EN  
-35  
-5  
-4  
0.00075  
0
0.00015  
0.0003  
0.00045  
0.0006  
0.0008 0.0016 0.0024 0.0032 0.004 0.0048 0.0056  
Time (s)  
Time (s)  
C_Pe  
Indu  
VBB = 13.5 V  
VEN = 0 V to 5 V  
C Device Version  
TA = 25°C  
VOUT = 0 V  
VBB = 13.5 V  
TA = 125°C  
LOUT = 5 mH  
VEN = 0 V to 5 V, 5  
V to 0 V  
35. Short Circuit Behavior with C Device Version  
36. Inductive Load Demagnetization  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
IBB  
VBB  
SNS  
LATCH  
EN  
DIA_EN  
SEL2  
IDIA_EN  
ISNS  
ISEL2  
ILATCH  
SEL1  
ISEL1  
IEN  
VOUT  
IOUT  
IST  
ST  
GND  
37. Parameter Definitions  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
9 Detailed Description  
9.1 Overview  
The device is a single-channel smart high-side power switch intended for use with 12 V automotive batteries.  
Many protection and diagnostic features are integrated in the device.  
Diagnostics features include the analog SNS output and the open-drain fault indication (ST). The analog SNS  
output is capable of providing a signal that is proportional to device temperature, supply voltage, or load current.  
The high-accuracy load current sense allows for diagnostics of complex loads.  
This device includes protection through thermal shutdown, current limit, transient withstand, and reverse battery  
operation. For more details on the protection features, refer to the Feature Description and Application  
Information sections of the document.  
9.1.1 Device Nomenclature  
The is one device in the TI family of Smart High Side Switches. 38 shows the family part number  
nomenclature and explains how to determine device characteristics from the part number for TI Smart High Side  
Switches.  
TPS  
1
H
A
08  
X
Q
PWPR  
Q1  
Prefix  
Auto Qual  
Packaging  
No. of Channels  
H
12-V HSS  
24-V HSS  
AEC Temp Grade  
T
Generation  
Version  
RON (mΩ)  
38. Naming Convention  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
9.2 Functional Block Diagram  
VBB  
VBB to GND  
Clamp  
Internal Power  
Supply  
VBB to VOUT  
Clamp  
GND  
VOUT  
Gate Driver  
Power FET  
EN  
LATCH  
DIA_EN  
SEL1  
Current Limit  
Energy Limit  
Thermal  
Shutdown  
Open-load /  
Short-to-Bat  
Detection  
SEL2  
VBB  
Voltage Sense  
Fault Indication  
Current Sense  
SNS  
SNS Mux  
ST  
Temperature  
Sense  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
9.3 Feature Description  
9.3.1 Protection Mechanisms  
The is designed to operate in the automotive environment. The protection mechanisms allow the device to be  
robust against many system-level events such as load dump, reverse battery, short-to-ground and more.  
There are three protection features which, if triggered, will cause the switch to automatically disable:  
Thermal Shutdown  
Current Limit (Versions A,B,E)  
Energy Limit  
When any of these protections are triggered, the device will enter the FAULT state. In the FAULT state, the fault  
indication will be available on both the SNS pin and the ST pin (see the diagnostic section of the data sheet for  
more details).  
The switch is no longer held off and the fault indication is reset when all of the below conditions are met:  
LATCH pin is low  
tRETRY has expired  
All faults are cleared (thermal shutdown, current limit, energy limit)  
9.3.1.1 Thermal Shutdown  
The includes temperature sensors on the FET and inside of the device controller. When TJ,FET > TABS, the device  
will see a thermal shutdown fault. After the fault is detected, the switch will turn off. The fault is cleared when the  
switch temperature decreases by the hysteresis value, THYS  
.
9.3.1.2 Current Limit  
When IOUT reaches the current limit threshold, ICL, the device can switch off immediately (Versions A,B,E), or the  
device can remain enabled and limit IOUT (Versions C/D) to ICL (see Device Comparison Table section for more  
details). In the case that the device remains enabled and limits IOUT, the thermal shutdown and/or energy limit  
protection feature may be triggered due to the high amount of power dissipation in the device.  
During a short circuit event, the device will hit the ICL threshold that is listed in the Specifications (for the given  
device version) and then turn the output off or regulate the output current to protect the device. The device will  
register a short circuit event when the output current exceeds ICL, however the measured maximum current may  
exceed the ICL threshold due to the deglitch filter and turn-off time. The device is guaranteed to protect itself  
during a short circuit event over the nominal supply voltage range (as defined in the Specifications section) at  
125°C.  
9.3.1.2.1 Current Limit Foldback  
The implements a current limit foldback feature that is designed to protect the device in the case of a long-term  
fault condition. If the device undergoes three consecutive fault shutdown events (any of thermal shutdown,  
current limit, or energy limit), the current limit will be reduced to half of the original value. The device will revert  
back to the original current limit threshold if either of the following occurs:  
The device goes to Standby Delay.  
The switch turns-on and turns-off without any fault occurring.  
9.3.1.2.2 Selectable Current Limit Threshold  
The offers two current limit thresholds. The high threshold is designed to allow for a large transient load current  
(for example, inrush current of a 65-W bulb). The low threshold is designed to provide improved system-level  
protection for loads that do not have large transient currents (for example, heating element). The lower threshold  
can allow for reduced size/cost in the current carrying components such as PCB traces and module connectors.  
