MSP430C11X1_08 [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430C11X1_08
型号: MSP430C11X1_08
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总40页 (文件大小:947K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
D
D
Low Supply Voltage Range 1.8 V to 3.6 V  
D
D
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by  
Security Fuse  
Ultralow-Power Consumption  
− Active Mode: 160 µA at 1 MHz, 2.2 V  
− Standby Mode: 0.7 µA  
− Off Mode (RAM Retention): 0.1 µA  
Wake-Up From Standby Mode in less  
than 6 µs  
16-Bit RISC Architecture, 125 ns  
Instruction Cycle Time  
Family Members Include:  
MSP430C1101: 1KB ROM, 128B RAM  
MSP430C1111: 2KB ROM, 128B RAM  
MSP430C1121: 4KB ROM, 256B RAM  
MSP430F1101A: 1KB + 128B Flash Memory  
128B RAM  
MSP430F1111A: 2KB + 256B Flash Memory  
128B RAM  
MSP430F1121A: 4KB + 256B Flash Memory  
256B RAM  
Available in a 20-Pin Plastic Small-Outline  
Wide Body (SOWB) Package, 20-Pin Plastic  
Small-Outline Thin Package, 20-Pin TVSOP  
(F11x1A only) and 24-Pin QFN  
For Complete Module Descriptions, Refer  
to the MSP430x1xx Family User’s Guide,  
Literature Number SLAU049  
D
D
D
Basic Clock Module Configurations:  
− Various Internal Resistors  
− Single External Resistor  
− 32-kHz Crystal  
− High-Frequency Crystal  
− Resonator  
D
D
− External Clock Source  
D
D
16-Bit Timer_A With Three  
Capture/Compare Registers  
On-Chip Comparator for Analog Signal  
Compare Function or Slope A/D  
Conversion  
description  
The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs.  
The MSP430x11x1(A) series is an ultralow-power mixed signal microcontroller with a built-in 16-bit timer,  
versatile analog comparator and fourteen I/O pins.  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then  
process the data for display or for transmission to a host system. Stand alone RF sensor front end is another  
area of application. The I/O port inputs provide single slope A/D conversion capability on resistive sensors.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC  
20-PIN SOWB  
(DW)  
PLASTIC  
20-PIN TSSOP  
(PW)  
PLASTIC  
20-PIN TVSOP  
(DGV)  
PLASTIC  
24-PIN QFN  
(RGE)  
T
A
MSP430C1101IPW  
MSP430C1111IPW  
MSP430C1121IPW  
MSP430F1101AIPW  
MSP430F1111AIPW  
MSP430F1121AIPW  
MSP430C1101IRGE  
MSP430C1111IRGE  
MSP430C1121IRGE  
MSP430F1101AIRGE  
MSP430F1111AIRGE  
MSP430F1121AIRGE  
MSP430C1101IDW  
MSP430C1111IDW  
MSP430C1121IDW  
MSP430F1101AIDW  
MSP430F1111AIDW  
MSP430F1121AIDW  
MSP430F1101AIDGV  
MSP430F1111AIDGV  
MSP430F1121AIDGV  
40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢕꢢ  
Copyright 1999 − 2004 Texas Instruments Incorporated  
ꢞ ꢢ ꢟ ꢞꢗ ꢘꢫ ꢚꢙ ꢝ ꢥꢥ ꢣꢝ ꢛ ꢝ ꢜ ꢢ ꢞ ꢢ ꢛ ꢟ ꢧ  
ꢝꢛ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
RGE PACKAGE  
(TOP VIEW)  
DW, PW, or DGV PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
TEST  
P1.7/TA2/TDO/TDI  
P1.6/TA1/TDI/TCLK  
P1.5/TA0/TMS  
P1.4/SMCLK/TCK  
P1.3/TA2  
P1.2/TA1  
P1.1/TA0  
P1.0/TACLK  
P2.4/CA1/TA2  
P2.3/CA0/TA1  
V
CC  
osc  
SS  
XOUT  
P2.5/R  
V
XIN  
RST/NMI  
P2.0/ACLK  
P2.1/INCLK  
P2.2/CAOUT/TA0  
23 22 21 20  
1
NC  
P1.5/TA0/TMS  
17 P1.4/SMCLK/TCK  
18  
V
2
3
4
5
6
SS  
XOUT  
16  
15  
14  
13  
P1.3/TA2  
P1.2/TA1  
P1.1/TA0  
P1.0/TACLK  
XIN  
RST/NMI  
P2.0/ACLK  
8
9 10 11  
Note: NC pins not internally connected  
Power Pad connection to V recommended  
SS  
functional block diagram  
P1/JTAG  
XIN XOUT  
V
RST/NMI  
POR  
P2  
V
CC  
SS  
8
6
R
OSC  
RAM  
256B  
Flash/ROM  
4KB  
Oscillator  
ACLK  
I/O Port 1  
8 I/Os, with 6 I/Os, with  
Interrupt  
Capability  
I/O Port 2  
System  
Clock  
SMCLK  
Interrupt  
Capability  
128B  
128B  
2KB  
1KB  
MCLK  
MAB,  
4 Bit  
Test  
MAB,16-Bit  
JTAG  
CPU  
MCB  
Incl. 16 Reg.  
Bus  
Conv  
MDB, 16-Bit  
MDB, 8 Bit  
TEST  
Watchdog  
Timer  
Timer_A3  
3 CC Reg  
Comparator  
A
15/16-Bit  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
Terminal Functions  
TERMINAL  
DW, PW, or DGV  
RGE  
NO.  
13  
DESCRIPTION  
NAME  
I/O  
NO.  
13  
P1.0/TACLK  
P1.1/TA0  
I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input  
14  
14  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input,  
compare: Out0 output/BSL transmit  
P1.2/TA1  
15  
16  
17  
18  
19  
20  
15  
16  
17  
18  
20  
21  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input,  
compare: Out1 output  
P1.3/TA2  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input,  
compare: Out2 output  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
P1.6/TA1/TDI/TCLK  
I/O General-purpose digital I/O pin/SMCLK signal output/test clock, input  
terminal for device programming and test  
I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output/test  
mode select, input terminal for device programming and test  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/test  
data input or test clock input  
P1.7/TA2/TDO/TDI  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/test  
data output terminal or data input during programming  
P2.0/ACLK  
8
9
6
7
8
I/O General-purpose digital I/O pin/ACLK output  
P2.1/INCLK  
I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK  
P2.2/CAOUT/TA0  
10  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/  
comparator_A, output/BSL receive  
P2.3/CA0/TA1  
P2.4/CA1/TA2  
11  
12  
3
10  
11  
24  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/  
comparator_A, input  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/  
comparator_A, input  
P2.5/R  
OSC  
I/O General-purpose digital I/O pin/input for external resistor that defines  
the DCO nominal frequency  
RST/NMI  
TEST  
7
1
5
I
I
Reset or nonmaskable interrupt input  
22  
Selects test mode for JTAG pins on Port1. The device protection fuse  
is connected to TEST.  
