MSP430C1351 [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430C1351
型号: MSP430C1351
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总35页 (文件大小:543K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
D
D
Low Supply-Voltage Range, 1.8 V to 3.6 V  
D
D
On-Chip Comparator  
Ultralow-Power Consumption:  
− Active Mode: 160 µA at 1 MHz, 2.2 V  
− Standby Mode: 0.9 µA  
− Off Mode (RAM Retention) : 0.1 µA  
Five Power-Saving Modes  
Serial Communication Interface (USART),  
Software Selects Asynchronous UART or  
Synchronous SPI  
D
D
Programmable Code Protection With  
Security Fuse  
D
D
D
D
D
Wake-Up From Standby Mode in less  
than 6 µs  
16-Bit RISC Architecture,  
125-ns Instruction Cycle Time  
Family Members Include:  
− MSP430C1331: 8KB ROM, 256B RAM  
− MSP430C1351: 16KB ROM, 512B RAM  
D
D
D
Available in 64-Pin Quad Flat Pack (QFP)  
Emulation: Use MSP430F13xIPM  
16-Bit Timer_B With Three  
Capture/Compare-With-Shadow Registers  
For Complete Module Descriptions, See the  
MSP430x1xx Family User’s Guide,  
Literature Number SLAU049  
16-Bit Timer_A With Three  
Capture/Compare Registers  
description  
The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs.  
The MSP430C13x1 is a microcontroller configuration with two built-in 16-bit timers, one universal serial  
synchronous/asynchronous communication interfaces (USART), and 48 I/O pins.  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and  
process and transmit the data to a host system. The timers make the configurations ideal for industrial control  
applications, hand-held meters, etc.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
PLASTIC 64-PIN QFP  
(PM)  
MSP430C1331IPM  
MSP430C1351IPM  
−40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢓꢠ  
Copyright 2001 − 2004, Texas Instruments Incorporated  
ꢜ ꢠ ꢝ ꢜꢕ ꢖꢩ ꢘꢗ ꢛ ꢣꢣ ꢡꢛ ꢙ ꢛ ꢚ ꢠ ꢜ ꢠ ꢙ ꢝ ꢥ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
pin designation, MSP430C1331, MSP430C1351  
PM PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DV  
P5.4/MCLK  
P5.3  
1
2
3
4
5
6
7
8
9
48  
47  
46  
45  
44  
43  
42  
41  
40  
CC  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
NC  
P5.2  
P5.1  
P5.0  
P4.7/TBCLK  
P4.6  
XIN  
P4.5  
XOUT  
NC  
P4.4  
10  
39 P4.3  
NC 11  
P1.0/TACLK 12  
P1.1/TA0 13  
38 P4.2/TB2  
37 P4.1/TB1  
36  
35  
34  
33  
P4.0/TB0  
P3.7  
14  
15  
16  
P1.2/TA1  
P1.3/TA2  
P3.6  
P1.4/SMCLK  
P3.5/URXD0  
1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC − No internal connection  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
functional block diagrams  
MSP430C13x1  
P1  
XIN XOUT/TCLK  
DV  
RST/NMI  
P2  
P3  
P4  
P5  
P6  
DV  
AV  
AV  
SS  
CC  
SS  
CC  
8
8
8
8
8
8
R
OSC  
Oscillator  
ACLK  
16KB ROM  
8KB ROM  
512B RAM  
256B RAM  
I/O Port 1/2 I/O Port 3/4 I/O Port 5/6  
16 I/Os,  
with  
16 I/Os  
16 I/Os  
XT2IN  
System  
Clock  
SMCLK  
Interrupt  
Capability  
XT2OUT  
MCLK  
MAB,  
4 Bit  
Test  
MAB,16-Bit  
JTAG  
CPU  
MCB  
Incl. 16 Reg.  
Bus  
Conv  
MDB, 16-Bit  
MDB, 8 Bit  
4
TMS  
TCK  
Watchdog  
Timer  
Timer_B3  
Timer_A3  
3 CC Reg  
POR  
Comparator  
A
USART0  
3 CC Reg  
Shadow  
Reg  
UART Mode  
SPI Mode  
TDI  
15/16-Bit  
TDO/TDI  
Terminal Functions  
TERMINAL  
NAME  
CC  
SS  
I/O  
DESCRIPTION  
NO.  
64  
62  
1
AV  
AV  
Supply voltage, positive terminal. AV  
CC  
and DV  
CC  
are internally connected together.  
are internally connected together.  
are internally connected together.  
are internally connected together.  
Supply voltage, negative terminal. AV  
and DV  
SS  
CC  
SS  
CC  
DV  
DV  
Supply voltage, positive terminal. AV  
and DV  
CC  
SS  
63  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Supply voltage, negative terminal. AV  
SS  
and DV  
SS  
P1.0/TACLK  
P1.1/TA0  
I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output  
I/O General-purpose digital I/O pin/SMCLK signal output  
P1.2/TA1  
P1.3/TA2  
P1.4/SMCLK  
P1.5/TA0  
I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output  
I/O General-purpose digital I/O pin/ACLK output  
P1.6/TA1  
P1.7/TA2  
P2.0/ACLK  
P2.1/TAINCLK  
P2.2/CAOUT/TA0  
P2.3/CA0/TA1  
P2.4/CA1/TA2  
I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input  
I/O General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency  
I/O General-purpose digital I/O pin  
P2.5/R  
P2.6  
OSC  
P2.7/TA0  
I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output  
I/O General-purpose digital I/O pin/slave transmit enable – USART0/SPI mode  
P3.0/STE0  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
29  
P3.1/SIMO0  
P3.2/SOMI0  
P3.3/UCLK0  
I/O  
I/O  
I/O  
General-purpose digital I/O pin/slave in/master out of USART0/SPI mode  
General-purpose digital I/O pin/slave out/master in of USART0/SPI mode  
30  
31  
General-purpose digital I/O pin/external clock input − USART0/UART or SPI mode, clock output –  
USART0/SPI mode  
P3.4/UTXD0  
P3.5/URXD0  
P3.6  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O pin/transmit data out – USART0/UART mode  
General-purpose digital I/O pin/receive data in – USART0/UART mode  
General-purpose digital I/O pin  
P3.7  
General-purpose digital I/O pin  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
P4.3  
General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output  
General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out0 output  
General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out0 output  
General-purpose digital I/O pin  
P4.4  
General-purpose digital I/O pin  
P4.5  
General-purpose digital I/O pin  
P4.6  
General-purpose digital I/O pin  
P4.7/TBCLK  
P5.0  
General-purpose digital I/O pin/Timer_B, clock signal TBCLK input  
General-purpose digital I/O pin  
P5.1  
General-purpose digital I/O pin  
P5.2  
General-purpose digital I/O pin  
P5.3  
General-purpose digital I/O pin  
P5.4/MCLK  
P5.5/SMCLK  
P5.6/ACLK  
P5.7/TBOUTH  
General-purpose digital I/O pin/main system clock MCLK output  
General-purpose digital I/O pin/submain system clock SMCLK output  
General-purpose digital I/O pin/auxiliary clock ACLK output  
General-purpose digital I/O pin/switch all PWM digital output ports to high impedance − Timer_B7 TB0  
to TB2  
P6.0  
59  
60  
61  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
General-purpose digital I/O pin  
P6.1  
General-purpose digital I/O pin  
P6.2  
General-purpose digital I/O pin  
P6.3  
General-purpose digital I/O pin  
P6.4  
3
General-purpose digital I/O pin  
P6.5  
4
General-purpose digital I/O pin  
P6.6  
5
General-purpose digital I/O pin  
P6.7  
6
General-purpose digital I/O pin  
RST/NMI  
TCK  
58  
57  
55  
Reset input, nonmaskable interrupt input port  
Test clock. TCK is the clock input port for device programming test.  