Version A (20 A current limit) is ideal for charging capacitors, as it will enable the device to prevent inrush current  
and clamp the overcurrent to linearly charge the capacitor.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
9.3.1.2.3 Undervoltage Lockout (UVLO)  
The device monitors the supply voltage VBB to prevent unpredicted behaviors in the event that the supply voltage  
is too low. When the supply voltage falls down to VUVLOF, the output stage is shut down automatically. When the  
supply rises up to VUVLOR, the device turns back on.  
During an initial ramp of VBB from 0 V at a ramp rate slower than 1 V/ms, VEN pin will have to be held low until  
VBB is above UVLO threshold (with respect to board ground) and the supply voltage to the device has reliably  
reached above the UVLO condition. For best operation, ensure that VBB has risen above UVLO before setting the  
VEN pin to high.  
9.3.1.2.4 VBB during Short-to-Ground  
When VOUT is shorted to ground, the module power supply (VBB) can have a transient decrease. This is caused  
by the sudden increase in current flowing through the wiring harness cables. To achieve ideal system behavior, it  
is recommended that the module maintain VBB > 3 V during VOUT short-to-ground. This is typically accomplished  
by placing bulk capacitance on the power supply node.  
9.3.1.3 Energy Limit  
The energy limiting feature is implemented to protect the switch from excessive stress. The device will  
continuously monitor the amount of energy dissipated in the FET. If the energy limit threshold is reached, the  
switch will automatically disable. In practice, the energy limit will only be reached during a fault event such as  
short-to-ground.  
Energy limit events have the same system-level behavior as thermal shutdown events.  
9.3.1.4 Voltage Transients  
The contains two voltage clamps which protect the device against system-level voltage transients.  
The clamp from VBB to GND is primarily used to protect the controller from positive transients on the supply line  
(for example, ISO7637-2). The clamp from VBB to VOUT is primarily used to limit the voltage across the FET when  
switching off an inductive load. Both clamp levels are set to protect the device during these fault conditions. If the  
voltage potential from VBB to GND exceeds the VBB clamp level, the clamp will allow current to flow through the  
device from VBB to GND (Path 2). If the voltage potential from VBB to VOUT exceeds VCLAMP, the power FET will  
allow current to flow from VBB to VOUT (Path 3).  
Ri  
Positive Supply Transient  
(e.g. ISO7637 pulse 2a/3b)  
(1)  
VBB  
VDS  
Clamp  
(3)  
(2)  
Controller  
VBB  
Clamp  
VOUT  
Load  
GND  
39. Current Path During Supply Voltage Transient  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Feature Description (接下页)  
9.3.1.4.1 Load Dump  
The is tested according to ISO 16750-2:2010(E) suppressed load dump pulse. The device supports up to 40 V  
load dump transient. The switch will maintain normal operation during the load dump pulse. If the switch is  
enabled, it will stay enabled. If the switch is disabled, it will stay disabled.  
9.3.1.4.2 Driving Inductive and Capacitive Loads  
When switching off an inductive load, the inductor may impose a negative voltage on the output of the switch.  
The includes a voltage clamp to limit voltage across the FET. The maximum acceptable load inductance is a  
function of the device robustness. With a 5 mH load, the can withstand a single pulse of 95 mJ inductive  
dissipation at 125°C and can withstand 56 mJ of inductive dissipation with a 10 Hz repetitive pulse. If the  
application parameters exceed this device limit, it is necessary to use a protection device like a freewheeling  
diode to dissipate the energy stored in the inductor. 40 shows the discharging a 5 mH load that is driven at 5  
A.  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
IVBB  
VBB  
VOUT  
EN  
0.0008 0.0016 0.0024 0.0032 0.004 0.0048 0.0056  
Time (s)  
Indu  
40. Inductive Discharge (5 mH, 5 A)  
In addition, the current limit provides an ideal way to charge a capacitive load safely with limited inrush current.  
With no protection, charging a large capacitive load can lead to high inrush currents that pull a supply down,  
however by using the low current limit device options the capacitive load can be safely charged.  
For more information on driving inductive or capacitive loads, reference TI's "How To Drive Inductive, Capacitive,  
and Lighting Loads with Smart High Side Switch application report.  
9.3.1.5 Reverse Battery  
In the reverse battery condition, the switch will automatically be enabled (regardless of EN status) to prevent  
power dissipation inside the MOSFET body diode. In many applications (for example, resistive load), the full load  
current may be present during reverse battery. In order to activate the automatic switch on feature, the SEL2 pin  
must have a path to module ground. This may be path 1 as shown below, or, if the SEL2 pin is unused, the path  
may be through RPROT to module ground.  
Protection features (for example, thermal shutdown) are not available during reverse battery. Care must be taken  
to ensure that excessive power is not dissipated in the switch during the reverse battery condition.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
There are two options for blocking reverse current in the system. Option 1 is to place a blocking device (FET or  
diode) in series with the battery supply. This will block all current paths. Option 2 is to place a blocking diode in  
series with the GND node of the high-side switch. This method will protect the controller portion of the switch  
(path 2), but it will not prevent current from flowing through the load (path 3). The diode used for Option 2 may be  
shared amongst multiple high-side switches.  
Path 1 shown in 41 is blocked inside of the device.  
Reverse blocking  
Option 1  
BAT  
FET or diode  
VBB  
0V  
µC  
VDD  
(3)  
VOUT  
(2)  
Controller  
GPIO  
GPIO  
VBB  
Clamp  
Load  
RPROT  
(1)  
GND  
Option 2  
13.5V  
41. Current Path During Reverse Battery  
9.3.1.6 Fault Event – Timing Diagrams  
All timing diagrams assume that the SELx pins are set to 00.  
The LATCH, DIA_EN, and EN pins are controlled by the user. The timing diagrams  
represent a possible use-case.  
