THS3202 [TI]

2-GHZ, LOW DISTORTION, CURRENT FEEDBACK AMPLIFIERS; 2 - GHz的低失真,电流反馈放大器
THS3202
型号: THS3202
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2-GHZ, LOW DISTORTION, CURRENT FEEDBACK AMPLIFIERS
2 - GHz的低失真,电流反馈放大器

放大器
文件: 总32页 (文件大小:612K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢍ ꢚꢛ  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
FEATURES  
DESCRIPTION  
The THS3202 is part of the high performing current  
feedback amplifier family developed in BiCOM−ΙΙ  
technology. Designed for low-distortion with a high slew  
rate of 9000 V/µs, the THS320x family is ideally suited for  
applications driving loads sensitive to distortion at high  
frequencies.  
D
D
D
Unity Gain Bandwidth: 2 GHz  
High Slew Rate: 9000 V/µs  
IMD3 at 120 MHz: −89 dBc (G = 5, R = 100 ,  
L
V
= 15 V)  
CC  
D
OIP3 at 120 MHz: 44 dBm (G = 5, R = 100 ,  
L
CC  
The THS3202 provides well-regulated ac performance  
characteristics with power supplies ranging from  
single-supply 6.6-V operation up to a 15-V supply. The  
high unity gain bandwidth of up to 2 GHz is a major  
contributor to the excellent distortion performance. The  
THS3202 offers an output current drive of 115 mA and a  
low differential gain and phase error that make it suitable  
for applications such as video line drivers.  
V
= 15 V)  
D
D
High Output Current: 115 mA into 20 R  
L
Power Supply Voltage Range: 6.6 V to 15 V  
APPLICATIONS  
The THS3202 is available in an 8 pin SOIC and an 8 pin  
D
D
D
D
D
High-Speed Signal Processing  
Test and Measurement Systems  
High-Voltage ADC Preamplifier  
RF and IF Amplifier Stages  
Professional Video  
MSOP with PowerPADpackages.  
RELATED DEVICES AND DESCRIPTIONS  
THS3001  
THS3061/2  
THS3122  
THS4271  
15-V 420-MHz Low Distortion CFB Amplifier  
15-V 300-MHz Low Distortion CFB Amplifier  
15-V Dual CFB Amplifier With 350 mA Drive  
+15-V 1.4-GHz Low Distortion VFB Amplifier  
THS3202  
HARMONIC DISTORTION  
vs  
OIP  
vs  
3
OUTPUT VOLTAGE  
FREQUENCY  
TEST CIRCUIT FOR  
−50  
50  
48  
46  
44  
42  
Test Instrument Measurement Limit  
IMD / OIP  
3
3
−60  
−70  
G = 5  
V
=
7.5 V  
CC  
R
V
= 500 Ω  
Output Power  
L
V
=
7 V  
= 15 V  
CC  
CC  
Spectrum Analyzer  
R = 420 Ω  
f
_
−80  
f = 10 MHz  
40  
38  
nd  
2
Harmonic  
V
= 6 V  
CC  
G = 5  
+
50 Ω  
−90  
36  
34  
50 Ω  
−100  
−110  
−120  
R = 100 ,  
L
G = 5,  
32  
30  
rd  
3
Harmonic  
R
= 536 ,  
= 2V _Envelope  
PP  
F
V
O
f = 200 kHz  
28  
26  
V
=
5 V  
160  
f − Frequency − MHz  
c
CC  
0
2
4
6
8
10  
12  
10  
60  
110  
210  
260  
V
− Output Voltage − V  
O
pp  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments Incorporated.  
ꢙꢏ ꢋ ꢍꢒ ꢑ ꢀꢎ ꢋꢐ ꢍ ꢖꢀꢖ ꢜꢝ ꢞꢟ ꢠ ꢡꢢ ꢣꢜꢟꢝ ꢜꢤ ꢥꢦ ꢠ ꢠ ꢧꢝꢣ ꢢꢤ ꢟꢞ ꢨꢦꢩ ꢪꢜꢥ ꢢꢣꢜ ꢟꢝ ꢫꢢ ꢣꢧꢬ ꢙꢠ ꢟꢫꢦ ꢥꢣꢤ  
ꢥ ꢟꢝ ꢞꢟꢠ ꢡ ꢣꢟ ꢤ ꢨꢧ ꢥ ꢜ ꢞꢜ ꢥ ꢢ ꢣꢜ ꢟꢝꢤ ꢨ ꢧꢠ ꢣꢭꢧ ꢣꢧ ꢠ ꢡꢤ ꢟꢞ ꢀꢧꢮ ꢢꢤ ꢎꢝꢤ ꢣꢠ ꢦꢡ ꢧꢝꢣ ꢤ ꢤꢣ ꢢꢝꢫ ꢢꢠ ꢫ ꢯ ꢢꢠ ꢠ ꢢ ꢝꢣꢰꢬ  
ꢙꢠ ꢟ ꢫꢦꢥ ꢣ ꢜꢟ ꢝ ꢨꢠ ꢟ ꢥ ꢧ ꢤ ꢤ ꢜꢝ ꢱ ꢫꢟ ꢧ ꢤ ꢝꢟꢣ ꢝꢧ ꢥꢧ ꢤꢤ ꢢꢠ ꢜꢪ ꢰ ꢜꢝꢥ ꢪꢦꢫ ꢧ ꢣꢧ ꢤꢣꢜ ꢝꢱ ꢟꢞ ꢢꢪ ꢪ ꢨꢢ ꢠ ꢢꢡ ꢧꢣꢧ ꢠ ꢤꢬ  
Copyright 2002 − 2004, Texas Instruments Incorporated  
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
handledwith appropriate precautions. Failure to observe  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
proper handling and installation procedures can cause damage.  
UNIT  
Supply voltage, V  
16.5 V  
S
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
Input voltage, V  
I
V
S
Differential Input voltage, V  
3 V  
ID  
(2)  
Output current, I  
O
175 mA  
Continuous power dissipation  
See Dissipation Rating Table  
PACKAGE DISSIPATION RATINGS  
(3)  
Maximum junction temperature, T  
150°C  
J
(2)  
(1)  
θ
JA  
POWER RATING  
θ
JC  
(°C/W) (°C/W)  
Maximum junction temperature, continuous  
operation, long term reliability T  
J
PACKAGE  
125°C  
(4)  
T
A
25°C = 85°C  
T
A
D (8 pin)  
38.3  
4.7  
97.5  
58.4  
260  
1.32 W  
1.71 W  
410 mW  
685 mW  
154 mW  
Operating free-air temperature range, T  
A
−40°C to 85°C  
−65°C to 150°C  
DGN (8 pin)  
DGK (8 pin)  
Storage temperature range, T  
stg  
54.2  
385 mW  
Lead temperature  
1,6 mm (1/16 inch) from case for 10 seconds  
300°C  
(1)  
(2)  
This data was taken using the JEDEC standard High-K test PCB.  
Power rating is determined with a junction temperature of 125°C.  
This is the point where distortion starts to substantially increase.  
Thermalmanagement of the final PCB should strive to keep the  
junctiontemperature at or below 125°C for best performance and  
long term reliability.  
HBM  
3000 V  
1500 V  
200 V  
CDM  
MM  
ESD ratings:  
(1)  
Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods  
may degrade device reliability. These are stress ratings only, and  
functional operation of the device at these or any other conditions  
beyond those specified is not implied.  
The THS3202 may incorporate a PowerPADon the underside  
of the chip. This acts as a heat sink and must be connected to a  
thermally dissipative plane for proper power dissipation. Failure  
to do so may result in exceeding the maximum junction  
temperature which could permanently damage the device. See TI  
technical briefs SLMA002 and SLMA004 for more information  
about utilizing the PowerPAD thermally enhanced package.  
The absolute maximum temperature under any condition is  
limited by the constraints of the silicon process.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
MAX  
UNIT  
(2)  
Dual supply  
3.3  
7.5  
Supply voltage,  
(V and V  
S+ S−  
V
)
Single supply  
6.6  
15  
Operating free-air temperature  
range  
−40  
85  
°C  
(3)  
(4)  
The maximum junction temperature for continuous operation is  
limited by package constraints. Operation above this temperature  
may result in reduced reliability and/or lifetime of the device.  
PACKAGE/ORDERING INFORMATION  
ORDERABLE PACKAGE AND NUMBER  
(1)  
PLASTIC MSOP-8  
PowerPAD  
NUMBER OF  
CHANNELS  
(1)  
PLASTIC MSOP-8  
(1)  
PLASTIC SOIC-8  
(D)  
(DGN)  
THS3202DGN  
SYM  
(DGK)  
THS3202DGK  
SYM  
BEV  
2
THS3202D  
BEP  
(1)  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., THS3202DR).  
PIN ASSIGNMENTS  
TOP VIEW  
D, DGN, DGK  
1V  
V +  
S
1
2
3
4
8
7
6
5
OUT  
1V  
1V  
2V  
2V  
IN−  
OUT  
IN−  
IN+  
V
2
VIN+  
S−  
2
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
ELECTRICAL CHARACTERISTICS  
V
S
=
5 V: R = 500 , R = 100 , and G = +2 unless otherwise noted  
f
L
THS3202  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
0°C to  
70°C  
−40°C  
to 85°C  
MIN/TYP/  
MAX  
25°C  
25°C  
UNITS  
AC PERFORMANCE  
G = +1, R = 500 Ω  
1800  
975  
780  
550  
f
G = +2, R = 402 Ω  
Small-signal bandwidth, −3 dB  
f
MHz  
Typ  
(V = 100 mV )  
PP  
G = +5, R = 300 Ω  
O
f
G = +10, R = 200 Ω  
f
G = +2, V = 100 mV  
pp,  
f
O
Bandwidth for 0.1 dB flatness  
Large-signal bandwidth  
380  
MHz  
MHz  
Typ  
Typ  
R = 536 Ω  
G = +2, V = 4 V  
O
R = 536 Ω  
f
875  
5100  
4400  
0.45  
19  
pp,  
G = −1, 5-V step  
G = +2, 5-V step  
Slew rate (25% to 75% level)  
V/µs  
ns  
Typ  
Typ  
Typ  
Rise and fall time  
Settling time to 0.1%  
0.01%  
G = +2, V = 5-V step  
O
G = −2, V = 2-V step  
O
ns  
G = −2, V = 2-V step  
118  
O
Harmonic distortion  
G = +2, f = 16 MHz, V = 2 V  
pp  
O
R
L
R
L
R
L
R
L
= 100 Ω  
= 500 Ω  
= 100 Ω  
= 500 Ω  
−64  
−67  
−67  
−69  
nd  
2
3
harmonic  
harmonic  
dBc  
dBc  
Typ  
Typ  
rd  
G = +5, f = 120 MHz,  
c
rd  
3
f = 200 kHz,  
order intermodulation distortion  
−64  
dBc  
Typ  
V
= 2 V  
pp  
O(envelope)  
Input voltage noise  
f > 10 MHz  
f > 10 MHz  
f > 10 MHz  
1.65  
13.4  
nV/Hz  
pA/Hz  
pA/Hz  
dB  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Input current noise (noninverting)  
Input current noise (inverting)  
Crosstalk  
20  
G = +2, f = 100 MHz  
G = +2, R = 150 Ω  
−60  
Differential gain (NTSC, PAL)  
Differential phase (NTSC, PAL)  
0.008%  
0.03°  
L
G = +2, R = 150 Ω  
L
DC PERFORMANCE  
Open-loop transimpedance gain  
Input offset voltage  
V
V
V
V
V
V
V
=
1 V, R = 1 kΩ  
300  
0.7  
200  
3
140  