V
V
2
4
23  
Supply voltage  
CC  
2
Ground reference  
SS  
XIN  
6
4
I
Input terminal of crystal oscillator  
Output terminal of crystal oscillator  
XOUT  
QFN Pad  
5
3
O
NA  
Package Pad  
NA QFN package pad connection to V recommended.  
SS  
TDO or TDI is selected via JTAG instruction.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
F
F
F
F
F
F
F
F
F
MOV Rs,Rd  
R10 −−> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
F
F
MOV @Rn+,Rm  
Immediate  
MOV #X,TONI  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
D
Active mode AM;  
All clocks are active  
Low-power mode 0 (LPM0);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
D
D
Low-power mode 1 (LPM1);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
DCO’s dc-generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4);  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
Crystal oscillator is stopped  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh−0FFE0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
Watchdog  
WDTIFG  
KEYV  
(see Note 1)  
Reset  
0FFFEh  
15, highest  
Flash Memory  
NMIIFG  
OFIFG  
ACCVIFG  
NMI  
Oscillator fault  
Flash memory access violation  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
0FFFCh  
14  
(see Notes 1 & 4)  
0FFFAh  
0FFF8h  
0FFF6h  
0FFF4h  
0FFF2h  
13  
12  
11  
10  
9
Comparator_A  
Watchdog Timer  
Timer_A3  
CAIFG  
WDTIFG  
maskable  
maskable  
maskable  
TACCR0 CCIFG (see Note 2)  
TACCR1 CCIFG.  
TACCR2 CCIFG  
Timer_A3  
maskable  
0FFF0h  
8
TAIFG (see Notes 1 & 2)  
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
7
6
5
4
I/O Port P2  
(eight flags; see Note 3)  
P2IFG.0 to P2IFG.7  
(see Notes 1 & 2)  
maskable  
maskable  
0FFE6h  
0FFE4h  
3
2
I/O Port P1  
(eight flags)  
P1IFG.0 to P1IFG.7  
(see Notes 1 & 2)  
0FFE2h  
0FFE0h  
1
0, lowest  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module  
3. There are eight Port P2 interrupt flags, but only six Port P2 I/O pins (P2.0−5) implemented on the ’C11x1 and ’F11x1A devices.  
4. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
OFIE  
WDTIE  
ACCVIE  
NMIIE  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer  
is configured in interval timer mode.  
OFIE:  
Oscillator fault enable  
NMIIE:  
ACCVIE:  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
7
6
5
4
3
3
2
2
1
0
Address  
01h  
interrupt flag register 1 and 2  
7
6
5
4
1
0
Address  
02h  
NMIIFG  
OFIFG  
WDTIFG  
rw-0  
rw-1  
rw-(0)  
WDTIFG:  
Set on Watchdog Timer overflow (in watchdog mode) or security key violation.  
Reset on V power-up or a reset condition at RST/NMI pin in reset mode.  
Flag set on oscillator fault  
Set via RST/NMI-pin  
CC  
OFIFG:  
NMIIFG:  
7
6
5
4
3
2
1
0
Address  
03h  
Legend  
rw:  
Bit can be read and written.  
rw-0,1:  
rw-(0,1):  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
memory organization  
MSP430C1101  
MSP430C1111  
MSP430C1121  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
ROM  
ROM  
1KB ROM  
0FFFFh−0FFE0h  
0FFFFh−0FC00h  
2KB ROM  
0FFFFh−0FFE0h  
0FFFFh−0F800h  
4KB ROM  
0FFFFh−0FFE0h  
0FFFFh−0F000h  
Information memory  
Boot memory  
RAM  
Size  
Flash  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Size  
ROM  
Size  
128 Byte  
128 Byte  
256 Byte  
027Fh − 0200h  
027Fh − 0200h  
02FFh − 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
MSP430F1101A  
MSP430F1111A  
MSP430F1121A  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
1KB Flash  
0FFFFh−0FFE0h  
0FFFFh−0FC00h  
2KB Flash  
0FFFFh−0FFE0h  
0FFFFh−0F800h  
4KB Flash  
0FFFFh−0FFE0h  
0FFFFh−0F000h  
Information memory  
Boot memory  
RAM  
Size  
Flash  
128 Byte  
010FFh − 01080h  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
Size  
ROM  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
Size  
128 Byte  
128 Byte  
256 Byte  
027Fh − 0200h  
027Fh − 0200h  
02FFh − 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
bootstrap loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete  
description of the features of the BSL and its implementation, see the Application report Features of the MSP430  
Bootstrap Loader, Literature Number SLAA089.  
BSL Function  
Data Transmit  
Data Receive  
DW, PW & DGV Package Pins  
14 - P1.1  
RGE Package Pins  
14 - P1.1  
10 - P2.2  
8 - P2.2  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and two segments of information memory (A and B) of 128  
bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A and B can be erased individually, or as a group with segments 0−n.  
Segments A and B are also called information memory.  
D
New devices may have some bytes programmed in the information memory (needed for test during  
manufacturing). The user should perform an erase of the information memory prior to the first use.  
0FFFFh  
0FE00h  
Segment0 w/  
Interrupt Vectors  
0FDFFh  
0FC00h  
Segment1  
Segment2  
Segment3  
Segment4  
Segment5  
Segment6  
Segment7  
SegmentA  
SegmentB  
0FBFFh  
0FA00h  
0F9FFh  
0F800h  
Flash Main Memory  
0F7FFh  
0F600h  
0F5FFh  
0F400h  
0F3FFh  
0F200h  
0F1FFh  
0F000h  
010FFh  
01080h  
Information  
Memory  
0107Fh  
01000h  
NOTE: All segments not implemented on all devices.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, refer to the MSP430x1xx Family User’s Guide, literature  
number SLAU049.  
oscillator and system clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock  
module is designed to meet the requirements of both low system cost and low-power consumption. The internal  
DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the  
following clock signals:  
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
digital I/O  
There are two 8-bit I/O ports implemented—ports P1 and P2 (only six P2 I/O signals are available on external  
pins):  
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and six bits of port P2.  
Read/write access to port-control registers is supported by all instructions.  
NOTE:  
Six bits of port P2, P2.0 to P2.5, are available on external pins − but all control and data bits for port  
P2 are implemented.  