42 shows the immediate current limit switch off behavior of Versions A,B,E. The diagram also illustrates the  
retry behavior. As shown, the switch will remain latched off until the LATCH pin is low.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Feature Description (接下页)  
µC resets  
the latch  
LATCH  
DIA_EN  
ISNSFH  
Current  
Sense  
Current  
Sense  
SNS  
ST  
High-z  
High-z  
High-z  
High-z  
VOUT  
EN  
ICL  
tRETRY  
IOUT  
t
Switch follows EN. Normal  
operation.  
Load reaches limit.  
Switch is Disabled.  
42. Current Limit – Version A,B,E - Latched Behavior  
43 shows the immediate current limit switch off behavior of versions A,B,E. In this example, LATCH is tied to  
GND; hence, the switch will retry after the fault is cleared and tRETRY has expired.  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
DIA_EN  
ISNSFH  
Current  
Sense  
Current  
Sense  
SNS  
ST  
High-z  
High-z  
High-z  
High-z  
VOUT  
EN  
ICL  
tRETRY  
IOUT  
t
Switch follows EN. Normal  
operation.  
Load reaches limit.  
Switch is Disabled.  
43. Current Limit – Version A,B,E - LATCH = 0  
44 shows the active current limiting behavior of versions C,D. In versions C,D, the switch will not shutdown  
until either the energy limit or the thermal shutdown is reached.  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Feature Description (接下页)  
µC resets  
the latch  
LATCH  
DIA_EN  
ISNSFH  
Current  
Sense  
Current  
Sense  
SNS  
ST  
High-z  
High-z  
High-z  
High-z  
VOUT  
EN  
TABS  
THYS  
TJ  
tRETRY  
ICL  
IOUT  
t
Load reaches limit. Current is limited. Temp Switch is disabled. Temp decreases by  
reaches limit. THYS  
Switch follows EN. Normal  
operation.  
44. Current Limit – Version C,D - Latched Behavior  
45 shows the active current limiting behavior of versions C,D. The switch will not shutdown until either thermal  
shutdown or energy limit is tripped. In this example, LATCH is tied to GND.  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
DIA_EN  
ISNSFH  
ISNSFH  
Current  
Sense  
Current  
Sense  
SNS  
ST  
High-z  
High-z  
High-z  
High-z  
VOUT  
EN  
TABS  
THYS  
TJ  
tRETRY  
ICL  
IOUT  
t
Load reaches limit. Current is limited.  
Temp reaches limit.  
Switch is disabled. TJ decreases by  
THYS  
Switch follows EN. Normal operation.  
45. Current Limit – Version C,D - LATCH = 0  
When the switch retries after a shutdown event, the SNS fault indication will remain until VOUT has risen to VBB  
1.8 V. Once VOUT has risen, the SNS fault indication is reset and current sensing is available. ST fault indication  
is reset as soon as the switch is re-enabled (does not wait for VOUT to rise). If there is a short-to-ground and VOUT  
is not able to rise, the SNS fault indication will remain indefinitely. The following diagram illustrates auto-retry  
behavior and provides a zoomed-in view of the fault indication during retry.  
46 assumes that tRETRY has expired by the time that TJ reaches the hysteresis  
threshold.  
LATCH = 0 V and DIA_EN = 5 V  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Feature Description (接下页)  
ISNSFH  
ISNSFH  
ISNSFH  
ISNSFH  
SNS  
ST  
VOUT  
EN  
TABS  
THYS  
TJ  
t
ISNSFH  
ISNSI  
SNS  
ST  
VBB œ 1.8 V  
VOUT  
EN  
TABS  
THYS  
TJ  
t
46. Fault Indication During Retry  
9.3.2 Diagnostic Mechanisms  
9.3.2.1 VOUT Short-to-Battery and Open-Load  
9.3.2.1.1 Detection With Switch Enabled  
When the switch is enabled, the VOUT short-to-battery and open-load conditions can be detected with the current  
sense feature. In both cases, the load current will be measured through the SNS pin and will be below the  
expected value.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
9.3.2.1.2 Detection With Switch Disabled  
While the switch is disabled, if DIA_EN is high, an internal comparator will detect the condition of VOUT. If the  
load is disconnected (open load condition) or there is a short to battery the voltage will be higher than the  
OUT  
open load threshold (VOL,off) and a fault is indicated on the SNS pin. An internal pull-up of 1 MΩ is in series with  
an internal MOSFET switch, so no external component is required if only a completely open load needs to be  
detected. However, if there is significant leakage or other current draw even when the load is disconnected, a  
lower value pull-up resistor and switch can be added externally to set the VOUT voltage above the VOL,off during  
open load conditions.  
(1) This figure assumes that the device ground and the load ground are at the same potential. In application, there may  
be a ground shift voltage of 1 V to 2 V.  
47. Short to Battery and Open Load Detection  
The detection circuitry is only enabled when DIA_EN = HIGH and EN = LOW.  
If VOUT > VOL, the SNS pin will go to the fault level.  
If VOUT < VOL, then there is no fault indication.  
The fault indication will only occur if the SEL1 pin is set to diagnose the channel.  
While the switch is disabled and DIA_EN is high, the fault indication mechanisms will continuously represent the  
present status. For example, if VOUT decreases from >VOL to <VOL, the fault indication is reset. Additionally, the  
fault indication is reset upon the falling edge of DIA_EN or the rising edge of EN.  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Feature Description (接下页)  
DIA_EN  
ISNSFH  
High-z  
High-z  
SNS  
tOL2  
Enabled  
VOUT depends on external conditions  
VOL  
VOUT  
EN  
t
Switch is disabled and DIA_EN goes  
high.  