3.8  
10  
120  
4
kΩ  
mV  
Min  
Max  
Typ  
Max  
Typ  
Max  
Typ  
O
L
= 0 V  
CM  
CM  
CM  
CM  
CM  
CM  
Average offset voltage drift  
Input bias current (inverting)  
Average bias current drift (−)  
Input bias current (noninverting)  
Average bias current drift (+)  
= 0 V  
= 0 V  
= 0 V  
= 0 V  
= 0 V  
13  
µV/°C  
µA  
13  
14  
60  
35  
80  
85  
300  
45  
400  
50  
nA/°C  
µA  
300  
400  
nA/°C  
3
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
ELECTRICAL CHARACTERISTICS  
V
S
=
5 V: R = 500 , R = 100 , and G = +2 unless otherwise noted  
f
L
THS3202  
OVER TEMPERATURE  
TYP  
PARAMETER  
TEST CONDITIONS  
0°C to  
−40°C  
to 85°C  
MIN/TYP/  
MAX  
25°C  
25°C  
UNITS  
70°C  
INPUT  
Common-mode input range  
Common-mode rejection ratio  
2.6  
71  
2.5  
60  
2.5  
58  
2.5  
58  
V
Min  
Min  
Typ  
Typ  
Typ  
V
=
2.5 V  
dB  
kΩ  
CM  
Noninverting  
Inverting  
780  
11  
Input resistance  
Input capacitance  
Noninverting  
1
pF  
OUTPUT  
R
R
R
R
= 1 kΩ  
= 100 Ω  
= 20 Ω  
= 20 Ω  
3.65  
3.45  
115  
3.5  
3.3  
105  
85  
3.45  
3.25  
100  
80  
3.4  
3.2  
100  
80  
L
L
L
L
Voltage output swing  
V
Min  
Current output, sourcing  
Current output, sinking  
mA  
mA  
Min  
Min  
Typ  
100  
Closed-loop output impedance  
G = +1, f = 1 MHz  
0.01  
POWER SUPPLY  
Minimum operating voltage  
Maximum quiescent current  
Power supply rejection (+PSRR)  
Power supply rejection (−PSRR)  
Absolute minimum  
Per amplifier  
3
16.8  
63  
3
19  
60  
55  
3
20  
60  
55  
V
Min  
Max  
Min  
Min  
14  
69  
65  
mA  
dB  
dB  
V
S+  
S−  
= 4.5 V to 5.5 V  
V
= −4.5 V to –5.5 V  
58  
4
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
ELECTRICAL CHARACTERISTICS  
V
S
= 15 V: R = 500 , R = 100 , and G = +2 unless otherwise noted  
f
L
THS3202  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
0°C to  
70°C  
−40°C  
to 85°C  
MIN/TYP/  
MAX  
25°C  
25°C  
UNITS  
AC PERFORMANCE  
G = +1, R = 550 Ω  
2000  
1100  
850  
f
G = +2, R = 550 Ω  
Small-signal bandwidth, −3dB  
f
MHz  
Typ  
(V = 100 mV )  
PP  
G = +5, R = 300 Ω  
O
f
G = +10, R = 200 Ω  
750  
f
G = +2, V = 100 mV  
pp,  
f
O
Bandwidth for 0.1 dB flatness  
Large-signal bandwidth  
500  
MHz  
MHz  
Typ  
Typ  
R = 536 Ω  
G = +2, V = 4 V , R = 536 Ω  
1000  
7500  
9000  
0.45  
23  
O
pp  
f
G = +5, 5-V step  
Slew rate (25% to 75% level)  
V/µs  
Typ  
G = +2, 10-V step  
G = +2, V = 10-V step  
Rise and fall time  
Settling time to 0.1%  
0.01%  
ns  
ns  
ns  
Typ  
Typ  
Typ  
O
G = −2, V = 2-V step  
O
G = −2, V = 2-V step  
112  
O
Harmonic distortion  
G = +2, f = 16 MHz, V = 2 V  
pp  
O
R
L
R
L
R
L
R
L
= 100 Ω  
= 500 Ω  
= 100 Ω  
= 500 kΩ  
−69  
−73  
−80  
−90  
nd  
2
3
harmonic  
harmonic  
dBc  
dBc  
Typ  
Typ  
rd  
G = +5, f = 120 MHz,  
c
rd  
3
f = 200 kHz,  
order intermodulation distortion  
−89  
dBc  
Typ  
V
= 2 V  
pp  
O(envelope)  
Input voltage noise  
f > 10 MHz  
f > 10 MHz  
f > 10 MHz  
1.65  
13.4  
nV/Hz  
pA/Hz  
pA/Hz  
dB  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Input current noise (noninverting)  
Input current noise (inverting)  
Crosstalk  
20  
G = +2, f = 100 MHz  
G = +2, R = 150 Ω  
−60  
Differential gain (NTSC, PAL)  
Differential phase (NTSC, PAL)  
0.004%  
0.006°  
L
G = +2, R = 150 Ω  
L
DC PERFORMANCE  
Open-loop transimpedance gain  
Input offset voltage  
V
V
V
V
V
V
V
= 6.5 V to 8.5 V, R = 1 kΩ  
300  
1.3  
200  
4
140  
4.8  
10  
120  
5
kΩ  
mV  
Min  
Max  
Typ  
Max  
Typ  
Max  
Typ  
O
L
= 7.5 V  
= 7.5 V  
= 7.5 V  
= 7.5 V  
= 7.5 V  
= 7.5 V  
CM  
CM  
CM  
CM  
CM  
CM  
Average offset voltage drift  
Input bias current (inverting)  
Average bias current drift (−)  
Input bias current (noninverting)  
Average bias current drift (+)  
13  
µV/°C  
µA  
16  
14  
60  
35  
80  
85  
300  
45  
400  
50  
nA/°C  
µA  
300  
400  
nA/°C  
5
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
ELECTRICAL CHARACTERISTICS continued  
V
S
= 15 V: R = 500 , R = 100 , and G = +2 unless otherwise noted  
f L  
THS3202  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
0°C to  
−40°C  
to 85°C  
MIN/TYP/  
MAX  
25°C  
25°C  
UNITS  
70°C  
INPUT  
2.4 to  
12.6  
2.5 to  
12.5  
2.5 to  
12.5  
2.5 to  
12.5  
Common-mode input range  
Common-mode rejection ratio  
V
Min  
V
= 5 V to 10 V  
69  
780  
11  
60  
58  
58  
dB  
kΩ  
Min  
Typ  
Typ  
Typ  
CM  
Noninverting  
Inverting  
Input resistance  
Input capacitance  
OUTPUT  
Noninverting  
1
pF  
1.5 to  
13.5  
1.6 to  
13.4  
1.7 to  
13.3  
1.7 to  
13.3  
R
R
= 1 kΩ  
L
Voltage output swing  
V
Min  
1.7 to  
13.3  
1.8 to  
13.2  
2.0 to  
13.0  
2.0 to  
13.0  
= 100 Ω  
L
Current output, sourcing  
Current output, sinking  
R
R
= 20 Ω  
= 20 Ω  
120  
115  
105  
95  
100  
90  
100  
90  
mA  
mA  
Min  
Min  
Typ  
L
L
Closed-loop output impedance  
G = +1, f = 1 MHz  
0.01  
POWER SUPPLY  
Maximum quiescent current/channel  
Power supply rejection (+PSRR)  
Power supply rejection (−PSRR)  
Per amplifier  
15  
69  
65  
18  
63  
58  
21  
60  
55  
21  
60  
55  
mA  
dB  
dB  
Max  
Min  
Min  
V
V
= 14.50 V to 15.50 V  
= −0.5 V to +0.5 V  
S+  
S−  
6
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1−14  
15−18  
19−30  
31−45  
46, 47  
48, 49  
50  
Small signal frequency response  
Large signal frequency response  
Harmonic distortion  
vs Frequency  
vs Output voltage  
vs Frequency  
vs Frequency  
Harmonic distortion  
IMD  
3
OIP  
3
Test circuit for IMD / OIP  
3
3
S parameter  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
51−54  
55  
Input current noise density  
Voltage noise density  
Transimpedance  
56  
57  
Output impedance  
58  
Impedance of inverting input  
Supply current/channel  
Input offset voltage  
59  
vs Supply voltage  
60  
vs Free-air temperature  
vs Common-mode input voltage range  
vs Free-air temperature  
vs Input common-mode range  
vs Positive power supply  
vs Negative power supply  
vs Free-air temperature  
vs Free-air temperature  
vs Power supply  
61  
Offset voltage  
62  
63  
Input bias current  
64  
Positive power supply rejection ratio  
Negative power supply rejection ratio  
Positive output voltage swing  
Negative output voltage swing  
Output current sinking  
65  
66  
67, 68  
69, 70  
71  
Output current sourcing  
vs Power supply  
72  
Overdrive recovery time  
Slew rate  
73, 74  
75, 76, 77  
78  
vs Output voltage  
Output voltage transient response  
Settling time  
79, 80  
81  
DC common-mode rejection ratio high  
Power supply rejection ratio  
Differential gain error  
vs Input common-mode range  
vs Frequency  
82, 83  
84, 85, 88  
86, 87, 89  
vs 150 loads  
Differential phase error  
vs 150 loads  
7
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
SMALL SIGNAL FREQUENCY RESPONSE  
SMALL SIGNAL FREQUENCY RESPONSE  
SMALL SIGNAL FREQUENCY RESPONSE  
4
3
6
R = 500 Ω  
f
R = 500 Ω  
G = 1  
5
f
3
2
1
R
V
= 500 Ω  
L
CC  
O
4
3
2
=
5 V  
V
= 100 mV  
PP  
1
0
2
0
R = 619 Ω  
f
R = 619 Ω  
f
−1  
−2  
−3  
−4  
−5  
1
R = 619 Ω  
f
−1  
0
−2  
G = 1  
−1  
−2  
−3  
−4  
G = 1  
3
R
V
= 100 Ω  
R
V
= 100 Ω  
= 15 V  
CC  
= 100 mV  
L
L
R = 750 Ω  
f
=
5 V  
CC  
−4  
V
= 100 mV  
V
O
PP  
10 M  
O
PP  
5
0.1 M  
1 M  
100 M  
1 G  
10G  
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 1  
Figure 2  
Figure 3  
SMALL SIGNAL FREQUENCY RESPONSE SMALL SIGNAL FREQUENCY RESPONSE SMALL SIGNAL FREQUENCY RESPONSE  
12  
11  
10  
9
9
8
7
6
5
4
3
2
1
9
8
7
6
5
4
3
2
1
G = 2  
R
L
= 500 Ω  
R = 402 Ω  
R = 402 Ω  
f
f
V
V
= 15 V  
= 100 mV  
CC  
O
PP  
R = 536 Ω  
8
f
7
R = 536 Ω  
f
R = 536 Ω  
f
6
5
R = 650 Ω  
f
R = 650 Ω  
f
4
R = 649 Ω  
f
3
G = 2  
G = 2  
R
V
= 100 Ω  
R
L
= 100 Ω  
L
2
= 15 V  
V
=
5 V  
= 100 mV  
CC  
CC  
1
V
= 100 mV  
V
O
O
PP  
PP  
0
0
0
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 4  
Figure 5  
Figure 6  
SMALL SIGNAL FREQUENCY RESPONSE  
SMALL SIGNAL FREQUENCY RESPONSE  
