MSP430C311S [TI]

MIXED SIGNAL MICROCONTROLLERS; 混合信号微控制器
MSP430C311S
型号: MSP430C311S
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLERS
混合信号微控制器

微控制器
文件: 总30页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
DL PACKAGE  
Low Supply Voltage Range 2.5 V – 5.5 V  
Ultra Low-Power Consumption  
(56-PIN TOP VIEW)  
TDO/TDI  
TDI/VPP  
TMS  
NC  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
Low Operation Current, 400 µA at 1 MHz,  
3 V  
COM3  
2
COM2  
3
TCK  
4
COM1  
RST/NMI  
XBUF  
5
COM0  
Five Power Saving Modes: (Standby Mode:  
1.3 µA, RAM Retention/Off Mode: 0.1 µA)  
6
S27/O27/CMPI  
S26/O26  
S23/O23  
S22/O22  
S18/O18  
S17/O17  
S16/O16  
S15/O15  
S14/O14  
S13/O13  
S12/O12  
S11/O11  
S10/O10  
S9/O9  
V
7
SS  
CC  
V
R23  
R13  
8
9
Wakeup From Standby Mode in 6 µs  
Maximum  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Xin  
Xout/TCLK  
P0.0  
16-Bit RISC Architecture, 300 ns Instruction  
Cycle Time  
P0.1/RXD  
P0.2/TXD  
P0.3  
P0.4  
Single Common 32 kHz Crystal, Internal  
System Clock up to 3.3 MHz  
P0.5  
P0.6  
P0.7  
S8/O8  
Integrated LCD Driver for up to 64 or 92  
Segments  
TP0.0  
TP0.1  
TP0.2  
TP0.3  
TP0.4  
TP0.5  
CIN  
S7/O7  
S6/O6  
S5/O5  
S4/O4  
Slope A/D Converter With External  
Components  
S3/O3  
S2/O2  
S1  
S0  
NC  
Serial Onboard Programming  
Program Code Protection by Security Fuse  
DL PACKAGE  
(48-PIN TOP VIEW)  
Family Members Include:  
MSP430C311S: 2k Byte ROM,128 Byte RAM  
MSP430C312: 4k Byte ROM, 256 Byte RAM  
MSP430C313: 8k Byte ROM, 256 Byte RAM  
MSP430C314: 12k Byte ROM, 512 Byte RAM  
MSP430C315: 16k Byte ROM, 512 Byte RAM  
MSP430P313: 8k Byte OTP, 256 Byte RAM  
MSP430P315: 16k Byte OTP, 512 Byte RAM  
MSP430P315S: 16k Byte OTP, 512 ByteRAM  
TDI/VPP  
TMS  
TDO/TDI  
COM3  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
TCK  
COM2  
3
RST/NMI  
XBUF  
COM1  
4
5
COM0  
V
6
S27/O27/CMPI  
NC  
SS  
V
7
CC  
R23  
R13  
8
V
SS  
9
NC  
Xin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
S16/O16  
S15/O15  
S14/O14  
S13/O13  
S12/O12  
S11/O11  
S10/O10  
S9/O9  
Xout/TCLK  
P0.1/RXD  
P0.2/TXD  
P0.3  
EPROM Version Available for Prototyping :  
PMS430E313FZ , PMS430E315FZ  
P0.4  
P0.5  
P0.6  
Available in:  
56-Pin Plastic Small-Outline Package  
(SSOP),  
48-Pin SSOP (MSP430C311S,  
MSP430P315S),  
NC  
S8/O8  
TP0.0  
TP0.1  
TP0.2  
TP0.3  
TP0.5  
CIN  
S7/O7  
S6/O6  
S5/O5  
S4/O4  
S3/O3  
S2/O2  
68-Pin J-Leaded Ceramic Chip Carrier  
(JLCC) Package (EPROM Only)  
NC – No internal connection  
description  
The MSP430 is an ultralow-power mixed signal microcontroller family consisting of several devices that feature  
differentsetsofmodulestargetedtovariousapplications. Themicrocontrollerisdesignedtobebatteryoperated  
for an extended application lifetime. With 16-bit RISC architecture, 16-bit integrated registers on the CPU, and  
a constant generator, the MSP430 achieves maximum code efficiency. The digitally-controlled oscillator,  
together with the frequency-locked-loop (FLL), provides a wakeup from a low-power mode to active mode in  
less than 6 s.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
MSP430P313/E313 not recommended for new designs – replaced by MSP430P315/E315.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
description (continued)  
Typical applications include sensor systems that capture analog signals, converting them to digital values, and  
then processes the data and displays them or transmits them to a host system. The timer/port module provides  
single-slope A/D conversion capability for resistive sensors.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
SSOP  
56-Pin  
(DL)  
JLCC  
68-Pin  
(FZ)  
SSOP  
48-Pin  
(DL)  
T
A
MSP430C312IDL  
MSP430C313IDL  
MSP430C314IDL  
MSP430C315IDL  
MSP430P313IDL  
MSP430P315IDL  
MSP430C311SIDL  
MSP430P315SIDL  
40°C to 85°C  
25°C  
PMS430E313FZ  
PMS430E315FZ  
MSP430P313/E313 not recommended for new designs – replaced by MSP430P315/E315.  
functional block diagram  
MSP430C312,313,314,315 and MSP430P313 ,315 and PMS430E313,315  
V
V
SS  
CC  
XIN  
Xout  
XBUF  
RST/NMI  
P0.0–7  
4/8/12/16 kB  
8
ROM  
Oscillator  
FLL  
System Clock  
8/16 kB  
ACLK  
MCLK  
256/512 B  
RAM  
Power-On-  
Reset  
8-Bit Timer/  
Counter  
I/O Port  
OPT or EPROM  
C: ROM  
8 I/O’s, All With  
Interr. Cap.  
TXD  
RXD  
Serial Protocol  
Support  
P: OTP  
E: EPROM  
3 Int. Vectors  
TDI/VPP  
TDO/TDI  
MAB, 16 Bit  
MDB, 16 Bit  
MAB, 4 Bit  
CPU  
Test  
JTAG  
MCB  
Incl. 16 Reg.  
MDB, 8 Bit  
Bus  
Conv  
TMS  
TCK  
LCD  
Watchdog  
Timer  
Timer/Port  
Basic  
Timer1  
92 Segments  
Applications:  
Com0–3  
S0–18,22,23,26/  
O2–18,22,23,26  
A/D Conv.  
Timer, O/P  
f
15/16 Bit  
LCD  
1, 2, 3, 4 MUX  
S27/O27/CMPI  
CMPI  
5
TP0.0–4  
CIN  
R13  
R23  
TP0.5  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
Terminal Functions  
MSP430C312, MSP430C313, MSP430C314, MSP430C315, MSP430P313 , MSP430P315  
56-pin SSOP package  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
27  
CIN  
I
O
I/O  
I/O  
I/O  
I/O  
I
Counter enable. CIN input enables counter (TPCNT1) (timer/port).  
Common output pins. COM0COM3 are used for LCD back planes.  