The condition is determined by the  
internal comparator.  
The open-load fault is  
indicated.  
Device standby  
48. Open Load  
9.3.2.2 SNS Output  
The SNS output may be used to sense the load current, supply voltage, or device temperature. The SELx pins  
will select the desired sense signal. The sense circuit will provide a current that is proportional to the selected  
parameter. This current will be sourced into an external resistor to create a voltage that is proportional to the  
selected parameter. This voltage may be measured by an ADC or comparator.  
To ensure accurate sensing measurement, the sensing resistor should be connected to the same ground  
potential as the μC ADC.  
The SNS Output includes an internal clamp, VSNSclamp. This clamp is designed to prevent a high voltage at the  
SNS output and the ADC input.  
2. Analog Sense Transfer Function  
PARAMETER  
TRANSFER FUNCTION  
ISNSI = IOUT / 4600  
Load current  
Supply voltage(1)  
Device temperature  
ISNSV = (VBB) × dISNSV / dV  
ISNST = (TJ – 25°C) × dISNST / dT + 0.85  
(1) Voltage potential between the VBB pin and the GND pin.  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
The SNS output will also be used to indicate system faults. ISNS will go to the predefined level, ISNSFH, when there  
is a fault. This level is defined in the electrical specifications.  
9.3.2.2.1 RSNS Value  
The following factors should be considered when selecting the RSNS value:  
Current sense ratio  
Largest and smallest diagnosable load current  
Full-scale voltage of the ADC  
Resolution of the ADC  
For an example of selecting RISNS value, reference Selecting the RISNS Value in the applications section of this  
data sheet.  
9.3.2.2.1.1 High Accuracy Load Current Sense  
In many automotive modules, it is required that the high-side switch provide diagnostic information about the  
downstream load. With more complex loads, high accuracy sensing is required. A few examples follow:  
LED Lighting: In many architectures, the Body Control Module must be compatible with both incandescent  
bulbs and also LED modules. The bulb may be relatively simple to diagnose. However, the LED module will  
consume less current and also can include multiple LED strings in parallel. The same BCM is used in both  
cases, so the high-side switch must be able to accurately diagnose both load types.  
Solenoid Protection: Often solenoids are precisely controlled by low-side switches. However, in a fault  
event, the low-side switch cannot disconnect the solenoid from the power supply. A high-side switch can be  
used to continuously monitor several solenoids. If the system current becomes higher than expected, the  
high-side switch can disable the module.  
9.3.2.2.1.2 SNS Output Filter  
To achieve the most accurate current sense value, it is recommended to apply filtering to the SNS output. There  
are two methods of filtering:  
Low-Pass RC filter between the SNS pin and the ADC input. This filter is illustrated in 54 and typical  
values for the resistor and capacitor are given. The designer should select a CSNS capacitor value based on  
system requirements. A larger value will provide improved filtering. A smaller value will allow for faster  
transient response.  
The ADC and microcontroller can also be used for filtering. It is recommended that the ADC collects several  
measurements of the SNS output. The median value of this data set should be considered as the most  
accurate result. By performing this median calculation, the microcontroller is able to filter out any noise or  
outlier data.  
9.3.2.3 ST Pin  
The ST pin is an open-drain output. The pin indicates the status of the switch channel. The output is high-z when  
there is no fault condition. The output is pulled low when there is a fault condition.  
9.3.2.4 Fault Indication and SNS Mux  
The following faults will be communicated via the SNS and ST outputs:  
Switch shutdown, due to:  
Thermal Shutdown  
Current limit  
Energy limit  
Active current limiting  
Open-Load / VOUT shorted-to-battery  
Open-load / Short-to-battery are not indicated while the switch is enabled (though these conditions can be  
detected via the sense current). Hence, if there is a fault indication corresponding to an enabled channel, then it  
must be either switch shutdown or active current limiting.  
The SNS pin will only indicate the fault if the SELx = 00. Switch shutdown fault indication will occur on the ST pin  
regardless of the SELx pins; however, OL/STB fault indication is only available when the SELx = 00.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
3. SNS Mux  
INPUTS  
OUTPUTS  
DIA_EN  
SEL1  
SEL2  
FAULT DETECT(1)  
SNS  
High-z  
ST  
0
0
1
1
1
1
1
1
1
1
X
X
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
High-z  
High-z  
Pull low  
High-z  
Load current  
Not Used  
Not Used  
High-z  
Device temperature  
Supply voltage  
ISNSFH  
High-z  
Pull low  
Not Used  
Pull low  
Pull low  
Not Used  
Device temperature  
Supply voltage  
(1) Fault Detect encompasses the below conditions:  
(a) Switch shutdown and waiting for retry  
(b) Active current limiting  
(c) OL / STB  
9.3.2.5 Resistor Sharing  
Multiple high-side switch channels may use the same SNS resistor as shown in 49 below. This reduces the  
total number of passive components in the system and the number of ADC terminals that are required of the  
microcontroller.  
Microcontroller  
GPIO  
GPIO  
GPIO  
DIA_EN  
DIA_EN  
DIA_EN  
DIA_EN  
Switch 1  
Switch 2  
Switch 3  
Switch 4  
SNS  
SNS  
SNS  
SNS  
GPIO  
ADC  
RPROT  
CSNS  
RSNS  
49. Sharing RSNS Among Multiple Devices  
9.3.2.6 High-Frequency, Low Duty-Cycle Current Sensing  
Some applications will operate with a high-frequency, low duty-cycle PWM. Such applications require fast settling  
of the SNS output. For example, a 250 Hz, 5% duty cycle PWM will have an on-time of only 200 µs. The  
microcontroller ADC may sample the SNS signal after the defined settling time, tSNSION3  
.