SMALL SIGNAL FREQUENCY RESPONSE  
16  
16  
9
R = 300 Ω  
R = 300 Ω  
f
f
8
15  
14  
13  
12  
11  
10  
9
15  
14  
13  
12  
11  
10  
R = 536 Ω  
f
7
6
5
4
3
2
1
R = 402 Ω  
f
R = 402 Ω  
f
R = 649 Ω  
f
R = 500 Ω  
f
R = 500 Ω  
f
G = 5  
G = 5  
G = 2  
R
L
V
= 100 Ω  
= 15 V  
R
V
= 100 Ω  
R
V
= 500 Ω  
L
L
=
5 V  
= 100 mV  
=
5 V  
CC  
= 100 mV  
CC  
CC  
V
V
V
= 100 mV  
O
PP  
O
PP  
10 M  
O
PP  
10 M  
8
0
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
0.1 M  
1 M  
100 M  
1 G  
10 G  
0.1 M  
1 M  
100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 7  
Figure 8  
Figure 9  
8
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
SMALL SIGNAL FREQUENCY RESPONSE SMALL SIGNAL FREQUENCY RESPONSE  
SMALL SIGNAL FREQUENCY RESPONSE  
16  
15  
14  
13  
12  
11  
10  
9
3
17  
R = 340 Ω  
f
R = 340 Ω  
f
2
R = 340 Ω  
16  
f
1
15  
0
R = 420 Ω  
f
14  
−1  
−2  
−3  
−4  
−5  
−6  
R = 450 Ω  
f
R = 500 Ω  
f
13  
R = 420 Ω  
f
R = 500 Ω  
f
12  
R = 550 Ω  
f
G = 5  
G = −1  
G = 5  
R
V
= 500 Ω  
R
L
= 100 Ω  
R
V
= 500 Ω  
= 15 V  
CC  
= 100 mV  
L
L
11  
=
5 V  
V
= 15 V  
CC  
CC  
= 100 mV  
V
= 100 mV  
V
V
O
PP  
10 M  
O
PP  
O
PP  
8
10  
0.1 M  
0.1 M  
1 M  
100 M  
1 G  
10 G  
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
1 M  
10 M  
100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 10  
Figure 11  
Figure 12  
SMALL SIGNAL FREQUENCY RESPONSE SMALL SIGNAL FREQUENCY RESPONSE  
LARGE SIGNAL FREQUENCY RESPONSE  
12  
3
3
G = 1,  
10  
V
= 5 V  
CC  
= 100 Ω  
V
= 2 V  
R = 340 Ω  
f
2
1
2
1
O
PP  
V
= 15 V  
8
6
CC  
R
L
4
2
0
0
V
= 1 V  
O
PP  
−1  
−2  
−3  
−4  
−5  
−6  
0
−2  
−4  
−1  
−2  
−3  
−4  
−5  
R = 450 Ω  
f
V
= 5 V  
V
= 0.5 V  
PP  
CC  
O
−6  
−8  
R = 550 Ω  
f
G = 1  
= 500 Ω  
G = −1  
R
L
R
V
= 100 Ω  
L
R = 450  
f
=
5 V  
−10  
−12  
100 K 1 M  
CC  
V
= 100 mV  
V
= 100 mV  
O
PP  
O
PP  
10 M  
10 M  
100 M  
1 G  
10 G  
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
0.1 M  
1 M  
100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 13  
Figure 14  
Figure 15  
LARGE SIGNAL FREQUENCY RESPONSE  
LARGE SIGNAL FREQUENCY RESPONSE LARGE SIGNAL FREQUENCY RESPONSE  
14  
14  
12  
10  
12  
12  
10  
V
= 4 V  
PP  
O
V
= 4 V  
10  
8
O
O
PP  
PP  
8
V
= 2 V  
PP  
O
8
6
4
2
0
6
4
2
6
V
= 2 V  
= 1 V  
O
O
PP  
V
= 2 V  
4
2
V
= 1 V  
PP  
O
0
−2  
0
V
PP  
−2  
V
= 1 V  
PP  
O
−2  
−4  
−6  
−8  
−4  
−6  
−4  
−6  
−8  
V
= 0.5 V  
PP  
O
V
= 0.25 V  
O
PP  
−8  
V
= 0.5 V  
PP  
O
−10  
V
= 15 V, G = 1, R = 100 Ω  
L
−10  
−12  
−10  
−12  
100 K  
CC  
−12  
−14  
V
= 15 V, G = 2, R = 100 Ω  
G = 2, V = 5, R = 100 Ω  
CC L  
CC  
L
100 K  
1 M  
10 M  
100 M  
1 G  
10 G  
100 K 1 M  
10 M  
100 M  
1 G  
10 G  
1 M  
10 M 100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 16  
Figure 17  
Figure 18  
9
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
−50  
−50  
−60  
G = −1  
G = 2  
G = −1  
R
L
= 100 Ω  
R
V
= 100 Ω  
R
V
= 500 Ω  
L
L
V
= 15 V  
−60  
CC  
−60  
= 15 V  
= 15 V  
CC  
CC  
nd  
Harmonic  
2
R = 450 Ω  
−70  
f
O
R = 500 Ω  
R = 450 Ω  
f
O
f
O
V
= 2V  
PP  
V
= 2V  
V
= 2V  
PP  
PP  
70
−70  
nd  
2
Harmonic  
−80  
nd  
2
Harmonic  
−80  
−80  
−90  
−90  
−90  
rd  
3
rd  
Harmonic  
rd  
3
Harmonic  
100 M  
3
Harmonic  
100 M  
−100  
100
−100  
0.1 M  
0.1 M  
1 M  
10 M  
1 M  
10 M 100 M  
0.1 M  
1 M  
10 M  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 19  
Figure 20  
Figure 21  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
−60  
−60  
−70  
−50  
−60  
−70  
−80  
G = 2  
G = 5  
G = 5  
R
V
= 500 Ω  
R
L
= 100 Ω  
R
V
= 500 Ω  
L
L
= 15 V  
V
= 15 V  
= 15 V  
CC  
CC  
CC  
−70  
R = 536 Ω  
R = 500 Ω  
R = 420 Ω  
f
O
f
O
f
O
V
= 2V  
V
= 2V  
V
= 2V  
PP  
PP  
PP  
nd  
2
Harmonic  
−80  
−90  
−80  
nd  
2
Harmonic  
nd  
2
Harmonic  
−90  
−90  
rd  
3
Harmonic  
rd  
rd  
3
Harmonic  
3
Harmonic  
−100  
−100  
−100  
0.1 M  
1 M  
10 M 100 M  
0.1 M  
1 M  
10 M  
100 M  
0.1 M  
1 M  
10 M 100 M  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 22  
Figure 23  
Figure 24  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
−50  
−50  
−60  
−70  
−80  
−50  
−55  
G = −1  
G = −1  
G = 2  
R
L
= 500 Ω  
R
V
= 100 Ω  
L
R
L
= 100 Ω  
V
= 5 V  
CC  
=
5 V  
−60  
−70  
−80  
CC  
V
= 5 V  
−60  
−65  
CC  
R = 450 Ω  
f
O
R = 450 Ω  
f
O
R = 500 Ω  
f
O
V
= 2V  
PP  
V
= 2V  
PP  
V
= 2V  
2
PP  
nd  
2
Harmonic  
−70  
−75  
−80  
−85  
−90  
nd  
2
Harmonic  
nd  
Harmonic  
rd  
3
Harmonic  
rd  
3
Harmonic  
rd  
3
Harmonic  
−90  
−90  
−95  
−100  
−100  
−100  
0.1 M  
1 M  
10 M  
100 M  
1 M  
10 M  
100 M  
1 M  
10 M  
100 M  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 25  
Figure 26  
Figure 27  
10  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
HARMONIC DISTORTION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
−50  
−60  
−50  
−50  
−60  
G = 5  
G = 5  
G = 2  
R
V
= 100 Ω  
L
R
L
= 500 Ω  
R
L
= 500 Ω  
=
5 V  
−60  
CC  
V
= 5 V  
CC  
V
= 5 V  
CC  
R = 420 Ω  
nd  
f
O
R = 500 Ω  
2
Harmonic  
f
R = 536 Ω  
f
O
V
= 2V  
PP  
V
= 2V  
O PP  
V
= 2V  
PP  
−70  
−80  
−70  
−80  
−70  
−80  
rd  
3
Harmonic  
nd  
2
Harmonic  
rd  
3
Harmonic  
rd  
nd  
3
Harmonic  
2
Harmonic  
−90  
−90  
−90  
−100  
0.1 M  
−100  
−100  
0.1 M  
0.1 M  
1 M  
10 M  
100 M  
1 M  
10 M  
100 M  
1 M  
10 M  
100 M  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − MHz  
Figure 28  
Figure 29  
Figure 30  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
−70  
−50  
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
−95  
−100  
G = 5  
G = 5  
G = 5  
−75  
−80  
R
L
= 500 Ω  
R
L
= 500 Ω  
R
L
= 500 Ω  
V
= 5 V  
−60  
−70  
CC  
V
= 15 V  
V
= 5 V  
CC  
CC  
nd  
2
R = 420 Ω  
f
R = 420 Ω  
R = 420 Ω  
f
f
Harmonic  
f = 1 MHz  
f = 10 MHz  
f = 10 MHz  
−85  
−90  
−80  
−95  
nd  
2
Harmonic  
nd  
2
Harmonic  
−100  
−105  
−110  
−90  
rd  
3
Harmonic  
6
rd  
3
Harmonic  
rd  
3
Harmonic  
−100  
0
1
2
3
4
5
6
0
2
4
8
10  
PP  
12  
0
1
2
3
4
5
V
− Output Voltage − V  
O
PP  
V
− Output Voltage − V  
V
− Output Voltage − V  
O
O
PP  
Figure 31  
Figure 32  
Figure 33  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
−50  
−60  
−50  
−60  
−70  
−80  
G = 5  
G = 5  
G = 5  
R
L
= 100 Ω  
R
V
= 100 Ω  
R
V
= 100 Ω  
L
L
V
= 15 V  
CC  
= 15 V  
=
5 V  
CC  
CC  
R = 500 Ω  
R = 500 Ω  
f
R = 500 Ω  
f
f
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
−70  
−70  
nd  
2
Harmonic  
−80  
−80  
nd  
nd  
2
2
Harmonic  
Harmonic  
−90  
−90  
−90  
rd  
3
Harmonic  
10  
rd  
3
Harmonic  
rd  
3
Harmonic  
3
−100  
−100  
−100  
0
2
4
6
8
12  
0
2
4
6
8
10  
0
1
2
4
5
V
− Output Voltage − V  
V
− Output Voltage − V  
O
V
− Output Voltage − V  
O
PP  
O
PP  
Figure 34  
Figure 35  
Figure 36  
11  
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
−60  
−70  
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
−95  
−100  
−50  
−60  
G = 5  
G = 2  
G = 2  
R
L
= 100 Ω  
R
L
= 500 Ω  
R
L
= 500 Ω  
V
=
5 V  
V
= 15 V  
V
= 15 V  
CC  
CC  
CC  
R = 500 Ω  
R = 536 Ω  
R = 536 Ω  
f
f
f
nd  
2
f = 10 MHz  
f = 1 MHz  
f = 10 MHz  
nd  
Harmonic  
2
Harmonic  
−70  
−80  
nd  
2
−80  
Harmonic  
−90  
rd  
4
3
Harmonic  
−90  
rd  
3
Harmonic  
2
rd  
3
Harmonic  
−100  
−100  
0
1
3
4
5
0
2
4
6
8
10  
PP  
12  
0
2
6
8
10  
10  
5
V
− Output Voltage − V  
V
− Output Voltage − V  
V
− Output Voltage − V  
PP  
O
PP  
O
O
Figure 37  
Figure 38  
Figure 39  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
−70  
−75  
−80  
−85  
−90  
−95  
−100  
−50  
−60  
−50  
−60  
G = 2  
G = 2  
G = 2  
R
V
= 500 Ω  
R
V
= 100 Ω  
= 15 V  
R = 500 Ω  
f = 1 MHz  
R
V
= 500 Ω  
5 V  
R = 536 Ω  
L
CC  
L
CC  
L
CC  
=
5 V  
=
R = 536 Ω  
f
f
f
f = 1 MHz  
nd  
f = 10 MHz  
2
nd  
−70  
2
−70  
Harmonic  
Harmonic  
−80  
−80  
nd  
2
Harmonic  
rd  
3
Harmonic  
−90  
−90  
rd  
2
rd  
3
Harmonic  
3
3
Harmonic  
−100  
−100  
0
1
4
5
0
1
2
3
4
5
0
