TLV571_14 [TI]

2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT PARALLEL ANALOG-TO-DIGITAL CONVERTER;
TLV571_14
型号: TLV571_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT PARALLEL ANALOG-TO-DIGITAL CONVERTER

文件: 总28页 (文件大小:420K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
features  
applications  
Fast Throughput Rate: 1.25 MSPS at 5 V,  
625 KSPS at 3 V  
Mass Storage and HDD  
Automotive  
Wide Analog Input: 0 V to AV  
DD  
Digital Servos  
Differential Nonlinearity Error: < ± 0.5 LSB  
Process Control  
Integral Nonlinearity Error: < ± 0.5 LSB  
Single 2.7-V to 5.5-V Supply Operation  
Low Power: 12 mW at 3 V and 35 mW at 5 V  
Auto Power Down of 1 mA Max  
Software Power Down: 10 µA Max  
Internal OSC  
General-Purpose DSP  
Image Sensor Processing  
DW OR PW PACKAGE  
(TOP VIEW)  
CS  
WR  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
NC  
AIN  
2
Hardware Configurable  
RD  
3
AV  
DD  
4
CLK  
AGND  
REFM  
REFP  
CSTART  
A1/D7  
A0/D6  
D5  
DSP and Microcontroller Compatible  
Parallel Interface  
5
DGND  
6
DV  
DD  
7
INT/EOC  
DGND  
DGND  
D0  
Binary/Twos Complement Output  
8
Hardware Controlled Extended Sampling  
Hardware or Software Start of Conversion  
9
10  
11  
12  
D1  
D2  
D4  
D3  
description  
The TLV571 is an 8-bit data acquisition system  
that combines a high-speed 8-bit ADC and a  
NC – No internal connection  
parallel interface. The device contains two on-chip control registers allowing control of software conversion start  
and power down via the bidirectional parallel port. The control registers can be set to a default mode using a  
dummy RD while WR is tied low allowing the registers to be hardware configurable.  
The TLV571 operates from a single 2.7-V to 5.5-V power supply. It accepts an analog input range from 0 V to  
AV  
and digitizes the input at a maximum 1.25 MSPS throughput rate at 5 V. The power dissipations are only  
DD  
12 mW with a 3-V supply or 35 mW with a 5-V supply. The device features an auto power-down mode that  
automatically powers down to 1 mA 50 ns after conversion is performed. In software power-down mode, the  
ADC is further powered down to only 10 µA.  
Very high throughput rate, simple parallel interface, and low power consumption make the TLV571 an ideal  
choice for high-speed digital signal processing.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
24 TSSOP  
(PW)  
24 SOIC  
(DW)  
40°C to 85°C  
TLV571IPW  
TLV571IDW  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
functional block diagram  
REFP  
REFM  
DV  
DD  
AV  
DD  
AIN  
D0 – D5  
Three  
State  
Latch  
8-BIT  
SAR ADC  
D6/A0  
D7/A1  
Internal  
Clock  
MUX  
CLK  
CS  
RD  
WR  
Input Registers  
and Control Logic  
INT/EOC  
CSTART  
AGND  
DGND  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AGND  
AIN  
AV  
NO.  
21  
Analog ground  
23  
I
ADC analog input  
22  
Analog supply voltage, 2.7 V to 5.5 V  
DD  
A0/D6  
16  
I/O Bidirectional 3-state data bus. D6/A0 along with D7/A1 is used as address lines to access CR0 and CR1 for  
initialization.  
A1/D7  
17  
I/O Bidirectional 3-state data bus. D7/A1 along with D6/A0 is used as address lines to access CR0 and CR1 for  
initialization.  
CLK  
4
1
I
I
I
External clock input  
CS  
Chip select. A logic low on CS enables the TLV571.  
CSTART  
18  
Hardware sample and conversion start input. The falling edge of CSTART starts sampling and the rising edge  
of CSTART starts conversion.  
DGND  
5, 8, 9  
Digital ground  
DV  
6
1015  
7
Digital supply voltage, 2.7 V to 5.5 V  
DD  
D0 – D5  
I/O Bidirectional 3-state data bus  
O
End-of-conversion/interrupt  
INT/EOC  
NC  
24  
Not connected  
3
I
I
I
Read data. A falling edge on RD enables a read operation on the data bus when CS is low.  
Lower reference voltage (nominally ground). REFM must be supplied or REFM pin must be grounded.  
RD  
REFM  
REFP  
20  
19  
Upper reference voltage (nominally AV ). The maximum input voltage range is determined by the difference  
DD  
between the voltage applied to REFP and REFM.  
2
I
Write data. A rising edge on the WR latches in configuration data when CS is low. When using software  
conversion start, a rising edge on WR also initiates an internal sampling start pulse. When WR is tied to ground,  
the ADC in nonprogrammable (hardware configuration mode).  
WR  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
detailed description  
analog-to-digital SAR converter  
Ain  
Charge  
Redistribution  
DAC  
_
+
SAR  
ADC Code  
Register  
REFM  
Control  
Logic  
Figure 1  
The TLV571 is a successive-approximation ADC utilizing a charge redistribution DAC. Figure 1 shows a  
simplified version of the ADC.  
The sampling capacitor acquires the signal on Ain during the sampling period. When the conversion process  
starts, theSARcontrollogicandchargeredistributionDACareusedtoaddandsubtractfixedamountsofcharge  