版权 © 2018–2019, Texas Instruments Incorporated  
33  
 
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
DIA_EN  
EN  
IOUT  
SNS  
t
tSNSION3  
50. Current Sensing in Low-Duty Cycle Applications  
9.3.3 Enable Watchdog  
For some automotive applications, it is necessary to continuously verify that there is valid communication  
between the microcontroller and the switch enable pin. The purpose of this is to protect against possible  
communication faults (for example, microcontroller failure). The \ includes an optional watchdog feature which  
continuously polls the enable pin. Note that this feature is only activated for device version E, so the below  
information is only applicable to version E.  
To use the watchdog feature, the microcontroller should apply a PWM to the switch enable pin. If this PWM is  
not present (EN is high continuously for tWD) the switch will automatically be disabled. The watchdog timer is  
reset on the rising edge of EN. The fault indications are cleared upon the falling edge of EN. The following figure  
illustrates how the switch will respond to the EN PWM.  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
ENABLE  
VOUT  
Off  
t > 200µs  
ENABLE  
VOUT  
PWM (up to 99%  
duty cycle)  
5µs < t <  
20µs(1)  
t < tWD  
ENABLE  
VOUT  
On  
(100% Duty  
Cycle)  
t = tWD  
ENABLE  
VOUT  
Fault Condition  
t = tWD  
ENABLE  
VOUT  
Fault Recovery  
The watchdog feature requires that a PWM is applied to the switch enable pin. To maintain VOUT at 100% duty cycle,  
the microcontroller should periodically apply a short pulse to the enable pin. This short pulse will reset the watchdog  
timer, but will not cause the switch to turn-off. The pulse must be >5 μs to ensure that it is recognized by the device.  
There is no upper limit on the pulse width; however, if the pulse is longer than 20 μs, the switch may start to transition  
from enabled to disabled.  
51. Enable Watchdog - Overview  
52 illustrates the behavior of the watchdog feature.  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
DIA_EN  
ISNSFH  
Current  
Sense  
Current  
Sense  
SNS  
ST  
High-z  
High-z  
High-z  
High-z  
VOUT  
t = tWD  
EN  
t
Switch is disabled until a rising edge of  
EN.  
Enable pin is high for t ≥ tWD  
.
Normal operation.  
52. Enable Watchdog Timing Diagram  
9.4 Device Functional Modes  
9.4.1 Off  
Off state occurs when the device is not powered.  
9.4.2 Standby  
Standby state is a low-power mode used to reduce power consumption to the lowest level. Diagnostic  
capabilities are not available in Standby mode.  
9.4.3 Diagnostic  
Diagnostic state may be used to perform diagnostics while the switch is disabled.  
9.4.4 Standby Delay  
The Standby Delay state is entered when EN and DIA_EN are low. After tSTBY, if the EN and DIA_EN pins are  
still low, the device will go to Standby State.  
9.4.5 Active  
In Active state, the switch is enabled. The diagnostic functions may be turned on or off during Active state.  
9.4.6 Fault  
The Fault state is entered if a fault shutdown occurs (thermal shutdown, current limit, energy limit). After all faults  
are cleared, the LATCH pin is low, and the retry timer has expired, the device will transition out of Fault state. If  
the Enable pin is high, the switch will re-enable. If the Enable pin is low, the switch will remain off.  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Device Functional Modes (接下页)  
VBB < UVLO  
OFF  
ANY STATE  
VBB > UVLO  
EN = Low  
DIA_EN = Low  
t > tSTBY  
STANDBY  
EN = Low  
DIA_EN = High  
EN = Low DIA_EN = Low  
EN = High  
DIA_EN = X  
DIAGNOSTIC  
STANDBY DELAY  
EN = Low DIA_EN = High  
EN = Low  
DIA_EN = High  
EN = High  
DIA_EN = X  
ACTIVE  
EN = Low  
DIA_EN = Low  
EN = High  
DIA_EN = X  
!OT_ABS & !OT_REL & !ILIM & !ELIMIT &  
LATCH = Low & tRETRY expired  
OT_ABS || OT_REL || ILIM ||  
ELIMIT  
FAULT  
53. State Diagram  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
VBB  
DIA_EN  
SEL1  
RPROT  
RPROT  
RPROT  
RPROT  
RPROT  
CVBB  
BAT  
GND  
SEL2  
EN  
RGND  
DGND  
(1)  
Microcontroller  
(1)  
LATCH  
Load  
VOUT  
COUT  
RPU  
ST  
RPROT  
Legend  
SNS  
ADC  
RPROT  
RSNS  
Chassis GND  
Module GND  
Device GND  
CSNS  
(1) With the ground protection network, the  
device ground will be offset relative to the  
microcontroller ground.  
With the ground protection network, the device ground will be offset relative to the microcontroller ground.  
54. System Diagram  
4. Recommended External Components  
COMPONENT  
RPROT  
RSNS  
TYPICAL VALUE  
15 kΩ  
PURPOSE  
Protect microcontroller and device I/O pins  
1 kΩ  
Translate the sense current into sense voltage  
Provide pull-up source for open-drain output  
Low-pass filter for the ADC input  
RPU  
10 kΩ  
CSNS  
100 pF - 10 nF  
4.7 kΩ  
RGND  
Stabilize GND potential during turn-off of inductive load  
Protects device during reverse battery  
DGND  
BAS21 Diode  
Filtering of voltage transients (for example, ESD, ISO7637-2) and improved  
emissions  
220 nF to Device GND  
CVBB  
COUT  
100 nF to Module GND Stabilize the input supply and filter out low frequency noise.  
