LME49870MA [NSC]

IC OP-AMP, 55 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier;
LME49870MA
型号: LME49870MA
厂家: National Semiconductor    National Semiconductor
描述:

IC OP-AMP, 55 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier

放大器 光电二极管
文件: 总34页 (文件大小:904K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 14, 2008  
LME49870  
44V Single High Performance, High Fidelity Audio  
Operational Amplifier  
General Description  
RL = 2kΩ  
0.00003% (typ)  
0.00003% (typ)  
2.7nV/Hz (typ)  
±20V/μs (typ)  
55MHz (typ)  
140dB (typ)  
RL = 600Ω  
The LME49870 is part of the ultra-low distortion, low noise,  
high slew rate operational amplifier series optimized and fully  
specified for high performance, high fidelity applications.  
Combining advanced leading-edge process technology with  
state-of-the-art circuit design, the LME49870 audio opera-  
tional amplifier delivers superior audio signal amplification for  
outstanding audio performance. The LME49870 combines  
extremely low voltage noise density (2.7nV/Hz) with van-  
ishingly low THD+N (0.00003%) to easily satisfy the most  
demanding audio applications. To ensure that the most chal-  
lenging loads are driven without compromise, the LME49870  
has a high slew rate of ±20V/μs and an output current capa-  
bility of ±26mA. Further, dynamic range is maximized by an  
output stage that drives 2kloads to within 1V of either power  
supply voltage and to within 1.4V when driving 600loads.  
■ꢀInput Noise Density  
■ꢀSlew Rate  
■ꢀGain Bandwidth Product  
■ꢀOpen Loop Gain (RL = 600Ω)  
■ꢀInput Bias Current  
■ꢀInput Offset Voltage  
■ꢀDC Gain Linearity Error  
10nA (typ)  
0.1mV (typ)  
0.000009%  
Features  
Easily drives 600loads  
The LME49870's outstanding CMRR (120dB), PSRR  
(120dB), and VOS (0.1mV) give the amplifier excellent oper-  
ational amplifier DC performance.  
Optimized for superior audio signal fidelity  
Output short circuit protection  
PSRR and CMRR exceed 120dB (typ)  
The LME49870 has a wide supply range of ±2.5V to ±22V.  
Over this supply range the LME49870 maintains excellent  
common-mode rejection, power supply rejection, and low in-  
put bias current. The LME49870 is unity gain stable. This  
Audio Operational Amplifier achieves outstanding AC perfor-  
mance while driving complex loads with values as high as  
100pF.  
Applications  
High quality audio amplification  
High fidelity preamplifiers, phono preamps, and  
multimedia  
High performance professional audio  
The LME49870 is available in 8–lead narrow body SOIC.  
Demonstration boards are available for each package.  
High fidelity equalization and crossover networks with  
active filters  
High performance line drivers and receivers  
Key Specifications  
■ꢀPower Supply Voltage Range  
Low noise industrial applications including test,  
measurement, and ultrasound  
±2.5V to ±22V  
■ꢀTHD+N  
(AV = 1, VOUT = 3VRMS, fIN = 1kHz)  
Typical Application  
300194k5  
Passively Equalized RIAA Phono Preamplifier  
© 2008 National Semiconductor Corporation  
300194  
www.national.com  
Connection Diagrams  
Order Number LME49870MA 30019401  
See NS Package Number — M08A  
LME49870 Top Mark  
30019402  
N — National Logo  
Z — Assembly Plant code  
X — 1 Digit Date code  
TT — Die Traceability  
L49870 — LME49870  
MA — Package code  
www.national.com  
2
Pins 1, 4, 7 and 8  
Pins 2, 3, 5 and 6  
Junction Temperature  
Thermal Resistance  
ꢁθJA (SO)  
200V  
100V  
150°C  
Absolute Maximum Ratings (Notes 1, 2)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
145°C/W  
Power Supply Voltage  
(VS = V+ - V-)  
Storage Temperature  
Input Voltage  
46V  
−65°C to 150°C  
Operating Ratings  
Temperature Range  
(V-)-0.7V to (V+)+0.7V  
Continuous  
Output Short Circuit (Note 3)  
Power Dissipation  
ESD Rating (Note 4)  
ESD Rating (Note 5)  
TMIN TA TMAX  
Supply Voltage Range  
−40°C TA 85°C  
±2.5V VS ±22V  
Internally Limited  
2000V  
Electrical Characteristics for the LME49870 (Note 1) The following specifications apply for VS =  