watchdog timer  
The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
comparator_A  
The primary function of the comparator_A module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input  
Pin Number  
Device  
Input Signal  
Module  
Input Name  
Module  
Block  
Module  
Output Signal  
Output  
Pin Number  
DW, PW, DGV  
RGE  
DW, PW DGV  
RGE  
13 - P1.0  
13 - P1.0  
TACLK  
ACLK  
SMCLK  
INCLK  
TA0  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
NA  
TA0  
TA1  
TA2  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
9 - P2.1  
14 - P1.1  
10 - P2.2  
7 - P2.1  
14 - P1.1  
8 - P2.2  
14 - P1.1  
18 - P1.5  
14 - P1.1  
18 - P1.5  
TA0  
V
SS  
V
V
CC  
CC  
15 - P1.2  
16 - P1.3  
15 - P1.2  
16 - P1.3  
TA1  
CCI1A  
CCI1B  
GND  
11 - P2.3  
15 - P1.2  
19 - P1.6  
10 - P2.3  
15 - P1.2  
20 - P1.6  
CAOUT (internal)  
V
SS  
V
CC  
V
CC  
TA2  
CCI2A  
CCI2B  
GND  
12 - P2.4  
16 - P1.3  
20 - P1.7  
11 - P2.4  
16 - P1.3  
21 - P1.7  
ACLK (internal)  
V
SS  
V
CC  
V
CC  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Timer_A  
Reserved  
Reserved  
Reserved  
Reserved  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
Reserved  
Reserved  
Reserved  
Reserved  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
Timer_A interrupt vector  
017Eh  
017Ch  
017Ah  
0178h  
0176h  
0174h  
0172h  
0170h  
016Eh  
016Ch  
016Ah  
0168h  
0166h  
0164h  
0162h  
0160h  
012Eh  
TACCR2  
TACCR1  
TACCR0  
TAR  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
TAIV  
Flash Memory  
Flash control 3  
Flash control 2  
Flash control 1  
FCTL3  
FCTL2  
FCTL1  
012Ch  
012Ah  
0128h  
Watchdog  
Watchdog/timer control  
WDTCTL  
0120h  
PERIPHERALS WITH BYTE ACCESS  
Comparator_A  
Comparator_A port disable  
Comparator_A control 2  
Comparator_A control 1  
CAPD  
CACTL2  
CACTL1  
05Bh  
05Ah  
059h  
Basic Clock  
Port P2  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
BCSCTL2 058h  
BCSCTL1 057h  
DCOCTL  
056h  
Port P2 selection  
P2SEL  
P2IE  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
Port P2 output  
Port P2 input  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P1  
Port P1 selection  
P1SEL  
P1IE  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
Port P1 output  
Port P1 input  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
absolute maximum ratings  
Voltage applied at V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V +0.3 V  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
CC  
Storage temperature, T (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
Storage temperature, T (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage is applied  
SS  
FB  
to the TEST pin when blowing the JTAG fuse.  
recommended operating conditions  
MIN  
NOM  
MAX UNITS  
MSP430C11x1  
MSP430F11x1A  
MSP430F11x1A  
1.8  
1.8  
2.7  
3.6  
V
Supply voltage during program execution, V  
CC  
(see Note 1)  
3.6  
Supply voltage during program/erase flash memory, V  
CC  
3.6  
V
V
Supply voltage, V  
SS  
0
Operating free-air temperature range, T  
MSP430x11x1(A)  
Watch crystal  
Ceramic resonator  
Crystal  
−40  
85  
°C  
Hz  
A
LF mode selected, XTS=0  
32768  
LFXT1 crystal frequency,  
(see Note 1 & 2)  
450  
8000  
8000  
f
(LFXT1)  
XT1 mode selected, XTS=1  
kHz  
1000  
V
= 1.8 V,  
CC  
MSP430x11x1(A)  
dc  
dc  
4.15  
8
Processor frequency f  
(system)  
(MCLK signal)  
MHz  
V
= 3.6 V,  
CC  
MSP430x11x1(A)  
NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal. A 5.1Mresistor from XOUT to V  
is recommended when V  
<
SS  
CC  
2.5 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 4.15MHz at V  
2.2 V. In XT1 mode,  
CC  
the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 8MHz at V  
2.8 V.  
2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.  
CC  
f
(MHz)  
SYSTEM  
8.0 MHz  
Supply voltage range,  
’x11x1(A), during  
Supply voltage range, ’F11x1A,  
during flash memory programming  
program execution  
4.15 MHz  
1.8 V  
2.7 V 3 V  
Supply Voltage − V  
3.6 V  
NOTE: Minimum processor frequency is defined by system clock. Flash  
program or erase operations require a minimum V of 2.7 V.  
CC  
Figure 1. Frequency vs Supply Voltage, MSP430x11x1(A)  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
supply current (into V ) excluding external current  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
T
= −40°C to + 85°C,  
V
V
= 2.2 V  
= 3 V  
160  
240  
200  
300  
A
CC  
f
f
= f = 1 MHz,  
= 32,768 Hz  
(MCLK) (SMCLK)  
CC  
(ACLK)  
C11x1  
V
V
= 2.2 V  
= 3 V  
1.3  
2.5  
2
T
= −40°C to + 85°C,  
CC  
A
f
= f = 4096 Hz  
= f  
= −40°C to + 85°C,  
3.2  
(MCLK) (SMCLK) (ACLK)  
CC  
T
I
Active mode  
µA  
A
(AM)  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
200  
300  
250  
350  
f
= f  
= 1 MHz,  
MCLK (SMCLK)  
= 32,768 Hz,  
f(ACLK)  
Program executes in flash  
F11x1A  
T
= −40°C to + 85°C,  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
3
11  
30  
51  
32  
55  
11  
17  
1.2  
2
5
18  
40  
60  
45  
70  
14  
22  
1.7  
2.7  
A
Program executes in flash  
= f = f  
f
= 4096 Hz  
(MCLK) (SMCLK) (ACLK)  
= −40°C to + 85°C,  
T
= 2.2 V  
= 3 V  
A
C11x1  
f
= 0, f = 1 MHz,  
(MCLK)  
(SMCLK)  
= 32,768 Hz  
Low-power mode,  
(LPM0)  
f(ACLK)  
I
I
µA  
µA  
(CPUOff)  
T
= −40°C to + 85°C,  
= 2.2 V  
= 3 V  
A
F11x1A  
f
= 0, f = 1 MHz,  
(SMCLK)  
= 32,768 Hz  
(MCLK)  
f(ACLK)  
T
= −40°C to + 85°C,  
= 2.2 V  
= 3 V  
A
Low-power mode,  
(LPM2)  
f
= f = 0 MHz,  
= 32,768 Hz, SCG0 = 0  
(LPM2)  
(MCLK) (SMCLK)  
f(ACLK)  
T
= −40°C to + 85°C,  
= 2.2 V  
= 3 V  
A
C11x1  
f
= f  
= 0 MHz,  
(MCLK) (SMCLK)  
= 32,768 Hz, SCG0 = 1  
f(ACLK)  
T
= −40°C  
0.8  
0.7  
1.6  
1.8  
1.6  
2.3  
0.1  
0.1  
0.4  
1.2  
1
A
Low-power mode,  
(LPM3)  
T
A
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
V
V
= 2.2 V  
CC  
I
(LPM3)  
µA  
f
f
f
= 0 MHz,  
(MCLK)  
T
A
2.3  
2.2  
1.9  
3.4  
0.5  
0.5  
0.8  
= 0 MHz,  
= 32,768 Hz,  
(SMCLK)  
F11x1A  
T
A
(ACLK)  
SCG0 = 1  
T
A
= 3 V  
CC  
T
A
T
A
C11x1  
T
A
V
V
= 2.2 V/3 V  
= 2.2 V/3 V  
CC  
f
f
f
= 0 MHz,  
= 0 MHz,  
= 0 Hz, SCG0 = 1  
(MCLK)  
(SMCLK)  
(ACLK)  
T
A
Low-power mode,  
(LPM4)  
I
(LPM4)  
µA  
T
A
= −40°C  
= 25°C  
= 85°C  
0.1  
0.1  
0.8  
0.5  
0.5  
1.9  
F11x1A  
T
A
CC  
T
A
NOTE: All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
