LME49860NA/NOPB [TI]

44V Dual High Performance, High Fidelity Audio Operational Amplifier 8-PDIP -40 to 85;
LME49860NA/NOPB
型号: LME49860NA/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

44V Dual High Performance, High Fidelity Audio Operational Amplifier 8-PDIP -40 to 85

放大器 光电二极管
文件: 总37页 (文件大小:1721K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
LME49860 44V Dual High Performance, High Fidelity Audio Operational Amplifier  
Check for Samples: LME49860, LME49860MABD, LME49860NABD  
1
FEATURES  
KEY SPECIFICATIONS  
2
Easily Drives 600Loads  
Power Supply Voltage Range: ±2.5 to ±22V  
THD+N (AV = 1, VOUT = 3VRMS, fIN = 1kHz)  
Optimized for Superior Audio Signal Fidelity  
Output Short Circuit Protection  
PSRR and CMRR Exceed 120dB (Typ)  
SOIC or PDIP Packages  
RL = 2k: 0.00003% (Typ)  
RL = 600: 0.00003% (Typ)  
Input Noise Density: 2.7 nV/Hz (Typ)  
Slew Rate: ±20V/μs (Typ)  
APPLICATIONS  
Gain Bandwidth Product: 55MHz (Typ)  
Open Loop Gain (RL = 600): 140dB (Typ)  
Input Bias Current: 10nA (Typ)  
Ultra High Quality Audio Amplification  
High Fidelity Preamplifiers  
High Fidelity Multimedia  
Input Offset Voltage: 0.1mV (Typ)  
DC Gain Linearity Error: 0.000009%  
State of the Art Phono Pre Amps  
High Performance Professional Audio  
DESCRIPTION  
High Fidelity Equalization and Crossover  
Networks  
The LME49860 is part of the ultra-low distortion, low  
noise, high slew rate operational amplifier series  
optimized and fully specified for high performance,  
high fidelity applications. Combining advanced  
leading-edge process technology with state-of-the-art  
circuit design, the LME49860 audio operational  
amplifiers deliver superior audio signal amplification  
for outstanding audio performance. The LME49860  
combines extremely low voltage noise density  
(2.7nV/Hz) with vanishingly low THD+N (0.00003%)  
to easily satisfy the most demanding audio  
applications.  
High Performance Line Drivers  
High Performance Line Receivers  
High Fidelity Active Filters  
TYPICAL APPLICATION  
150W  
3320W  
3320W  
150W  
26.1 kW  
+
909W  
-
-
LME49860  
+
LME49860  
+
3.83 kW  
+
100W  
OUTPUT  
22 nF//4.7 nF//500 pF  
10 pF  
INPUT  
47 kW  
47 nF//33 nF  
Note: 1% metal film resistors, 5% polypropylene capacitors  
Figure 1. Passively Equalized RIAA Phono Preamplifier  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2013, Texas Instruments Incorporated  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
DESCRIPTION (CONTINUED)  
To ensure that the most challenging loads are driven without compromise, the LME49860 has a high slew rate of  
±20V/μs and an output current capability of ±26mA. Further, dynamic range is maximized by an output stage that  
drives 2kloads to within 1V of either power supply voltage and to within 1.4V when driving 600loads.  
The LME49860's outstanding CMRR (120dB), PSRR (120dB), and VOS (0.1mV) give the amplifier excellent  
operational amplifier DC performance.  