from the sampling capacitor to bring the comparator into a balanced condition. When the comparator is  
balanced, the conversion is complete and the ADC output code is generated.  
sampling frequency, f  
s
The TLV571 requires 16 CLKs for each conversion, therefore the equivalent maximum sampling frequency  
achievable with a given CLK frequency is:  
f
= (1/16) f  
CLK  
s(max)  
The TLV571 is software configurable. The first two MSB bits, D(7,6) are used to address which register to set.  
The remaining six bits are used as control data bits. There are two control registers, CR0 and CR1, that are user  
configurable. All of the register bits are written to the control register during write cycles. A description of the  
control registers is shown in Figure 2.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
detailed description (continued)  
control registers  
A1  
A0  
D5  
D4  
D3  
D3  
D2  
D2  
D1  
D0  
Control Register Zero (CR0)  
D5 D4  
STARTSEL PROGEOC CLKSEL  
D1  
D0  
Don’t Care  
A(1:0)=00  
SWPWDN Don’t Care  
0:  
0:  
0:  
0:  
HARDWARE INT  
START  
NORMAL  
Internal  
Clock  
Don’t Care  
Don’t Care  
(CSTART)  
1:  
1:  
EOC  
Powerdown  
1:  
1:  
SOFTWARE  
START  
External  
Clock  
Control Register One (CR1)  
D5  
Reserved  
D4  
D1  
D0  
Reserved  
D3  
D2  
A(1:0)=01  
OSCSPD 0 Reserved 0 Reserved OUTCODE  
0:  
0:  
0:  
0:  
0:  
0:  
INT. OSC.  
SLOW  
1:  
INT. OSC.  
FAST  
Reserved Binary  
Bit,  
Always  
Reserved  
Bit  
Always  
Write 0  
Reserved  
Bit  
Always  
Write 0  
Reserved  
Bit,  
Always  
Write 0  
Write 0  
1:  
2’s  
Complement  
Figure 2. Input Data Format  
hardware configuration option  
The TLV571 can configure itself. This option is enabled when the WR pin is tied to ground and a dummy RD  
signal is applied. The ADC is now fully configured. Zeros or default values are applied to both control registers.  
The ADC is configured ideally for 3-V operation, which means the internal OSC is set at 10 MHz and hardware  
start of conversion using CSTART.  
ADC conversion modes  
The TLV571 provides two start of conversion modes. Table 1 explains these modes in more detail.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
detailed description (continued)  
Table 1. Conversion Modes  
START OF  
CONVERSION  
OPERATION  
COMMENTS – FOR INPUT  
Hardware start Repeated conversions from AIN  
CSTART rising edge must be applied  
a minimum of 5 ns before or after CLK  
rising edge.  
(CSTART)  
CSTART falling edge to start sampling  
CR0.D5 = 0  
CSTART rising edge to start conversion  
If in INT mode, one INT pulse generated after each conversion  
If in EOC mode, EOC will go high to low at start of conversion, and return high  
at end of conversion.  
Software start  
CR0.D5 = 1  
Repeated conversions from AIN  
WR rising edge to start sampling initially. Thereafter, sampling occurs at the edge must be a minimum 5 ns before  
With external clock, WR and RD rising  
rising edge of RD.  
or after CLK rising edge.  
Conversion begins after 6 clocks after sampling has begun. Thereafter, if in INT  
mode, one INT pulse generated after each conversion  
If in EOC mode, EOC will go high to low at start of conversion and return high at  
end of conversion.  
configure the device  
The device can be configured by writing to control registers CR0 and CR1.  
Table 2. TLV571 Programming Examples  
INDEX  
REGISTER  
D5  
D4  
D3  
D2  
D1  
D0  
COMMENT  
D7  
D6  
EXAMPLE1  
CR0  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
Normal, INT OSC  
Binary  
CR1  
EXAMPLE2  
CR0  
0
0
0
1
0
0
1
0
1
0
1
0
0
1
0
0
Power down, EXT OSC  
2’s complement output  
CR1  
power down  
The TLV571 offers two power down modes, auto power down and software power down. This device will  
automaticallyproceedtoautopowerdownmodeifRDisnotpresentoneclockafterconversion. Softwarepower  
down is controlled directly by the user by pulling CS to DV  
.
DD  
Table 3. Power Down Modes  
SOFTWARE POWER DOWN  
(CS = DV  
PARAMETERS/MODES  
AUTO POWER DOWN  
)
DD  
10 µA  
Maximum power down dissipation current  
Comparator  
1 mA  
Power down  
Power down  
Saved  
Power down  
Power down  
Saved  
Clock buffer  
Control registers  
Minimum power down time  
Minimum resume time  
1 CLK  
2 CLK  
1 CLK  
2 CLK  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
detailed description (continued)  
reference voltage input  
The TLV571 has two reference input pins: REFP and REFM. The voltage levels applied to these pins establish  
the upper and lower limits of the analog inputs to produce a full-scale and zero-scale reading respectively. The  
values of REFP, REFM, and the analog input should not exceed the positive supply or be less than GND  
consistent with the specified absolute maximum ratings. The digital output is at full scale when the input signal  