±18V and ±22V, RL = 2k, RSOURCE = 10Ω, fIN = 1kHz, TA = 25°C, unless otherwise specified.  
LME49870  
Units  
Symbol  
Parameter  
Conditions  
AV = 1, VOUT = 3Vrms  
Typical  
Limit  
(Limits)  
(Note 6)  
(Note 7)  
RL = 2kΩ  
RL = 600Ω  
THD+N  
Total Harmonic Distortion + Noise  
Intermodulation Distortion  
% (max)  
%
0.00003  
0.00003  
0.00009  
AV = 1, VOUT = 3VRMS  
IMD  
0.00005  
Two-tone, 60Hz & 7kHz 4:1  
GBWP  
SR  
Gain Bandwidth Product  
Slew Rate  
55  
45  
MHz (min)  
±20  
±15  
V/μs (min)  
VOUT = 1VP-P, –3dB  
referenced to output magnitude  
at f = 1kHz  
FPBW  
ts  
Full Power Bandwidth  
10  
MHz  
AV = –1, 10V step, CL = 100pF  
0.1% error range  
Settling time  
1.2  
μs  
μVRMS  
(max)  
fBW = 20Hz to 20kHz  
Equivalent Input Noise Voltage  
0.34  
0.65  
4.7  
en  
f = 1kHz  
f = 10Hz  
2.5  
6.4  
nV/Hz  
(max)  
Equivalent Input Noise Density  
Current Noise Density  
Offset Voltage  
in  
f = 1kHz  
f = 10Hz  
1.6  
3.1  
pA/Hz  
VS = ±18V  
VS = ±22V  
±0.12  
±0.14  
mV (max)  
mV (max)  
VOS  
±0.7  
Average Input Offset Voltage Drift vs  
Temperature  
ΔVOSTemp  
PSRR  
0.1  
–40°C TA 85°C  
μV/°C  
VS = ±18V, ΔVS = 24V (Note 8)  
VS = ±22V, ΔVS = 30V  
VCM = 0V  
Average Input Offset Voltage Shift vs  
Power Supply Voltage  
120  
120  
dB (min)  
110  
72  
IB  
Input Bias Current  
10  
0.2  
11  
nA (max)  
nA/°C  
Input Bias Current Drift vs  
Temperature  
ΔIOSTemp  
–40°C TA 85°C  
VCM = 0V  
IOS  
Input Offset Current  
65  
nA (max)  
+17.1  
–16.9  
V (min)  
V (min)  
VS = ±18V  
VIN-CM  
Common-Mode Input Voltage Range  
+21.0  
–20.8  
(V+) – 2.0  
(V-) + 2.0  
V (min)  
V (min)  
VS = ±22V  
3
www.national.com  
LME49870  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
(Note 6)  
(Note 7)  
VS = ±18V  
120  
dB (min)  
dB (min)  
–12VVcm12V  
VS = ±22V  
CMRR  
Common-Mode Rejection  
120  
110  
–15VVcm15V  
Differential Input Impedance  
30  
kΩ  
ZIN  
Common Mode Input Impedance  
–10V<Vcm<10V  
VS = ±18V  
1000  
MΩ  
–12VVout12V  
RL = 600Ω  
RL = 2kΩ  
140  
140  
140  
dB  
dB  
dB  
RL = 10Ω  
AVOL  
Open Loop Voltage Gain  
VS = ±22V  
–15VVout15V  
RL = 600Ω  
RL = 2kΩ  
125  
140  
140  
140  
dB  
dB  
dB  
RL = 10Ω  
RL = 600Ω  
VS = ±18V  
VS = ±22V  
±16.7  
±20.4  
V (min)  
V (min)  
±19.0  
RL = 2kΩ  
VOUTMAX  
Maximum Output Voltage Swing  
VS = ±18V  
±17.0  
±21.0  
V (min)  
V (min)  
VS = ±22V  
RL = 10kΩ  
VS = ±18V  
VS = ±22V  
±17.1  
±21.0  
V (min)  
V (min)  
RL = 600Ω  
VS = ±20V  
VS = ±22V  
IOUT  
Output Current  
±31  
±37  
mA (min)  
mA (min)  
±30  
+53  
–42  
IOUT-CC  
Instantaneous Short Circuit Current  
Output Impedance  
mA  
fIN = 10kHz  
Closed-Loop  
Open-Loop  
ROUT  
0.01  
13  
CLOAD  
IS  
Capacitive Load Drive Overshoot  
Total Quiescent Current  
100pF  
16  
5
%
IOUT = 0mA  
6.5  
mA (max)  
Note 1: Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability  
and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in  
the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the  
device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.  
Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified  
or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.  
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature, TA. The maximum  
allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given in Absolute Maximum Ratings, whichever is lower.  
Note 4: Human body model, applicable std. JESD22-A114C.  
Note 5: Machine model, applicable std. JESD22-A115-A.  
Note 6: Typical values represent most likely parametric norms at TA = +25ºC, and at the Recommended Operation Conditions at the time of product  
characterization and are not guaranteed.  
Note 7: Datasheet min/max specification limits are guaranteed by test or statistical analysis.  
Note 8: PSRR is measured as follows: For VS, VOS is measured at two supply voltages, ±7V and ±22V, PSRR = |20log(ΔVOSVS)|.  
www.national.com  
4
 