The LME49860 has a wide supply range of ±2.5V to ±22V. Over this supply range the LME49860 maintains  
excellent common-mode rejection, power supply rejection, and low input bias current. The LME49860 is unity  
gain stable. This Audio Operational Amplifier achieves outstanding AC performance while driving complex loads  
with values as high as 100pF.  
The LME49860 is available in 8-lead narrow body SOIC and 8-lead PDIP packages. Demonstration boards are  
available for each package.  
Connection Diagrams  
+
1
2
3
4
8 V  
OUTPUT A  
7 OUTPUT B  
INVERTING INPUT A  
A
B
-
+
+
-
NON-INVERTING  
INPUT A  
6
INVERTING INPUT B  
NON-INVERTING  
INPUT B  
-
5
V
Figure 2. 8-Pin SOIC or PDIP  
See D or P Package  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
2
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
ABSOLUTE MAXIMUM RATINGS(1)(2)(3)  
Power Supply Voltage (VS = V+ - V-)  
Storage Temperature  
46V  
65°C to 150°C  
Input Voltage  
Output Short Circuit(4)  
(V-) - 0.7V to (V+) + 0.7V  
Continuous  
ESD Susceptibility(5)  
2000V  
ESD Susceptibility(6)  
Pins 1, 4, 7 and 8  
200V  
100V  
Pins 2, 3, 5 and 6  
Junction Temperature  
Thermal Resistance  
150°C  
θJA (SOIC)  
θJA (PDIP)  
145°C/W  
102°C/W  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.  
(2) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured  
specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.  
Some performance characteristics may degrade when the device is not operated under the listed test conditions.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instrument Sales Office/ Distributors for availability and  
specifications.  
(4) Amplifier output connected to GND, any number of amplifiers within a package.  
(5) Human body model, 100pF discharged through a 1.5kresistor.  
(6) Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage and then  
discharged directly into the IC with no external series resistor (resistance of discharge path must be under 50).  
OPERATING RATINGS  
Temperature Range  
TMIN TA TMAX  
40°C TA 85°C  
±2.5V VS ±22V  
Supply Voltage Range  
ELECTRICAL CHARACTERISTICS FOR THE LME49860(1)  
The following specifications apply for VS = ±18V and ±22V, RL = 2k, RSOURCE = 10, fIN = 1kHz, TA = 25°C, unless otherwise  
specified.  
LME49860  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typical(2)  
Limit(3)  
AV = 1, VOUT = 3Vrms  
RL = 2kΩ  
RL = 600Ω  
0.00003  
0.00003  
0.00005  
55  
Total Harmonic Distortion +  
Noise  
%
(max)  
THD+N  
0.00009  
IMD  
Intermodulation Distortion  
Gain Bandwidth Product  
AV = 1, VOUT = 3VRMS, Two-tone, 60Hz & 7kHz 4:1  
%
GBWP  
45  
MHz  
(min)  
SR  
Slew Rate  
±20  
±15  
V/μs  
(min)  
VOUT = 1VP-P, –3dB  
referenced to output magnitude at f = 1kHz  
FPBW  
ts  
Full Power Bandwidth  
Settling time  
10  
1.2  
MHz  
AV = –1, 10V step, CL = 100pF, 0.1% error range  
μs  
μVRMS  
(max)  
Equivalent Input Noise Voltage fBW = 20Hz to 20kHz  