22 nF Filtering of voltage transients (for example, ESD, ISO7637-2)  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
10.1.1 Ground Protection Network  
As discussed in the section regarding Reverse Battery, DGND may be used to prevent excessive reverse current  
from flowing into the device during a reverse battery event. Additionally, RGND is placed in parallel with DGND if  
the switch is used to drive an inductive load. The ground protection network (DGND and RGND) may be shared  
amongst multiple high-side switches.  
A minimum value for RGND may be calculated by using the absolute maximum rating for IGND. During the reverse  
battery condition, IGND = VBB / RGND  
:
RGND VBB / IGND  
Set VBB = –13.5 V  
Set IGND = –50 mA (absolute maximum rating)  
RGND –13.5 V / –50 mA = 270 Ω  
(1)  
In this example, it is found that RGND must be at least 270 . It is also necessary to consider the power  
dissipation in RGND during the reverse battery event:  
PRGND = VBB2 / RGND  
(2)  
PRGND = (13.5 V)2 / 270 = 0.675 W  
In practice, RGND may not be rated for such a high power. In this case, a larger resistor value should be selected.  
10.1.2 Interface With Microcontroller  
The ground protection network will cause the device ground to be at a higher potential than the module ground  
(and microcontroller ground). This offset will impact the interface between the device and the microcontroller.  
Logic pin voltage will be offset by the forward voltage of the diode. For input pins (for example, EN), the designer  
must consider the VIH specification of the switch and the VOH specification of the microcontroller. For a system  
that does not include DGND, it is required that VOH > VIH. For a system that does include DGND, it is required that  
VOH > (VIH + VF). VF is the forward voltage of DGND  
.
For use of the status pin, ST, a similar consideration is necessary. The designer must consider the VOL,  
ST  
specification and the VIL specification of the microcontroller. For a system that includes DGND, it is required that  
VOL, ST + VF < VIL, µC  
.
The sense resistor, RSNS, should be terminated to the microcontroller ground. In this case, the ADC can  
accurately measure the SNS signal even if there is an offset between the microcontroller ground and the device  
ground.  
10.1.3 I/O Protection  
RPROT is used to protect the microcontroller I/O pins during system-level voltage transients such as ISO pulses or  
reverse battery. A large resistance value ensures that current through the pin is limited to a safe level.  
10.1.4 Inverse Current  
Inverse current occurs when 0 V < VBB < VOUT. In this case, current may flow from VOUT to VBB. Inverse current  
cannot be caused by a purely resistive load. However, a capacitive or inductive load can cause inverse current.  
For example, if there is a significant amount of load capacitance and the VBB node has a transient droop, VOUT  
may be greater than VBB  
.
will not detect inverse current. When the switch is enabled, inverse current will pass through the switch. When  
the switch is disabled, inverse current may pass through the MOSFET body diode. The device will continue  
operating in the normal manner during an inverse current event.  
10.1.5 Loss of GND  
The ground connection may be lost either on the device level or on the module level. If the ground connection is  
lost, both switches will be disabled. If the switch was already disabled when the ground connection was lost, the  
switch will remain disabled. When the ground is reconnected, normal operation will resume.  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
10.1.6 Automotive Standards  
10.1.6.1 ISO7637-2  
is tested according to the ISO7637-2:2011 (E) standard. The test pulses are applied both with the switches  
enabled and disabled. The test setup includes only the DUT and minimal external components: CVBB, COUT  
DGND, and RGND  
,
.
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as: “The function does not  
perform as designed during the test but returns automatically to normal operation after the test”.  
5. ISO7637-2:2011 (E) Results  
TEST PULSE SEVERITY LEVEL WITH  
STATUS II FUNCTIONAL PERFORMANCE  
MINIMUM NUMBER  
OF PULSES OR TEST  
TIME  
BURST CYCLE / PULSE REPETITION TIME  
TEST  
PULSE  
LEVEL  
US  
MIN  
0.5 s  
0.20  
MAX  
--  
1
IV  
III  
IV  
III  
III  
–150 V  
+55 V  
+10 V  
–165 V  
+112 V  
500 pulses  
500 pulses  
10 pulses  
1 hour  
2a  
2b  
3a  
3b  
5 s  
0.5 s  
90 ms  
90 ms  
5 s  
100 ms  
100 ms  
1 hour  
10.1.6.2 AEC – Q100-012 Short Circuit Reliability  
The is tested according to the AEC - Q100-012 Short Circuit Reliability standard. This test is performed to  
demonstrate the robustness of the device against VOUT short-to-ground events. Test results are summarized in  
6. For further details, refer to the AEC - Q100-012 standard document or TI's Short Circuit Reliability Test for  
Smart Power Switches application report.  
Test conditions:  
LATCH = 0 V  
TA = –40ºC  
10 units from 3 separate lots for a total of 30 units  
Lsupply = 5 μH, Rsupply = 10 mΩ  
VBB = 14 V  
Test procedure:  
Parametric data is collected on each unit pre-stress  
Each unit is enabled into a short circuit with the required short circuit cycles or duration as specified  
Parametric data is re-collected on each unit post-stress to verify that no parametric shift is observed  
The cold repetitive test is run at –40ºC which is the worst case condition for the . The current limit threshold is  
highest at cold temperature; hence, the short-circuit pulse contains more energy at cold temperature. The cold  
repetitive test refers to the device being given time to cool down between pulses, within than being run at a cold  
temperature. The load short circuit is the worst case situation, since the energy stored in the cable inductance  
can cause additional harm. The fast response of the device ensures current limiting occurs quickly and at a  
current close to the load short condition. In addition, the hot repetitive test is performed as well.  