current consumption of active mode versus system frequency, C version, F version  
= I × f [MHz]  
I
AM  
AM[1 MHz]  
system  
current consumption of active mode versus supply voltage, C version  
= I + 105 µA/V × (V −3 V)  
I
AM  
AM[3 V]  
CC  
current consumption of active mode versus supply voltage, F version  
= I + 120 µA/V × (V −3 V)  
I
AM  
AM[3 V]  
CC  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Schmitt-trigger inputs − Ports P1 and P2; (P1.0 to P1.7, P2.0 to P2.5)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.1  
1.5  
0.4  
0.9  
0.3  
0.5  
TYP  
MAX  
1.5  
1.9  
0.9  
1.3  
1.1  
1
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
V
IT+  
V
IT−  
V
hys  
Positive-going input threshold voltage  
V
= 2.2 V  
= 3 V  
Negative-going input threshold voltage  
V
V
= 2.2 V  
= 3 V  
Input voltage hysteresis (V  
IT+  
− V )  
IT−  
standard inputs − RST/NMI, JTAG: TCK, TMS, TDI/TCLK  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
Low-level input voltage  
High-level input voltage  
V
SS  
V
+0.6  
SS  
IL  
V
CC  
= 2.2 V / 3 V  
0.8×V  
V
CC  
V
IH  
CC  
inputs Px.x, TAx  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
2.2 V/3 V  
2.2 V  
3 V  
1.5  
62  
50  
62  
50  
cycle  
Port P1, P2: P1.x to P2.x, External trigger signal  
for the interrupt flag, (see Note 1)  
t
External interrupt timing  
Timer_A, capture timing  
(int)  
ns  
ns  
2.2 V  
3 V  
t
f
f
TA0, TA1, TA2  
(cap)  
2.2 V  
3 V  
8
10  
8
Timer_A clock frequency  
externally applied to pin  
TACLK, INCLK t = t  
(H) (L)  
MHz  
MHz  
(TAext)  
2.2 V  
3 V  
Timer_A clock frequency  
SMCLK or ACLK signal selected  
(TAint)  
10  
NOTES: 1. The external signal sets the interrupt flag every time the minimum t  
(int)  
cycle and time parameters are met. It may be set even with  
is measured in  
trigger signals shorter than t  
MCLK cycles.  
. Both the cycle and timing specifications must be met to ensure the flag is set. t  
(int)  
(int)  
leakage current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Port P1: P1.x, 0 ≤ × ≤ 7  
(see Notes 1, 2)  
V
= 2.2 V/3 V,  
CC  
50  
50  
I
High-impedance leakage current  
nA  
lkg(Px.x)  
Port P2: P2.x, 0 ≤ × ≤ 5  
(see Notes 1, 2)  
V
CC  
= 2.2 V/3 V,  
NOTES: 1. The leakage current is measured with V  
SS  
or V applied to the corresponding pin(s), unless otherwise noted.  
CC  
2. The leakage of the digital port pins is measured individually. The port pin must be selected for input and there must be no optional  
pullup or pulldown resistor.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
outputs − Ports P1 and P2; (P1.0 to P1.7, P2.0 to P2.5)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
I
I
I
I
= −1.5 mA  
= −6 mA  
= −1.5 mA  
= −6 mA  
= −1 mA  
= −3.4 mA  
= −1 mA  
= −3.4 mA  
= 1.5 mA  
= 6 mA  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 3  
See Note 3  
See Note 3  
See Note 3  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
V
−0.25  
V
V
V
V
V
V
V
V
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OLmax)  
(OLmax)  
(OLmax)  
(OLmax)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
High-level output voltage  
Port 1 and Port 2 (C11x1)  
Port 1 (F11x1A)  
V
−0.6  
CC  
−0.25  
V
OH  
V
OH  
V
OL  
V
V
CC  
V
−0.6  
CC  
−0.25  
V
CC  
= 2.2 V  
= 3 V  
V
−0.6  
CC  
−0.25  
High-level output voltage  
Port 2 (F11x1A)  
V
V
V
CC  
V
−0.6  
CC  
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
= 2.2 V  
= 3 V  
Low-level output voltage  
Port 1 and Port 2 (C11x1,  
F11x1A)  
V
V
V
V
+0.6  
SS  
= 1.5 mA  
= 6 mA  
V
SS  
+0.25  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
drop specified.  
and I  
, for all outputs combined, should not exceed 12 mA to hold the maximum voltage  
OHmax  
OLmax  
OLmax  
2. The maximum total current, I  
drop specified.  
and I  
, for all outputs combined, should not exceed 48 mA to hold the maximum voltage  
OHmax  
3. One output loaded at a time.  
output frequency  
PARAMETER  
TEST CONDITIONS  
P2.0/ACLK, C = 20 pF  
VCC  
MIN  
TYP  
MAX  
UNIT  
f
f
2.2 V/3 V  
f
f
P20  
L
System  
Output frequency  
MHz  
TA0, TA1, TA2, C = 20 pF  
L
Internal clock source, SMCLK signal applied (see Note 1)  
2.2 V/3 V  
dc  
TAx  
System  
f
= f  
= f  
40%  
35%  
60%  
65%  
SMCLK LFXT1 XT1  
f
= f  
= f  
= f  
SMCLK  
SMCLK  
LFXT1 LF  
2.2 V/3 V  
2.2 V/3 V  
P1.4/SMCLK,  
= 20 pF  
50%−  
15 ns  
50%+  
15 ns  
C
f
f
50%  
50%  
L
LFXT1/n  
DCOCLK  
50%−  
15 ns  
50%+  
15 ns  
t
t
Xdc  
Duty cycle of O/P  
frequency  
= f  
SMCLK  
f
f
f
= f  
= f  
40%  
30%  
60%  
70%  
P20 LFXT1 XT1  
P2.0/ACLK,  
= 20 pF  
= f  
= f  
= f  
2.2 V/3 V  
2.2 V/3 V  
P20  
P20  
LFXT1 LF  
C
L
50%  
0
LFXT1/n  
TA0, TA1, TA2, C = 20 pF, duty cycle = 50%  
50  
ns  
TAdc  
L
NOTE 1: The limits of the system clock MCLK has to be met. MCLK and SMCLK can have different frequencies.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
outputs − Ports P1 and P2 (continued)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
V
CC  
P1.0  
= 2.2 V  
T
= 25°C  
V
CC  
P1.0  
= 3 V  
A
T
= 25°C  
A
T
= 85°C  
A
T
= 85°C  
A
6
4
2
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 2  
Figure 3  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
−2  
0
−5  
V
CC  
P1.0  
= 2.2 V  
V
CC  
P1.0  
= 3 V  
−4  
−10  
−15  
−20  
−25  
−30  
−6  
−8  
T
A
= 85°C  
−10  
−12  
−14  
T
A
= 85°C  
T
A
= 25°C  
T
A
= 25°C  
0.0  
0.5  
OH  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 4  
Figure 5  
NOTE: One output loaded at a time.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
optional resistors, individually programmable with ROM code (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.5  
3.8  
7.6  
11.5  
23  
TYP  
5
MAX  
10  
UNIT  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
R
R
R
R
R
R
R
R
R
R
(opt1)  
(opt2)  
(opt3)  
(opt4)  
(opt5)  
(opt6)  
(opt7)  
(opt8)  
(opt9)  
(opt10)  
7.7  
15  
15  
31  
23  
46  
45  
90  
Resistors, individually programmable with ROM code, all port pins,  
values applicable for pulldown and pullup  
V
CC  
= 2.2 V/3 V  
46  
90  
180  
280  
460  
640  
830  
70  
140  
230  
320  
420  
115  
160  
205  
NOTE 1: Optional resistors R  
optx  
for pulldown or pullup are not available in standard flash memory device MSP430F11x1A.  