I
TDI/TCLK  
I
Test data input or test clock input. TDI is used as a data input port. The device protection fuse is  
connected to TDI.  
TDO/TDI  
TMS  
54  
I/O  
I
Test data output port. TDO/TDI data output  
56  
Test mode select. TMS is used as an input port for device test.  
No internal connection  
NC  
7, 10, 11  
XIN  
8
9
I
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Output terminal of crystal oscillator XT1  
XOUT  
XT2IN  
XT2OUT  
O
I
53  
52  
Input port for crystal oscillator XT2. Only standard crystals can be connected.  
Output terminal of crystal oscillator XT2  
O
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
D D  
R10 −−> R11  
Indexed  
D D  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative) D D  
Absolute  
Indirect  
D D MOV &MEM,&TCDAT  
D
D
D
MOV @Rn,Y(Rm)  
MOV @Rn+,Rm  
MOV #X,TONI  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
Immediate  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
D
Active mode AM;  
All clocks are active  
Low-power mode 0 (LPM0);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
D
D
Low-power mode 1 (LPM1);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
DCO’s dc-generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4);  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
Crystal oscillator is stopped  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh − 0FFE0h.  
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
Watchdog  
WDTIFG  
(see Note 1)  
Reset  
0FFFEh  
15, highest  
NMI  
Oscillator fault  
NMIIFG (see Notes 1 & 4)  
OFIFG (see Notes 1 & 4)  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
14  
13  
Timer_B3  
TBCCR0 CCIFG  
(see Note 2)  
Maskable  
TBCCR1 and TBCCR2  
CCIFGs, TBIFG  
Timer_B3  
Maskable  
0FFF8h  
12  
(see Notes 1 & 2)  
Comparator_A  
Watchdog timer  
USART0 receive  
USART0 transmit  
CAIFG  
WDTIFG  
URXIFG0  
UTXIFG0  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
11  
10  
9
8
7
Timer_A3  
TACCR0 CCIFG  
(see Note 2)  
Maskable  
6
TACCR1 and TACCR2  
CCIFGs, TAIFG  
(see Notes 1 & 2)  
Timer_A3  
Maskable  
Maskable  
0FFEAh  
0FFE8h  
5
4
P1IFG.0 to P1IFG.7  
(see Notes 1 & 2)  
I/O port P1 (eight flags)  
0FFE6h  
0FFE4h  
3
2
P2IFG.0 to P2IFG.7  
(see Notes 1 & 2)  
I/O port P2 (eight flags)  
Maskable  
0FFE2h  
0FFE0h  
1
0, lowest  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module.  
3. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.  
4. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable  
it.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
special function registers  
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits  
not allocated to a functional purpose are not physically present in the device. This arrangement provides simple  
software access.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
UTXIE0  
URXIE0  
NMIIE  
OFIE  
WDTIE  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog  
Timer is configured in interval timer mode.  
OFIE:  
Oscillator-fault-interrupt enable  
NMIIE:  
URXIE0:  
UTXIE0:  
Nonmaskable-interrupt enable  
USART0: UART and SPI receive-interrupt enable  
USART0: UART and SPI transmit-interrupt enable  
7
6
5
5
4
3
2
2
1
0
Address  
01h  
interrupt flag register 1 and 2  
7
6
URXIFG0  
rw-0  
4
3
1
0
Address  
02h  
UTXIFG0  
NMIIFG  
OFIFG  
WDTIFG  
rw-1  
rw-0  
rw-1  
rw-(0)  
WDTIFG: Set on Watchdog Timer overflow (in watchdog mode) or security key violation. Reset on V  
power-up or a reset condition at RST/NMI pin in reset mode.  
CC  
OFIFG:  
Flag set on oscillator fault  
Set via RST/NMI pin  
NMIIFG:  
URXIFG0: USART0: UART and SPI receive flag  
UTXIFG0: USART0: UART and SPI transmit flag  
7
6
5
4
3
3
2
2
1
1
0
0
Address  
03h  
module enable registers 1 and 2  
7
6
5
4
Address  
04h  
UTXE0  
URXE0  
USPIE0  
rw-0  
rw-0  
URXE0:  
USART0: UART receive enable  
USART0: UART transmit enable  
UTXE0:  
USPIE0:  
USART0: SPI (synchronous peripheral interface) transmit and receive enable  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
7
6
5
4
3
2
1
0
Address  
05h  
Legend: rw:  
Bit Can Be Read and Written  
rw-0,1:  
rw-(0,1):  
Bit Can Be Read and Written. It Is Reset or Set by PUC.  
Bit Can Be Read and Written. It Is Reset or Set by POR.  
SFR Bit Not Present in Device  
memory organization  
MSP430C1331  
MSP430C1351  
Memory  
Interrupt vector  
Code memory  
Size  
ROM  
ROM  
8KB  
16KB  
0FFFFh − 0FFE0h  
0FFFFh − 0C000h  
0FFFFh − 0FFE0h  
0FFFFh − 0E000h  
RAM  
Size  
256 Byte  
512 Byte  
02FFh − 0200h  
03FFh − 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, see the MSP430x1xx Family User’s Guide, literature number  
SLAU049.  
digital I/O  
There are six 8-bit I/O ports implemented—ports P1 through P6:  
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
oscillator and system clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock  
module is designed to meet the requirements of both low system cost and low-power consumption. The internal  
DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the  
following clock signals:  
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
watchdog timer  
The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
USART0  
The MSP430C13x1 devices have one hardware universal synchronous/asynchronous receive transmit  
(USART0) peripheral module that is used for serial data communication. The USART supports synchronous  
SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive  
channels.  