0.34  
0.65  
4.7  
en  
f = 1kHz  
Equivalent Input Noise Density  
f = 10Hz  
2.7  
6.4  
nV/H  
z (max)  
in  
f = 1kHz  
Current Noise Density  
f = 10Hz  
1.6  
3.1  
pA/H  
z
VS = ±18V  
±0.12  
±0.7  
±0.7  
mV  
(max)  
VOS  
Offset Voltage  
VS = ±22V  
±0.14  
mV  
(max)  
ΔVOS/ΔTe Average Input Offset Voltage  
mp Drift vs Temperature  
–40°C TA 85°C  
0.2  
μV/°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.  
(2) Typical specifications are specified at +25ºC and represent the most likely parametric norm.  
(3) Tested limits are ensured to AOQL (Average Outgoing Quality Level).  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS FOR THE LME49860(1) (continued)  
The following specifications apply for VS = ±18V and ±22V, RL = 2k, RSOURCE = 10, fIN = 1kHz, TA = 25°C, unless otherwise  
specified.  
LME49860  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typical(2)  
Limit(3)  
See(4)  
VS = ±18V, Δ VS = 24V  
VS = ±22V, Δ VS = 30V  
dB  
dB  
(min)  
Average Input Offset Voltage  
Shift vs Power Supply Voltage  
PSRR  
120  
120  
110  
fIN = 1kHz  
fIN = 20kHz  
118  
112  
ISOCH-CH  
IB  
Channel-to-Channel Isolation  
Input Bias Current  
dB  
10  
72  
65  
nA  
(max)  
VCM = 0V  
ΔIOS/ΔTe  
mp  
Input Bias Current Drift vs  
Temperature  
–40°C TA 85°C  
VCM = 0V  
0.1  
11  
nA/°C  
Input Offset Current  
nA  
(max)  
IOS  
+17.1  
–16.9  
(V+) – 2.0 V (min)  
(V-) + 2.0 V (min)  
VS = ±18V  
Common-Mode Input Voltage  
Range  
VIN-CM  
+21.0  
–20.8  
(V+) – 2.0 V (min)  
(V-) + 2.0 V (min)  
VS = ±22V  
VS = ±18V  
-12V VCM 12V  
120  
dB  
CMRR  
ZIN  
Common-Mode Rejection  
VS = ±22V  
-15V VCM 15V  
dB  
110  
120  
30  
(min)  
Differential Input Impedance  
kΩ  
Common Mode Input  
Impedance  
–10V<Vcm<10V  
1000  
MΩ  
VS = ±18V  
–12VVout12V  
RL = 600Ω  
RL = 2kΩ  
140  
140  
140  
dB  
dB  
dB  
RL = 10kΩ  
AVOL  
Open Loop Voltage Gain  
VS = ±22V  
–15VVout15V  
RL = 600Ω  
RL = 2kΩ  
dB  
140  
140  
140  
125  
(min)  
dB  
dB  
RL = 10kΩ  
RL = 600Ω  
VS = ±18V  
VS = ±22V  
±16.7  
±20.4  
V
±19.0  
V (min)  
RL = 2kΩ  
VS = ±18V  
VS = ±22V  
Maximum Output Voltage  
Swing  
VOUTMAX  
±17.0  
±21.0  
V
V
RL = 10kΩ  
VS = ±18V  
VS = ±22V  
±17.1  
±21.2  
V
V
RL = 600Ω  
VS = ±20V  
VS = ±22V  
mA  
mA  
(min)  
IOUT  
Output Current  
±31  
±37  
±30  
Instantaneous Short Circuit  
Current  
+53  
–42  
IOUT-CC  
ROUT  
CLOAD  
IS  
mA  
fIN = 10kHz  
Closed-Loop  
Open-Loop  
Output Impedance  
0.01  
13  
Capacitive Load Drive  
Overshoot  
100pF  
16  
%
IOUT = 0mA  
VS = ±18V  
VS = ±22V  
mA  
mA  
(max)  
Total Quiescent Current  
10.2  
10.5  
13  
(4) PSRR is measured as follows: For VS = ±22V, VOS is measured at two supply voltages, ±7V and ±22V. PSRR = | 20log(ΔVOS/ΔVS) |.  
Submit Documentation Feedback  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
4
Copyright © 2007–2013, Texas Instruments Incorporated  
 