6. AEC - Q100-012 Test Results  
DEVICE  
VERSION  
NO. OF  
CYCLES  
NO. OF  
UNITS  
NO. OF  
FAILS  
TEST  
LOCATION OF SHORT  
Load Short Circuit, Lshort = 5 μH,  
Rshort = 100 mΩ, TA = –40ºC  
D
200 k  
30  
0
Cold Repetitive - Long Pulse  
Hot Repetitive - Long Pulse  
Terminal Short Circuit, Lshort = 5 μH,  
Rshort = 100 mΩ, TA = 25ºC  
D
100 hours  
30  
0
40  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
10.1.7 Thermal Information  
When outputting current, the will heat up due to the power dissipation. 55 shows the transient thermal  
impedance curve that can be used to determine the device temperature during 1 W pulse of a given length.  
35  
30  
25  
20  
15  
10  
5
0
0.0001  
0.001 0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
Time (s)  
1
2
3 4 567 10  
20 30 50 100 200 400  
TPS1  
55. Transient Thermal Impedance  
10.2 Typical Application  
This application example demonstrates how the device can be used to power resistive heater loads as in seat  
heaters. 56 shows a typical application where the load is a resistive seat heater. This document highlights the  
basics of this type of application, however for a more detailed discussion reference TI's Smart Power Switch Seat  
Heater Reference Design.  
DIA_EN  
SEL1  
SEL2  
µC  
SNS  
ST  
LATCH  
EN  
TPS1HA08-Q1  
12-V Battery  
VBB  
VOUT  
GND  
Load  
56. Block Diagram for Powering Heater Loads  
版权 © 2018–2019, Texas Instruments Incorporated  
41  
 
 
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
10.2.1 Design Requirements  
For this design example, use the input parameters shown in 7.  
7. Design Parameters  
DESIGN PARAMETER  
VBB  
EXAMPLE VALUE  
12.8 V  
90 W max  
Heater Load  
Load Current Sense  
Ambient temperature  
RθJA  
100 mA to 20 A  
85°C  
32.8°C/W (depending on PCB)  
10.2.2 Detailed Design Procedure  
10.2.2.1 Thermal Considerations  
The DC current under maximum load power condition will be around 7.03 A. Power dissipation in the switch is  
calculated in 公式 3. RON is assumed to be 20 mΩ because this is the maximum specification. In practice, RON  
will be lower.  
PFET = I2 × RON  
PFET = (7.03 A)2 × 20 mΩ = 0.988 W  
(3)  
(4)  
The junction temperature of the device can be calculated using 公式 5 and the RθJA value from the Specifications  
section.  
TJ = TA + RθJA × PFET  
(5)  
TJ = 85°C + 32.8°C/W × 0.988 W = 117.4°C  
The maximum junction temperature rating for device is TJ = 150°C. Based on the above example calculation, the  
device temperature will stay below the maximum rating.  
10.2.2.2 Diagnostics  
If the resistive heating load is disconnected (heater malfunction), an alert is desired. Open-load detection can be  
performed in the switch-enabled state via the current sense feature of the device. Alternatively, under open load  
condition in off-state with diagnostics enabled, the current in the SNS pin will be the fault current and the can be  
detected from the sense voltage measurement.  
10.2.2.2.1 Selecting the RISNS Value  
8 shows the requirements for the load current sense in this application. The KSNS value is specified for the  
device and can be found in the Specifications section.  
8. RSNS Calculation Parameters  
PARAMETER  
EXAMPLE VALUE  
Current Sense Ratio (KSNS  
)
4600  
20 A  
Largest diagnosable load current  
Smallest diagnosable load current  
Full-scale ADC voltage  
50 mA  
5 V  
ADC resolution  
10 bit  
The load current measurement requirements of 20 A ensures that current can be sensed up to the 20 A current  
limit, while the low level of 100 mA allows for accurate measurement of low load currents.  
The RSNS resistor value should be selected such that the largest diagnosable load current puts VSNS at about  
90% of the ADC full-scale. With this design, any ADC value above 90% can be considered a fault. Additionally,  
the RSNS resistor value should ensure that the smallest diagnosable load current does not cause VSNS to fall  
below 1 LSB of the ADC. With the given example values, a 1-ksense resistor satisfies both requirements  
shown in 9.  
42  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
9. VSNS Calculation  
LOAD (A)  
0.050  
SENSE RATIO  
4600  
ISNS (mA)  
RSNS ()  
1000  
VSNS (V)  
0.011  
% OF 5-V ADC  
0.22%  
0.011  
4.348  
20.000  
4600  
1000  
4.348  
87%  
10.2.3 Application Curves  
57 shows the behavior of the in this application when the MCU provides an enable pulse to beginning heating  
the resistive element. Shortly after the EN pin goes high, the load current begins to flow and the SNS pin  
measures the output current.  
57. Heater Turn-on Time  
By measuring the voltage on the SNS pin, the can communicate back to the system MCU what the load current  
is. 58 shows that when the seat heater approaches full load and IOUT jumps from a low load current of 1 A up  
to a 5 A load current, the load step is mirrored on the SNS pin.  
版权 © 2018–2019, Texas Instruments Incorporated  
43  
 
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
58. SNS Response During Heater Load Step  
One common concern in these type of applications is that the heating element can accidentally lose connection,  
creating an open load situation. In this case, it is ideal for the to recognize that the load has been removed and  
report a FLT to the MCU. 59 shows the behavior of the when there is no load attached. As soon as the  
DIAG_EN pin is engaged, the SNS output goes high and the ST output engages low. By monitoring these pins,  
the MCU can recognize there is a fault and notify the user that maintenance is required.  