comparator_A  
The primary function of the comparator_A module is to support precision slope analog−to−digital conversions,  
battery−voltage supervision, and monitoring of external analog signals.  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input Pin Number Device Input Signal Module Input Name  
Module Block  
Module Output Signal  
Output Pin Number  
12 - P1.0  
TACLK  
ACLK  
TACLK  
ACLK  
Timer  
NA  
SMCLK  
TAINCLK  
TA0  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
21 - P2.1  
13 - P1.1  
22 - P2.2  
13 - P1.1  
17 - P1.5  
27 - P2.7  
TA0  
CCR0  
CCR1  
CCR2  
TA0  
TA1  
TA2  
DV  
DV  
SS  
V
CC  
CC  
14 - P1.2  
15 - P1.3  
TA1  
CAOUT (internal)  
CCI1A  
CCI1B  
GND  
14 - P1.2  
18 - P1.6  
23 - P2.3  
DV  
DV  
SS  
V
CC  
CC  
TA2  
ACLK (internal)  
CCI2A  
CCI2B  
GND  
15 - P1.3  
19 - P1.7  
24 - P2.4  
DV  
DV  
SS  
V
CC  
CC  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
timer_B3  
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_B3 Signal Connections  
Input Pin Number Device Input Signal Module Input Name  
Module Block  
Module Output Signal  
Output Pin Number  
43 - P4.7  
TBCLK  
ACLK  
SMCLK  
TBCLK  
TB0  
TBCLK  
ACLK  
Timer  
NA  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
43 - P4.7  
36 - P4.0  
36 - P4.0  
36 - P4.0  
37 - P4.1  
38 - P4.2  
TB0  
CCR0  
CCR1  
CCR2  
TB0  
TB1  
TB2  
DV  
DV  
SS  
V
CC  
CC  
37 - P4.1  
37 - P4.1  
TB1  
TB1  
CCI1A  
CCI1B  
GND  
DV  
SS  
DV  
V
CC  
CC  
38 - P4.2  
38 - P4.2  
TB2  
TB2  
CCI2A  
CCI2B  
GND  
DV  
SS  
DV  
V
CC  
CC  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Watchdog  
Timer_B3  
Watchdog Timer control  
Timer_B interrupt vector  
Timer_B control  
WDTCTL  
TBIV  
0120h  
011Eh  
0180h  
0182h  
0184h  
0186h  
0188h  
018Ah  
018Ch  
018Eh  
0190h  
0192h  
0194h  
0196h  
0198h  
019Ah  
019Ch  
019Eh  
012Eh  
0160h  
0162h  
0164h  
0166h  
0168h  
016Ah  
016Ch  
016Eh  
0170h  
0172h  
0174h  
0176h  
0178h  
017Ah  
017Ch  
017Eh  
TBCTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Reserved  
TBCCTL0  
TBCCTL1  
TBCCTL2  
Reserved  
Reserved  
Reserved  
Timer_B register  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Reserved  
TBR  
TBCCR0  
TBCCR1  
TBCCR2  
Reserved  
Reserved  
Reserved  
Timer_A3  
Timer_A interrupt vector  
Timer_A control  
TAIV  
TACTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Reserved  
TACCTL0  
TACCTL1  
TACCTL2  
Reserved  
Reserved  
Reserved  
Timer_A register  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Reserved  
TAR  
TACCR0  
TACCR1  
TACCR2  
Reserved  
Reserved  
Reserved  
PERIPHERALS WITH BYTE ACCESS  
USART0  
Transmit buffer  
Receive buffer  
Baud rate  
U0TXBUF  
U0RXBUF  
U0BR1  
077h  
076h  
075h  
074h  
073h  
072h  
071h  
070h  
Baud rate  
U0BR0  
Modulation control  
Receive control  
Transmit control  
USART control  
U0MCTL  
U0RCTL  
U0TCTL  
U0CTL  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS (CONTINUED)  
Comparator_A  
Basic Clock  
Port P6  
Comparator_A port disable  
Comparator_A control2  
Comparator_A control1  
Basic clock system control2  
Basic clock system control1  
DCO clock frequency control  
Port P6 selection  
CAPD  
CACTL2  
CACTL1  
BCSCTL2  
BCSCTL1  
DCOCTL  
P6SEL  
P6DIR  
P6OUT  
P6IN  
05Bh  
05Ah  
059h  
058h  
057h  
056h  
037h  
036h  
035h  
034h  
033h  
032h  
031h  
030h  
01Fh  
01Eh  
01Dh  
01Ch  
01Bh  
01Ah  
019h  
018h  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
005h  
004h  
003h  
002h  
001h  
000h  
Port P6 direction  
Port P6 output  
Port P6 input  
Port P5  
Port P4  
Port P3  
Port P2  
Port P5 selection  
P5SEL  
P5DIR  
P5OUT  
P5IN  
Port P5 direction  
Port P5 output  
Port P5 input  
Port P4 selection  
P4SEL  
P4DIR  
P4OUT  
P4IN  
Port P4 direction  
Port P4 output  
Port P4 input  
Port P3 selection  
P3SEL  
P3DIR  
P3OUT  
P3IN  
Port P3 direction  
Port P3 output  
Port P3 input  
Port P2 selection  
P2SEL  
P2IE  
Port P2 interrupt enable  
Port P2 interrupt-edge select  
Port P2 interrupt flag  
Port P2 direction  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 output  
Port P2 input  
Port P1  
Port P1 selection  
P1SEL  
P1IE  
Port P1 interrupt enable  
Port P1 interrupt-edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special Functions  
SFR module enable 2  
SFR module enable 1  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
ME2  
ME1  
IFG2  
IFG1  
IE2  
IE1  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Voltage applied at V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V +0.3 V  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
Storage temperature (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
Storage temperature (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage is applied  
SS  
FB  
to the TDI/TCLK pin when blowing the JTAG fuse.  
recommended operating conditions  
PARAMETER  
MIN  
1.8  
NOM  
MAX UNITS  
Supply voltage during program execution, V  
(AV  
CC  
= DV  
CC  
= V  
)
3.6  
0.0  
85  
V
V
CC  
)
CC  
Supply voltage, V  
SS  
(AV  
SS  
= DV  
SS  
= V  
SS  
0.0  
Operating free-air temperature range, T  
−40  
°C  
A
LF selected, XTS=0  
Watch crystal  
32768  
Hz  
kHz  
kHz  
LFXT1 crystal frequency, f  
(see Notes 1 and 2)  
(LFXT1)  
XT1 selected, XTS=1 Ceramic resonator  
XT1 selected, XTS=1 Crystal  
Ceramic resonator  
450  
1000  
450  
8000  
8000  
8000  
8000  
4.15  
8
XT2 crystal frequency, f  
(XT2)  
kHz  
Crystal  
1000  
DC  
V
V
= 1.8 V  
= 3.6 V  
CC  
Processor frequency (signal MCLK), f  
(System)  
MHz  
DC  
CC  
NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal and the LFXT1 oscillator requires a 5.1-Mresistor from XOUT to V  
SS  
when V  
< 2.5 V. In XT1 mode, the LFXT1. and XT2 oscillators accept a ceramic resonator or a 4-MHz crystal frequency at  
2.8 V.  
CC  
V
2.2 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or an 8-MHz crystal frequency at V  
CC  
CC  
2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, FXT1 accepts a ceramic resonator or a crystal.  
f
MHz  
(System)  
8.0 MHz  
4.15 MHz  
1.8 V  
2.7 V 3 V  
3.6 V  
Supply Voltage − V  
Figure 1. Frequency vs Supply Voltage  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
supply current into AV  
+ DV  
excluding external current  
CC  
CC  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
Active mode, (see Note 1)  
V
= 2.2 V  
= 3 V  
160  
200  
CC  
CC  
f
= f  
= 1 MHz,  
= 32,768 Hz, XTS=0, SELM=(0,1)  
T
= −40°C to 85°C  
= −40°C to 85°C  
µA  
(MCLK) (SMCLK)  
A
V
240  
2.5  
300  
7
f
(ACLK)  
I
(AM)  
Active mode, (see Note 1)  
V
V
= 2.2 V  
= 3 V  
CC  
f
= f = 4 096 Hz,  
(MCLK) (SMCLK)  
T
A
µA  
f
= 4,096 Hz  
(ACLK)  
2.5  
7
CC  
XTS=0, SELM=(0,1), XTS=0, SELM=3  
V
V
= 2.2 V  
= 3 V  
32  
55  
45  
70  
CC  
I
I
Low-power mode, (LPM0) (see Note 1)  
T
= −40°C to 85°C  
= −40°C to 85°C  
µA  
µA  
(LPM0)  
A
CC  
Low-power mode, (LPM2),  
f(MCLK) = f (SMCLK) = 0 MHz,  
f(ACLK) = 32.768 Hz, SCG0 = 0  
V
= 2.2 V  
= 3 V  
11  
17  
14  
22  
CC  
CC  
T
A
(LPM2)  
V
T
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
0.8  
0.9  
1.6  
1.8  
1.8  
2.3  
0.1  
0.1  
0.8  
0.1  
0.1  
0.8  
1.5  
1.5  
2.8  
2.2  
2.2  
3.9  
0.5  
0.5  
2.5  
0.5  
0.5  
2.5  
A
T
A
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
µA  
µA  
µA  
µA  
Low-power mode, (LPM3)  
T
A
f
= f  
= 0 MHz,  
= 32,768 Hz, SCG0 = 1  
(MCLK) (SMCLK)  
I
(LPM3)  
f
T
A
(ACLK)  
(see Note 2)  
T
A
T
A
T
A
T
A
= 2.2 V  
= 3 V  
Low-power mode, (LPM4)  
T
A
f
f
= 0 MHz, f = 0 MHz,  
= 0 Hz, SCG0 = 1  
I
(MCLK)  
(ACLK)  
(SMCLK)  
(LPM4)  
T
A
T
A
T
A
NOTES: 1. Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
CC  
2. Timer_B is clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current. The current  
CC  
consumption in LPM2 and LPM3 are measured with ACLK selected.  