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 2k  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 2kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10m  
20  
10  
1
10m  
20  
10  
100m  
1
100m  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 3.  
Figure 4.  
THD+N vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 2kΩ  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 2kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10m  
20  
10  
100m  
1
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 5.  
Figure 6.  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 600Ω  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
1
10  
20  
10m  
20  
10m  
1
10  
100m  
100m  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 7.  
Figure 8.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 600Ω  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10  
10m  
20  
100m  
1
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 9.  
Figure 10.  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 10kΩ  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10m  
10m  
20  
100m  
1
10  
100m  
1
20  
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 11.  
Figure 12.  
THD+N vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 10kΩ  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10m  
20  
10  
100m  
1
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 13.  
Figure 14.  
6
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
RL = 2kΩ  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
RL = 2kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
20 50 100 200 500 1k 2k 5k 10k 20k  
20 50 100 200 500 1k 2k 5k 10k 20k  
Hz  
Hz  
Figure 15.  
Figure 16.  
THD+N vs Frequency  
THD+N vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
RL = 2kΩ  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
20 50 100 200 500 1k 2k 5k 10k 20k  
20 50 100 200 500 1k 2k 5k 10k 20k  
Hz  
Hz  
Figure 17.  
Figure 18.  
THD+N vs Frequency  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
RL = 600Ω  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
20 50 100 200 500 1k 2k 5k 10k 20k  
20 50 100 200 500 1k 2k 5k 10k 20k  
Hz  
Hz  
Figure 19.  
Figure 20.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
RL = 10kΩ  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
20 50 100 200 500 1k 2k 5k 10k 20k  
20 50 100 200 500 1k 2k 5k 10k 20k  
Hz  
Hz  
Figure 21.  
Figure 22.  
THD+N vs Frequency  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 2kΩ  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000007  
20 50 100 200 500 1k 2k 5k 10k 20k  
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
Hz  
Figure 23.  
Figure 24.  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 2kΩ  
IMD vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 2kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.000007  
0.00001  
0.000007  
100m 200m 500m  
1
2
5
10  
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 25.  
Figure 26.  
8
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 2kΩ  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000006  
100m 200m 500m  
1
2
5
10  
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 27.  
Figure 28.  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 600Ω  
IMD vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000007  
0.000006  
100m 200m 500m  
1
2
5
10  
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 29.  
Figure 30.  
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000006  
100m  
300m  
500m 700m  
1
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 31.  
Figure 32.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 10kΩ  
IMD vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000006  
0.000006  
100m 200m 500m  
1
2
5
10  
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 33.  
Figure 34.  
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 10kΩ  
Voltage Noise Density vs Frequency  
100  
10  
1
100  
0.01  
V
V
= 30V  
S
0.005  
= 15V  
CM  
0.002  
0.001  
0.0005  
10  
0.0002  
0.0001  
2.7 nV/Hz  
0.00005  
0.00002  
0.00001  
1
100000  
1000 10000  
1
10  
100  
100m  
300m  
500m 700m  
1
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 35.  
Figure 36.  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
Current Noise Density vs Frequency  
AV = 0dB, RL = 2kΩ  
100  
10  
1
100  
+0  
V
V
= 30V  
S
-10  
-20  
= 15V  
CM  
-30  
-40  
-50  
-60  
10  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
1.6 pA/Hz  
100000  
1000 10000  
1
1
10  
100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37.  
Figure 38.  
10  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 10VRMS  
AV = 0dB, RL = 2kΩ  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
AV = 0dB, RL = 2kΩ  
+0  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-100  
-110  
-120  
-130  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39.  
Figure 40.  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 10VRMS  
AV = 0dB, RL = 2kΩ  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
AV = 0dB, RL = 2kΩ  
+0  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-100  
-110  
-120  
-130  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41.  
Figure 42.  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 10VRMS  
AV = 0dB, RL = 2kΩ  
Crosstalk vs Frequency  
VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS  