2
4
6 8  
V
− Output Voltage − V  
V
− Output Voltage − V  
O
PP  
V
− Output Voltage − V  
O
PP  
O
PP  
Figure 40  
Figure 41  
Figure 42  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
HARMONIC DISTORTION  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
−95  
−100  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−70  
−75  
−80  
−85  
−90  
−95  
−100  
G = 2  
G = 2  
G = 2  
R
V
= 100 Ω  
R
V
= 100 Ω  
5 V  
R = 500 Ω  
L
CC  
R
V
= 100 Ω  
= 15 V  
R = 500 Ω  
f = 10 MHz  
L
CC  
L
CC  
=
5 V  
=
R = 500 Ω  
f
f
f
f = 10 MHz  
f = 1 MHz  
nd  
2
Harmonic  
nd  
2
Harmonic  
nd  
2
Harmonic  
rd  
3
Harmonic  
rd  
2
3
Harmonic  
3
rd  
3
4
Harmonic  
6
0
1
2
3
4
0
2
8
10  
0
1
4
5
V
− Output Voltage − V  
V
− Output Voltage − V  
V
− Output Voltage − V  
PP  
O
PP  
O
PP  
O
Figure 43  
Figure 44  
Figure 45  
12  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
THS3202  
THS3202  
THS3202  
IMD  
3
vs  
IMD  
3
vs  
OIP  
3
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
−70  
−75  
−80  
−85  
−55  
50  
R
= 100 , G = 5,  
L
Test Instrument Measurement Limit  
48  
R = 536 ,  
f
O
−60  
−65  
−70  
−75  
−80  
−85  
V
= 2V _Envelope  
PP  
f = 200 kHz  
46  
V
= 7.5 V  
CC  
44  
42  
40  
38  
36  
34  
32  
30  
V
=
5 V  
CC  
G = 2  
V
=
7 V  
6 V  
CC  
V
=
CC  
G = 5  
V
=
6 V  
CC  
=
V
R
= 5 V  
= 100 ,  
R
G = 5,  
= 100 ,  
CC  
L
f
V
7 V  
L
CC  
R = 536 ,  
−90  
−95  
R = 536 ,  
V
=
7.5 V  
f
O
CC  
f = 200 kHz  
V
= 2V _Envelope  
PP  
−90  
−95  
V
= 2V _Envelope  
PP  
f = 200 kHz  
O
28  
26  
Test Instrument Measurement Limit  
60 110 160 210  
V
= 5 V  
CC  
160  
0
20  
40  
60  
80  
10  
60  
110  
210  
260  
10  
260  
f
c
− Frequency − MHz  
f
− Frequency − MHz  
f
− Frequency − MHz  
c
c
Figure 46  
Figure 47  
Figure 48  
THS3202  
S PARAMETER  
vs  
FREQUENCY  
OIP  
3
vs  
TEST CIRCUIT FOR  
IMD / OIP  
3
3
FREQUENCY  
20  
0
47  
45  
43  
V
=
5 V  
C = 0 pF  
= 100 Ω  
CC  
V
R
= 5 V  
= 100 ,  
CC  
L
f
Output Power  
S22  
R
R = 536 ,  
L
G = 5  
f = 200 kHz  
Spectrum Analyzer  
G = 10  
−20  
−40  
−60  
−80  
−100  
−120  
V
= 2V _Envelope  
PP  
_
O
G = 5  
+
50 Ω  
41  
39  
37  
35  
G = 2  
S12  
50 Ω  
S11  
C
+
_
This circuit applies to figures 46  
through 49  
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
0
20  
40  
60  
80  
f − Frequency − Hz  
f
− Frequency − MHz  
c
Figure 49  
Figure 50  
Figure 51  
S PARAMETER  
vs  
FREQUENCY  
S PARAMETER  
vs  
FREQUENCY  
S PARAMETER  
vs  
FREQUENCY  
20  
0
20  
0
20  
0
V
= 15 V  
V
= 15 V  
CC  
C = 0 pF  
= 100 Ω  
CC  
C = 3 pF  
= 100 Ω  
V
=
5 V  
CC  
C = 3 pF  
= 100 Ω  
S22  
S22  
R
R
L
L
R
S22  
L
−20  
−40  
−60  
−80  
−100  
−120  
−140  
−20  
−40  
−60  
−80  
−100  
−120  
−140  
G = 10  
G = 10  
G = 10  
−20  
−40  
−60  
−80  
−100  
−120  
S12  
S12  
S11  
S11  
S12  
S11  
C
C
C
+
+
+
_
_
_
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
0.1 M  
1 M  
10 M  
100 M  
1 G  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 52  
Figure 54  
Figure 53  
13  
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
TRANSIMPEDANCE  
INPUT CURRENT NOISE DENSITY  
VOLTAGE NOISE DENSITY  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
50  
45  
40  
4.5  
4
120  
100  
80  
60  
40  
20  
0
V
=
5 V and 15 V  
V
=
5 V and 15 V  
T = 25°C  
A
CC  
CC  
V
V
= 15 V,  
=
CC  
CC  
T
A
= 25°C  
5 V  
3.5  
3
35  
30  
Inverting  
Noise Current  
25  
20  
2.5  
_
+
10 Ω  
Noninverting  
Current Noise  
2
V
I
O
15  
10  
+
_
Gain W +  
IB  
1.5  
100 K  
100 K  
1 M  
10 M  
100 M  
1 M  
10 M  
100 M  
0.1 M  
1 M  
10 M  
100 M  
1 G  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 55  
Figure 56  
Figure 57  
OUTPUT IMPEDANCE  
vs  
SUPPLY CURRENT/CHANNEL  
THS3202  
vs  
FREQUENCY  
IMPEDANCE OF INVERTING INPUT  
SUPPLY VOLTAGE  
100  
16  
15  
14  
13  
12  
23  
21  
19  
17  
15  
13  
11  
9
V
= +5 V  
CC  
G = 2  
R
L
= 100 Ω  
T
A
= 85°C  
10  
1
T
A
= 25°C  
V
= 5 V  
CC  
T
A
= −40°C  
0.1  
11  
10  
7
V
= 15 V  
1 M  
CC  
0.01  
5
100 k 1 M  
10 M  
100 M  
1 G  
10 G  
0.1 M  
10 M  
100 M  
1 G  
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
− Supply Voltage − V  
f − Frequency − Hz  
f − Frequency − Hz  
V
CC  
Figure 58  
Figure 59  
Figure 60  
INPUT OFFSET VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE RANGE  
−0.5  
−1.0  
−1.5  
−2.0  
−2.5  
−3.0  
−3.5  
−4.0  
50  
45  
40  
35  
30  
25  
20  
15  
6
4
2
V
= 5 V  
CC  
T
= −40°C  
A
0
−2  
T
A
= 25°C  
V
= 15 V  
CC  
−4  
V
5
= 15 V  
CC  
T
= 85°C  
A
−6  
V
= 5 V  
CC  
−8  
R
= 100 Ω  
= 7.5 V  
L
V
CC  
−10  
−453525155  
15 25 35 45 55 65 75 85  
−4030−20−10 0 10 20 30 40 50 60 70 80  
−5 −4 −3 −2 −1  
0
1
2
3
4
5
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
V
− Common-Mode Input Voltage Range − V  
ICR  
Figure 61  
Figure 62  
Figure 63  
14  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
NEGATIVE POWER SUPPLY  
REJECTION RATIO  
vs  
POSITIVE POWER SUPPLY  
REJECTION RATIO  
vs  
INPUT BIAS CURRENT  
vs  
INPUT COMMON MODE RANGE  
NEGATIVE POWER SUPPLY  
POSITIVE POWER SUPPLY  
70  
−10  
−20  
−30  
75  
70  
T
V
= −40°C to 85°C  
T
A
= −40°C  
A
= 5 V  
CC  
T
A
= −40°C  
65  
60  
T
A
= 25°C  
T
A
= 25°C  
65  
60  
T
A
= 85°C  
T
A
= 85°C  
55  
55  
50  
45  
50  
45  
R
6
= 100 Ω  
R
= 100 Ω  
L
L
−3  
−2  
−1  
0
1
2
3
3
3.5  
4
4.5  
5
5.5  
6.5  
7
7.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
Input Common Mode Range − V  
Negative Power Supply − V  
Positive Power Supply − V  
Figure 64  
Figure 65  
Figure 66  
POSITIVE OUTPUT VOLTAGE SWING  
POSITIVE OUTPUT VOLTAGE SWING  
NEGATIVE OUTPUT VOLTAGE SWING  
vs  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
1.8  
3.75  
3.70  
3.65  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
V
= 15 V  
V
=
5 V  
V
= 15 V  
CC  
CC  
CC  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
R
= 100 Ω  
R
= 1 kΩ  
L
L
R
= 1 kΩ  
L
R
L
= 100 Ω  
R
L
= 100 Ω  
R
= 1 kΩ  
L
−50 −30 −10  
10  
30  
50  
70  
90  
−45 −25  
−5  
15  
35  
55  
75  
95  
−50 −30 −10  
10  
30  
50  
70  
90  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 67  
Figure 68  
Figure 69  
OUTPUT CURRENT SOURCING  
NEGATIVE OUTPUT VOLTAGE SWING  
OUTPUT CURRENT SINKING  
vs  
vs  
vs  
POWER SUPPLY  
FREE-AIR TEMPERATURE  
POWER SUPPLY  
160  
140  
120  
100  
80  
130  
120  
110  
100  
90  
−3.45  
−3.50  
−3.55  
−3.60  
−3.65  
−3.70  
−3.75  
−3.80  
R = 10 Ω  
L
R
= 10 Ω  
V
=
5 V  
L
CC  
T
= −40°C  
A
R
= 100 Ω  
L
T
A
= 85°C  
T
A
= 25°C  
T
= 85°C  
T
= 25°C  
A
A
T
= −40°C  
A
60  
R
= 1 kΩ  
80  
L
40  
70  
3
3.5  
4
4.5 5 5.5  
6
6.5 7.5  
7
−50 −30 −10  
10  
30  
50  
70  
90  
3
4
6
7.5  
3.5  
4.5  
5
5.5  
6.5  
7
Power Supply − V  
T
A
− Free-Air Temperature − °C  
Power Supply − V  
Figure 70  
Figure 71  
Figure 72  
15  
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
SLEW RATE  
vs  
OVERDRIVE RECOVERY TIME  
OUTPUT VOLTAGE  
OVERDRIVE RECOVERY TIME  
10  
8
10  
8
10 k  
V
I
V
I
G = −1  
R
= 100 Ω  
= 15 V,  
L
6
6
V
V
CC  
CC  
=
5 V  
4
4
2
2
0
0
1 k  
V
O
−2  
−4  
−6  
−8  
−10  
V
−2  
−4  
−6  
−8  
−10  
O
R
V
= 100 Ω  
R
V
= 100 Ω  
L
L
= 15 V  
=
5 V  
CC  
CC  
100  
0.0  
0.2  
0.4  
0.6  
0.8  
1
0.0  
0.2  
0.4  
0.6  
0.8  
1
0
1
2
3
4
5
t − Time − µs  
t − Time − µs  
V
− Output Voltage − V  
O
Figure 73  
Figure 74  
Figure 75  
SLEW RATE  
vs  
OUTPUT VOLTAGE  
SLEW RATE  
vs  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
TRANSIENT RESPONSE  
100 k  
10 k  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10 k  
V
R
= 15 V  
= 100 Ω  
CC  
L
V
R
=
5 V  
= 100 Ω  
CC  
L
G = −1  
R
L
= 500 Ω  
1 k  
V
= 5 V  
CC  
−0.5  
R = 250 Ω  
f
O
1 k  
−1.0  
−1.5  
−2.0  
−2.5  
−3.0  
V
= 5 V  
PP  
100  
100  
0
2
4
6
8
10  
12  
0
10  
20  
30  
40  
50  
60  
0
1
2
3
4
5
6
V
− Output Voltage − V  
O
t
s
− Settling Time − ns  
V
− Output Voltage − V  
O
Figure 76  
Figure 77  