Current consumption of active mode versus system frequency  
I(AM) = I(AM) [1 MHz] × f(System) [MHz]  
Current consumption of active mode versus supply voltage  
I
= I  
+ 175 µA/V × (V  
– 3 V)  
(AM)  
(AM) [3 V]  
CC  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
SCHMITT-trigger inputs − Ports P1, P2, P3, P4, P5, and P6  
PARAMETER  
TEST CONDITIONS  
MIN  
1.1  
TYP  
MAX  
1.5  
1.9  
0.9  
1.3  
1.1  
1
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
V
IT+  
V
IT−  
V
hys  
Positive-going input threshold voltage  
V
1.5  
= 2.2 V  
= 3 V  
0.4  
Negative-going input threshold voltage  
V
V
0.90  
0.3  
= 2.2 V  
= 3 V  
Input voltage hysteresis (V  
IT+  
− V )  
IT−  
0.4  
standard inputs − RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO/TDI  
PARAMETER  
Low-level input voltage  
High-level input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
V
SS  
V
+0.6  
SS  
IL  
V
CC  
= 2.2 V / 3 V  
0.8×V  
V
CC  
V
IH  
CC  
input frequency − Ports P1, P2, P3, P4, P5, and P6  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
TYP  
MAX  
8
UNIT  
f
V
V
= 2.2 V  
= 3 V  
(IN)  
CC  
t = t  
(h) (L)  
MHz  
10  
CC  
capture timing _ Timer_A3: TA0, TA1, TA2; Timer_B3: TB0, TB1, TB2  
PARAMETER  
TEST CONDITIONS  
MIN  
1.5  
62  
MAX  
UNIT  
V
CC  
V
CC  
V
CC  
= 2.2 V/3 V  
= 2.2 V  
= 3 V  
Cycle  
Ports P2, P4:  
External trigger signal for the interrupt flag (see Notes 1 and 2)  
t
(int)  
ns  
50  
NOTES: 1. The external signal sets the interrupt flag every time t  
(int)  
is met. It may be set even with trigger signals shorter than t .  
(int)  
The conditions to set the flag must be met independently of this timing constraint. t  
is defined in MCLK cycles.  
(int)  
2. The external signal needs additional timing because of the maximum input-frequency constraint.  
external interrupt timing  
PARAMETER  
TEST CONDITIONS  
MIN  
1.5  
62  
TYP  
MAX  
UNIT  
V
CC  
V
CC  
V
CC  
= 2.2 V/3 V  
= 2.2 V  
= 3 V  
Cycle  
Ports P1, P2:  
t
(int)  
External trigger signal for the interrupt flag (see Notes 1 and 2)  
ns  
50  
NOTES: 1. The external signal sets the interrupt flag every time t  
(int)  
is met. It may be set even with trigger signals shorter than t .  
(int)  
The conditions to set the flag must be met independently of this timing constraint. t  
is defined in MCLK cycles.  
(int)  
2. The external signal needs additional timing because of the maximum input-frequency constraint.  
leakage current (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
50  
UNIT  
I
I
Port P1  
Port P2  
V
(see Note 2)  
(P1.x)  
lkg(P1.x)  
Leakage  
current  
V
= 2.2 V/3 V  
nA  
CC  
V
V
(see Note 2)  
50  
lkg(P2.x)  
(P2.3) (P2.4)  
or V  
NOTES: 1. The leakage current is measured with V  
SS  
applied to the corresponding pin(s), unless otherwise noted.  
CC  
2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs − Ports P1, P2, P3, P4, P5, and P6  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
= −1.5 mA,  
= −6 mA,  
= −1.5 mA,  
= −6 mA,  
= 1.5 mA,  
= 6 mA,  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V,  
= 2.2 V,  
= 3 V,  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
V
−0.25  
V
V
V
V
OH(max)  
OH(max)  
OH(max)  
OH(max)  
OL(max)  
OL(max)  
OL(max)  
OL(max)  
CC  
CC  
CC  
CC  
CC  
V
−0.6  
CC  
−0.25  
V
High-level output voltage  
V
OH  
OL  
V
CC  
= 3 V,  
V
−0.6  
CC  
= 2.2 V,  
= 2.2 V,  
= 3 V,  
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
+0.6  
SS  
V
Low-level output voltage  
V
= 1.5 mA,  
= 6 mA,  
V
SS  
+0.25  
= 3 V,  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed 12 mA to satisfy the maximum  
OH(max)  
OL(max),  
OL(max),  
2. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed 48 mA to satisfy the maximum  
OH(max)  
output frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA0..2, TB0..2  
f
, f  
Internal clock source, SMCLK signal  
applied (see Note 1)  
C
C
= 20 pF  
= 20 pF  
DC  
f
f
TAx TBx  
L
L
System  
MHz  
f
f
f
ACLK,  
MCLK,  
SMCLK  
P5.6/ACLK, P5.4/MCLK,  
P5.5/SMCLK  
System  
f
f
f
f
f
= f  
= f  
40%  
30%  
60%  
70%  
ACLK LFXT1 XT1  
P2.0/ACLK  
= f  
= f  
C
= 20 pF,  
= 2.2 V / 3 V  
ACLK LFXT1 LF  
L
V
CC  
= f  
50%  
ACLK LFXT1/n  
= f  
= f  
SMCLK LFXT1 XT1  
40%  
35%  
60%  
65%  
t
Duty cycle of output frequency  
Xdc  
= f  
= f  
SMCLK LFXT1 LF  
P1.4/SMCLK,  
50%−  
15 ns  
50%−  
15 ns  
C
= 20 pF,  
= 2.2 V / 3 V  
f
= f  
50%  
50%  
L
SMCLK LFXT1/n  
V
CC  
50%−  
15 ns  
50%−  
15 ns  
f = f  
SMCLK DCOCLK  
NOTE 1: The limits of the system clock MCLK has to be met; the system (MCLK) frequency should not exceed the limits. MCLK and SMCLK  
frequencies can be different.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs − Ports P1, P2, P3, P4, P5, and P6 (continued)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
V
CC  
= 2.2 V  
V
CC  
= 3 V  
−40°C  
25°C  
85°C  
−40°C  
25°C  
85°C  
5
0
0
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 2  
Figure 3  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
−35  
−60  
−50  
−40  
−30  
−20  
V
= 2.2 V  
−40°C  
V
CC  
= 3 V  
CC  
−30  
−25  
−20  
−15  
−40°C  
85°C  
85°C  
25°C  
25°C  
−10  
−5  
0
−10  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 4  
Figure 5  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
wake-up LPM3  
PARAMETER  
TEST CONDITIONS  
f = 1 MHz  
MIN  
TYP  
TYP  
MAX  
UNIT  
6
6
6
f = 2 MHz  
f = 3 MHz  
t
Delay time  
V
CC  
= 2.2 V/3 V  
µs  
(LPM3)  
RAM  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
VRAMh  
CPU HALTED (see Note 1)  
1.6  
V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution  
should take place during this supply voltage condition.  