59. Open Load Detection If Heating Element is Missing  
44  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
Importantly, the will also protect the system in the event of a short-circuit. 60 shows the behavior of the device  
if it is enabled into a short circuit condition. If this is using the device option C, the current will be clamped to the  
current limit ICL until it hits an over temperature event, at which point it will shut down. In this way, the system is  
protected from unchecked overcurrent in the event of a short circuit.  
30  
25  
20  
15  
10  
5
24  
20  
16  
12  
8
IVBB (A)  
ST (V)  
SNS (V)  
EN (V)  
4
0
0
-5  
-4  
0.00075  
0
0.00015  
0.0003  
0.00045  
0.0006  
Time (s)  
C_Pe  
60. Overcurrent Behavior During Short Circuit Event  
11 Power Supply Recommendations  
The is designed to operate in a 12-V automotive system. The nominal supply voltage range is 8 V to 18 V. The  
device is also designed to withstand voltage transients beyond this range. When operating outside of the nominal  
voltage range, the device will exhibit normal functional behavior. However, parametric specifications may not be  
guaranteed.  
10. Operating Voltage Range  
VBB Voltage Range  
Note  
Transients such as cold crank and start-stop, functional operation  
guaranteed but some parametric specifications may not apply. The  
device is completely short-circuit protected up to 125°C  
3 V to 8 V  
Nominal supply voltage, all parametric specifications apply. The  
device is completely short-circuit protected up to 125°C  
8 V to 18 V  
Transients such as jump-start and load-dump, functional operation  
guaranteed but some parametric specifications may not apply  
18 V to 40 V  
版权 © 2018–2019, Texas Instruments Incorporated  
45  
 
TPS1HA08-Q1  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
To achieve optimal thermal performance, connect the exposed pad to a large copper pour. On the top PCB layer,  
the pour may extend beyond the pad dimensions as shown in the example below. In addition to this, it is  
recommended to also have a VBB plane either on one of the internal PCB layers or on the bottom layer. Vias  
should connect this plane to the top VBB pour.  
has 6 VOUT pins. All VOUT pins must be shorted together on the PCB. Additionally, the layout should ensure that  
the current path is symmetrical for both sides of the device. If the path is not symmetrical, there will be some  
imbalance in current spreading across the power FET. This can impact accuracy of the current sense  
measurement.  
12.2 Layout Example  
GND  
SNS  
DIA_EN  
SEL2  
SEL1  
NC  
To µC  
LATCH  
EN  
To µC  
VBB  
ST  
NC  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
61. PWP Layout Example  
46  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS1HA08-Q1  
www.ti.com.cn  
ZHCSJ60D NOVEMBER 2018REVISED DECEMBER 2019  
13 器件和文档支持  
13.1 器件支持  
13.1.1 相关文档  
请参阅如下相关文档:  
TI《如何利用智能高侧开关驱动电感、电容和照明负载》  
《智能电源开关的短路可靠性测试》  
TI《智能电源开关座椅加热器参考设计》  
适用于高侧开关的反向电池保护  
13.2 商标  
All trademarks are the property of their respective owners.  
13.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
47  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS1HA08AQPWPRQ1  
TPS1HA08BQPWPRQ1  
TPS1HA08CQPWPRQ1  
TPS1HA08DQPWPRQ1  
TPS1HA08EQPWPRQ1  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
16  
16  
16  
16  
16  
3000  
3000  
3000  
3000  
3000  
RoHS-Exempt  
& Green  
NIPDAU  
Level-3-260C-168HRS  
Level-3-260C-168HRS  
Level-3-260C-168HRS  
Level-3-260C-168HRS  
Level-3-260C-168HRS  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1HA08A  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PWP  
RoHS-Exempt  
& Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
1HA08B  
1HA08C  
1HA08D  
1HA08E  
PWP  
RoHS-Exempt  
& Green  
PWP  
RoHS-Exempt  
& Green  
PWP  
RoHS-Exempt  
& Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS1HA08AQPWPRQ1 HTSSOP PWP  
TPS1HA08BQPWPRQ1 HTSSOP PWP  
TPS1HA08CQPWPRQ1 HTSSOP PWP  
TPS1HA08DQPWPRQ1 HTSSOP PWP  
TPS1HA08EQPWPRQ1 HTSSOP PWP  
16  
16  
16  
16  
16  
3000  
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
6.9  
6.9  
6.9  
6.9  
6.9  
5.6  
5.6  
5.6  
5.6  
5.6  
1.6  
1.6  
1.6  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS1HA08AQPWPRQ1  
TPS1HA08BQPWPRQ1  
TPS1HA08CQPWPRQ1  
TPS1HA08DQPWPRQ1  
TPS1HA08EQPWPRQ1  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
PWP  
16  
16  
16  
16  
16  
3000  
3000  
3000  
3000  
3000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS1HA08AQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08BQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08CQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08DQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HA08EQPWPRQ1

具有可选择电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HB08-Q1

具有可调节电流限制的 40V、8mΩ、汽车类单通道智能高侧开关
TI

TPS1HB08AQPWPRQ1

具有可调节电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HB08BQPWPRQ1

具有可调节电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HB08FQPWPRQ1

具有可调节电流限制的 40V、8mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HB16-Q1

具有可调节电流限制的 40V、16mΩ、汽车类单通道智能高侧开关
TI

TPS1HB16AQPWPRQ1

具有可调节电流限制的 40V、16mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS1HB16BQPWPRQ1

具有可调节电流限制的 40V、16mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125
TI