is equal to or higher than REFP and is at zero when the input signal is equal to or lower than REFM.  
sampling/conversion  
All sampling, conversion, and data output in the device are started by a trigger. This could be the RD, WR, or  
CSTART signal depending on the mode of conversion and configuration. The rising edge of RD, WR, and  
CSTART signal are extremely important, since they are used to start the conversion. These edges need to stay  
close to the rising edge of the external clock (if it is used as CLK). The minimum setup and hold time with respect  
to the rising edge of the external clock should be 5 ns minimum. When the internal clock is used, this is not an  
issue since these two edges will start the internal clock automatically. Therefore, the setup time is always met.  
Software controlled sampling lasts 6 clock cycles. This is done via the CLK input or the internal oscillator if  
enabled. The input clock frequency can be 1 MHz to 20 MHz, translating into a sampling time from 0.6 µs to  
0.3 µs. The internal oscillator frequency is 9 MHz minimum (ocillator frequency is between 9 MHz to 22 MHz),  
translating into a sampling time from 0.6 µs to 0.3 µs. Conversion begins immediately after sampling and lasts  
10 clock cycles. This is again done using the external clock input (1 MHz–20 MHz) or the internal oscillator  
(9 MHz minimum) if enabled. Hardware controlled sampling, via CSTART, begins on falling CSTART lasts the  
length of the active CSTART signal. This allows more control over the sampling time, which is useful when  
sampling sources with large output impedances. On rising CSTART, conversion begins. Conversion in  
hardwarecontrolledmodealsolasts10clockcycles. Thisisdoneusingtheexternalclockinput(1MHz–20MHz)  
or the internal oscillator (9 MHz minimum) as is the case in software controlled mode.  
ExtClk  
t
5 ns  
h(WRL_EXTCLKH)  
t
5 ns  
su(WRH_EXTCLKH)  
WR  
RD  
OR  
OR  
t
5 ns  
h(RDL_EXTCLKH)  
t
5 ns  
su(RDH_EXTCLKH)  
t
5 ns  
h(CSTARTL_EXTCLKH)  
t
su(CSTARTH_EXTCLKH)  
t
5 ns  
d(EXTCLK_CSTARTL)  
5 ns  
CSTART  
NOTE: t = setup time, t = hold time  
su  
h
Figure 3. Trigger Timing – Software Start Mode Using External Clock  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
start of conversion mechanism  
There are two ways to convert data: hardware and software. In the hardware conversion mode the ADC begins  
sampling at the falling edge of CSTART and begins conversion at the rising edge of CSTART. Software start  
mode ADC samples for 6 clocks, then conversion occurs for ten clocks. The total sampling and conversion  
process lasts only 16 clocks in this case. If RD is not detected during the next clock cycle, the ADC automatically  
proceeds to a power-down state. Data is valid on the rising edge of INT in both conversion modes.  
hardware CSTART conversion  
external clock  
With CS low and WR low, data is written into the ADC. The sampling begins at the falling edge of CSTART and  
conversion begins at the rising edge of CSTART. At the end of conversion, EOC goes from low to high, telling  
the host that conversion is ready to be read out. The external clock is active and is used as the reference at all  
times. With this mode, it is required that CSTART is not applied at the rising edge of the clock (see Figure 4).  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
start of conversion mechanism (continued)  
CLK  
t
su(CSL_WRL)  
t
t
t
h(WRH_CSH)  
su(CSL_RDL)  
su(CSL_RDL)  
CS  
WR  
t
t
h(RDH_CSH)  
d(CSH_CSTARTL)  
t
c
t
c
(10 CLKs)  
t
(sample)  
t
(sample)  
CSTART  
RD  
t
su(DAV_WRH)  
t
t
h(WRH_DAV)  
dis(RDH_DAV)  
D[0:7]  
INT  
Config  
Data  
ADC  
ADC  
t
t
en(RDL_DAV)  
en(RDL_DAV)  
OR  
EOC  
Auto Powerdown  
Figure 4. Input Conversion – Hardware CSTART, External Clock  
internal clock  
With CS low and WR low, data is written into the ADC. The sampling begins at the falling edge of CSTART, and conversion begins at the rising  
edge of CSTART. The internal clock turns on at the rising edge of CSTART. The internal clock is disabled after each conversion.  
t
su(CSL_WRL)  
t
t
t
su(CSL_RDL)  
h(WRH_CSH)  
su(CSL_RDL)  
CS  
t
d(CSH_CSTARTL)  
WR  
t
(STARTOSC)  
t
t
h(RDH_CSH)  
t
(sample)  
c
CSTART  
INTCLK  
10  
0
1
9
t
(STARTOSC)  
RD  
t
su(DAV_WRH)  
t
t
dis(RDH_DAV)  
h(WRH_DAV)  
Config  
Data  
D[0:7]  
INT  
ADC  
Data  
ADC  
Data  
t
t
en(RDL_DAV)  
en(RDL_DAV)  
t
c
OR  
EOC  
Auto Powerdown  
Auto Powerdown  
Figure 5. Input Conversion – Hardware CSTART, Internal Clock  
software START conversion  
external clock  
With CS low and WR low, data is written into the ADC. Sampling begins at the rising edge of WR. The conversion process begins 6 clocks  
after sampling begins. At the end of conversion, the INT goes low telling the host that conversion is ready to be read out. EOC B low during  