wake-up from lower power modes (LPMx)  
PARAMETER  
TEST CONDITIONS  
= 2.2 V/3 V  
MIN  
TYP  
100  
100  
MAX  
UNIT  
t
t
V
V
(LPM0)  
CC  
ns  
= 2.2 V/3 V  
(LPM2)  
CC  
f
f
f
= 1 MHz,  
= 2 MHz,  
= 3 MHz,  
V
V
V
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V/3 V  
6
6
6
(MCLK)  
(MCLK)  
(MCLK)  
CC  
CC  
CC  
t
t
µs  
µs  
(LPM3)  
Delay time (see Note 1)  
f
f
f
= 1 MHz,  
= 2 MHz,  
= 3 MHz,  
V
CC  
V
CC  
V
CC  
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V/3 V  
6
6
6
(MCLK)  
(MCLK)  
(MCLK)  
(LPM4)  
NOTE 1: Parameter applicable only if DCOCLK is used for MCLK.  
RAM  
PARAMETER  
MIN NOM  
MAX  
UNIT  
V
CPU halted (see Note 1)  
1.6  
V
(RAMh)  
NOTE 1: This parameter defines the minimum supply voltage V  
when the data in the program memory RAM remains unchanged. No program  
CC  
execution should happen during this supply voltage condition.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Comparator_A (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
25  
MAX UNIT  
V
V
= 2.2 V  
= 3 V  
40  
µA  
60  
CC  
I
I
CAON=1, CARSEL=0, CAREF=0  
(DD)  
45  
CC  
CAON=1, CARSEL=0,  
CAREF=1/2/3, no load at  
P2.3/CA0/TA1 and P2.4/CA1/TA2  
V
= 2.2 V  
= 3 V  
30  
45  
50  
µA  
71  
CC  
CC  
(Refladder/RefDiode)  
V
Common-mode input  
voltage  
V
CAON =1  
V
= 2.2 V/3 V  
= 2.2 V/3 V  
0
V −1  
CC  
V
(IC)  
CC  
CC  
PCA0=1, CARSEL=1, CAREF=1,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage @ 0.25 V  
CC  
node  
V
V
0.23  
0.24  
0.48  
0.25  
0.5  
(Ref025)  
V
CC  
PCA0=1, CARSEL=1, CAREF=2,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage @ 0.5V  
node  
CC  
V
V
CC  
= 2.2 V/3 V  
0.47  
(Ref050)  
(RefVT)  
V
CC  
PCA0=1, CARSEL=1, CAREF=3,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2, T = 85°C  
V
V
= 2.2 V  
= 3 V  
390  
400  
480  
490  
540  
550  
CC  
V
(see Figure 6 and Figure 7)  
mV  
CC  
A
V
V
Offset voltage  
See Note 2  
V
V
V
V
V
V
V
V
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V  
= 3 V  
−30  
0
30  
1.4  
mV  
mV  
(offset)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
Input hysteresis  
CAON=1  
0.7  
210  
150  
1.9  
hys  
160  
90  
300  
240  
3.4  
T
= 25°C, Overdrive 10 mV,  
A
ns  
µs  
ns  
µs  
Without filter: CAF=0  
t
(response LH)  
= 2.2 V  
= 3 V  
1.4  
0.9  
130  
80  
T
= 25°C, Overdrive 10 mV,  
A
With filter: CAF=1  
1.5  
2.6  
= 2.2 V  
= 3 V  
210  
150  
300  
240  
T
= 25°C, Overdrive 10 mV,  
A
Without filter: CAF=0  
t
(response HL)  
V
CC  
CC  
= 2.2 V  
= 3 V  
1.4  
0.9  
1.9  
1.5  
3.4  
2.6  
T
= 25°C, Overdrive 10 mV,  
A
With filter: CAF=1  
V
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.  
The two successive measurements are then summed together.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
= 2.2 V  
V
CC  
= 3 V  
CC  
Typical  
Typical  
−45  
−25  
−5  
15  
35  
55  
75  
95  
−45  
−25  
−5  
15  
35  
55  
75  
95  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 7. V  
vs Temperature, V  
= 2.2 V  
Figure 6. V  
vs Temperature, V  
= 3 V  
(RefVT)  
CAF  
CC  
(RefVT)  
CC  
0 V  
V
CC  
0
1
CAON  
To Internal  
Modules  
Low Pass Filter  
0
1
0
1
+
_
V+  
V−  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2.0 µs  
Figure 8. Block Diagram of Comparator_A Module  
V
CAOUT  
Overdrive  
V−  
400 mV  
V+  
t
(response)  
Figure 9. Overdrive Definition  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
PUC/POR  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
250  
1.8  
UNIT  
µs  
V
t
Internal time delay to release POR  
150  
(POR_Delay)  
T
= −40°C  
= 25°C  
= 85°C  
1.4  
1.1  
0.8  
A
V
threshold at which POR  
CC  
T
A
1.5  
V
release delay time begins  
(see Note 1)  
V
POR  
V
CC  
= 2.2 V/3 V  
T
A
1.2  
V
V
threshold required to  
CC  
V
V
|dV/dt| 1V/ms  
0.2  
2
V
(min)  
CC  
generate a POR (see Note 2)  
RST/NMI low time for PUC/POR  
rise time dV/dt 1V/ms.  
t
Reset is accepted internally  
µs  
(reset)  
NOTES: 1. V  
CC  
2. When driving V  
low in order to generate a POR condition, V should be driven to 200mV or lower with a dV/dt equal to or less  
CC  
CC  
than −1V/ms. The corresponding rising V  
CC  
must also meet the dV/dt requirement equal to or greater than +1V/ms.  