Comparator_A (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
30  
MAX UNIT  
V
V
= 2.2 V  
= 3 V  
47  
µA  
74  
CC  
I
I
CAON=1, CARSEL=0, CAREF=0  
(DD)  
55  
CC  
CAON=1, CARSEL=0,  
CAREF=1/2/3, no load at  
P2.3/CA0/TA1 and P2.4/CA1/TA2  
V
= 2.2 V  
= 3 V  
40  
60  
57  
µA  
87  
CC  
CC  
(Refladder/Refdiode)  
V
Common-mode input  
voltage  
V
CAON =1  
V
= 2.2 V/3 V  
= 2.2 V/3 V  
0
V −1  
CC  
V
(IC)  
CC  
CC  
PCA0=1, CARSEL=1, CAREF=1,  
no load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage at 0.25 V  
node  
CC  
V
V
0.23  
0.24  
0.48  
0.25  
0.5  
(Ref025)  
V
CC  
PCA0=1, CARSEL=1, CAREF=2,  
no load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage at 0.5V  
node  
CC  
V
V
CC  
= 2.2 V/3 V  
0.47  
(Ref050)  
(RefVT)  
V
CC  
PCA0=1, CARSEL=1, CAREF=3,  
no load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2 T = 85°C  
V
V
= 2.2 V  
= 3 V  
390  
400  
480  
490  
540  
550  
CC  
V
(see Figure 6 and Figure 7)  
mV  
CC  
A
V
V
Offset voltage  
See Note 2  
V
V
V
V
V
V
V
V
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V  
= 3 V  
−30  
0
30  
1.4  
mV  
mV  
(offset)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
Input hysteresis  
CAON=1  
0.7  
210  
150  
1.9  
hys  
130  
80  
300  
240  
3.4  
T
= 25°C, Overdrive 10 mV,  
A
ns  
µs  
ns  
µs  
Without filter: CAF=0  
t
(response LH)  
= 2.2 V  
= 3 V  
1.4  
0.9  
130  
80  
T
= 25°C, Overdrive 10 mV,  
A
With filter: CAF=1  
1.5  
2.6  
= 2.2 V  
= 3 V  
210  
150  
300  
240  
T
= 25°C, Overdrive 10 mV,  
A
Without filter: CAF=0  
t
(response HL)  
V
CC  
CC  
= 2.2 V  
= 3 V  
1.4  
0.9  
1.9  
1.5  
3.4  
2.6  
T
= 25°C, Overdrive 10 mV,  
A
With filter: CAF=1  
V
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.  
The two successive measurements are then summed together.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
= 2.2 V  
V
CC  
= 3 V  
CC  
Typical  
Typical  
−45  
−25  
−5  
15  
35  
55  
75  
95  
−45  
−25  
−5  
15  
35  
55  
75  
95  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 7. V  
vs Temperature, V  
= 2.2 V  
Figure 6. V  
vs Temperature, V  
= 3 V  
(RefVT)  
CAF  
CC  
(RefVT)  
CC  
0 V  
V
CC  
0
1
CAON  
To Internal  
Modules  
Low Pass Filter  
0
1
0
1
+
_
V+  
V−  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2.0 µs  
Figure 8. Block Diagram of Comparator_A Module  
V
CAOUT  
Overdrive  
V−  
400 mV  
V+  
t
(response)  
Figure 9. Overdrive Definition  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
PUC/POR  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
250  
1.8  
UNIT  
µs  
V
t
Internal time delay to release POR  
150  
(POR_Delay)  
T
= −40°C  
= 25°C  
= 85°C  
1.4  
1.1  
0.8  
A
V
threshold at which POR  
CC  
T
A
1.5  
V
release delay time begins  
(see Note 1)  
V
POR  
V
CC  
= 2.2 V/3 V  
T
A
1.2  
V
V
threshold required to  
CC  
V
V
|dV/dt| 1V/ms  
0.2  
2
V
(min)  
CC  
generate a POR (see Note 2)  
RST/NMI low time for PUC/POR  
rise time dV/dt 1V/ms.  
t
Reset is accepted internally  
µs  
(reset)  
NOTES: 1. V  
CC  
2. When driving V  
low in order to generate a POR condition, V should be driven to 200mV or lower with a dV/dt equal to or less  
CC  
CC  
than −1V/ms. The corresponding rising V  
CC  
must also meet the dV/dt requirement equal to or greater than +1V/ms.  
V
V
cc  
V
POR  
No POR  
POR  
POR  
V
(min)  
t
Figure 10. Power-On Reset (POR) vs Supply Voltage  
2
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.4  
1.5  
1.2  
0.8  
1.2  
0.8  
0.6  
0.4  
0.2  
0
25°C  
−40  
−20  
20  
40  
60  
80  
0
T
A
− Temperature − °C  
Figure 11. V  
vs Temperature  
POR  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
DCO (see Note 1)  
PARAMETER  
TEST CONDITIONS  
= 0, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
MIN  
0.08  
NOM  
0.12  
MAX  
0.15  
UNIT  
R
R
R
R
R
R
R
R
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 2.2 V  
= 3 V  
sel  
sel  
sel  
sel  
sel  
sel  
sel  
sel  
A
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
f
MHz  
(DCO03)  
(DCO13)  
(DCO23)  
(DCO33)  
(DCO43)  
(DCO53)  
(DCO63)  
0.08  
0.14  
0.14  
0.22  
0.22  
0.37  
0.37  
0.61  
0.61  
1
0.13  
0.19  
0.18  
0.30  
0.28  
0.49  
0.47  
0.77  
0.75  
1.2  
0.16  
0.23  
0.22  
0.36  
0.34  
0.59  
0.56  
0.93  
0.90  
1.5  
= 1, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
= 2.2 V  
= 3 V  
A
f
f
f
f
f
f
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
= 2, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
= 2.2 V  
= 3 V  
A
= 3, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
= 2.2 V  
= 3 V  
A
= 4, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
= 2.2 V  
= 3 V  
A
= 5, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
= 2.2 V  
= 3 V  
A
1
1.3  
1.5  
= 6, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
= 2.2 V  
= 3 V  
1.6  
1.9  
2.2  
A
1.69  
2.4  
2.0  
2.29  
3.4  
= 7, DCO = 3, MOD = 0, DCOR = 0, T = 25°C  
= 2.2 V  
= 3 V  
2.9  
A
f
f
MHz  
MHz  
(DCO73)  
2.7  
3.2  
3.65  
f
f
f
DCO40 DCO40 DCO40  
× 1.7  
R
R
= 4, DCO = 7, MOD = 0, DCOR = 0, T = 25°C  
V
CC  
= 2.2 V/3 V  
(DCO47)  
sel  
sel  
A
× 2.1  
× 2.5  
V
V
= 2.2 V  
= 3 V  
4
4.5  
4.9  
CC  
f
= 7, DCO = 7, MOD = 0, DCOR = 0, T = 25°C  
MHz  
(DCO77)  
A
4.4  
4.9  
5.4  
CC  
S
S
S
= f  
/ f  
DCO DCO+1 DCO  
V
= 2.2 V/3 V  
= 2.2 V/3 V  
= 2.2 V  
= 3 V  
1.35  
1.07  
−0.31  
−0.33  
1.65  
1.12  
−0.36  
−0.38  
2
(Rsel)  
R
Rsel+1 Rsel  
CC  
CC  
CC  
CC  
S
= f / f  
V
1.16  
−0.40  
−0.43  
(DCO)  
V
V
Temperature drift, R  
(see Note 2)  
= 4, DCO = 3, MOD = 0  
sel  
D
D
%/°C  
%/V  
t
Drift with V  
CC  
(see Note 2)  
variation, R = 4, DCO = 3, MOD = 0  
sel  
V
CC  
= 2.2 V/3 V  
0
5
10  
V
NOTES: 1. The DCO frequency may not exceed the maximum system frequency defined by parameter processor frequency, f  
2. This parameter is not production tested.  
.