the conversion. The external clock is active and used as the reference at all times. With this mode, WR and RD should not be applied at the  
rising edge of the clock (see Figure 3).  
0
1
5
6
7
15  
16  
0
4
5
15  
CLK  
t
t
su(CSL_WRL)  
t
su(CSL_RDL)  
t
t
h(WRH_CSH)  
h(RDH_CSH)  
su(CSL_RDL)  
CS  
WR  
RD  
t
t
c
(sample)  
t
su(DAV_WRH)  
t
t
t
c
(sample)  
t
h(WRH_DAV)  
dis(RDH_DAV)  
Config  
Data  
D[0:7]  
INT  
ADC Data  
ADC Data  
t
t
en(RDL_DAV)  
en(RDL_DAV)  
OR  
EOC  
Auto Powerdown  
Figure 6. Input Conversion – Software Start, External Clock  
software START conversion (continued)  
internal clock  
With CS low and WR low, data is written into the ADC. Sampling begins at the rising edge of WR. Conversion begins 6 clocks after sampling  
begins. The internal clock begins at the rising edge of WR. The internal clock is disabled after each conversion. Subsequent sampling begins  
at the rising edge of RD.  
t
su(CSL_RDL)  
t
t
h(RDH_CSH)  
su(CSL_WRL)  
CS  
t
h(WRH_CSH)  
WR  
RD  
t
t
(STARTOSC)  
(STARTOSC)  
0
4
5
6
15  
0
4
5
15  
INTCLK  
t
t
(sample)  
(sample)  
t
su(DAV_WRH)  
t
t
t
t
dis(RDH_DAV)  
h(WRH_DAV)  
c
c
Config  
Data  
ADC  
Data  
D[0:7]  
INT  
ADC  
t
en(RDL_DAV)  
OR  
EOC  
Auto Powerdown  
Auto Powerdown  
Figure 7. Input Conversion – Software Start, Internal Clock  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
software START conversion (continued)  
system clock source  
The TLV571 internally derives multiple clocks from the SYSCLK for different tasks. SYSCLK is used for most  
conversion subtasks. The source of SYSCLK is programmable via control register zero, bit 3. The source of  
SYSCLK is changed at the rising edge of WR of the cycle when CR0.D3 is programmed.  
internal clock (CR0.D3 = 0, SYSCLK = internal OSC)  
The TLV571 has a built-in 10 MHz OSC. When the internal OSC is selected as the source of SYSCLK, the  
internal clock starts with a delay (one half of the OSC period max) after the falling edge of the conversion trigger  
(either WR, RD, or CSTART). The OSC speed can be set to 10 ± 1 MHz or 20 ± 2 MHz by setting register bit  
CR1.D4.  
external clock (CR0.D3 = 1, SYSCLK = external clock)  
The TLV571 is designed to accept an external clock input (CMOS/TTL logic) with frequencies from 1 MHz to  
20 MHz.  
host processor interface  
The TLV571 provides a generic high-speed parallel interface that is compatible with high-performance DSPs  
and general-purpose microprocessors. The interface includes D(0–7), INT/EOC, RD, and WR.  
output format  
The data output format is unipolar (code 0 to 255). The output code format can be either binary or twos  
complement by setting register bit CR1.D1.  
power up and initialization  
After power up, CS must be low to begin an I/O cycle. INT/EOC is initially high. The TLV571 requires two write  
cycles to configure the two control registers. The first conversion after the device has returned from the power  
down state may be invalid and should be disregarded.  
definitions of specifications and terminology  
integral nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale.  
The point used as zero occurs 1/2 LSB before the first code transition. The full-scale point is defined as level  
1/2 LSB beyond the last code transition. The deviation is measured from the center of each particular code to  
the true straight line between these two points.  
differential nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value.  
A differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
zero offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
gain error  
The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last transition  
should occur at an analog value 1 1/2 LSB below the nominal full scale. Gain error is the deviation of the actual  
difference between first and last code transitions and the ideal difference between first and last code transitions.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
software START conversion (continued)  
signal-to-noise ratio + distortion (SINAD)  
Signal-to-noise ratio + disortion is the ratio of the rms value of the measured input signal to the rms sum of all  
other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in decibels.  
effective number of bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
N = (SINAD – 1.76)/6.02  
it is possible to get a measure of performance expressed as N, the effective number of bits. Thus, the effective  
number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its  
measured SINAD.  
total harmonic distortion (THD)  
Total harmonic distortion is the ratio of the rms sum of the first six harmonic components to the rms value of the  
measured input signal and is expressed as a percentage or in decibels.  
spurious free dynamic range (SFDR)  
Spurious free dynamic range is the difference in dB between the rms amplitude of the input signal and the peak  
spurious signal.  
DSP interface  