General-purpose digital I/O pin  
COM0COM3  
P0.0  
5255  
13  
P0.1/RXD  
P0.2/TXD  
14  
General-purpose digital I/O pin, receive data input port – 8-bit (timer/counter)  
General-purpose digital I/O pin, transmit data output port – 8-bit (timer/counter)  
Five general-purpose digital I/O pins, bit 3–7  
15  
P0.3P0.7  
R23  
1620  
9
Input of second positive analog LCD level (V2) (LCD)  
R13  
10  
I
Input of third positive analog LCD level (V3 of V4) (LCD)  
Reset input or nonmaskable interrupt input  
RST/NMI  
5
I
S0  
29  
O
O
O
O
O
O
O
O
O
I/O  
Segment line S0 (LCD)  
S1  
30  
Segment line S1 (LCD)  
S2/O2S5/O5  
S6/O6S9/O9  
S10/O10S13/O13  
S14/O14S17/O17  
S18/O18  
3134  
3538  
3942  
4346  
47  
Segment lines (S2 to S5) or digital output port O2 to O5, group 1 (LCD)  
Segment lines (S6 to S9) or digital output port O6 to O9, group 2 (LCD)  
Segment lines (S10 to S13) or digital output port O10 to O13, group 3 (LCD)  
Segment lines (S14 to S17) or digital output port O14 to O17, group 4 (LCD)  
Segment line (S18) or digital output port O18 , group 5 (LCD)  
Segment lines (S22 to S23) or digital output port O22 to O23, group 6 (LCD)  
Segment line (S26) or digital output port O26, group 7 (LCD)  
S22/O22S23/O23  
S26/O26  
48,49  
50  
S27/O27/CMPI  
51  
Segment line (S27) or digital output port O27 group 7, can be used as a comparator input port CMPI  
(timer/port)  
TCK  
4
2
1
I
I
Test clock. TCK is a clock input terminal for device programming and test.  
TDI/VPP  
TDO/TDI  
Test data input port. TDI/VPP is used as a data input terminal or an input for programming voltage.  
I/O  
Test data output port. TDO/TDI is used as a data output terminal or as a data input during  
programming.  
TMS  
3
I
Test mode select. TMS is an input terminal for device programming and test.  
General-purpose 3-state digital output port, bit 0 (timer/port)  
General-purpose 3-state digital output port, bit 1 (timer/port)  
General-purpose 3-state digital output port, bit 2 (timer/port)  
General-purpose 3-state digital output port, bit 3( timer/port)  
General-purpose 3-state digital output port, bit 4 (timer/port)  
TP0.0  
TP0.1  
TP0.2  
TP0.3  
TP0.4  
TP0.5  
21  
22  
23  
24  
25  
26  
8
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
I/O/Z General-purpose 3-state digital I/O pin, bit 5 (timer/port)  
V
V
Supply voltage  
CC  
7
Ground reference  
SS  
XBUF  
6
O
I
Clock signal output of system clock (MCLK) or crystal clock (ACLK)  
Input terminal of crystal oscillator  
Xin  
11  
12  
Xout/TCLK  
I/O  
Output terminal of crystal oscillator or test clock input  
MSP430P313/E313 not recommended for new designs – replaced by MSP430P315/E315.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
functional block diagram  
MSP430C311S and MSP430P315S  
V
V
SS  
XIN  
Xout  
XBUF  
CC  
RST/NMI  
P0.1–6  
6
2 kB  
Oscillator  
FLL  
System Clock  
ROM  
16 kB  
ACLK  
MCLK  
128/512B  
RAM  
Power-On-  
Reset  
8-bit Timer/  
Counter  
I/O Port  
6 I/O’s, All With  
Interr. Cap.  
TXD  
RXD  
OTP  
Serial Protocol  
Support  
C: ROM  
P: OTP  
2 Int. Vectors  
TDI/VPP  
TDO/TDI  
MAB, 16 Bit  
MDB, 16 Bit  
MAB, 4 Bit  
CPU  
Test  
JTAG  
MCB  
Incl. 16 Reg.  
MDB, 8 Bit  
Bus  
Conv  
TMS  
TCK  
LCD  
Watchdog  
Timer  
Timer/Port  
Basic  
Timer1  
64 Segments  
Applications:  
COM0–3  
A/D Conv.  
Timer, O/P  
S2–16/O2–16  
S27/O27/CMPI  
f
15/16 Bit  
LCD  
1, 2, 3, 4 MUX  
CMPI  
4
TP0.0–3  
R13  
R23  
TP0.5  
CIN  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
Terminal Functions  
MSP430C311S, MSP430P315S  
48-pin SSOP package  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
CIN  
24  
I
Counter enable. CIN input enables counter (TPCNT1) (timer/port).  
Common output pins, COM0COM3 are used for LCD back planes.  
General-purpose digital I/O pin, receive data input port – 8-Bit (timer/counter)  
General-purpose digital I/O pin, transmit data output port – 8-Bit (timer/counter)  
General-purpose digital I/O pins, bit 3  
COM0COM3  
P0.1/RXD  
P0.2/TXD  
P0.3  
4447  
12  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
13  
14  
P0.4  
15  
General-purpose digital I/O pins, bit 4  
P0.5  
16  
General-purpose digital I/O pins, bit 5  
P0.6  
17  
General-purpose digital I/O pins, bit 6  
R23  
8
Input of second positive analog LCD level (V2) (LCD)  
R13  
9
I
Input of third positive analog LCD level (V3 of V4) (LCD)  
Reset input or nonmaskable interrupt input  
RST/NMI  
4
I
S2/O2S5/O5  
S6/O6S9/O9  
S10/O10S13/O13  
S14/O14S16/O16  
S27/O27/CMPI  
2528  
2932  
3336  
3739  
43  
O
Segment lines (S2 to S5) or digital output port O2 to O5, group 1 (LCD)  
Segment lines (S6 to S9) or digital output port O6 to O9, group 2 (LCD)  
Segment lines (S10 to S13) or digital output port O10 to O13, group 3 (LCD)  
Segment lines (S14 to S17) or digital output port O14 to O17, group 4 (LCD)  
O
O
O
I/O  
Segment line (S27) or digital output port O27 group 7, can be used as a comparator input port CMPI  
(timer/port)  
TCK  
3
1
I
I
Test clock. TCK is a clock input terminal for device programming and test.  
TDI/VPP  
TDO/TDI  
Test data input port. TDI/VPP is used as a data input terminal or an input for programming voltage.  
48  
I/O  
Test data output port. TDO/TDI is used as a data output terminal or as a data input during  
programming.  
TMS  
2
I
Test mode select. TMS is an input terminal for device programming and test.  
General-purpose 3-state digital output port, bit 0 (timer/port)  
General-purpose 3-state digital output port, bit 1 (timer/port)  
General-purpose 3-state digital output port, bit 2 (timer/port)  
General-purpose 3-state digital output port, bit 3 (timer/port)  
TP0.0  
TP0.1  
TP0.2  
TP0.3  
TP0.5  
19  
20  
21  
22  
23  
7
O/Z  
O/Z  
O/Z  
O/Z  
I/O/Z General-purpose 3-state digital I/O pin, bit 5 (timer/port)  
Supply voltage  
V
V
CC  
6, 41  
5
Ground references  
SS  
XBUF  
O
I
Clock signal output of system clock (MCLK) or crystal clock (ACLK)  
Input terminal of crystal oscillator  
Xin  
10  
Xout/TCLK  
11  
I/O  
Output terminal of crystal oscillator or test clock input  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
short-form description  
processing unit  
The processing unit is based on a consistent and orthogonal designed CPU and instruction set. This design  
structure results in a RISC-like architecture, highly transparent to the application development and  
distinguishable by the ease of programming. All operations other than program-flow instructions are  
consequently performed as register operations in conjunction with seven addressing modes for source and four  
modes for destination operand.  
CPU  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Program Counter  
Stack Pointer  
Sixteen registers located inside the CPU provide  
reduced instruction execution time. This reduces  
a register-register operation execution time to one  
cycle of the processor frequency.  
Status Register  
Four registers are reserved for special use as a  
program counter, a stack pointer, a status register,  
and a constant generator. The remaining ones are  
available as general-purpose registers.  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
R5  
Peripherals connected to the CPU using a data  
address and control bus can be handled easily  
with all instructions for memory manipulation.  
General-Purpose Register  
General-Purpose Register  
R14  
R15  
instruction set  
The instruction set for this register-register  
architecture provides a powerful and easy-to-use  
assembly language. The instruction set consists of 51 instructions with three formats and seven addressing  
modes. Table 1 provides a summation and example of the three types of instruction formats; the addressing  
modes are listed in Table 2.  