Figure 78  
DC COMMON-MODE REJECTION  
RATIO HIGH  
vs  
SETTLING TIME  
INPUT COMMON MODE RANGE  
SETTLING TIME  
1.5  
1.05  
1.04  
1.03  
70  
1.4  
1.3  
1.2  
1.1  
V
V
= 15 V,  
= 2 V  
CC  
O
V
V
= 15 V,  
= 2 V  
CC  
O
60  
50  
40  
,
PP  
,
PP  
G = −2,  
R = 450 Ω  
f
G = −2,  
R = 450 Ω  
f
1.02  
R
L
= 100 Ω  
1.01  
1
1
30  
20  
10  
0
0.9  
0.99  
0.98  
0.8  
0.7  
0.97  
0.96  
0.95  
0.6  
0.5  
0
10 20 30 40 50 60 70 80 90 100  
10  
30  
50  
70  
90 110 130  
150  
−7.5 −5.5 −3.5 −1.5 0.5 2.5 4.5 6.5  
Settling Time − ns  
Settling Time − ns  
Input Common Mode Range − V  
Figure 79  
Figure 80  
Figure 81  
16  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
POWER SUPPLY REJECTION RATIO  
DIFFERENTIAL GAIN ERROR  
POWER SUPPLY REJECTION RATIO  
vs  
vs  
vs  
FREQUENCY  
150-LOADS  
FREQUENCY  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−55  
−60  
0.035  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−55  
−60  
NTSC  
G = 2  
V
= 5 V  
V
= 15 V  
CC  
CC  
0.030  
0.025  
V
0.020  
CC  
V
CC  
0.015  
V
= 5 V  
CC  
V
EE  
0.010  
V
EE  
V
= 15 V  
CC  
0.005  
0.000  
1
2
3
4
5
6
0.1 M  
1 M  
10 M  
100 M  
1 G  
0.1 M  
1 M  
10 M  
100 M  
1 G  
150-Loads  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 82  
Figure 83  
Figure 84  
DIFFERENTIAL PHASE ERROR  
DIFFERENTIAL GAIN ERROR  
DIFFERENTIAL PHASE ERROR  
vs  
vs  
vs  
150-LOADS  
150-LOADS  
150-LOADS  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0.035  
0.030  
NTSC  
G = 2  
NTSC  
G = −2  
NTSC  
G = −2  
0.030  
0.025  
V
=
5 V  
CC  
V
=
5 V  
0.025  
CC  
0.020  
V
= 5 V  
CC  
0.020  
0.015  
0.010  
0.005  
0.000  
0.015  
V
= 15 V  
CC  
V
= 15 V  
CC  
0.010  
0.005  
0.000  
V
= 15 V  
CC  
3
1
2
4
5
6
1
2
3
4
1
2
3
4
150-Loads  
150-Loads  
150-Loads  
Figure 85  
Figure 86  
Figure 87  
DIFFERENTIAL GAIN ERROR  
DIFFERENTIAL PHASE ERROR  
vs  
vs  
150-LOADS  
150-LOADS  
0.004  
0.07  
PAL  
G = 2  
0.035  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
V
= 5 V  
CC  
0.030  
0.025  
V
=
5 V  
V
CC  
0.020  
0.015  
V
= 15 V  
CC  
= 15 V  
CC  
0.010  
0.005  
0.000  
PAL  
G = 2  
1
2
3
4
5
6
1
2
3
4
5
6
150-Loads  
150-Loads  
Figure 88  
Figure 89  
17  
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
INTRODUCTION  
The THS3202 is a high-speed, operational amplifier configured in a current-feedback architecture. The device is built  
using Texas Instruments BiCOM−ΙΙ process, a 15-V, dielectrically isolated, complementary bipolar process with NPN  
and PNP transistors possessing fTs of several GHz. This configuration implements an exceptionally  
high-performance amplifier that has a wide bandwidth, high slew rate, fast settling time, and low distortion.  
RECOMMENDED FEEDBACK AND GAIN RESISTOR VALUES  
As with all current-feedback amplifiers, the bandwidth of the THS3202 is an inversely proportional function of the  
value of the feedback resistor. The recommended resistors for the optimum frequency response are shown in Table 1.  
These should be used as a starting point and once optimum values are found, 1% tolerance resistors should be used  
to maintain frequency response characteristics. For most applications, a feedback resistor value of 750 is  
recommendeda good compromise between bandwidth and phase margin that yields a very stable amplifier.  
Table 1. Recommended Resistor Values for Optimum Frequency Response  
THS3202 R for AC When R  
= 100 Ω  
F
load  
GAIN  
V
sup  
R Value  
F
Peaking  
1
15  
Optimum  
619  
619  
536  
536  
402  
402  
200  
200  
450  
450  
5
15  
5
Optimum  
Optimum  
Optimum  
Optimum  
Optimum  
Optimum  
Optimum  
Optimum  
Optimum  
2
5
15  
5
10  
−1  
15  
5
15  
5
As shown in Table 1, to maintain the highest bandwidth with an increasing gain, the feedback resistor is reduced. The  
advantage of dropping the feedback resistor (and the gain resistor) is the noise of the system is also reduced  
compared to no reduction of these resistor values, see noise calculations section. Thus, keeping the bandwidth as  
high as possible maintains very good distortion performance of the amplifier by keeping the excess loop gain as high  
as possible.  
Care must be taken to not drop these values too low. The amplifier’s output must drive the feedback resistance (and  
gain resistance) and may place a burden on the amplifier. The end result is that distortion may actually increase due  
to the low impedance load presented to the amplifier. Careful management of the amplifier bandwidth and the  
associated loading effects needs to be examined by the designer for optimum performance.  
The THS3202 amplifier exhibit very good distortion performance and bandwidth with the capability of utilizing up to  
15 V power supplies. Their excellent current drive capability of up to 115 mA driving into a 20-load allows for many  
versatile applications. One application is driving a twisted pair line (i.e., telephone line). Figure 90 shows a simple  
circuit for driving a twisted pair differentially.  
18  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
+6 V  
+
0.1 µF  
10 µF  
THS3202(a)  
R
S
+
_
V +  
I
R
Line  
2
2n  
499 Ω  
1:n  
0.1 µF  
Telephone Line  
R
Line  
210 Ω  
THS3202(b)  
R
S
+
_
V −  
I
R
Line  
2
2n  
499 Ω  
0.1 µF  
10 µF  
+
−6 V  
Figure 90. Simple Line Driver With THS3202  
Due to the large power supply voltages and the large current drive capability, power dissipation of the amplifier must  
not be neglected. To have as much power dissipation as possible in a small package, the THS3202 is available only  
in a MSOP−8 PowerPAD package (DGN) and SOIC−8 package (D). Again, power dissipation of the amplifier must  
be carefully examined or else the amplifiers could become too hot and performance can be severely degraded. See  
the Power Dissipation and Thermal Considerations section for more information on thermal management.  
NOISE CALCULATIONS  
Noise can cause errors on very small signals. This is especially true for amplifying small signals coming over a  
transmission line or an antenna. The noise model for current-feedback amplifiers (CFB) is the same as for voltage  
feedback amplifiers (VFB). The only difference between the two is that CFB amplifiers generally specify different  
current-noise parameters for each input, while VFB amplifiers usually only specify one noise-current parameter. The  
noise model is shown in Figure 91. This model includes all of the noise sources as follows:  
en = Amplifier internal voltage noise (nV/Hz)  
IN+ = Noninverting current noise (pA/Hz)  
IN− = Inverting current noise (pA/Hz)  
eRx = Thermal voltage noise associated with each resistor (eRx = 4 kTRx)  
19  
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
e
Rs  
e
n
R
S
Noiseless  
+
_
e
ni  
e
no  
IN+  
IN−  
e
Rf  
R
f
e
Rg  
R
g
Figure 91. Noise Model  
The total equivalent input noise density (eni) is calculated by using the following equation:  
2
2
2
Ǹ
ǒe Ǔ  
) ǒIN )   R Ǔ ) ǒIN *   ǒR ø R ǓǓ ) 4 kTR ) 4 kTǒR ø R  
Ǔ
e
+
g
s
g
n
ni  
f
f
S
where:  
k = Boltzmann’s constant = 1.380658 × 10−23  
T = Temperature in degrees Kelvin (273 +°C)  
Rf || Rg = Parallel resistance of Rf and Rg  
To get the equivalent output noise of the amplifier, just multiply the equivalent input noise density (eni) by the overall  
amplifier gain (AV).  
R
f
e
+ e  
A
+ e  
ǒ
1 )  
Ǔ
(Noninverting Case)  
no  
ni  
V
ni  
R
g
As the previous equations show, to keep noise at a minimum, small value resistors should be used. As the closed-loop  
gain is increased (by reducing RF and RG), the input noise is reduced considerably because of the parallel resistance  
term. This leads to the general conclusion that the most dominant noise sources are the source resistor (RS) and the  
internal amplifier noise voltage (en). Because noise is summed in a root-mean-squares method, noise sources  
smaller than 25% of the largest noise source can be effectively ignored. This can greatly simplify the formula and  