(System)  
1
DCOCLK  
f
Max  
DCO_7  
f
Min  
Max  
f
DCO_0  
Min  
0
1
2
3
4
5
6
7
DCO  
2.2  
3
V
CC  
− V  
Figure 12. DCO Characteristics  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
main DCO characteristics  
D
Individual devices have a minimum and maximum operation frequency. The specified parameters for  
to f are valid for all devices.  
f
DCOx0)  
DCOx7)  
(
(
D
D
D
All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps Rsel1, ... Rsel6 overlaps Rsel7.  
DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter S  
.
DCO  
Modulation control bits MOD0 to MOD4 select how often f  
is used within the period of 32 DCOCLK  
DCO+1)  
(
cycles. The frequency f  
is used for the remaining cycles. The frequency is an average equal to:  
(DCO)  
32   f(DCO)   f(DCO)1)  
faverage  
+
MOD   f(DCO))(32*MOD)   f(DCO)1)  
DCO when using R  
(see Note 1)  
OSC  
PARAMETER  
TEST CONDITIONS  
= 4, DCO = 3, MOD = 0, DCOR = 1,  
= 25°C  
V
MIN  
NOM  
2.0 15%  
2.1 15%  
0.1  
MAX  
UNIT  
MHz  
MHz  
%/°C  
%/V  
CC  
2.2 V  
R
T
sel  
A
f
, DCO output frequency  
DCO  
3 V  
D , Temperature drift  
R
R
= 4, DCO = 3, MOD = 0, DCOR = 1  
= 4, DCO = 3, MOD = 0, DCOR = 1  
2.2 V/3 V  
2.2 V/3 V  
t
sel  
sel  
D , Drift with V  
v
variation  
10  
CC  
NOTES: 1. R  
= 100k. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and T  
=
50ppm/°C.  
OSC  
K
crystal oscillator, LFXT1 oscillator (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
12  
2
MAX  
UNIT  
XTS=0; LF oscillator selected V  
= 2.2 V/3 V  
= 2.2 V/3 V  
CC  
XTS=1; XT1 oscillator selected V  
C
C
Integrated input capacitance  
pF  
XIN  
CC  
= 2.2 V/3 V  
XTS=0; LF oscillator selected V  
12  
2
CC  
Integrated output capacitance  
Input levels at XIN  
pF  
XOUT  
XTS=1; XT1 oscillator selected V  
CC  
= 2.2 V/3 V  
V
V
V
0.2 × V  
CC  
V
V
IL  
SS  
0.8 × V  
V
CC  
= 2.2 V/3 V (see Note 2)  
V
CC  
IH  
CC  
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.  
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.  
crystal oscillator, XT2 oscillator (see Note 1)  
PARAMETER  
TEST CONDITIONS  
= 2.2 V/3 V  
MIN  
NOM  
MAX  
UNIT  
pF  
pF  
V
C
C
Integrated input capacitance  
Integrated output capacitance  
V
V
2
2
XIN  
XOUT  
IL  
CC  
= 2.2 V/3 V  
CC  
V
V
V
0.2 × V  
CC  
SS  
0.8 × V  
Input levels at XT2IN  
V
CC  
= 2.2 V/3 V (see Note 2)  
V
CC  
V
IH  
CC  
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.  
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.  
USART0 (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
200  
150  
NOM MAX  
UNIT  
V
V
= 2.2 V  
= 3 V  
430  
280  
800  
500  
CC  
t
(τ)  
USART0: deglitch time  
ns  
CC  
NOTE 1: The signal applied to the USART0 receive signal/terminal (URXD0) should meet the timing requirements of t to ensure that the URXS  
)  
flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t . The operating conditions to  
)  
set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the  
URXD0 line.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
JTAG Interface  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
kΩ  
f
TCK input frequency  
see Note 1  
TCK  
R
Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2  
may be restricted to meet the timing requirements of the module selected.  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. f  
TCK  
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.  
JTAG Fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
Voltage level on TDI/TCLK for fuse-blow  
Supply current into TDI/TCLK during fuse blow  
Time to blow fuse  
3.6V  
5
5.5  
100  
20  
V
FB  
I
t
mA  
ms  
FB  
FB  
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched  
to bypass mode.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic  
port P1, P1.0 to P1.7, input/output with Schmitt-trigger  
P1SEL.x  
0
P1DIR.x  
Direction Control  
1
0
1
From Module  
Pad Logic  
P1.0/TACLK ..  
P1.7/TA2  
P1OUT.x  
Module X OUT  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
Interrupt  
Edge  
Select  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Flag  
P1IES.x  
P1SEL.x  
Dir. CONTROL  
FROM MODULE  
PnSel.x  
PnDIR.x  
PnOUT.x MODULE X OUT PnIN.x  
MODULE X IN  
PnIE.x PnIFG.x PnIES.x  
P1Sel.0  
P1Sel.1  
P1Sel.2  
P1Sel.3  
P1Sel.4  
P1Sel.5  
P1Sel.6  
P1Sel.7  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1DIR.4  
P1DIR.5  
P1DIR.6  
P1DIR.7  
P1DIR.0  
P1DIR.1  
P1DIR.2  
P1DIR.3  
P1DIR.4  
P1DIR.5  
P1DIR.6  
P1DIR.7  
P1OUT.0  
P1OUT.1  
P1OUT.2  
P1OUT.3  
P1OUT.4  
P1OUT.5  
P1OUT.6  
P1OUT.7  
DV  
P1IN.0  
P1IN.1  
P1IN.2  
P1IN.3  
P1IN.4  
P1IN.5  
P1IN.6  
P1IN.7  
TACLK  
P1IE.0 P1IFG.0 P1IES.0  
P1IE.1 P1IFG.1 P1IES.1  
P1IE.2 P1IFG.2 P1IES.2  
P1IE.3 P1IFG.3 P1IES.3  
P1IE.4 P1IFG.4 P1IES.4  
P1IE.5 P1IFG.5 P1IES.5  
P1IE.6 P1IFG.6 P1IES.6  
P1IE.7 P1IFG.7 P1IES.7  
SS  
Out0 signal  
Out1 signal  
Out2 signal  
SMCLK  
CCI0A  
CCI1A  
CCI2A  
unused  
unused  
unused  