Table 1. Instruction Word Formats  
Dual operands, source-destination e.g. ADD R4, R5  
R4 + R5 R5  
Single operands, destination only  
Relative jump, un-/conditional  
e.g. CALL R8  
e.g. JNE  
PC (TOS), R8 PC  
Jump-on equal bit = 0  
Each instruction that operates on word and byte data is identified by the suffix B.  
Examples: Instructions for word operation Instructions for byte operation  
MOV  
ADD  
EDE,TONI  
#235h,&MEM  
R5  
MOV.B  
ADD.B  
EDE,TONI  
#35h,&MEM  
PUSH  
SWPB  
PUSH.B R5  
R5  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
s
d
SYNTAX  
MOV Rs, Rd  
EXAMPLE  
MOV R10, R11  
OPERATION  
R10 R11  
Indexed  
MOV X(Rn), Y(Rm)  
MOV EDE, TONI  
MOV &MEM, &TCDAT  
MOV @Rn, Y(Rm)  
MOV @Rn+, RM  
MOV #X, TONI  
MOV 2(R5), 6(R6)  
M(2 + R5) M(6 + R6)  
M(EDE) M(TONI)  
Symbolic (PC relative)  
Absolute  
M(MEM) M(TCDAT)  
M(R10) M(Tab + R6)  
M(R10) R11, R10 + 2 R10  
#45 M(TONI)  
Indirect  
MOV @R10, Tab(R6)  
MOV @R10+, R11  
MOV #45, TONI  
Indirect autoincrement  
Immediate  
NOTE: s = source  
d = destination  
Computed branches (BR) and subroutine call (CALL) instructions use the same addressing modes as the other  
instructions. These addressing modes provide indirect addressing, ideally suited for computed branches and  
calls. The full use of this programming capability permits a program structure different from conventional 8- and  
16-bit controllers. For example, numerous routines can easily be designed to deal with pointers and stacks  
instead of using flag type programs for flow control.  
operation modes and interrupts  
TheMSP430operatingmodessupportvariousadvancedrequirementsforultralow-powerandultra-lowenergy  
consumption. This is achieved by the management of the operations during the different module operation  
modes and CPU states. The requirements are fully supported during interrupt event handling. An interrupt event  
awakensthesystemfromeachofthevariousoperatingmodesandreturnswiththeRETIinstructiontothemode  
that was selected before the interrupt event. The clocks used are ACLK and MCLK. ACLK is the crystal  
frequency and MCLK , a multiple of ACLK, is used as the system clock.  
The software can configure five operating modes:  
Active mode (AM). The CPU is enabled with different combinations of active peripheral modules.  
Low-power mode 0 (LPM0). The CPU is disabled, peripheral operation continues, ACLK and MCLK signals  
are active, and loop control for MCLK is active.  
Low-power mode 1 (LPM1). The CPU is disabled, peripheral operation continues, ACLK and MCLK signals  
are active, and loop control for MCLK is inactive.  
Low-power mode 2 (LPM2). The CPU is disabled, peripheral operation continues, ACLK signal is active,  
and MCLK and loop control for MCLK are inactive.  
Low-power mode 3 (LPM3). The CPU is disabled, peripheral operation continues, ACLK signal is active,  
MCLKand loop control for MCLK are inactive, and the dc generator for the digital controlled oscillator(DCO)  
(
MCLK generator) is switched off.  
Low-power mode 4 (LPM4). The CPU is disabled, peripheral operation continues, ACLK signal is inactive  
(crystal oscillator stopped), MCLK and loop control for MCLK are inactive, and the dc generator for the DCO  
is switched off.  
The special function registers (SFR) include module-enable bits that stop or enable the operation of the specific  
peripheral module. All registers of the peripherals may be accessed if the operational function is stopped or  
enabled. However, some peripheral current-saving functions are accessed through the state of local register  
bits. An example is the enable/disable of the analog voltage generator in the LCD peripheral, which is turned  
on or off using one register bit.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
operation modes and interrupts (continued)  
The most general bits that influence current consumption and support fast turn-on from low power operating  
modesarelocatedinthestatusregister(SR). FourofthesebitscontroltheCPUandthesystemclockgenerator:  
SCG1, SCG0, OscOff, and CPUOff.  
15  
Reserved For Future  
Enhancements  
rw-0  
9
8
7
0
V
SCG1  
rw-0  
SCG0  
rw-0  
OscOff  
rw-0  
CPUOff  
rw-0  
GIE  
N
Z
C
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the ROM with an address range of  
0FFFFh-0FFE0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction  
sequence.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up, external reset, watchdog  
Reset  
0FFFEh  
15, highest  
WDTIFG (see Note 1)  
Nonmaskable,  
(Non)maskable  
NMIIFG (see Notes 1 and 3)  
OFIFG (see Notes 1 and 4)  
NMI, oscillator fault  
0FFFCh  
0FFFAh  
0FFF8h  
14  
13  
12  
Dedicated I/O P0.0  
Dedicated I/O P0.1  
8-Bit Timer/Counter  
P0.0IFG  
Maskable  
Maskable  
P0.1IFG  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
11  
10  
9
Watchdog Timer  
WDTIFG  
Maskable  
Maskable  
8
7
6
RC1FG, RC2FG, EN1FG  
(see Note 2)  
Timer/Port  
0FFEAh  
5
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
4
3
2
1
Basic Timer1  
BTIFG  
Maskable  
Maskable  
I/O Port 0.2–7  
0, lowest  
P0.27IFG (see Note 1)  
NOTES: 1. Multiple source flags  
2. Timer/port interrupt flags are located in the timer/port registers  
3. Non maskable: neither the individual nor the general interrupt enable bit will disable an interrupt event.  
4. (Non) maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
that are not allocated to a functional purpose are not physically present in the device. Simple software access  
is provided with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
P0IE.1  
P0IE.0  
OFIE  
WDTIE  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
OFIE:  
P0IE.0:  
P0IE.1:  
Watchdog Timer enable signal  
Oscillator fault enable signal  
Dedicated I/O P0.0  
P0.1 or 8-Bit Timer/Counter, RXD  
7
6
5
4
3
2
1
0
Address  
01h  
BTIE  
TPIE  
rw-0  
rw-0  
TPIE:  
BTIE:  
Timer/Port enable signal  
Basic Timer1 enable signal  
interrupt flag register 1 and 2  
7
6
5
4
3
2
1
0
Address  
02h  
NMIIFG  
P0IFG.1  
P0IFG.0  
OFIFG  
WDTIFG  
rw-0  
rw-0  
rw-0  
rw-1  
rw-0  
WDTIFG:  
Set on overflow or security key violation  
OR  
Reset on V  
power-on or reset condition at RST/NMI-pin  
CC  
OFIFG:  
Flag set on oscillator fault  
Dedicated I/O P0.0  
P0.1 or 8-Bit Timer/Counter, RXD  
Signal at RST/NMI-pin  
P0.0IFG:  
P0.1IFG:  
NMIIFG:  
7
6
5
4
3
2
1
0
Address  
03h  
BTIFG  
rw  
BTIFG:  
Basic Timer1 flag  
module enable register 1 and 2  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
Address  
04h  
Address  
05h  
Legend rw:  
Bit can be read and written.  
rw-0:  
Bit can be read and written. It is reset by PUC  
SFR bit is not present in device.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
memory organization  
MSP430C311S  
Int. Vector  
MSP430C312  
Int. Vector  
MSP430C313  
Int. Vector  
MSP430C314  
Int. Vector  
MSP430C315  
Int. Vector  
FFFFh  
FFFFh  
FFFFh  
FFFFh  
FFFFh  
FFE0h  
FFDFh  
FFE0h  
FFDFh  
FFE0h  
FFDFh  
FFE0h  
FFDFh  
FFE0h  
FFDFh  
2 kB ROM  
4 kB ROM  
F800h  
8 kB ROM  
F000h  
12 kB ROM  
16 kB ROM  
E000h  
D000h  
C000h  
03FFh  
0200h  
03FFh  
0200h  
512B RAM  
512B RAM  
027Fh  
0200h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
02FFh  
0200h  
02FFh  
0200h  
128B RAM  
16b Per.  