The TLV571 is a 8-bit single input channel analog-to-digital converter with throughput up to 1.25 MSPS at 5 V  
and up to 625 KSPS at 3 V. To achieve 1.25 MSPS throughput, the ADC must be clocked at 20 MHz. Likewise  
to achieve 625 KSPS throughout, the ADC must be clocked at 10 MHz. The TLV571 can be easily interfaced  
to microcontrollers, ASICs, and DSPs. Figure 8 shows the pin connections to interface the TLV571 to the  
TMS320C6x DSP.  
TMS320C6X  
A0–A15  
TLV571  
Address  
Decoder  
EN  
AIN  
CS  
REF  
WR  
HW  
HR  
REFP  
REFM  
RD  
EOC  
D0D7  
INTx  
D0D15  
Figure 8. TMS320C6x DSP Interface  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
grounding and decoupling considerations  
General practices should apply to the PCB design to limit high frequency transients and noise that are fed back  
into the supply and reference lines. This requires that the supply and reference pins be sufficiently bypassed.  
In most cases 0.1-µF ceramic chip capacitors are adequate to keep the impedance low over a wide frequency  
range. Since their effectiveness depends largely on the proximity to the individual supply pin, they should be  
placed as close to the supply pins as possible.  
To reduce high frequency and noise coupling, it is highly recommended that digital and analog grounds be  
shorted immediately outside the package. This can be accomplished by running a low impedance line between  
DGND and AGND under the package.  
DV  
AV  
DD  
DD  
TLV571  
AV  
DD  
100 nF  
DV  
DD  
AGND  
REFP  
REFM  
V
REFP  
100 nF  
V
REFM  
DGND  
100 nF  
Figure 9. Placement for Decoupling Capacitors  
power supply ground layout  
Printed-circuit boards that use separate analog and digital ground planes offer the best system performance.  
Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected  
together at the low-impedance power-supply source. The best ground connection may be achieved by  
connecting the ADC AGND terminal to the system analog ground plane making sure that analog ground  
currents are well managed.  
Driving Source  
TLV571  
V
V
R
R
C
= Input Voltage at AIN  
= External Driving Source Voltage  
= Source Resistance  
I
S
s
R
R
s
i(ADC)  
V
I
AIN  
= Input Resistance of ADC  
= Input Capacitance  
i(ADC)  
V
S
V
C
i
V
C
= Capacitance Charging Voltage  
C
i
15 pF  
Driving source requirements:  
Noise and distortion for the source must be equivalent to the resolution of the converter.  
R must be real at the input frequency.  
s
Figure 10. Equivalent Input Circuit Including the Driving Source  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
simplified analog input analysis  
Using the equivalent circuit in Figure 10, the time required to charge the analog input capacitance from 0 to V  
S
within 1/2 LSB, t (1/2 LSB), can be derived as follows.  
ch  
The capacitance charging voltage is given by:  
–t  
R C  
t
ch  
1–e  
i
V
V
C(t)  
R = R + R  
i
S
Where  
(1)  
t
s
R = R  
i
i(ADC)  
t
= Charge time  
ch  
The input impedance R is 718 at 5 V, and is higher (~ 1.25 k) at 2.7 V. The final voltage to 1/2 LSB is given  
i
by:  
(2)  
V (1/2 LSB) = V – (V /512)  
C
S
S
Equating equation 1 to equation 2 and solving for cycle time t gives:  
c
–t  
R C  
t
ch  
1–e  
i
V
V
512  
V
S
S
S
(3)  
and time to change to 1/2 LSB (minimum sampling time) is:  
(1/2 LSB) = R × C × ln(512)  
t
ch  
t
i
Where  
ln(512) = 6.238  
Therefore, with the values given, the time for the analog input signal to settle is:  
(1/2 LSB) = (R + 718 ) × 15 pF × ln(512)  
(4)  
(5)  
(6)  
t
ch  
s
This time must be less than the converter sample time shown in the timing diagrams. Which is 6x SCLK.  
(1/2 LSB) 6x 1/f  
t
ch  
(SCLK)  
Therefore the maximum SCLK frequency is:  
Max(f ) = 6/t (1/2 LSB) = 6/(ln(512) × R × C )  
(SCLK)  
ch  
t
i
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, GND to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6.5 V  
CC  
Analog input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to AV  
Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AV  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DV  
+ 0.3 V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
DD  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 150°C  
J
Operating free-air temperature range, T , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
power supplies  
MIN  
2.7  
MAX  
5.5  
UNIT  
V
Analog supply voltage, AV  
DD  
Digital supply voltage, DV  
2.7  
5.5  
V
DD  
NOTE 1: Abs (AV  
– DV ) < 0.5 V  
DD  
DD  
analog inputs  
MIN  
MAX  
UNIT  
Analog input voltage, AIN  
AGND VREFP  
V
digital inputs  
MIN NOM  
MAX  
UNIT  
V
High-level input voltage, V  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
= 2.7 V to 5.5 V  
= 2.7 V to 5.5 V  
= 4.5 V to 5.5 V  
= 2.7 V to 3.3 V  
= 4.5 V to 5.5 V, f  
= 2.7 V to 3.3 V, f  
= 4.5 V to 5.5 V, f  
= 2.7 V to 3.3 V, f  
2.1  
2.4  