V
VCC  
V
POR  
No POR  
POR  
POR  
V
(min)  
t
Figure 10. Power-On Reset (POR) vs Supply Voltage  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.4  
1.5  
Max  
1.2  
0.8  
Min  
1.1  
25°C  
−40  
−20  
0
20  
40  
60  
80  
Temperature [°C]  
Figure 11. V  
vs Temperature  
POR  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
DCO  
PARAMETER  
TEST CONDITIONS  
MIN  
0.08  
0.08  
0.14  
0.14  
0.22  
0.22  
0.37  
0.37  
0.61  
0.61  
TYP  
0.12  
0.13  
0.19  
0.18  
0.30  
0.28  
0.49  
0.47  
0.77  
0.75  
MAX  
0.15  
0.16  
0.23  
0.22  
0.36  
0.34  
0.59  
0.56  
0.93  
0.9  
UNIT  
V
V
V
V
V
V
V
V
V
V
= 2.2 V  
= 3 V  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
f
f
f
R
R
R
= 0, DCO = 3, MOD = 0, DCOR = 0,  
= 1, DCO = 3, MOD = 0, DCOR = 0,  
= 2, DCO = 3, MOD = 0, DCOR = 0,  
T
A
= 25°C  
= 25°C  
= 25°C  
MHz  
(DCO03)  
(DCO13)  
(DCO23)  
sel  
sel  
sel  
= 2.2 V  
= 3 V  
T
A
MHz  
MHz  
= 2.2 V  
= 3 V  
T
A
= 2.2 V  
= 3 V  
f
f
f
f
f
R
R
R
R
R
= 3, DCO = 3, MOD = 0, DCOR = 0,  
= 4, DCO = 3, MOD = 0, DCOR = 0,  
= 5, DCO = 3, MOD = 0, DCOR = 0,  
= 6, DCO = 3, MOD = 0, DCOR = 0,  
= 7, DCO = 3, MOD = 0, DCOR = 0,  
T
A
= 25°C  
= 25°C  
= 25°C  
= 25°C  
= 25°C  
MHz  
MHz  
MHz  
MHz  
MHz  
(DCO33)  
(DCO43)  
(DCO53)  
(DCO63)  
(DCO73)  
sel  
sel  
sel  
sel  
sel  
= 2.2 V  
= 3 V  
T
A
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
1
1
1.2  
1.3  
1.9  
2
1.5  
1.5  
T
A
= 2.2 V  
= 3 V  
1.6  
1.69  
2.4  
2.7  
4
2.2  
T
A
2.29  
3.4  
= 2.2 V  
= 3 V  
2.9  
3.2  
4.5  
4.9  
T
A
3.65  
4.9  
= 2.2 V  
= 3 V  
f
R
R
= 7, DCO = 7, MOD = 0, DCOR = 0,  
= 4, DCO = 7, MOD = 0, DCOR = 0,  
T
A
= 25°C  
= 25°C  
MHz  
MHz  
ratio  
(DCO77)  
(DCO47)  
sel  
sel  
4.4  
5.4  
f
f
f
DCO40  
x1.7  
DCO40  
x2.1  
DCO40  
x2.5  
f
T
A
V
CC  
= 2.2 V/3 V  
S
S
S
= f  
/f  
DCO DCO+1 DCO  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V  
1.35  
1.07  
1.65  
1.12  
2
1.16  
(Rsel)  
R
Rsel+1 Rsel  
S
= f /f  
(DCO)  
−0.31  
−0.33  
−0.36  
−0.38  
−0.40  
−0.43  
Temperature drift, R  
(see Note 1)  
= 4, DCO = 3, MOD = 0  
sel  
D
D
%/°C  
t
= 3 V  
Drift with V  
CC  
(see Note 1)  
variation, R = 4, DCO = 3, MOD = 0  
sel  
V
CC  
= 2.2 V/3 V  
0
5
10  
%/V  
V
NOTE 1: These parameters are not production tested.  
Max  
f
f
(DCOx7)  
(DCOx0)  
Min  
Max  
Min  
0
1
2
3
4
5
6
7
2.2 V  
3 V  
V
CC  
DCO Steps  
Figure 12. DCO Characteristics  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
main DCO characteristics  
D
Individual devices have a minimum and maximum operation frequency. The specified parameters for  
to f are valid for all devices.  
f
DCOx0)  
DCOx7)  
(
(
D
D
D
All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps Rsel1, ... Rsel6 overlaps Rsel7.  
DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter S  
.
DCO  
Modulation control bits MOD0 to MOD4 select how often f  
is used within the period of 32 DCOCLK  
DCO+1)  
(
cycles. The frequency f  
is used for the remaining cycles. The frequency is an average equal to:  
(DCO)  
32   f(DCO)   f(DCO)1)  
faverage  
+
MOD   f(DCO))(32*MOD)   f(DCO)1)  
DCO when using R  
(see Note 1)  
OSC  
PARAMETER  
TEST CONDITIONS  
= 4, DCO = 3, MOD = 0, DCOR = 1,  
= 25°C  
V
MIN  
NOM  
1.8 15%  
1.95 15%  
0.1  
MAX  
UNIT  
MHz  
MHz  
%/°C  
%/V  
CC  
2.2 V  
R
T
sel  
A
f
, DCO output frequency  
DCO  
3 V  
D , Temperature drift  
R
R
= 4, DCO = 3, MOD = 0, DCOR = 1  
= 4, DCO = 3, MOD = 0, DCOR = 1  
2.2 V/3 V  
2.2 V/3 V  
t
sel  
sel  
D , Drift with V  
v
variation  
10  
CC  
NOTES: 1. R  
= 100k. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and T  
=
50ppm/°C.  
OSC  
K
crystal oscillator, LFXT1  
PARAMETER  
TEST CONDITIONS  
XTS=0; LF mode selected.  
= 2.2 V / 3 V  
MIN  
TYP  
MAX  
UNIT  
12  
V
CC  
XTS=1; XT1 mode selected.  
= 2.2 V / 3 V (see Note 1)  
C
C
Input capacitance  
pF  
XIN  
2
12  
2
V
CC  
XTS=0; LF mode selected.  
= 2.2 V / 3 V  
V
CC  
Output capacitance  
Input levels at XIN  
pF  
V
XOUT  
XTS=1; XT1 mode selected.  
V
V
= 2.2 V / 3 V (see Note 1)  
= 2.2 V/3 V (see Note 2)  
CC  
V
V
V
SS  
0.2×V  
IL  
CC  
CC  
0.8×V  
CC  
V
CC  
IH  
NOTES: 1. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Flash Memory  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
2.7  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from V  
Supply current from V  
during program  
during erase  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
3
PGM  
CC  
3
7
mA  
ERASE  
CPT  
CC  
Cumulative program time  
see Note 1  
see Note 2  
4
ms  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
200  
ms  
CMErase  
4
5
10  
10  
100  
cycles  
years  
t
T = 25°C  
J
Retention  
t
t
t
t
t
t
Word or byte program time  
35  
30  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
21  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 3  
t
FTG  
6
5297  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/f  
,max = 5297x1/476kHz). To  
FTG  
achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met.  
(A worst case minimum of 19 cycles are required).  
3. These values are hardwired into the Flash Controller’s state machine (t  
FTG  
= 1/f  
FTG  
).  
JTAG Interface  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
kΩ  
f
TCK input frequency  
Internal pull-down resistance on TEST  
see Note 1  
see Note 2  
TCK  
R
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. f  
may be restricted to meet the timing requirements of the module selected.  