8b Per.  
SFR  
256B RAM  
16b Per.  
8b Per.  
SFR  
256B RAM  
16b Per.  
8b Per.  
SFR  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
16b Per.  
8b Per.  
SFR  
16b Per.  
8b Per.  
SFR  
MSP430P315  
MSP430P315S  
PMS430E315  
MSP430P313  
PMS430E313  
FFFFh  
FFFFh  
Int. Vector  
Int. Vector  
FFE0h  
FFDFh  
FFE0h  
FFDFh  
8 kB OTP  
or  
EPROM  
16 kB  
OTP  
E000h  
or  
EPROM  
C000h  
03FFh  
0200h  
512B RAM  
02FFh  
0200h  
256B RAM  
16b Per.  
8b Per.  
SFR  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
16b Per.  
8b Per.  
SFR  
MSP430P313/E313 not recommended for new designs – replaced by MSP430P315/E315.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
peripherals  
Peripherals connected to the CPU through a data, address, and control busses can be handled easily with  
instructions for memory manipulation.  
oscillator and system clock  
Twoclocksareusedinthesystem:thesystem(master)clock(MCLK)andtheauxiliaryclock(ACLK). TheMCLK  
isamultipleoftheACLK. TheACLK runswiththecrystaloscillatorfrequency. Thespecialdesignoftheoscillator  
supports the feature of low current consumption and the use of a 32 768 Hz crystal. The crystal is connected  
across two terminals without requiring any other external components.  
The oscillator starts after applying VCC, due to a reset of the control bit (OscOff) in the status register (SR). It  
can be stopped by setting the OscOff bit to a 1. The enabled clock signals ACLK, ACLK/2, ACLK/4, or MCLK  
are accessible for use by external devices at output terminal XBUF.  
The controller system clock has to operate with different requirements according to the application and system  
conditions. Requirements include:  
High frequency in order to react quickly to system hardware requests or events  
Low frequency in order to minimize current consumption, EMI, etc.  
Stable frequency for timer applications e.g. real-time clock (RTC)  
Enable start-stop operation with a minimum delay  
These requirements cannot all be met with fast frequency high-Q crystals or with RC-type low-Q oscillators. The  
compromise selected for the MSP430 uses a low-crystal frequency, which is multiplied to achieve the desired  
nominal operating range:  
f
= (N+1) × f  
(crystal)  
(system)  
The crystal frequency multiplication is achieved with a frequency locked loop (FLL) technique. The factor N is  
set to 31 after a power-up clear condition. The FLL technique, in combination with a digital controlled oscillator  
(DCO), provides immediate start-up capability together with long-term crystal stability. The frequency variation  
of the DCO with the FLL inactive is typically 330 ppm, which means that with a cycle time of 1 µs, the maximum  
possible variation is 0.33 ns. For more precise timing, the FLL can be used. This forces longer cycle times if  
the previous cycle time was shorter than the selected one. This switching of cycle times makes it possible to  
meet the chosen system frequency over a long period of time.  
The start-up operation of the system clock depends on the previous machine state. During a power-up clear  
(PUC), the DCO is reset to its lowest possible frequency. The control logic starts operation immediately after  
removal of the PUC condition. Correct operation of the FLL control logic requires the presence of a stable crystal  
oscillator.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
peripherals (continued)  
digital I/O  
There is one eight-bit I/O port, Port0, that is implemented (MSP430C311S and MSP430P315S have six bits  
available on external pins). Six control registers give maximum digital input/output flexibility to the application:  
All individual I/O bits are programmable independently.  
Any combination of input, output, and interrupt conditions is possible.  
Interrupt processing of external events is fully implemented for all eight bits of port P0.  
Provides read/write access to all registers with all instructions  
The six registers are:  
Input register  
8 bits  
8 bits  
8 bits  
6 bits  
8 bits  
6 bits  
contains information at the pins  
contains output information  
Output register  
Direction register  
Interrupt flags  
controls direction  
indicates if interrupt(s) are pending  
contains input signal change necessary for interrupt  
contains interrupt enable bits  
Interrupt edge select  
Interrupt enable  
All these registers contain eight bits except for the interrupt flag register and the interrupt enable register. The  
two least significant bits (LSBs) of the interrupt flag and interrupt enable registers are located in the special  
functions register (SFR). Three interrupt vectors are implemented, one for Port0.0, one for Port0.1, and one  
commonly used for any interrupt event on Port0.2 to Port0.7. The Port0.1 and Port0.2 pin function is shared with  
the 8-bit timer/counter.  
LCD drive  
Liquid crystal displays (LCDs) for static, 2-, 3-, and 4-MUX operations can be driven directly. The controller LCD  
logic operation is defined by software using memory-bit manipulation. LCD memory is part of the LCD module  
and not part of the data memory. Eight mode and control bits define the operation and current consumption of  
the LCD drive. The information for the individual digits can be easily obtained using table programming  
techniques combined with the correct addressing mode. The segment information is stored in LCD memory  
using instructions for memory manipulation.  
The drive capability is mainly defined by the external resistor divider that supports the analog levels for 2-, 3-,  
and 4-MUX operation. Groups of the LCD segment lines can be selected for digital output signals. The  
MSP430x31x has four common signals and 23 segment lines. The MSP430C311S and MSP430P315S have  
four common lines and 16 segment lines.  
Timer/Port  
The Timer/Port module has two 8-bit counters, an input that triggers one counter, and six digital outputs in the  
MSP430x31x (MSP430C311S, MSP430C315S have five digital outputs available on external pins) with  
high-impedance state capability. Both counters have an independent clock-selector for selecting an external  
signal or one of the internal clocks (ACLK or MCLK). One counter has an extended control capability to halt,  
count continuously, or gate the counter by selecting one of two external signals. This gate signal sets the  
interrupt flag, if an external signal is selected, and the gate stops the counter.  
Both timers can be read from and written to by software. The two 8-bit counters can be cascaded to a 16-bit  
counter. A common interrupt vector is implemented. The interrupt flag can be set from three events in the 8-bit  
counter mode (gate signal, overflow from the counters) or from two events in the 16-bit counter mode (gate  
signal, overflow from the MSB of the cascaded counter).  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
peripherals (continued)  
slope A/D conversion  
Slope A/D conversion is accomplished with the timer/port module using external resistor(s) for reference (R ),  
ref  
external resistor(s) to the measured (R  
), and an external capacitor. The external components are driven  
meas  
by software in such a way that the internal counter measures the time that is needed to charge or discharge  
the capacitor. The reference resistor’s (R ) charge or discharge time is represented by N counts. The  
ref  
ref  
unknown resistors (R  
) charge or discharge time is represented by N  
counts. The unknown resistor’s  
meas  
meas  
value(R  
)isthevalueofR multipliedbytherelativenumberofcounts(N  
/N ).Thisvaluedetermines  
meas  
ref  
meas ref  
resistive sensor values that correspond to the physical data, for example temperature, when an NTC or PTC  
resistor is used.  
Basic Timer1  
The Basic Timer1 (BT1) divides the frequency of MCLK or ACLK, as selected with the SSEL bit, to provide low  
frequency control signals. This is done within the system by one central divider, the basic timer1, to support low  
current applications. The BTCTL control register contains the flags which controls or selects the different  
operational functions. When the supply voltage is applied or when a reset of the device (RST/NMI pin), a  
watchdog overflow, or a watchdog security key violation occurs, all bits in the register hold undefined or  
unchanged status. The user software usually configures the operational conditions on the BT1 during  
initialization.  
The Basic Timer1 has two 8 bit timers which can be cascaded to a 16 bit timer. Both timers can be read and  
written by software. Two bits in the SFR address range handle the system control interaction according to the  
function implemented in the Basic Timer1. These two bits are the Basic Timer1 interrupt flag (BTIFG) and the  
basic timer interrupt enable (BTIE) bit.  