make noise calculations much easier.  
This brings up another noise measurement usually preferred in RF applications, the noise figure (NF). Noise figure  
is a measure of noise degradation caused by the amplifier. The value of the source resistance must be defined and  
is typically 50 in RF applications.  
2
e
ȱ ȳ  
ni  
NF + 10log  
ȧe ȧ  
2
Rs  
Ȳ ȴ  
Because the dominant noise components are generally the source resistance and the internal amplifier noise voltage,  
we can approximate noise figure as:  
2
2
ȱ
ȳ
ȡ
ȣ
) ǒIN )   R  
Ǔ
ǒe Ǔ  
ȧ
ȧ
S
n
ȧ
ȧ
NF + 10log 1 )Ȣ  
Ȥ
ȧ
ȧ
ȧ
ȧ
ȧ
ȧ
ȧ
ȧ
4 kTR  
S
Ȳ
ȴ
20  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
PRINTED-CIRCUIT BOARD LAYOUT TECHNIQUES FOR OPTIMAL PERFORMANCE  
Achieving optimum performance with high frequency amplifier-like devices in the THS320x family requires careful  
attention to board layout parasitic and external component types.  
Recommendations that optimize performance include:  
D
D
Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on the output  
and input pins can cause instability. To reduce unwanted capacitance, a window around the signal I/O pins should  
be opened in all of the ground and power planes around those pins. Otherwise, ground and power planes should  
be unbroken elsewhere on the board.  
Minimize the distance (< 0.25”) from the power supply pins to high frequency 0.1-µF and 100 pF decoupling  
capacitors. At the device pins, the ground and power plane layout should not be in close proximity to the signal  
I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling  
capacitors. The power supply connections should always be decoupled with these capacitors. Larger (6.8 µF  
or more) tantalum decoupling capacitors, effective at lower frequency, should also be used on the main supply  
pins. These may be placed somewhat farther from the device and may be shared among several devices in the  
same area of the PC board. The primary goal is to minimize the impedance seen in the differential-current return  
paths. For driving differential loads with the THS3202, adding a capacitor between the power supply pins  
improves 2nd order harmonic distortion performance. This also minimizes the current loop formed by the  
differential drive.  
D
D
Careful selection and placement of external components preserve the high frequency performance of the  
THS320x family. Resistors should be a very low reactance type. Surface-mount resistors work best and allow  
a tighter overall layout. Again, keep their leads and PC board trace length as short as possible. Never use  
wirebound type resistors in a high frequency application. Since the output pin and inverting input pins are the most  
sensitive to parasitic capacitance, always position the feedback and series output resistors, if any, as close as  
possible to the inverting input pins and output pins. Other network components, such as input termination  
resistors, should be placed close to the gain-setting resistors. Even with a low parasitic capacitance shunting  
the external resistors, excessively high resistor values can create significant time constants that can degrade  
performance. Good axial metal-film or surface-mount resistors have approximately 0.2 pF in shunt with the  
resistor. For resistor values > 2.0 k, this parasitic capacitance can add a pole and/or a zero that can effect circuit  
operation. Keep resistor values as low as possible, consistent with load driving considerations.  
Connections to other wideband devices on the board may be made with short direct traces or through onboard  
transmission lines. For short connections, consider the trace and the input to the next device as a lumped  
capacitive load. Relatively wide traces (50 mils to 100 mils) should be used, preferably with ground and power  
planes opened up around them. Estimate the total capacitive load and determine if isolation resistors on the  
outputs are necessary. Low parasitic capacitive loads (< 4 pF) may not need an R since the THS320x family  
S
is nominally compensated to operate with a 2-pF parasitic load. Higher parasitic capacitive loads without an R  
S
are allowed as the signal gain increases (increasing the unloaded phase margin). If a long trace is required, and  
the 6-dB signal loss intrinsic to a doubly-terminated transmission line is acceptable, implement a matched  
impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for  
microstrip and stripline layout techniques).  
A 50-environment is not necessary onboard, and in fact, a higher impedance environment improves distortion  
as shown in the distortion versus load plots. With a characteristic board trace impedance based on board material  
and trace dimensions, a matching series resistor into the trace from the output of the THS320x is used as well as  
a terminating shunt resistor at the input of the destination device.  
Remember also that the terminating impedance is the parallel combination of the shunt resistor and the input  
impedance of the destination device: this total effective impedance should be set to match the trace impedance. If  
the 6-dB attenuation of a doubly terminated transmission line is unacceptable, a long trace can be  
series-terminated at the source end only. Treat the trace as a capacitive load in this case. This does not preserve  
signal integrity as well as a doubly-terminated line. If the input impedance of the destination device is low, there is  
some signal attenuation due to the voltage divider formed by the series output into the terminating impedance.  
D
Socketing a high speed part like the THS320x family is not recommended. The additional lead length and  
pin-to-pin capacitance introduced by the socket can create an extremely troublesome parasitic network which  
can make it almost impossible to achieve a smooth, stable frequency response. Best results are obtained by  
soldering the THS320x family parts directly onto the board.  
21  
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
PowerPAD DESIGN CONSIDERATIONS  
The THS320x family is available in a thermally-enhanced PowerPAD family of packages. These packages are  
constructed using a downset leadframe upon which the die is mounted [see Figure 92(a) and Figure 92(b)]. This  
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see  
Figure 92(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can  
be achieved by providing a good thermal path away from the thermal pad.  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During  
the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be soldered to a  
copper area underneath the package. Through the use of thermal paths within this copper area, heat can be  
conducted away from the package into either a ground plane or other heat dissipating device.  
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of surface  
mount with the, heretofore, awkward mechanical methods of heatsinking.  
DIE  
Thermal  
Pad  
Side View (a)  
DIE  
End View (b)  
Bottom View (c)  
Figure 92. Views of Thermally Enhanced Package  
Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the  
recommended approach.  
68 Mils x 70 Mils  
(Via diameter = 10 mils)  
Figure 93. DGN PowerPAD PCB Etch and Via Pattern  
22  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
PowerPAD PCB LAYOUT CONSIDERATIONS  
1. Prepare the PCB with a top side etch pattern as shown in Figure 93. There should be etch for the leads as well  
as etch for the thermal pad.  
2. Place five holes in the area of the thermal pad. These holes should be 10 mils in diameter. Keep them small so  
that solder wicking through the holes is not a problem during reflow.  
3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps  
dissipate the heat generated by the THS320x family IC. These additional vias may be larger than the 10-mil  
diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad area  
to be soldered so that wicking is not a problem.  