TCK  
2. TEST pull-down resistor implemented in all versions.  
JTAG Fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse-blow - ’C11x1  
Voltage level on TEST for fuse-blow - ’F11x1A  
Supply current into TEST during fuse blow  
Time to blow fuse  
T
A
= 25°C  
2.5  
3.5  
6
V
V
CC(FB)  
3.9  
7
FB  
V
I
t
100  
1
mA  
ms  
FB  
FB  
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched  
to bypass mode.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic  
Port P1, P1.0 to P1.3, input/output with Schmitt-trigger  
V
CC  
P1SEL.x  
0
(See Note 1)  
P1DIR.x  
1
0
Direction Control  
From Module  
(See Note 2)  
Pad Logic  
P1.0 − P1.3  
P1OUT.x  
1
Module X OUT  
(See Note 2)  
(See Note 1)  
P1IN.x  
GND  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
Interrupt  
Edge  
Select  
EN  
Q
P1IFG.x  
Set  
Interrupt  
Flag  
P1IES.x  
P1SEL.x  
NOTE: x = Bit/identifier, 0 to 3 for port P1  
Direction  
PnSel.x  
PnDIR.x  
control from  
module  
PnOUT.x  
Module X OUT  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
P1Sel.0  
P1Sel.1  
P1Sel.2  
P1Sel.3  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1OUT.0  
P1OUT.1  
P1OUT.2  
P1OUT.3  
V
P1IN.0  
P1IN.1  
P1IN.2  
P1IN.3  
TACLK  
P1IE.0  
P1IE.1  
P1IE.2  
P1IE.3  
P1IFG.0  
P1IFG.1  
P1IFG.2  
P1IFG.3  
P1IES.0  
P1IES.1  
P1IES.2  
P1IES.3  
SS  
Out0 signal  
Out1 signal  
Out2 signal  
CCI0A  
CCI1A  
CCI2A  
Signal from or to Timer_A  
NOTES: 1. Optional selection of pullup or pulldown resistors with ROM (masked) versions  
2. Fuses for optional pullup and pulldown resistors can only be programmed at the factory (ROM versions only).  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
Port P1, P1.4 to P1.7, input/output with Schmitt-trigger and in-system access features  
V
CC  
See Note 1  
P1SEL.x  
P1DIR.x  
0
1
Direction Control  
From Module  
See Note 2  
0
1
Pad Logic  
P1OUT.x  
P1.4−P1.7  
Module X OUT  
See Note 2  
See Note 1  
GND  
TST  
Bus Keeper  
P1IN.x  
EN  
D
Module X IN  
TEST  
TST  
Fuse  
P1IRQ.x  
P1IE.x  
P1IFG.x  
Interrupt  
Edge  
Select  
60 k  
Typical  
EN  
Set  
Q
GND  
Fuse  
Blow  
Interrupt  
Flag  
Control By JTAG  
P1IES.x  
Control  
P1SEL.x  
P1.x  
TDO  
Controlled By JTAG  
P1.7/TDI/TDO  
P1.x  
Controlled by JTAG  
TDI  
TST  
TST  
P1.6/TDI/TCLK  
P1.x  
NOTE: The test pin should be protected from potential EMI  
and ESD voltage spikes. This may require a smaller  
external pulldown resistor in some applications.  
TMS  
TCK  
P1.5/TMS  
P1.x  
x = Bit identifier, 4 to 7 for port P1  
TST  
During programming activity and during blowing  
of the fuse, the pin TDO/TDI is used to apply the test  
input for JTAG circuitry.  
P1.4/TCK  
Direction  
PnSel.x  
PnDIR.x  
control from  
module  
PnOUT.x  
Module X OUT  
SMCLK  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
P1Sel.4  
P1Sel.5  
P1Sel.6  
P1Sel.7  
P1DIR.4  
P1DIR.5  
P1DIR.6  
P1DIR.7  
P1DIR.4  
P1DIR.5  
P1DIR.6  
P1DIR.7  
P1OUT.4  
P1OUT.5  
P1OUT.6  
P1OUT.7  
P1IN.4  
P1IN.5  
P1IN.6  
P1IN.7  
unused  
unused  
unused  
unused  
P1IE.4  
P1IE.5  
P1IE.6  
P1IE.7  
P1IFG.4  
P1IFG.5  
P1IFG.6  
P1IFG.7  
P1IES.4  
P1IES.5  
P1IES.6  
P1IES.7  
Out0 signal  
Out1 signal  
Out2 signal  
Signal from or to Timer_A  
NOTES: 1. Optional selection of pullup or pulldown resistors with ROM (masked) versions  
2. Fuses for optional pullup and pulldown resistors can only be programmed at the factory (ROM versions only).  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
Port P2, P2.0 to P2.2, input/output with Schmitt-trigger  
P2SEL.x  
P2DIR.x  
V
CC  
0
1
0: Input  
See Note 1  
Direction Control  
From Module  
1: Output  
See Note 2  
Pad Logic  
0
1
P2.0 − P2.2  
P2OUT.x  
Module X OUT  
See Note 2  
See Note 1  
GND  
Bus Keeper  
P2IN.x  
EN  
D
Module X IN  
CAPD.X  
P2IRQ.x  
P2IE.x  
Interrupt  
Edge  
Select  
EN  
Q
P2IFG.x  
Set  
Interrupt  
Flag  
NOTE: x = Bit Identifier, 0 to 2 for port P2  
Direction  
P2IES.x  
P2SEL.x  
PnSel.x  
PnDIR.x  
control from  
module  
PnOUT.x  
Module X OUT  
ACLK  
PnIN.x  
Module X IN  
unused  
PnIE.x  
PnIFG.x  
PnIES.x  
P2Sel.0  
P2Sel.1  
P2Sel.2  
P2DIR.0  
P2DIR.1  
P2DIR.2  
P2DIR.0  
P2DIR.1  
P2DIR.2  
P2OUT.0  
P2OUT.1  
P2OUT.2  
P2IN.0  
P2IN.1  
P2IN.2  
P2IE.0  
P2IE.1  
P2IE.2  
P2IFG.0  
P2IFG.1  
P2IFG.2  
P1IES.0  
P1IES.1  
P1IES.2  
V
INCLK  
CCI0B  
SS  
CAOUT  
Signal from or to Timer_A  
NOTES: 1. Optional selection of pullup or pulldown resistors with ROM (masked) versions  
2. Fuses for optional pullup and pulldown resistors can only be programmed at the factory (ROM versions only).  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
Port P2, P2.3 to P2.4, input/output with Schmitt-trigger  
P2SEL.3  
V
CC  
0
P2DIR.3  
0: Input  
1: Output  
Pad Logic  
See Note 1  
See Note 2  
1
Direction Control  
From Module  
0
1
P2.3  
P2OUT.3  
Module X  
OUT  
See Note 2  
See Note 1  
GND  
P2IN.3  
Bus Keeper  
EN  
D
Module X IN  
P2IRQ.3  
P2IE.3  
Interrupt  
Edge  
Select  
EN  
Set  
Q
CAPD.3  
P2IFG.3  
Comparator_A  
CAREF P2CA CAEX  
Interrupt  
Flag  
P2IES.3 P2SEL.3  
CAF  
+
_
CCI1B  
0 V  
P2SEL.4  
P2IES.4  
Interrupt  
Flag  
CAREF  
Reference Block  
CAPD.4  
Interrupt  
Edge  
Select  
Set  
Q
P2IFG.4  
EN  
P2IRQ.4  
Module X IN  
P2IE.4  
D
EN  
Bus Keeper  
V
P2IN.4  
CC  
See Note 1  
See Note 2  
Module X OUT  
P2OUT.4  
1
0
P2.4  
Pad Logic  
See Note 2  
See Note 1  
Direction Control  
From Module  
1: Output  
0: Input  
1
0
P2DIR.4  
P2SEL.4  
GND  
PnSel.x PnDIR.x  
Direction  
PnOUT.x  
Module X OUT  
PnIN.x  
Module X IN  
PnIE.x  
PnIFG.x  
PnIES.x  
control from module  
P2Sel.3 P2DIR.3  
P2Sel.4 P2DIR.4  
Signal from Timer_A  
P2DIR.3  
P2OUT.3  
P2OUT.4  
Out1 signal  
P2IN.3  
P2IN.4  
unused  
unused  
P2IE.3 P2IFG.3  
P2IE.4 P2IFG.4  
P1IES.3  
P1IES.4  