unused  
Out0 signal  
Out1 signal  
Out2 signal  
Signal from or to Timer_A  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.0 to P2.2, P2.6, and P2.7 input/output with Schmitt-trigger  
P2SEL.x  
0
0: Input  
P2DIR.x  
Direction Control  
From Module  
1: Output  
1
0
1
P2OUT.x  
Module X OUT  
P2.0/ACLK  
P2.1/TAINCLK  
P2.2/CAOUT/TA0  
P2.6  
Pad Logic  
P2IN.x  
P2.7/TA0  
EN  
D
Bus Keeper  
Module X IN  
P2IRQ.x  
CAPD.X  
P2IE.x  
P2IFG.x  
EN  
Interrupt  
Edge  
Select  
Q
Set  
Interrupt  
Flag  
P2IES.x  
P2SEL.x  
x: Bit Identifier 0 to 2, 6, and 7 for Port P2  
Dir. CONTROL  
PnSel.x  
PnDIR.x  
PnOUT.x MODULE X OUT PnIN.x  
MODULE X IN  
PnIE.x PnIFG.x PnIES.x  
FROM MODULE  
P2Sel.0  
P2Sel.1  
P2Sel.2  
P2Sel.6  
P2Sel.7  
P2DIR.0  
P2DIR.1  
P2DIR.2  
P2DIR.6  
P2DIR.7  
P2DIR.0  
P2OUT.0  
P2OUT.1  
P2OUT.2  
P2OUT.6  
P2OUT.7  
ACLK  
DV  
P2IN.0  
P2IN.1  
P2IN.2  
P2IN.6  
P2IN.7  
unused  
P2IE.0 P2IFG.0 P2IES.0  
P2IE.1 P2IFG.1 P2IES.1  
P2IE.2 P2IFG.2 P2IES.2  
P2IE.6 P2IFG.6 P2IES.6  
P2IE.7 P2IFG.7 P2IES.7  
P2DIR.1  
INCLK  
CCI0B  
SS  
P2DIR.2  
CAOUT  
DV  
P2DIR.6  
unused  
unused  
SS  
§
P2DIR.7  
Out0 signal  
§
Signal from Comparator_A  
Signal to Timer_A  
Signal from Timer_A  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.3 to P2.4, input/output with Schmitt-trigger  
P2SEL.3  
0: Input  
0
1: Output  
P2DIR.3  
Direction Control  
1
From Module  
Pad Logic  
P2.3/CA0/TA1  
0
P2OUT.3  
Module X OUT  
1
P2IN.3  
EN  
Bus Keeper  
Module X IN  
P2IRQ.3  
D
P2IE.3  
Interrupt  
Edge  
Select  
EN  
Set  
CAPD.3  
CAREF  
Q
P2IFG.3  
Comparator_A  
CAF  
CAEX  
P2CA  
Interrupt  
Flag  
P2IES.3  
P2SEL.3  
+
CCI1B  
To Timer_A3  
P2SEL.4  
Reference Block  
P2IES.4  
CAREF  
Interrupt  
Flag  
Edge  
Select  
Interrupt  
P2IFG.4  
Set  
Q
EN  
CAPD.4  
P2IRQ.4  
Module X IN  
P2IE.4  
D
Bus Keeper  
EN  
P2IN.4  
1
Module X OUT  
P2OUT.4  
0
1
P2.4/CA1/TA2  
Pad Logic  
From Module  
Direction Control  
P2DIR.4  
1: Output  
0: Input  
0
P2SEL.4  
DIRECTION  
CONTROL  
PnSel.x  
PnDIR.x  
PnOUT.x MODULE X OUT PnIN.x  
MODULE X IN  
PnIE.x PnIFG.x PnIES.x  
FROM MODULE  
P2Sel.3  
P2Sel.4  
P2DIR.3  
P2DIR.4  
P2DIR.3  
P2OUT.3  
P2OUT.4  
Out1 signal  
P2IN.3  
P2IN.4  
unused  
unused  
P2IE.3 P2IFG.3 P2IES.3  
P2IE.4 P2IFG.4 P2IES.4  
P2DIR.4  
Out2 signal  
Signal from Timer_A  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P2, P2.5, input/output with Schmitt-trigger and R  
function for the basic clock module  
osc  
0: Input  
1: Output  
P2SEL.5  
Pad Logic  
0
1
0
1
P2DIR.5  
Direction Control  
From Module  
P2.5/Rosc  
P2OUT.5  
Module X OUT  
Bus Keeper  
P2IN.5  
EN  
D
Internal to  
Basic Clock  
Module  
Module X IN  
P2IRQ.5  
1
0
V
CC  
Edge  
Select  
Interrupt  
P2IE.5  
EN  
Q
Set  
P2IFG.5  
Interrupt  
Flag  
To DC Generator  
P2IES.5  
P2SEL.5  
DCOR  
CAPD.5  
DCOR: Control Bit From Basic Clock Module  
If it Is Set, P2.5 Is Disconnected From P2.5 Pad  
DIRECTION  
PnSel.x  
PnDIR.x  
CONTROL  
FROM MODULE  
PnOUT.x MODULE X OUT PnIN.x  
P2OUT.5 DV P2IN.5  
MODULE X IN  
PnIE.x PnIFG.x PnIES.x  
P2Sel.5  
P2DIR.5  
P2DIR.5  
unused  
P2IE.5 P2IFG.5 P2IES.5  
SS  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P3, P3.0 and P3.4 to P3.7, input/output with Schmitt-trigger  
P3SEL.x  
0: Input  
0
1: Output  
P3DIR.x  
Direction Control  
1
0
1
From Module  
Pad Logic  
P3.0/STE0  
P3OUT.x  
Module X OUT  
P3.4/UTXD0  
P3.5/URXD0  
P3.6  
P3.7  
P3IN.x  
EN  
D
Module X IN  
x: Bit Identifier, 0 and 4 to 7 for Port P3  
DIRECTION  
PnSel.x  
PnDIR.x  
CONTROL  
FROM MODULE  
PnOUT.x  
MODULE X OUT  
DV  
PnIN.x  
MODULE X IN  
P3Sel.0  
P3Sel.4  
P3Sel.5  
P3Sel.6  
P3Sel.7  
P3DIR.0  
P3DIR.4  
P3DIR.5  
P3DIR.6  
P3DIR.7  
DV  
DV  
DV  
DV  
DV  
P3OUT.0  
P3OUT.4  
P3OUT.5  
P3OUT.6  
P3OUT.7  
P3IN.0  
P3IN.4  
P3IN.5  
P3IN.6  
P3IN.7  
STE0  
SS  
CC  
SS  
CC  
SS  
SS  
UTXD0  
Unused  
DV  
DV  
DV  
URXD0  
Unused  
Unused  
SS  
SS  
SS  
Output from USART0 module  
Input to USART0 module  
port P3, P3.1, input/output with Schmitt-trigger  
P3SEL.1  
P3DIR.1  
0: Input  
1: Output  
0
1
0
1
SYNC  
MM  
DCM_SIMO  
STC  
STE  
Pad Logic  
P3.1/SIMO0  
P3OUT1  
(SI)MO0  
From USART0  
P3IN.1  
EN  
D
SI(MO)0  
To USART0  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P3, P3.2, input/output with Schmitt-trigger  
P3SEL.2  
P3DIR.2  
0: Input  
1: Output  
0
1
0
1
SYNC  
MM  
DCM_SOMI  
Pad Logic  
STC  
STE  
P3.2/SOMI0  
P3OUT.2  
SO(MI)0  
From USART0  
P3IN.2  
EN  
D
(SO)MI0  
To USART0  
port P3, P3.3, input/output with Schmitt-trigger  
0: Input  
1: Output  
P3SEL.3  
P3DIR.3  
0
1
0
1
SYNC  
MM  
DCM_UCLK  
STC  
STE  
Pad Logic  
P3.3/UCLK0  
P3OUT.3  
UCLK.0  
From USART0  
P3IN.3  
EN  
D
UCLK0  
To USART0  
NOTE: UART mode:  
The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always  
an input.  
SPI, slave mode:  
The clock applied to UCLK0 is used to shift data in and out.  
SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode).  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P4, P4.0 to P4.6, input/output with Schmitt-trigger  
P4SEL.x  
0: Input  
1: Output  
0
1
0
1
P4DIR.x  
Direction Control  
From Module  
Pad Logic  
TBOUTHiZ  
P4OUT.x  
Module X OUT  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
P4.3  
P4.4  
P4.5  
P4.6  
Bus Keeper  
P4IN.x  
EN  
D
Module X IN  
x: bit identifier, 0 to 6 for Port P4  
DIRECTION  
CONTROL  
PnSel.x  
PnDIR.x  
PnOUT.x  
MODULE X OUT  
PnIN.x  
MODULE X IN  
FROM MODULE  
P4Sel.0  
P4Sel.1  
P4DIR.0  
P4DIR.1  
P4DIR.0  
P4OUT.0  
P4OUT.1  
Out0 signal  
Out1 signal  
P4IN.0  
P4IN.1  
CCI0A / CCI0B  
CCI1A / CCI1B  
P4DIR.1  
P4Sel.2  
P4DIR.2  
P4DIR.2  
P4OUT.2  
Out2 signal  
P4IN.2  
CCI2A / CCI2B  
P4Sel.3  
P4Sel.4  
P4Sel.5  
P4Sel.6  
P4DIR.3  
P4DIR.4  
P4DIR.5  
P4DIR.6  
P4DIR.3  
P4DIR.4  
P4DIR.5  
P4DIR.6  
P4OUT.3  
P4OUT.4  
P4OUT.5  
P4OUT.6  
DV  
DV  
DV  
DV  
P4IN.3  
P4IN.4  
P4IN.5  
P4IN.6  
Unused  
Unused  
Unused  
Unused  
SS  
SS  
SS  
SS  
Signal from Timer_B  
Signal to Timer_B  
NOTE: TBoutHiZ signal is used by port module P4, pins P4.0 to P4.6. The function TBoutHiZ is mainly used with Timer_B. Port pins P4.3 to P4.6  
have the TBoutHiZ function, but no Timer_B output is available for secondary functions. The port selection function can be used to get  
the port pin to high impedance and to use the P4DIR.x bits.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P4, P4.7, input/output with Schmitt-trigger  
P4SEL.7  
P4DIR.7  
0: Input  
1: Output  
0
1
0
1
Pad Logic  
P4.7/TBCLK  
P4OUT.7  
DV  
SS  
P4IN.7  
EN  
D
Timer_B,  
TBCLK  
port P5, P5.0 to P5.7, input/output with Schmitt-trigger  
P5SEL.x  
0: Input  
0
1
0
1
1: Output  
P5DIR.x  
Direction Control  
From Module  
Pad Logic  
P5OUT.x  
Module X OUT  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4/MCLK  
P5.5/SMCLK  
P5.6/ACLK/  
TBOUTH  
P5IN.x  
EN  
D
Module X IN  
x: Bit Identifier, 0 to 7 for Port P5  
PnSel.x  
P5Sel.0  
P5Sel.1  
P5Sel.2  
P5Sel.3  
P5Sel.4  
P5Sel.5  
P5Sel.6  
P5Sel.7  
PnDIR.x  
P5DIR.0  
P5DIR.1  
P5DIR.2  
P5DIR.3  
P5DIR.4  
P5DIR.5  
P5DIR.6  
P5DIR.7  
Dir. CONTROL FROM MODULE  
PnOUT.x  
MODULE X OUT  
PnIN.x  
P5IN.0  
P5IN.1  
P5IN.2  
P5IN.3  
P5IN.4  
P5IN.5  
P5IN.6  
P5IN.7  
MODULE X IN  
unused  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
P5OUT.0  
P5OUT.1  
P5OUT.2  
P5OUT.3  
P5OUT.4  
P5OUT.5  
P5OUT.6  
P5OUT.7  
DV  
DV  
DV  
DV  
SS  
CC  
CC  
CC  
CC  
CC  
CC  
SS  
SS  
SS  
SS  
SS  
unused  
unused  
unused  
MCLK  
SMCLK  
ACLK  
unused  
unused  
unused  
DV  
TBOUTHiZ  
SS  
NOTE: TBOUTHiZ signal is used by port module P4, pins P4.0 to P4.6. The function of TBOUTHiZ is mainly useful when used with Timer_B.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢇ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢆꢑꢒ ꢆꢒ ꢎꢓ ꢑꢒ ꢐꢐ ꢋꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
input/output schematic (continued)  
port P6, P6.0 to P6.7, input/output with Schmitt-trigger  
P6SEL.x  
0
0: Input  
P6DIR.x  
Direction Control  
From Module  
1: Output  
1
0
1
Pad Logic  
P6.0 .. P6.7  
P6OUT.x  
Module X OUT  
Bus Keeper  
P6IN.x  
EN  
D
Module X IN  
x: Bit Identifier, 0 to 7 for Port P6  
DIR. CONTROL  
FROM MODULE  
PnSel.x  
PnDIR.x  
PnOUT.x  
MODULE X OUT  
PnIN.x  
MODULE X IN  
P6Sel.0  
P6Sel.1  
P6Sel.2  
P6Sel.3  
P6Sel.4  
P6Sel.5  
P6Sel.6  
P6Sel.7  
P6DIR.0  
P6DIR.1  
P6DIR.2  
P6DIR.3  
P6DIR.4  
P6DIR.5  
P6DIR.6  
P6DIR.7  
P6DIR.0  
P6OUT.0  
P6OUT.1  
P6OUT.2  
P6OUT.3  
P6OUT.4  
P6OUT.5  
P6OUT.6  
P6OUT.7  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
DV  
P6IN.0  
P6IN.1  
P6IN.2  
P6IN.3  
P6IN.4  
P6IN.5  
P6IN.6  
P6IN.7  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
unused  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
P6DIR.1  
P6DIR.2  
P6DIR.3  
P6DIR.4  
P6DIR.5  
P6DIR.6  
P6DIR.7  
NOTE: Direction control bits P6DIR.x and P6SEL.x control whether the port function is active (P6DIR.x=0) or whether the input P6.x is in the  
high-impedance state. This is identical to the port P6 function in the MSP430F13x devices (used for emulation/prototyping), but different  
from other digital-only ports such as P5.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄꢈ ꢇ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢆ ꢑꢒꢆ ꢒꢎ ꢓꢑ ꢒꢐ ꢐꢋ ꢑ  
SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004  
APPLICATION INFORMATION  
JTAG pins TMS, TCK, TDI, TDO/TDI, input/output with Schmitt-trigger  
TDO  
Controlled by JTAG  
Controlled by JTAG  
JTAG  
TDO/TDI  
Controlled  
by JTAG  
DV  
CC  
TDI  
Fuse  
Burn & Test  
Fuse  
TDI/TCLK  
Test  
and  
DV  
CC  
Emulation  
Module  
TMS  
TCK  
TMS  
TCK  
DV  
CC  
During Blowing of the Fuse, Pin  
TDO/TDI Is Used to Apply the Test  
Input Data for JTAG Circuitry  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity  
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, I , of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be  
TF  
taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the  
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check  
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the  
fuse check mode has the potential to be activated.  
The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 13). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TDI/TCLK  
Figure 13. Fuse Check Mode Current  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

MSP430C1351IPM

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C13X1

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C311

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C311S

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C311SDL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C311SIDL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C311SIDLR

16-BIT, MROM, 3.3MHz, RISC MICROCONTROLLER, PDSO48, PLASTIC, SSOP-48
TI

MSP430C312

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C312DL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C312IDL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C312IDLR

16-BIT, MROM, 3.3MHz, RISC MICROCONTROLLER, PDSO56, PLASTIC, SSOP-56
TI

MSP430C313

MIXED SIGNAL MICROCONTROLLERS
TI