IH  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
Low level input voltage, V  
0.8  
20  
10  
V
IL  
MHz  
MHz  
ns  
Input CLK frequency  
= 20 MHz  
= 10 MHz  
= 20 MHz  
= 10 MHz  
23  
46  
23  
46  
4
CLK  
CLK  
CLK  
CLK  
Pulse duration, CLK high, t  
w(CLKH)  
ns  
ns  
Pulse duration, CLK low, t  
w(CLKL)  
ns  
Rise time, I/O and control, CLK, CS  
Fall time, I/O and control, CLK, CS  
50 pF output load  
50 pF output load  
ns  
4
reference specifications  
MIN  
2
NOM  
MAX  
UNIT  
AV  
AV  
AV  
AV  
= 3 V  
AV  
AV  
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
VREFP  
= 5 V  
2.5  
DD  
External reference voltage  
= 3 V  
= 5 V  
AGND  
AGND  
2
1
VREFM  
2
VREFP – VREFM  
AV –AGND  
DD  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
electrical characteristics over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted)  
digital specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Logic inputs  
I
I
High-level input current  
Low-level input current  
Input capacitance  
DV  
DV  
= 5 V, DV  
= 3 V, Input = DV  
DD  
= 3 V, Input = 0 V  
–1  
1
1
µA  
µA  
pF  
IH  
DD  
DD  
DD  
DD  
= 5 V, DV  
–1  
IL  
C
10  
15  
i
Logic outputs  
V
V
High-level output voltage  
I
I
= 50 µA to 0.5 mA  
= 50 µA to 0.5 mA  
DV 0.4  
DD  
V
OH  
OH  
Low-level output voltage  
0.4  
1
V
OL  
OL  
I
I
High-impedance-state output current  
Low-impedance-state output current  
Output capacitance  
DV  
DV  
= 5 V, DV  
= 5 V, DV  
= 3 V, Input = DV  
DD  
= 3 V, Input = 0 V  
µA  
µA  
pF  
OZ  
DD  
DD  
DD  
DD  
–1  
OL  
C
5
10  
20  
o
3 V, AV  
5 V, AV  
= DV  
= DV  
9
11  
22  
DD  
DD  
DD  
Internal clock  
MHz  
18  
DD  
dc specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
8
Bits  
Accuracy  
Integral nonlinearity, INL  
Best fit  
±0.3  
±0.3  
±0.5  
±0.5  
LSB  
LSB  
Differential nonlinearity, DNL  
Missing codes  
0
E
E
Offset error  
±0.15%  
±0.2%  
±0.3%  
±0.4%  
FSR  
FSR  
O
Gain error  
G
Analog input  
AIN, AV  
= 3 V, AV  
= 5 V  
15  
25  
pF  
pF  
µA  
DD  
DD  
= 3 V, AV  
C
Input capacitance  
i
MUX input, AV  
DD  
= 5 V  
DD  
I
Input leakage current  
V
AIN  
= 0 to AV  
DD  
±1  
lkg  
Voltage reference input  
r
Input resistance  
2
kΩ  
i
C
Input capacitance  
300  
pF  
i
Power supply  
AV  
AV  
= DV  
= DV  
= 3 V, f  
= 5 V, f  
= 10 MHz  
= 20 MHz  
4
7
5.5  
8.5  
17  
43  
8
mA  
mA  
mW  
mW  
µA  
DD  
DD  
DD  
CLK  
CLK  
Operating supply current, I  
+ I  
DD REF  
DD  
AV +DV  
DD  
= 3 V  
= 5 V  
12  
35  
1
DD  
PD  
Power dissipation  
AV +DV  
DD  
DD  
AV  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
DD  
DD  
DD  
DD  
Software  
I + I  
DD REF  
AV  
AV  
AV  
2
10  
1
µA  
I
Supply current in power-down mode  
PD  
0.5  
0.5  
mA  
mA  
Auto  
I + I  
DD REF  
1
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
electrical characteristics over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted) (continued)  
ac specifications, AV  
= DV  
= 5 V (unless otherwise noted)  
DD  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
47  
TYP  
49  
MAX  
UNIT  
dB  
f = 1.25 MSPS, AV  
s
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
f = 100 kHz,  
I
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
Signal-to-noise ratio, SNR  
80% of FS  
f = 625 KSPS, AV  
s
47  
49  
dB  
f = 1.25 MSPS, AV  
s
47  
49  
dB  
f = 100 kHz,  
I
80% of FS  
Signal-to-noise ratio + distortion, SINAD  
Total harmonic distortion, THD  
f = 625 KSPS, AV  
s
47  
49  
dB  
f = 1.25 MSPS, AV  
s
–64  
–62  
7.9  
7.9  
–65  
–64  
–52  
–52  
dB  
f = 100 kHz,  
I
80% of FS  
f = 625 KSPS, AV  
s
dB  
f = 1.25 MSPS, AV  
s
7.5  
7.5  
Bits  
Bits  
dB  
f = 100 kHz,  
I
80% of FS  
Effective number of bits, ENOB  
f = 625 KSPS, AV  
s
f = 1.25 MSPS, AV  
s
–51  
–51  
f = 100 kHz,  
I
80% of FS  
Spurious free dynamic range, SFDR  
f = 625 KSPS, AV  
s
dB  
Analog input  
–1 dB  
–3 dB  
–1 dB  
–3 dB  
Full-scale 0 dB input sine wave  
Full-scale 0 dB input sine wave  
–20 dB input sine wave  
12  
15  
18  
30  
20  
35  
MHz  
MHz  
MHz  
MHz  
Full-power bandwidth  
Small-signal bandwidth  
–20 dB input sine wave  
AV  
AV  
= 4.5 V to 5.5 V  
= 2.7 V to 3.3 V  
0.0625  
0.0625  
1.25 MSPS  
0.625 MSPS  
DD  
Sampling rate, f  
s
DD  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
timing requirements, AV  
= DV  
= 5 V (unless otherwise noted)  
DD  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
50  
TYP  
MAX  
UNIT  
ns  
DV  
= 4.5 V to 5.5 V  
DD  
DD  
t
Input clock Cycle time  
c(CLK)  
DV  
= 2.7 V to 3.3 V  
100  
ns  
SYSCLK  
Cycles  
t
t
t
t
Reset and sampling time  
Total conversion time  
6
10  
10  
1
(sample)  
SYSCLK  
Cycles  
c
SYSCLK  
Cycles  
Pulse width, end of conversion, EOC  
Pulse width, interrupt  
wL(EOC)  
wL(INT)  
SYSCLK  
Cycles  
t
t