P2DIR.4  
Out2 signal  
NOTES: 1. Optional selection of pullup or pulldown resistors with ROM (masked) versions  
2. Fuses for optional pullup and pulldown resistors can only be programmed at the factory (ROM versions only).  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
Port P2, P2.5, input/output with Schmitt-trigger and R  
function for the Basic Clock module  
OSC  
V
CC  
P2SEL.5  
0: Input  
Pad Logic  
0
1: Output  
P2DIR.5  
See Note 1  
1
Direction Control  
From Module  
See Note 2  
0
1
P2.5  
P2OUT.5  
Module X OUT  
See Note 2  
See Note 1  
GND  
Bus Keeper  
P2IN.5  
EN  
D
Module X IN  
P2IRQ.5  
Internal to  
Basic Clock  
Module  
P2IE.5  
Interrupt  
Edge  
Select  
1
0
V
CC  
EN  
Q
P2IFG.5  
Set  
Interrupt  
Flag  
P2IES.5  
DC  
Generator  
DCOR  
P2SEL.5  
CAPD.5  
NOTE: DCOR: Control bit from Basic Clock Module if it is set, P2.5 Is disconnected from P2.5 pad  
Direction  
PnSel.x  
P2Sel.5  
PnDIR.x  
P2DIR.5  
control from  
module  
PnOUT.x  
P2OUT.5  
Module X OUT  
PnIN.x  
P2IN.5  
Module X IN  
unused  
PnIE.x  
P2IE.5  
PnIFG.x  
P2IFG.5  
PnIES.x  
P2IES.5  
P2DIR.5  
V
SS  
NOTES: 1. Optional selection of pullup or pulldown resistors with ROM (masked) versions  
2. Fuses for optional pullup and pulldown resistors can only be programmed at the factory (ROM versions only).  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢊ ꢇꢇ ꢈ ꢇꢋ  
ꢀ ꢌ ꢍ ꢎꢏ ꢁꢌ ꢐꢑ ꢋ ꢒ ꢀꢌ ꢆ ꢓꢔꢆ ꢔꢑ ꢕꢓ ꢔꢒ ꢒꢎ ꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
Port P2, unbonded bits P2.6 and P2.7  
P2SEL.x  
P2DIR.x  
0: Input  
1: Output  
0
1
Direction Control  
From Module  
0
1
P2OUT.x  
Module X OUT  
P2IN.x  
Node Is Reset With PUC  
Bus Keeper  
EN  
Module X IN  
D
P2IRQ.x  
P2IE.x  
PUC  
Interrupt  
Edge  
Select  
EN  
Set  
Q
P2IFG.x  
Interrupt  
Flag  
P2IES.x  
P2SEL.x  
NOTE: x = Bit/identifier, 6 to 7 for port P2 without external pins  
Direction  
P2Sel.x  
P2DIR.x  
control from  
module  
P2OUT.x  
Module X OUT  
P2IN.x  
Module X IN  
P2IE.x  
P2IFG.x  
P2IES.x  
P2Sel.6  
P2Sel.7  
P2DIR.6  
P2DIR.7  
P2DIR.6  
P2DIR.7  
P2OUT.6  
P2OUT.7  
V
V
P2IN.6  
P2IN.7  
unused  
unused  
P2IE.6  
P2IE.7  
P2IFG.6  
P2IFG.7  
P2IES.6  
P2IES.7  
SS  
SS  
NOTE 1: Unbonded bits 6 and 7 of port P2 can be used as software interrupt flags. The interrupt flags can only be influenced by software. They  
work then as a software interrupt.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢇ ꢈ ꢇ ꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢊꢇꢇꢈ ꢇꢋ  
ꢀ ꢌꢍꢎ ꢏ ꢁꢌ ꢐ ꢑꢋꢒ ꢀ ꢌꢆꢓꢔ ꢆꢔ ꢑꢕ ꢓꢔ ꢒꢒ ꢎꢓ  
SLAS241H − SEPTEMBER 1999 − REVISED SEPTEMBER 2004  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of  
the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, I , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care  
TF  
must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
When the TEST pin is taken back low after a test or programming session, the fuse check mode and sense  
currents are terminated.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS  
is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.  
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse  
check mode has the potential to be activated.  
The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 13). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TEST  
Figure 13. Fuse Check Mode Current, MSP430F11x1A and MSP430C11x1  
NOTE:  
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader  
access key is used. Also, see the bootstrap loader section for more information.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2006  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
MSP430C1101  
ACTIVE  
ACTIVE  
TBD  
Call TI  
Call TI  
MSP430F1101AIDGV  
TVSOP  
TVSOP  
SOIC  
DGV  
DGV  
DW  
20  
20  
20  
20  
20  
20  
24  
24  
20  
20  
20  
20  
20  
20  
24  
24  
20  
20  
20  
20  
20  
20  
24  
24  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSP430F1101AIDGVR  
MSP430F1101AIDW  
MSP430F1101AIDWR  
MSP430F1101AIPW  
MSP430F1101AIPWR  
MSP430F1101AIRGER  
MSP430F1101AIRGET  
MSP430F1111AIDGV  
MSP430F1111AIDGVR  
MSP430F1111AIDW  
MSP430F1111AIDWR  
MSP430F1111AIPW  
MSP430F1111AIPWR  
MSP430F1111AIRGER  
MSP430F1111AIRGET  
MSP430F1121AIDGV  
MSP430F1121AIDGVR  
MSP430F1121AIDW  
MSP430F1121AIDWR  
MSP430F1121AIPW  
MSP430F1121AIPWR  
MSP430F1121AIRGER  
MSP430F1121AIRGET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
DW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
DGV  
DGV  
DW  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TVSOP  
TVSOP  
SOIC  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
DW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
DGV  
DGV  
DW  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TVSOP  
TVSOP  
SOIC  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
DW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
QFN  
PW  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RGE  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2006  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright 2008, Texas Instruments Incorporated  

相关型号:

MSP430C11X1_11

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C1331

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C1331IPM

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C1351

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C1351IPM

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C13X1

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C311

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C311S

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C311SDL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C311SIDL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C311SIDLR

16-BIT, MROM, 3.3MHz, RISC MICROCONTROLLER, PDSO48, PLASTIC, SSOP-48
TI

MSP430C312

MIXED SIGNAL MICROCONTROLLERS
TI