Watchdog Timer  
The primary function of the Watchdog Timer (WDT) module is to perform a controlled system restart after a  
software problem has occurred. If the selected time interval expires, a system reset is generated. If this  
watchdog function is not needed in an application, the module can work as an interval timer, which generates  
an interrupt after the selected time interval.  
The Watchdog Timer counter (WDTCNT) is a 15/16-bit up-counter which is not directly accessible by software.  
The WDTCNT is controlled using the Watchdog Timer control register (WDTCTL), which is a 16-bit read/write  
register. Writing to WDTCTL, in both operating modes (watchdog or timer) is only possible by using the correct  
password in the high-byte. The low-byte stores data written to the WDTCTL. The high-byte password is 05Ah.  
If any value other than 05Ah is written to the high-byte of the WDTCTL, a system reset PUC is generated. When  
the password is read its value is 069h. This minimizes accidental write operations to the WDTCTL register. In  
addition to the Watchdog Timer control bits, there are two bits included in the WDTCTL which configure the NMI  
pin.  
8-Bit Timer/Counter  
The 8-bit interval timer supports three major functions for the application:  
Serial communication or data exchange  
Pulse counting or pulse accumulation  
Timer  
The 8-bit Timer/Counter peripheral includes the following major blocks: an 8-bit up-counter with  
preload-register, an 8-bit control register, an input clock selector, an edge detection (e.g. start bit detection for  
asynchronous protocols), and an input and output data latch, triggered by the carry-out-signal from the 8-bit  
counter.  
The 8-bit counter counts up with an input clock, which is selected by two control bits from the control register.  
The four possible clock sources are MCLK, ACLK, the external signal from terminal P0.1, and the signal from  
the logical AND of MCLK and terminal P0.1.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
8-Bit Timer/Counter (continued)  
Two counter inputs (load, enable) control the counter operation. The load input controls load operations. A  
write-access to the counter results in loading the content of the preload-register into the counter. The software  
writes or reads the preload-register with all instructions. The preload-register acts as a buffer and can be written  
immediately after the load of the counter is completed. The enable input enables the count operation. When  
the enable signal is set to high, the counter will count up each time a positive clock edge is applied to the clock  
input of the counter.  
Serial protocols, like UART protocol, need start-bit edge-detection to determine, at the receiver, the start of a  
data transmission. When this function is activated, the counter starts counting after start-bit condition is  
detected. The first signal level is sampled into the RXD input data-latch after completing the first timing interval,  
which is programmed into the counter. Two latches used for input and output data (RXD_FF and TXD_FF) are  
clocked by the counter after the programmed timing interval has elapsed.  
UART  
The serial communication is realized by using software and the 8-bit timer/counter hardware. The hardware  
supports the output of the serial data stream, bit-by-bit, with the timing determined by the counter. The  
software/hardware interface connects the mixed signal controller to external devices, systems, or networks.  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Watchdog  
Watchdog Timer control  
PERIPHERALS WITH BYTE ACCESS  
EPROM control  
WDTCTL  
0120h  
EPROM  
EPCTL  
CBCTL  
054h  
053h  
Crystal buffer  
System clock  
Crystal buffer control  
SCG frequency control  
SCG frequency integrator  
SCG frequency integrator  
SCFQCTL 052h  
SCFI1  
SCFI0  
051h  
050h  
Timer /Port  
Timer/Port enable  
Timer/Port data  
Timer/Port counter2  
Timer/Port counter1  
Timer/Port control  
TPE  
TPD  
TPCNT2  
TPCNT1  
TPCTL  
04Fh  
04Eh  
04Dh  
04Ch  
04Bh  
8-Bit Timer/Counter  
Basic Timer1  
LCD  
8-Bit Timer/Counter data  
8-Bit Timer/Counter preload  
8-Bit Timer/Counter control  
TCDAT  
TCPLD  
TCCTL  
044h  
043h  
042h  
Basic Timer/Counter2  
Basic Timer/Counter1  
Basic Timer control  
BTCNT2  
BTCNT1  
BTCTL  
047h  
046h  
040h  
LCD memory 15  
:
LCDM15  
03Fh  
LCD memory1  
LCD control & mode  
LCDM1  
LCDCTL  
031h  
030h  
Port P0  
Port P0 interrupt enable  
Port P0 interrupt edge select  
Port P0 interrupt flag  
Port P0 direction  
Port P0 output  
Port P0 input  
P0IE  
015h  
014h  
013h  
012h  
011h  
010h  
P0IES  
P0IFG  
P0DIR  
P0OUT  
P0IN  
Special function  
SFR interrupt flag2  
SFR interrupt flag1  
SFR interrupt enable2  
SFR interrupt enable1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
absolute maximum ratings  
Voltage applied at V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
SS  
CC  
Voltage applied to any pin (referenced to V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
+0.3 V  
SS  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA  
Storage temperature, T (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
Storage temperature, T (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltages referenced to V  
.
SS  
recommended operating conditions  
MIN  
2.5  
2.7  
2.7  
2.7  
4.5  
NOM  
MAX  
5.5  
5.5  
5.5  
5.5  
5.5  
UNIT  
MSP430Cxxx  
Supply voltage, V  
MSP430P313 , PMS430E313  
MSP430P315, PMS430E315  
MSP430P313  
V
CC  
V
V
V
Supply voltage during programming, V  
CC  
MSP430P315  
Supply voltage, V  
0
SS  
MSP430C31x  
MSP430P31x  
PMS430E31x  
40  
85  
Operating free-air temperature range, T  
°C  
A
25  
XTAL frequency, f  
(XTAL)  
32 768  
Hz  
V
V
= 3 V  
= 5 V  
DC  
DC  
2.2  
3.3  
CC  
Processor frequency f  
(signal MCLK) f  
MHz  
(system)  
system  
CC  
Low-level input voltage, V (excluding Xin, Xout)  
V
V
+0.8  
IL  
SS  
SS  
V
V
High-level input voltage, V (excluding Xin, Xout)  
IH  
0.7×V  
V
CC  
CC  
0.2×V  
CC  
V
CC  
= 3 V/5 V  
Low-level input voltage, V  
V
SS  
IL(Xin, Xout)  
High-level input voltage, V  
0.8×V  
V
CC  
IH(Xin, Xout)  
CC  
MSP430P313/E313 not recommended for new designs – replaced by MSP430P315/E315.  
f(MHz)  
3.3  
2.2  
Minimum  
3
5
5.5  
V
CC  
(V)  
2.5  
V
CC  
– Supply Voltage – V  
NOTE: Minimum processor frequency is defined by system clock.  
Figure 1. Processor Frequency vs Supply Voltage, C Versions  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
f(MHz)  
3.3  
2.2  
1.5  
Minimum  
2.7  
3
5
5.5  
V
CC  
(V)  
V
CC  
– Supply Voltage – V  
NOTE: Minimum processor frequency is defined by system clock.  
Figure 2. Processor Frequency vs Supply Voltage, P/E Versions  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
supply current (into V ) excluding external current (f  
CC  
= 1 MHz)  
(system)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
400  
730  
2100  
7000  
490  
960  
50  
MAX  
500  
850  
2700  
8600  
550  
1050  
70  
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
C31x  
P313  
T
= 40°C + 85°C  
= 40°C + 85°C  
= 40°C + 85°C  
= 40°C + 85°C  
= 40°C + 85°C  
= 40°C + 85°C  
= 40°C + 85°C  
A
I
Active mode  
T
A
µA  
(AM)  
P315(S)  
C31x  
T
A
T
A
100  
70  
130  
85  
P313  
I
I
I
Low-power mode, (LPM0,1)  
Low-power mode, (LPM2)  
Low-power mode, (LPM3)  
T
A
µA  
µA  
µA  
(CPUOff)  
(LPM2)  
(LPM3)  
150  
50  
170  
70  
P315(S)  
T
A
100  
6
130  
12  
T
A
13  
25  
T
A
= 40°C  
= 25°C  
= 85°C  
= 40°C  
= 25°C  
= 85°C  
= 40°C  
= 25°C  
= 85°C  
1.5  
2.4  
2
T
A
V
= 3 V  
1.3  
CC  
CC  
T
A
1.6  
2.8  
7
T
A
5.2  
T
A
V
= 5 V  
4.2  
6
T
A
4.8  
5.4  
0.8  
0.8  
1.3  
T
A
0.1  
I
Low-power mode, (LPM4)  
T
A
V = 3 V/5 V  
CC  
0.1  
µA  
(LPM4)  
T
A
0.4  
MSP430P313/E313 not recommended for new designs – replaced by MSP430P315/E315.  