4. Connect all holes to the internal ground plane.  
5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection  
methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat  
transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this  
application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes  
under the THS320x family PowerPAD package should make their connection to the internal ground plane with  
a complete connection around the entire circumference of the plated-through hole.  
6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five holes  
exposed. The bottom-side solder mask should cover the five holes of the thermal pad area. This prevents solder  
from being pulled away from the thermal pad area during the reflow process.  
7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.  
8. With these preparatory steps in place, the IC is simply placed in position and run through the solder reflow  
operation as any standard surface-mount component. This results in a part that is properly installed.  
POWER DISSIPATION AND THERMAL CONSIDERATIONS  
To maintain maximum output capabilities, the THS3202 does not incorporate automatic thermal shutoff protection.  
The designer must take care to ensure that the design does not violate the absolute maximum junction temperature  
of the device. Failure may result if the absolute maximum junction temperature of 150°C is exceeded. For best  
performance, design for a maximum junction temperature of 125°C. Between 125°C and 150°C, damage does not  
occur, but the performance of the amplifier begins to degrade.  
The thermal characteristics of the device are dictated by the package and the PC board. Maximum power dissipation  
for a given package can be calculated using the following formula.  
Tmax * TA  
PDmax  
+
qJA  
where:  
P
is the maximum power dissipation in the amplifier (W).  
Dmax  
T
is the absolute maximum junction temperature (°C).  
max  
T is the ambient temperature (°C).  
A
θ
θ
θ
= θ + θ  
JC CA  
JA  
JC  
CA  
is the thermal coefficient from the silicon junctions to the case (°C/W).  
is the thermal coefficient from the case to ambient air (°C/W).  
23  
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
For systems where heat dissipation is more critical, the THS320x family of devices is offered in an 8-pin MSOP with  
PowerPAD and the THS3202 is available in the SOIC−8 PowerPAD package offering even better thermal  
performance. The thermal coefficient for the PowerPAD packages are substantially improved over the traditional  
SOIC. Maximum power dissipation levels are depicted in the graph for the available packages. The data for the  
PowerPAD packages assume a board layout that follows the PowerPAD layout guidelines referenced above and  
detailed in the PowerPAD application note number SLMA002. The following graph also illustrates the effect of not  
soldering the PowerPAD to a PCB. The thermal impedance increases substantially which may cause serious heat  
and performance issues. Be sure to always solder the PowerPAD to the PCB for optimum performance.  
4.0  
T
J
= 125°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
θ
= 58.4°C/W  
JA  
θ
JA  
= 98°C/W  
θ
JA  
= 158°C/W  
−40 −20  
0
20  
40  
60  
80 100  
T
A
− Free-Air Temperature − °C  
Results are With No Air Flow and PCB Size = 3”x3”  
θ
JA  
θ
JA  
θ
JA  
= 58.4°C/W for 8-Pin MSOP w/PowerPad (DGN)  
= 98°C/W for 8-Pin SOIC High Test PCB (D)  
= 158°C/W for 8-Pin MSOP w/PowerPad w/o Solder  
Figure 94. Maximum Power Dissipation vs Ambient Temperature  
When determining whether or not the device satisfies the maximum power dissipation requirement, it is important  
to not only consider quiescent power dissipation, but also dynamic power dissipation. Often times, this is difficult to  
quantify because the signal pattern is inconsistent, but an estimate of the RMS power dissipation can provide visibility  
into a possible problem.  
DRIVING A CAPACITIVE LOAD  
Driving capacitive loads with high-performance amplifiers is not a problem as long as certain precautions are taken.  
The first is to realize that the THS3202 has been internally compensated to maximize its bandwidth and slew-rate  
performance. When the amplifier is compensated in this manner, capacitive loading directly on the output decreases  
the device’s phase margin leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater  
than 10 pF, it is recommended that a resistor be placed in series with the output of the amplifier, as shown in Figure 95.  
A minimum value of 10 should work well for most applications. For example, in 75-transmission systems, setting  
the series resistor value to 75 both isolates any capacitance loading and provides the proper line impedance  
matching at the source end.  
R
g
R
f
_
+
Input  
10 Ω  
Output  
LOAD  
THS3202  
C
Figure 95. Driving a Capacitive Load  
24  
www.ti.com  
ꢀꢁ ꢂ ꢃꢄ ꢅꢄ  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
GENERAL CONFIGURATIONS  
A common error for the first-time CFB user is creating a unity gain buffer amplifier by shorting the output directly to  
the inverting input. A CFB amplifier in this configuration oscillates and is not recommended. The THS3202, like all  
CFB amplifiers, must have a feedback resistor for stable operation. Additionally, placing capacitors directly from the  
output to the inverting input is not recommended. This is because, at high frequencies, a capacitor has a very low  
impedance. This results in an unstable amplifier and should not be considered when using a current-feedback  
amplifier. Because of this, integrators and simple low-pass filters, which are easily implemented on a VFB amplifier,  
have to be designed slightly differently. If filtering is required, simply place an RC-filter at the noninverting terminal  
of the operational-amplifier (see Figure 96).  
R
g
R
f
1
f
+
–3dB  
2pR1C1  
V
R
+
O
f
1
ǒ
Ǔ
Ǔ
+
ǒ
1 )  
V
O
V
R
1 ) sR1C1  
g
I
V
I
R1  
C1  
Figure 96. Single-Pole Low-Pass Filter  
If a multiple-pole filter is required, the use of a Sallen-Key filter can work very well with CFB amplifiers. This is because  
the filtering elements are not in the negative feedback loop and stability is not compromised. Because of their high  
slew-rates and high bandwidths, CFB amplifiers can create very accurate signals and help minimize distortion. An  
example is shown in Figure 97.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
f
1
R
g
=
R
f
2 −  
)
R
g
(
Q
Figure 97. 2-Pole Low-Pass Sallen-Key Filter  
25  
www.ti.com  
SLOS242D − SEPTEMBER 2002 − REVISED JANUARY 2004  
There are two simple ways to create an integrator with a CFB amplifier. The first, shown in Figure 98, adds a resistor  
in series with the capacitor. This is acceptable because at high frequencies, the resistor is dominant and the feedback  
impedance never drops below the resistor value. The second, shown in Figure 99, uses positive feedback to create  
the integration. Caution is advised because oscillations can occur due to the positive feedback.  
C1  
R
f
1
S )  
ȡ
ȣ
R C1  
V
R
R
g
f
O
f
+
ǒ Ǔ  
+
ȧ
ȧ
V
I
V
R
S
g
I
V
O
Ȣ
Ȥ
THS3202  
Figure 98. Inverting CFB Integrator  
R
g
R
f
For Stable Operation:  
R
R
R2  
f
R1 || R  
+
g
A
THS320x  
V
O
R
R
f
1 +  
V
O
V  
g
I
)
(
R1  
R2  
sR1C1  
V
I
C1  
R
A
Figure 99. Noninverting CFB Integrator  
The THS3202 may also be employed as a very good video distribution amplifier. One characteristic of distribution  
amplifiers is the fact that the differential phase (DP) and the differential gain (DG) are compromised as the number  
of lines increases and the closed-loop gain increases. Be sure to use termination resistors throughout the distribution  
system to minimize reflections and capacitive loading.  
R
g
R
f
75-Transmission Line  
75 Ω  
+
V
O1  
V
I
THS3202  
75 Ω  
75 Ω  
N Lines  
75 Ω  
V
ON  
75 Ω  
Figure 100. Video Distribution Amplifier Application  
26  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