Start-up time, internal oscillator  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(STARTOSC)  
Delay time, CS high to CSTART low  
10  
20  
40  
5
d(CSH_CSTARTL)  
DV  
DV  
DV  
DV  
= 5 V at 50 pF  
= 3 V at 50 pF  
= 5 V at 50 pF  
= 3 V at 50 pF  
DD  
DD  
DD  
DD  
t
t
Enable time, data out  
Disable time, data out  
en(RDL_DAV)  
dis(RDH_DAV)  
10  
t
t
Setup time, CS to WR  
Hold time, CS to WR  
5
5
su(CSL_WRL)  
h(WRH_CSH)  
Clock  
t
t
Pulse width, write  
Pulse width, read  
1
1
w(WR)  
Period  
Clock  
Period  
w(RD)  
t
t
t
t
t
t
t
t
t
t
t
Setup time, data valid to WR  
Hold time, data valid to WR  
Setup time, CS to RD  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(DAV_WRH)  
h(WRH_DAV)  
5
5
su(CSL_RDL)  
Hold time, CS to RD  
h(RDH_CSH)  
Hold time WR to clock high  
Hold time RD to clock high  
5
5
5
5
5
5
5
h(WRL_EXTXLKH)  
h(RDL_EXTCLKH)  
h(CSTARTL_EXTCLKH)  
su(WRH_EXTCLKH)  
su(RDH_EXTCLKH)  
su(CSTARTH_EXTCLKH)  
d(EXTCLK_CSTARTL)  
Hold time CSTART to clock high  
Setup time WR high to clock high  
Setup time RD high to clock high  
Setup time CSTART high to clock high  
Delay time clock low to CSTART low  
NOTE: Specifications subject to change without notice.  
Data valid is denoted as DAV.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
FREE AIR TEMPERATURE  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
AV  
= DV  
= 5 V, 20 MHz  
DD  
DD  
AV  
= DV  
= 3 V, 10 MHz  
DD  
DD  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
T
A
– Free Air Temperature – °C  
Figure 11  
ANALOG INPUT BANDWIDTH  
SUPPLY CURRENT  
vs  
vs  
FREQUENCY  
CLOCK FREQUENCY  
1
0
7
6
5
4
3
2
1
0
AV  
DD  
= DV  
= 5 V  
DD  
–1  
–2  
–3  
AV  
= DV  
= 5 V,  
DD  
AV  
DD  
= DV  
= 3 V  
DD  
DD  
–4  
AIN = 90% of FS,  
REF = 5 V,  
–5  
–6  
T
A
= 25°C  
0.1  
1
10  
100  
0
2
4
6
8
10 12 14 16 18 20  
f – Frequency – MHz  
f
– Clock Frequency – MHz  
clock  
Figure 12  
Figure 13  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.15  
0.10  
AV  
DD  
External Ref = 3 V,  
= DV  
= 3 V,  
DD  
CLK = 10 MHz,  
T
= 25°C  
A
0.05  
–0.00  
–0.05  
–0.10  
–0.15  
0
64  
128  
192  
256  
Digital Output Code  
Figure 14  
INTEGRAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
–0.04  
AV  
DD  
External Ref = 3 V,  
= DV  
= 3 V,  
DD  
CLK = 10 MHz,  
T
= 25°C  
A
–0.06  
0
64  
128  
192  
256  
Digital Output Code  
Figure 15  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.12  
0.10  
AV  
DD  
External Ref = 5 V,  
= DV  
= 5 V,  
DD  
0.08  
CLK = 20 MHz,  
T
= 25°C  
0.06  
A
0.04  
0.02  
0.00  
–0.02  
–0.04  
–0.06  
–0.08  
0
64  
128  
192  
256  
Digital Output Code  
Figure 16  
INTEGRAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.14  
0.12  
AV  
DD  
External Ref = 5 V,  
= DV  
= 5 V,  
DD  
0.10  
CLK = 20 MHz,  
0.08  
T
= 25°C  
A
0.06  
0.04  
0.02  
0.00  
–0.02  
–0.04  
–0.06  
–0.08  
0
64  
128  
192  
256  
Digital Output Code  
Figure 17  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
EFFECTIVE NUMBER OF BITS  
vs  
FREQUENCY  
10  
9
AV  
DD  
= DV  
= 3 V,  
DD  
External Ref = 3 V  
8
7
6
5
0
100  
200  
300  
f – Frequency – kHz  
Figure 18  
EFFECTIVE NUMBER OF BITS  
vs  
FREQUENCY  
10  
9
AV  
DD  
= DV  
= 5 V,  
DD  
External Ref = 5 V  
8
7
6
5
0
200  
400  
600  
f – Frequency – kHz  
Figure 19  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
TYPICAL CHARACTERISTICS  
FAST FOURIER TRANSFORM  
vs  
FREQUENCY  
20  
0
AIN = 200 KHz  
CLK = 10 MHz  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
AV  
DD  
External Ref = 3 V  
= DV  
= 3 V  
DD  
0
100000  
200000  
300000  
f – Frequency – Hz  
Figure 20  
FAST FOURIER TRANSFORM  
vs  
FREQUENCY  
20  
0
AIN = 200 KHz  
CLK = 20 MHz  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
AV  
DD  
= DV  
= 5 V  
DD  
External Ref = 5 V  
0
200000  
400000  
600000  
f – Frequency – Hz  
Figure 21  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PINS SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
20  
24  
28  
0.710  
DIM  
0.410  
0.510  
0.610  
A MAX  
A MIN  
(10,41) (12,95) (15,49) (18,03)  
0.400  
0.500  
0.600  
0.700  
(10,16) (12,70) (15,24) (17,78)  
4040000/C 07/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV571  
2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,  
PARALLEL ANALOG-TO-DIGITAL CONVERTER  
SLAS239A – SEPTEMBER 1999 – REVISED FEBRUARY 2000  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Dec-2006  
PACKAGING INFORMATION  
Orderable Device  
TLV571IDW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
24  
24  
24  
24  
24  
24  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV571IDWG4  
TLV571IDWR  
TLV571IDWRG4  
TLV571IPW  
SOIC  
SOIC  
DW  
DW  
DW  
PW  
PW  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
60 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TLV571IPWG4  
60 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