AV = 0dB, RL = 2kΩ  
+0  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-100  
-110  
-120  
-130  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 43.  
Figure 44.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
AV = 0dB, RL = 600Ω  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 10VRMS  
AV = 0dB, RL = 600Ω  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45.  
Figure 46.  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
AV = 0dB, RL = 600Ω  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 10VRMS  
AV = 0dB, RL = 600Ω  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 47.  
Figure 48.  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
AV = 0dB, RL = 600Ω  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 10VRMS  
AV = 0dB, RL = 600Ω  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 49.  
Figure 50.  
12  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Crosstalk vs Frequency  
VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS  
AV = 0dB, RL = 600Ω  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
AV = 0dB, RL = 10kΩ  
+0  
+0  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 51.  
Figure 52.  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 10VRMS  
AV = 0dB, RL = 10kΩ  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
AV = 0dB, RL = 10kΩ  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 53.  
Figure 54.  
Crosstalk vs Frequency  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 10VRMS  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
AV = 0dB, RL = 10kΩ  
AV = 0dB, RL = 10kΩ  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
FREQUENCY (Hz)  
Figure 55.  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
Figure 56.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Crosstalk vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 10VRMS  
AV = 0dB, RL = 10kΩ  
Crosstalk vs Frequency  
VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS  
AV = 0dB, RL = 10kΩ  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 57.  
Figure 58.  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
RL = 2k, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
RL = 2k, VRIPPLE = 200mVpp  
+0  
-10  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 59.  
Figure 60.  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
RL = 2k, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 12V, VEE = –12V  
RL = 2k, VRIPPLE = 200mVpp  
+0  
-10  
+0  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 61.  
Figure 62.  
14  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR+ vs Frequency  
VCC = 22V, VEE = –22V  
RL = 2k, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 22V, VEE = –22V  
RL = 2k, VRIPPLE = 200mVpp  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 63.  
Figure 64.  
PSRR+ vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 2k, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 2k, VRIPPLE = 200mVpp  
+0  
-10  
-20  
+0  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 65.  
Figure 66.  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
RL = 600, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
RL = 600, VRIPPLE = 200mVpp  
+0  
-10  
+0  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 67.  
Figure 68.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
RL = 600, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 12V, VEE = –12V  
RL = 600, VRIPPLE = 200mVpp  
+0  
-10  
+0  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 69.  
Figure 70.  
PSRR+ vs Frequency  
VCC = 22V, VEE = –22V  
RL = 600, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 22V, VEE = –22V  
RL = 600, VRIPPLE = 200mVpp  
+0  
-10  
+0  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 71.  
Figure 72.  
PSRR+ vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 600, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 600, VRIPPLE = 200mVpp  
+0  
-10  
+0  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 73.  
Figure 74.  
16  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
RL = 10k, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
RL = 10k, VRIPPLE = 200mVpp  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-120  
-130  
-140  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 75.  
Figure 76.  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
RL = 10k, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 12V, VEE = –12V  
RL = 10k, VRIPPLE = 200mVpp  
+0  
-10  
+0  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 77.  
Figure 78.  
PSRR+ vs Frequency  
VCC = 22V, VEE = –22V  
RL = 10k, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 22V, VEE = –22V  
RL = 10k, VRIPPLE = 200mVpp  
+0  
+0  
-10  
-10  
-20  
-30  
-20  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 79.  
Figure 80.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR+ vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 10k, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 10k, VRIPPLE = 200mVpp  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 81.  
Figure 82.  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
RL = 2kΩ  
CMRR vs Frequency  
VCC = 12V, VEE = –12V  
RL = 2kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
10  
-120  
10  
100  
1k  
10k  
100k 200k  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 83.  
Figure 84.  
CMRR vs Frequency  