THS3202D

2-GHZ, LOW DISTORTION, CURRENT FEEDBACK AMPLIFIERS
TI

THS3202DG4

2GHz Current Feedback Amplifier 8-SOIC -40 to 85
TI

THS3202DGK

2-GHZ, LOW DISTORTION, CURRENT FEEDBACK AMPLIFIERS
TI

THS3202DGN

2-GHZ, LOW DISTORTION, CURRENT FEEDBACK AMPLIFIERS
TI

THS3215

直流至 650MHz、差分转单端、DAC 输出放大器
TI

THS3215IRGVR

直流至 650MHz、差分转单端、DAC 输出放大器 | RGV | 16 | -40 to 85
TI

THS3215IRGVT

直流至 650MHz、差分转单端、DAC 输出放大器 | RGV | 16 | -40 to 85
TI

THS3217

直流至 800MHz、差分转单端、DAC 输出放大器
TI

THS3217IRGVR

直流至 800MHz、差分转单端、DAC 输出放大器 | RGV | 16 | -40 to 85
TI

THS3217IRGVT

直流至 800MHz、差分转单端、DAC 输出放大器 | RGV | 16 | -40 to 85
TI

THS3491

900MHz 高功率输出电流反馈放大器
TI

THS3491IDDAR

900-MHz high-power-output current-feedback amplifier | DDA | 8 | -40 to 85
TI