NOTE: All inputs are tied to 0 V or V . Outputs do not source or sink any current. The current consumption in LPM2 and LPM3 are measured  
CC  
with active basic timer (ACLK selected) and LCD module. (f  
= 1024 Hz, 4 mux)  
LCD  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
current consumption of active mode versus system frequency, C versions only  
I
= I  
× f  
[MHz]  
system  
AM  
AM[1 MHz]  
current consumption of active mode versus supply voltage, C versions only  
= I + 200 µA/V × (V 3 V)  
I
AM  
AM[3 V]  
CC  
schmitt-trigger inputs port 0, Timer/Port, CIN, TP0.5  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
2.1  
3.4  
1.35  
2.3  
1
UNIT  
V
V
V
V
V
V
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
1.2  
2.3  
0.5  
1.4  
0.3  
0.6  
CC  
CC  
CC  
CC  
CC  
CC  
V
IT+  
V
IT–  
V
hys  
Positive-going input threshold voltage  
Negative-going input threshold voltage  
V
V
V
Input hysteresis (V – V  
)
IT+ IT–  
1.4  
standard inputs TCK, TMS, TDI, RST/NMI  
PARAMETER  
TEST CONDITIONS  
= 3 V/5 V  
MIN  
NOM  
MAX  
V +0.8  
SS  
UNIT  
V
V
Low-level input voltage  
High-level input voltage  
V
IL  
SS  
0.7V  
V
V
CC  
V
CC  
IH  
CC  
outputs port 0, P0.x, Timer/Port, TP0.0 – 5, LCD: S2/O2 to S26/O26 XBUF:XBUF, JTAG:TDO  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
I
I
I
I
I
I
I
I
= 1.2 mA,  
= 3.5 mA,  
= 1.5 mA,  
= 4.5 mA,  
= 1.2 mA,  
= 3.5 mA,  
= 1.5 mA,  
= 4.5 mA,  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V,  
= 3 V,  
= 5 V,  
= 5 V,  
= 3 V,  
= 3 V,  
= 5 V,  
= 5 V,  
See Note 5  
See Note 6  
See Note 5  
See Note 6  
See Note 5  
See Note 6  
See Note 5  
See Note 6  
V
0.4  
V
V
V
V
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
CC  
CC  
CC  
CC  
CC  
V
–1  
CC  
V
High-level output voltage  
V
OH  
OL  
V
CC  
0.4  
–1  
V
CC  
V
V
V
V
V
+0.4  
SS  
SS  
V
SS  
+1  
SS  
SS  
SS  
V
Low-level output voltage  
V
V
+0.4  
+1  
SS  
V
SS  
NOTES: 5. Themaximumtotalcurrent, I  
drop specified.  
maxandI max, foralloutputscombined, shouldnotexceed±9.6mAtoholdthemaximumvoltage  
OL  
OH  
6. Themaximum total current, I  
drop specified.  
max and I max, for all outputs combined, should not exceed ±20 mA to hold the maximum voltage  
OL  
OH  
leakage current (see Note 7)  
PARAMETER  
TEST CONDITIONS  
Timer/port:V CIN = V , V  
MIN NOM  
MAX  
±50  
±50  
UNIT  
nA  
,
TP0.x, SS CC  
I
I
High-impedance leakage current, timer/port  
High-impedance leakage current, S27  
lkg(TP)  
V
CC  
= 3 V/5 V, (see Note 8)  
V
= V  
to V  
,
V
= 3 V/5 V  
nA  
lkg(S27)  
S27  
SS  
CC  
CC  
CC  
Port P0: P0.x, 0 ≤ × ≤ 7,  
(see Note 9)  
V
= 3 V/5 V,  
I
Leakage current, port 0  
±50  
nA  
lkg(P0x)  
NOTES: 7. The leakage current is measured with V  
SS  
or V  
applied to the corresponding pin(s), unless otherwise noted.  
CC  
8. Alltimer/portpinsTP0.0toTP0.5areHi-Z. PinsCINandTP.0toTP0.5areconnectedtogetherduringleakagecurrentmeasurement.  
In the leakage measurement the input CIN is included. The input voltage is V or V  
.
CC  
SS  
9. The port pin must be selected for input and there must be no optional pullup or pulldown resistor.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
optional resistors, individually programmable with ROM code, P0.x, (see Note 10)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
6.2  
9.3  
18  
UNIT  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
R
R
R
R
R
R
R
R
R
R
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
2.1  
3.1  
6
4.1  
6.2  
12  
(opt1)  
(opt2)  
(opt3)  
(opt4)  
(opt5)  
(opt6)  
(opt7)  
(opt8)  
(opt9)  
(opt10)  
10  
19  
29  
19  
37  
56  
Resistors, individually programmable with ROM code, all port pins,  
values applicable for pulldown and pullup  
38  
75  
113  
168  
281  
392  
56  
112  
187  
261  
337  
94  
131  
167  
506  
kΩ  
NOTE 10: Optional resistors R  
optx  
for pull-down or pull-up are not programmed in standard OTP/EPROM devices P/E313 (MSP430P313/E313  
not recommended for new designs – replaced by MSP430P315/E315) and P/E315(s)  
inputs P0.x, CIN, TP.5; output XBUF  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN NOM  
MAX  
UNIT  
Port P0  
t
External interrupt timing  
External trigger signal for the  
interrupt flag, (see Notes 11 and 12)  
3 V/5 V  
1.5  
cycle  
(int)  
f
t
Input frequency  
(IN)  
(H)  
(H)  
3 V/5 V  
DC  
f
f
MHz  
(system)  
or t  
or t  
P0.x, CIN, TP.5  
(L)  
(L)  
3 V  
5 V  
225  
150  
ns  
ns  
High level or low level time  
Clock output frequency  
t
f
XBUF,  
XBUF,  
C
C
= 20 pF  
= 20 pF,  
3 V/5 V  
MHz  
(XBUF)  
L
L
(system)  
f
f
f
= 1.1 MHz  
3V/5V  
3V/5V  
3V/5V  
40%  
35%  
50%  
(MCLK)  
t
Duty cycle of clock output frequency  
(Xdc)  
= f  
(XBUF) (ACLK)  
60%  
65%  
= f  
(XBUF) (ACLK/n)  
NOTES: 11. Theexternal signal sets the interrupt flag every time t is met. It may be set even with trigger signals shorter than t . The conditions  
int int  
to set the flag must be met independently from this timing constraint. T is defined in MCLK cycles.  