TLV5734

TRIPLE 8 BIT 30 MSPS ADC WITH HIGH -PRECISION CLAMP FOR YUV/RGB VIDEO
TI

TLV5734PAG

TRIPLE 8 BIT 30 MSPS ADC WITH HIGH -PRECISION CLAMP FOR YUV/RGB VIDEO
TI

TLV5734PAGG4

8-Bit 30 MSPS ADC Triple Ch., Digital Clamp for YUV/NTSC/PAL, Output Data Format Mux, Low Power 64-TQFP -20 to 75
TI

TLV5734_10

TRIPLE 8 BIT 30 MSPS ADC WITH HIGH -PRECISION CLAMP FOR YUV/RGB VIDEO
TI

TLV6001

单路、5.5V、1MHz、RRIO 运算放大器
TI

TLV6001-Q1

汽车级、单路、5.5V、1MHz、RRIO 运算放大器
TI

TLV6001IDBVR

单路、5.5V、1MHz、RRIO 运算放大器 | DBV | 5 | -40 to 125
TI

TLV6001IDBVT

单路、5.5V、1MHz、RRIO 运算放大器 | DBV | 5 | -40 to 125
TI

TLV6001IDCKR

单路、5.5V、1MHz、RRIO 运算放大器 | DCK | 5 | -40 to 125
TI

TLV6001IDCKT

单路、5.5V、1MHz、RRIO 运算放大器 | DCK | 5 | -40 to 125
TI

TLV6001QDCKRQ1

汽车级、单路、5.5V、1MHz、RRIO 运算放大器 | DCK | 5 | -40 to 125
TI

TLV6001RIDBVR

单路、5.5V、1MHz、RRIO 运算放大器 | DBV | 5 | -40 to 125
TI