CMRR vs Frequency  
VCC = 22V, VEE = –22V  
VCC = 2.5V, VEE = –2.5V  
RL = 2kΩ  
RL = 2kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
10  
-120  
10  
100  
1k  
10k  
100k 200k  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 85.  
Figure 86.  
18  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
RL = 600Ω  
CMRR vs Frequency  
VCC = 12V, VEE = –12V  
RL = 600Ω  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
10  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 87.  
Figure 88.  
CMRR vs Frequency  
VCC = 22V, VEE = –22V  
RL = 600Ω  
CMRR vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω  
0
-20  
-40  
-60  
-80  
0
-20  
-40  
-60  
-80  
-100  
-120  
-100  
-120  
10  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 89.  
Figure 90.  
CMRR vs Frequency  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
VCC = 12V, VEE = –12V  
RL = 10kΩ  
RL = 10kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
10  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 91.  
Figure 92.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
CMRR vs Frequency  
VCC = 22V, VEE = –22V  
RL = 10kΩ  
CMRR vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 10kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
10  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 93.  
Figure 94.  
Output Voltage vs Load Resistance  
VCC = 15V, VEE = –15V  
THD+N = 1%  
Output Voltage vs Load Resistance  
VCC = 12V, VEE = –12V  
THD+N = 1%  
11.5  
9.5  
9.0  
8.5  
8.0  
11.0  
10.5  
10.0  
9.5  
7.5  
7.0  
9.0  
500  
600  
800  
2k  
5k  
10k  
500  
600  
800  
2k  
5k  
10k  
LOAD RESISTANCE (W)  
LOAD RESISTANCE (W)  
Figure 95.  
Figure 96.  
Output Voltage vs Load Resistance  
VCC = 22V, VEE = –22V  
THD+N = 1%  
Output Voltage vs Load Resistance  
VCC = 2.5V, VEE = –2.5V  
THD+N = 1%  
1.25  
13.5  
13.0  
12.5  
12.0  
1.00  
0.75  
11.5  
11.0  
10.5  
10.0  
0.25  
0.50  
0.00  
500  
600  
800  
2k  
5k  
10k  
500  
600  
800  
2k  
5k  
10k  
LOAD RESISTANCE (W)  
LOAD RESISTANCE (W)  
Figure 97.  
Figure 98.  
20  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Output Voltage vs Total Power Supply Voltage  
Output Voltage vs Total Power Supply Voltage  
RL = 2k, THD+N = 1%  
RL = 600, THD+N = 1%  
Figure 99.  
Figure 100.  
Output Voltage vs Total Power Supply Voltage  
Power Supply Current vs Total Power Supply Voltage  
RL = 10k, THD+N = 1%  
RL = 2kΩ  
Figure 101.  
Figure 102.  
Power Supply Current vs Total Power Supply Voltage  
Power Supply Current vs Total Power Supply Voltage  
RL = 600Ω  
RL = 10kΩ  
Figure 103.  
Figure 104.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Full Power Bandwidth vs Frequency  
Gain Phase vs Frequency  
2
0
180  
160  
-2  
-4  
140  
120  
100  
80  
0 dB = 1 V  
P-P  
-6  
-8  
-10  
60  
-12  
-14  
-16  
-18  
40  
20  
0
-20  
10  
1000  
100000  
10000000  
1000000 100000000  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
100  
10000  
FREQUENCY (Hz)  
Figure 105.  
Figure 106.  
Small-Signal Transient Response  
AV = 1, CL = 10pF  
Small-Signal Transient Response  
AV = 1, CL = 100pF  
D: 0.00s  
D: 0.00V  
D: 0.00s  
D: 0.00V  
@: -1.01 ms @: -80.0 mV  
@: -1.01 ms @: -80.0 mV  
1
1
Ch1 50.0 mV  
M 200 ns  
A
Ch1 2.00 mV  
Ch1 50.0 mV  
M 200 ns  
A Ch1 2.00 mV  
50.40%  
50.40%  
Figure 107.  
Figure 108.  
22  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
APPLICATION INFORMATION  
DISTORTION MEASUREMENTS  
The vanishingly low residual distortion produced by LME49860 is below the capabilities of all commercially  
available equipment. This makes distortion measurements just slightly more difficult than simply connecting a  
distortion meter to the amplifier’s inputs and outputs. The solution, however, is quite simple: an additional  
resistor. Adding this resistor extends the resolution of the distortion measurement equipment.  
The LME49860’s low residual distortion is an input referred internal error. As shown in Figure 109, adding the  
10resistor connected between the amplifier’s inverting and non-inverting inputs changes the amplifier’s noise  
gain. The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier’s closed-  
loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means that  
measurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep the  
value of R1 low as shown in Figure 109.  
This technique is verified by duplicating the measurements with high closed loop gain and/or making the  
measurements at high frequencies. Doing so produces distortion components that are within the measurement  
equipment’s capabilities. This datasheet’s THD+N and IMD values were generated using the above described  
circuit connected to an Audio Precision System Two Cascade.  
R2  
1000W  
-
LME49860  
R1  
10W  
Distortion Signal Gain = 1+(R2/R1)  
+
Analyzer Input  
Generator Output  
Audio Precision  
System Two  
Cascade  
Actual Distortion = AP Value/100  
Figure 109. THD+N and IMD Distortion Test Circuit  
The LME49860 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 100pF  
will cause little change in the phase characteristics of the amplifiers and are therefore allowable.  
Capacitive loads greater than 100pF must be isolated from the output. The most straightforward way to do this is  
to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is  
accidentally shorted.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
 