int  
12. The external interrupt signal cannot exceed the maximum inut frequency (f ).  
(in)  
crystal oscillator, Xin, Xout  
PARAMETER  
Integrated capacitance at input  
Integrated capacitance at output  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
pF  
C
C
V
V
= 3 V/5 V  
= 3 V/5 V  
12  
12  
(Xin)  
CC  
pF  
(Xout)  
CC  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
electrical characteristics over recommended and operating free-air temperature range (unless  
otherwise noted) (continued)  
PARAMETER  
TEST CONDITIONS  
= 1A0h FN_4=FN_3=FN_2=0  
MIN NOM  
1
MAX  
UNIT  
f
DCO  
N
N
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V/5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
MHz  
(NOM)  
DCO  
DCO  
0.15  
0.18  
1.25  
1.45  
0.36  
0.39  
2.5  
0.6  
0.62  
4.7  
f
f
f
f
f
f
f
f
= 00 0110 0000 FN_4=FN_3=FN_2=0  
= 11 0100 0000 FN_4=FN_3=FN_2=0  
= 00 0110 0000 FN_4=FN_3=0, FN_2=1  
= 11 0100 0000 FN_4=FN_3=0, FN_2=1  
= 00 0110 0000 FN_4=0, FN_3= 1, FN_2=X  
= 11 0100 0000 FN_4= 0, FN_3=1, FN_2=X  
= 00 0110 0000 FN_4 =1, FN_3=FN_2=X  
= 11 0100 0000 FN_4=1, FN_3=FN_2=X  
DCO3  
DCO26  
DCO3  
DC26  
f
MHz  
MHz  
MHz  
MHz  
(NOM)  
N
N
N
N
N
N
N
DCO  
DCO  
DCO  
DCO  
DCO  
DCO  
DCO  
5.5  
1.05  
1.2  
2xf  
3xf  
4xf  
(NOM)  
(NOM)  
(NOM)  
8.1  
3
9.9  
0.5  
1.5  
DCO3  
DCO26  
DCO3  
DCO26  
0.6  
1.8  
3.7  
11  
4.5  
13.8  
1.85  
2.4  
0.7  
0.8  
4.8  
13.3  
17.7  
6
N
S
f
= f  
MCLK NOM  
FN_4=FN_3=FN_2=0  
NDCO  
V
= 3 V/5 V  
= 3 V/5 V  
A0h 1A0h  
1.07  
340h  
1.13  
DCO  
CC  
CC  
f
= S × f  
V
NDCO+1  
f
(DCO26)  
4xf  
NOM  
f
(DCO26)  
f
(DCO3)  
Legend  
3xf  
NOM  
f
(DCO26)  
f
(DCO3)  
2xf  
f
NOM  
Tolerance at Tap 26  
f
(DCO26)  
DCO Frequency  
Adjusted by Bits  
2 9–2 5 in SCFI1  
f
(DCO3)  
NOM  
Tolerance at Tap 3  
f
(DCO3)  
FN_2 = 0  
FN_3 = 0  
FN_4 = 0  
FN_2 = 1  
FN_3 = 0  
FN_4 = 0  
FN_2 = X  
FN_3 = 1  
FN_4 = 0  
FN_2 = X  
FN_3 = X  
FN_4 = 1  
Figure 3  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
LCD  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
(V  
–V )×  
CC SS  
2/3+V  
V
V
Voltage at R23  
Voltage at R13  
V
= 3 V/5 V  
= 3 V/5 V  
V
23  
CC  
CC  
SS  
Analog voltage  
(V  
–V ) ×  
CC SS  
1/3+V  
V
V
V
13  
SS  
V
V
I
Output 1 (HLCD)  
Output 0 (LLCD)  
I
I
<= 10 nA  
<= 10 nA  
V
CC  
0.125  
V
O(HLCD)  
(HLCD)  
CC  
+0.125  
V
SS  
V
SS  
O(LLCD)  
(LLCD)  
V
CC  
= 3 V/5 V  
R13 = V  
/3  
Input leakage  
(see Note 13)  
I(R13)  
I(R23)  
CC  
±20  
nA  
I
R23 = 2 V /3  
CC  
r
r
to S  
to S  
o(R13)  
o(R23)  
(XX)  
(XX)  
Output (SXX)  
I
= 3 µA,  
V
CC  
= 3 V/5 V  
33  
kΩ  
(SXX)  
NOTE 13: I  
is measured with no load on the segment or common LCD I/O pins.  
(IRxx)  
comparator (Timer/Port)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
250  
MAX  
350  
UNIT  
µA  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
I
Comparator (timer/port)  
CPON = 1  
CPON = 1  
CPON = 1  
(com)  
= 5 V  
450  
600  
V
Internal reference voltage at (–) terminal  
Input hysteresis (comparator)  
= 3 V/5 V  
= 3 V  
0.230×V  
CC  
0.25×V  
0.260×V  
37  
V
ref(com)  
CC  
CC  
5
V
mV  
hys(com)  
= 5 V  
10  
42  
RAM  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
CPU halted (see Note 14)  
1.8  
V
RAMh  
NOTE 14: This parameter defines the minimum supply voltage when the data in the program memory RAM remains unchanged. No program  
execution should happen during this supply voltage condition.  
PUC/POR  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
t
150  
250  
µs  
(POR_delay)  
T
= 40°C  
= 25°C  
= 85°C  
1.5  
1.2  
0.9  
0
2.4  
2.1  
1.8  
0.4  
V
V
A
V
POR  
T
A
(POR)  
V
CC  
= 3 V/5 V  
T
A
V
V
(min)  
V
t
PUC/POR  
Reset is accepted internally  
2
µs  
(reset)  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
V
VCC  
V
(POR)  
No POR  
POR  
POR  
V
(min)  
t
Figure 4. Power-On Reset (POR) vs Supply Voltage  
3
2.4  
1.5  
2.5  
2.1  
1.8  
0.9  
2
1.5  
1
1.2  
0.5  
0
25°C  
–40  
–20  
0
20  
40  
60  
80  
Temperature [°C]  
Figure 5. V  
vs Temperature  
(POR)  
wakeup from LPM3  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 5 V  
f = 1 MHz  
6
t
Delay time  
µs  
(LPM3)  
f = 2 MHz  
f = 3 MHz  
6
6
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
JTAG, program memory  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
5
UNIT  
V
V
= 3 V  
= 5 V  
DC  
DC  
CC  
f
TCK frequency  
MHz  
(TCK)  
10  
CC  
JTAG/Test  
Pullup resistors on TMS, TCK, TDI  
(see Note 15)  
R
V
V
CC  
V
CC  
V
CC  
= 3 V/ 5 V  
= 3 V/ 5 V  
= 3 V/ 5 V  
25  
5.5  
11  
60  
90  
6
kΩ  
(TEST)  
Fuse blow voltage, C versions (see Note 15)  
V
Fuse blow voltage, E/P versions  
(see Note 17)  
(FB)  
12  
JTAG/Fuse (see Note 16)  
I
t
Supply current on TDI/VPP to blow fuse  
Time to blow the fuse  
100  
1
mA  
ms  
V
(FB)  
(FB)  
P313, E313  
Programming voltage, applied to TDI/VPP  
Programming voltage, applied to TDI/VPP  
Current from programming voltage source  
Programming time, single pulse  
11  
12  
11.5  
12.5  
13  
13  
70  
V
(PP)  
P315(S), E315  
V
I
t
t
mA  
ms  
µs  
(PP)  
(pps)  
(ppf)  
EPROM (E) and OTP(P) –  
versions only  
(see Note 18)  
5
Programming time, fast algorithm  
100  
P
Pulses for successful programming  
Erase time wave length 2537 Å at 15 Ws/cm  
4
100 Pulses  
n
2
t
30  
min  
(erase)  
2
(UV lamp of 12 mW/ cm )  
EPROM (E)  
Write/erase cycles  
1000  
10  
cycles  
years  
Data retention T < 55°C  
J
NOTES: 15. The TMS and TCK pullup resistors are implemented in all ROM(C) and EPROM(E) versions.  
16. Once the JTAG fuse is blown no further access to the MSP430 JTAG/test feature is possible.  
17. The voltage supply to blow the JTAG fuse is applied to TDI/VPP pin when fuse blowing is desired.  
18. Refer to the Recommended Operating Conditions for the correct V during programing.  
CC  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TDI/VPP terminal have a fuse check mode that tests the continuity  
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, I , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/VPP pin to ground if the fuse is not burned.  
TF  
Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin, after power up, or if the  
TMS is being held low after power-up. The second positive edge on the TMS pin deactivates the fuse check  
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the  
fuse check mode has the potential to be activated.  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TDI  
Figure 6. Fuse Check Mode Current, MSP430P/E313,P/E315,C31x  
Care must be taken to avoid accidentally activating the fuse check mode, including guarding against EMI/ESD  
spikes that could cause signal edges on the TMS pin.  
Configuration of TMS, TCK, TDI/VPP and TDO/TDI pins in applications.  
C3xx  
Open  
Open  
Open  
Open  
P/E3xx  
68k, pulldown  
68k, pulldown  
Open  
TDI  
TDO  
TMS  
TCK  
Open  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
DIGITAL CONTROLLED OSCILLATOR FREQUENCY  
DIGITAL CONTROLLED OSCILLATOR FREQUENCY  
vs  
SUPPLY VOLTAGE  
1.2  
vs  
OPERATING FREE-AIR TEMPERATURE  
1.8  
1.5  
1.2  
0.9  
1
0.8  
0.6  
0.4  
0.6  
0.2  
0
0.3  
0
0
2
4
6
–40  
–20  
0
20  
40  
60  
80  
90  
V
– Supply Voltage – V  
CC  
T – Operating Free-Air Temperature – °C  
Figure 7  
Figure 8  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
typical input/output schematics  
V
CC  
V
CC  
(see Note A)  
(see Note A)  
(see Note B)  
(see Note B)  
(see Note B)  
(see Note B)  
(see Note A)  
GND  
(see Note A)  
GND  
CMOS INPUT (RST/NMI)  
CMOS SCHMITT-TRIGGER INPUT (CIN)  
V
CC  
(see Note A)  
(see Note B)  
(see Note B)  
(see Note A)  
GND  
I/O WITH SCHMITT-TRIGGER INPUT (P0.x,  
TP0.5)  
CMOS 3-STATE OUTPUT  
(TP0.0–4, XBUF)  
TDO_Internal  
V
CC  
TDO_Control  
TDI_Control  
60 k TYP  
TDI_Internal  
MSP430C31x: TMS, TCK  
MSP430P/E31x: TMS, TCK  
MSP430C31x: TDO/TDI  
MSP430P/E31x: TDO/TDI  
NOTES: A. Optional selection of pull-up or pull-down resistors with ROM (masked) versions.  
B. Fuses for the optional pull-up and pull-down resistors can only be programmed at the factory.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
typical input/output schematics  
VC  
VD  
COM0–3  
Control COM0–3  
VA  
S0, S1  
VB  
Segment control  
VA  
VB  
S2/O2–Sn/On  
Segment control  
LCDCTL (LCDM5,6,7)  
Data (LCD RAM bits 0–3  
or bits 47)  
LCD OUTPUT (COM04, Sn, Sn/On)  
NOTE: The signals VA, VB, VC, and VD come from the LCD module analog voltage generator.  
VPP_ Internal  
TDI_ Internal  
TDI/VPP  
JTAG  
Fuse  
TDO/TDI_Control  
TDO_ Internal  
TDO/TDI  
TMS  
JTAG Fuse  
Blow  
Control  
From/To JTAG_CBT_SIG_REG  
NOTES: A. During programming activity and when blowing the JTAG enable fuse, the TDI/VPP terminal is used to apply the correct voltage  
source. The TDO/TDI terminal is used to apply the test input data for JTAG circuitry.  
B. The TDI/VPP terminal of the ’P31x and ’E31x does not have an internal pullup resistor. An external pulldown resistor is  
recommended to avoid a floating node, which could increase the current consumption of the device.  
C. The TDO/TDI terminal is in a high-impedance state after POR. The ’P31x and ’E31x need a pullup or a pulldown resistor to avoid  
floating a node, which could increase the current consumption of the device.  
Figure 9. MSP430P313/E313/P315(S)/E315: TDI/VPP, TDO/TDI  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
MECHANICAL DATA  
DL (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48-PIN SHOWN  
0.025 (0,635)  
48  
0.012 (0,305)  
0.008 (0,203)  
0.005 (0,13)  
M
25  
0.006 (0,15) NOM  
0.299 (7,59)  
0.291 (7,39)  
0.420 (10,67)  
0.395 (10,03)  
Gage Plane  
0.010 (0,25)  
0°8°  
1
24  
0.040 (1,02)  
0.020 (0,51)  
A
Seating Plane  
0.004 (0,10)  
0.008 (0,20) MIN  
PINS **  
0.110 (2,79) MAX  
28  
48  
0.630  
56  
DIM  
0.380  
(9,65)  
0.730  
A MAX  
A MIN  
(16,00) (18,54)  
0.370  
(9,40)  
0.620  
0.720  
(15,75) (18,29)  
4040048/D 08/97  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MO-118  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
PMS430E313 , PMS430E315 (FZ package)  
FZ PACKAGE  
(TOP VIEW)  
9
8
7
6
5
4
3
2
1 68 67 66 65 64 63 62 61  
60 NC  
NC  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
59  
S23/O23  
S22/O22  
S18/O18  
S17/O17  
S16/O16  
S15/O15  
S14/O14  
S13/O13  
S12/O12  
S11/O11  
S10/O10  
S9/O9  
V
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
CC  
R23  
R13  
Xin  
Xout/TCLK  
P0.0  
P0.1/RXD 18  
19  
20  
21  
22  
23  
24  
25  
26  
P0.2/TXD  
P0.3  
P0.4  
P0.5  
P0.6  
S8/O8  
P0.7  
S7/O7  
TP0.0  
NC  
NC  
NC  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
NC – No internal connection  
MSP430P313/E313 not recommended for new designs – replaced by MSP430P315/E315.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x31x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS165D – FEBRUARY 1998 – REVISED APRIL 2000  
MECHANICAL DATA  
FZ (S-CQCC-J**)  
J-LEADED CERAMIC CHIP CARRIER  
28 LEAD SHOWN  
0.040 (1,02)  
45°  
Seating Plane  
0.180 (4,57)  
0.155 (3,94)  
0.140 (3,55)  
0.120 (3,05)  
A
B
1
4
26  
25  
5
0.050 (1,27)  
C
(at Seating  
Plane)  
A
B
0.032 (0,81)  
0.026 (0,66)  
0.020 (0,51)  
0.014 (0,36)  
19  
11  
18  
12  
0.025 (0,64) R TYP  
0.040 (1,02) MIN  
0.120 (3,05)  
0.090 (2,29)  
A
B
C
JEDEC  
NO. OF  
PINS**  
OUTLINE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.485  
0.495  
0.430  
0.455  
0.410  
0.430  
MO-087AA  
MO-087AB  
MO-087AC  
MO-087AD  
28  
44  
52  
68  
(12,32)  
(12,57)  
(10,92)  
(11,56)  
(10,41)  
(10,92)  
0.685  
0.695  
0.630  
0.655  
0.610  
0.630  
(17,40)  
(17,65)  
(16,00)  
(16,64)  
(15,49)  
(16,00)  
0.785  
0.795  
0.730  
0.765  
0.680  
0.740  
(19,94)  
(20,19)  
(18,54)  
(19,43)  
(17,28)  
(18,79)  
0.985  
0.995  
0.930  
0.955  
0.910  
0.930  
(25,02)  
(25,27)  
(23,62)  
(24,26)  
(23,11)  
(23,62)  
4040219/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

MSP430C311SDL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C311SIDL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C311SIDLR

16-BIT, MROM, 3.3MHz, RISC MICROCONTROLLER, PDSO48, PLASTIC, SSOP-48
TI

MSP430C312

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C312DL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C312IDL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C312IDLR

16-BIT, MROM, 3.3MHz, RISC MICROCONTROLLER, PDSO56, PLASTIC, SSOP-56
TI

MSP430C313

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C313DL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C313IDL

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C314

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C314DL

MIXED SIGNAL MICROCONTROLLERS
TI