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for  
power line noise.  
Figure 110. Noise Measurement Circuit  
Total Gain: 115 dB @f = 1 kHz  
Input Referred Noise Voltage: en = V0/560,000 (V)  
Figure 111. RIAA Preamp Voltage Gain,  
RIAA Deviation vs Frequency  
Figure 112. Flat Amp Voltage Gain vs Frequency  
24  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
TYPICAL APPLICATIONS  
Figure 114. NAB Preamp Voltage Gain vs  
Frequency  
AV = 34.5  
F = 1 kHz  
En = 0.38 μV  
A Weighted  
Figure 113. NAB Preamp  
VO = V1 + V2 V3 V4  
VO = V1–V2  
Figure 116. Adder/Subtracter  
Figure 115. Balanced to Single Ended Converter  
Figure 117. Sine Wave Oscillator  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
Illustration is f0 = 1 kHz  
Illustration is f0 = 1 kHz  
Figure 118. Second Order High Pass Filter  
(Butterworth)  
Figure 119. Second Order Low Pass Filter  
(Butterworth)  
Illustration is f0 = 1 kHz, Q = 10, ABP = 1  
Figure 120. State Variable Filter  
Figure 121. AC/DC Converter  
26  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
Figure 122. 2 Channel Panning Circuit (Pan Pot)  
Figure 123. Line Driver  
Illustration is:  
fL = 32 Hz, fLB = 320 Hz  
fH =11 kHz, fHB = 1.1 kHz  
Figure 124. Tone Control  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
Av = 35 dB  
En = 0.33 μV  
S/N = 90 dB  
f = 1 kHz  
A Weighted  
A Weighted, VIN = 10 mV  
@f = 1 kHz  
Figure 125. RIAA Preamp  
Illustration is:  
V0 = 101(V2 V1)  
Figure 126. Balanced Input Mic Amp  
28  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
www.ti.com  
SNAS389C JUNE 2007REVISED APRIL 2013  
Figure 127. 10 Band Graphic Equalizer  
fo (Hz)  
32  
C1  
C2  
R1  
R2  
0.12μF  
0.056μF  
0.033μF  
0.015μF  
8200pF  
3900pF  
2000pF  
1100pF  
510pF  
4.7μF  
75kΩ  
68kΩ  
62kΩ  
68kΩ  
62kΩ  
68kΩ  
68kΩ  
62kΩ  
68kΩ  
51kΩ  
500Ω  
510Ω  
510Ω  
470Ω  
470Ω  
470Ω  
470Ω  
470Ω  
510Ω  
510Ω  
64  
3.3μF  
125  
250  
500  
1k  
1.5μF  
0.82μF  
0.39μF  
0.22μF  
0.1μF  
2k  
4k  
0.056μF  
0.022μF  
0.012μF  
8k  
16k  
330pF  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
LME49860, LME49860MABD, LME49860NABD  
SNAS389C JUNE 2007REVISED APRIL 2013  
www.ti.com  
REVISION HISTORY  
Rev  
1.0  
1.1  
C
Date  
Description  
06/01/07  
06/11/07  
04/05/13  
Initial release.  
Added the LME49860MA and LME49860NA Top Mark Information.  
Changed layout of National Data Sheet to TI format.  
30  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LME49860 LME49860MABD LME49860NABD  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Feb-2014  
PACKAGING INFORMATION  
Orderable Device  
LME49860MA/NOPB  
LME49860MAX/NOPB  
LME49860NA/NOPB  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
SOIC  
SOIC  
PDIP  
D
8
8
8
95  
Green (RoHS  
& no Sb/Br)  
SN | CU SN  
SN | CU SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-NA-UNLIM  
L49860  
MA  
ACTIVE  
ACTIVE  
D
P
2500  
40  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
L49860  
MA  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
LME  
49860NA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Feb-2014  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LME49860MAX/NOPB  
SOIC  
D
8
2500  
330.0  
12.4  
6.5  
5.4  
2.0  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
349.0 337.0 45.0  
LME49860MAX/NOPB  
D
8
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

LME49870

44V Single High Performance, High Fidelity Audio Operational Amplifier
NSC

LME49870

44V Single High Performance, High Fidelity Audio Operational Amplifier
TI

LME49870MA

IC OP-AMP, 55 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
NSC

LME49870MA/NOPB

44V Single High Performance, High Fidelity Audio Operational Amplifier 8-SOIC -40 to 85
TI

LME49871

High Performance, High Fidelity Current Feedback Audio Operational Amplifier
NSC

LME49871MA

High Performance, High Fidelity Current Feedback Audio Operational Amplifier
NSC

LME49871MAX

IC,OP-AMP,SINGLE,BIPOLAR,SOP,8PIN,PLASTIC
TI

LME49880

Dual JFET Input Audio Operational Amplifier
NSC

LME49880

E-Series Dual JFET Input Audio Operational Amplifier
TI

LME49880MR

Dual JFET Input Audio Operational Amplifier
NSC

LME49880MR/NOPB

E-Series Dual JFET Input Audio Operational Amplifier
TI

LME49880MRX

Dual JFET Input Audio Operational Amplifier
NSC