 
 
Typical Performance Characteristics  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 2kΩ  
RL = 2kΩ  
300194k6  
300194k7  
THD+N vs Output Voltage  
VCC = 22V, VEE = –22V  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 2kΩ  
RL = 2kΩ  
300194k8  
300194i4  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 600Ω  
RL = 600Ω  
300194k9  
300194l0  
5
www.national.com  
THD+N vs Output Voltage  
VCC = 22V, VEE = –22V  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω  
RL = 600Ω  
300194l1  
300194i6  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 10kΩ  
RL = 10kΩ  
300194l2  
300194l3  
THD+N vs Output Voltage  
VCC = 22V, VEE = –22V  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 10kΩ  
RL = 10kΩ  
300194l4  
300194i5  
www.national.com  
6
THD+N vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
RL = 2kΩ  
RL = 2kΩ  
30019463  
30019462  
THD+N vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
THD+N vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
RL = 2kΩ  
RL = 600Ω  
30019464  
30019459  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
THD+N vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
RL = 600Ω  
RL = 600Ω  
300194k3  
30019460  
7
www.national.com  
THD+N vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
RL = 10kΩ  
RL = 10kΩ  
30019467  
30019466  
THD+N vs Frequency  
VCC = 22V, VEE = –22V, VOUT = 3VRMS  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 10kΩ  
RL = 2kΩ  
30019468  
300194e6  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
IMD vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 2kΩ  
RL = 2kΩ  
300194e5  
300194e7  
www.national.com  
8
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 2kΩ  
RL = 600Ω  
300194e2  
300194e3  
300194f1  
300194e4  
300194e0  
300194e1  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
IMD vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 600Ω  
RL = 600Ω  
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 600Ω  
RL = 10kΩ  
9
www.national.com  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
IMD vs Output Voltage  
VCC = 22V, VEE = –22V  
RL = 10kΩ  
RL = 10kΩ  
300194f0  
300194f2  
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
Voltage Noise Density vs Frequency  
RL = 10kΩ  
300194h6  
300194l6  
Current Noise Density vs Frequency  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
RL = 2k, VRIPPLE = 200mVpp  
300194h7  
300194p7  
www.national.com  
10  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
PSRR+ vs Frequency  
VCC = 17V, VEE = –17V  
RL = 2k, VRIPPLE = 200mVpp  
RL = 2k, VRIPPLE = 200mVpp  
300194r2  
300194q0  
PSRR- vs Frequency  
VCC = 17V, VEE = –17V  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
RL = 2k, VRIPPLE = 200mVpp  
RL = 2k, VRIPPLE = 200mVpp  
300194r2  
300194p4  
PSRR- vs Frequency  
VCC = 12V, VEE = –12V  
PSRR+ vs Frequency  
VCC = 22V, VEE = –22V  
RL = 2k, VRIPPLE = 200mVpp  
RL = 2k, VRIPPLE = 200mVpp  
300194q9  
300194q3  
11  
www.national.com  
PSRR- vs Frequency  
VCC = 22V, VEE = –22V  
PSRR+ vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 2k, VRIPPLE = 200mVpp  
RL = 2k, VRIPPLE = 200mVpp  
300194r8  
300194p1  
PSRR- vs Frequency  
VCC = 2.5V, VEE = –2.5V  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
RL = 2k, VRIPPLE = 200mVpp  
RL = 600Ω, VRIPPLE = 200mVpp  
300194q6  
300194p9  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
PSRR+ vs Frequency  
VCC = 17V, VEE = –17V  
RL = 600Ω, VRIPPLE = 200mVpp  
RL = 600Ω, VRIPPLE = 200mVpp  
300194q2  
300194r4  
www.national.com  
12  
PSRR- vs Frequency  
VCC = 17V, VEE = –17V  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
RL = 600Ω, VRIPPLE = 200mVpp  
RL = 600Ω, VRIPPLE = 200mVpp  
300194p6  
300194q5  
300194p3  
300194r7  
300194r1  
300194s0  
PSRR- vs Frequency  
VCC = 12V, VEE = –12V  
RL = 600Ω, VRIPPLE = 200mVpp  
PSRR+ vs Frequency  
VCC = 22V, VEE = –22V  
RL = 600Ω, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 22V, VEE = –22V  
RL = 600Ω, VRIPPLE = 200mVpp  
PSRR+ vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω, VRIPPLE = 200mVpp  
13  
www.national.com  
PSRR- vs Frequency  
VCC = 2.5V, VEE = –2.5V  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
RL = 600Ω, VRIPPLE = 200mVpp  
RL = 10k, VRIPPLE = 200mVpp  
300194q8  
300194r3  
300194r6  
300194p8  
300194q1  
300194p5  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
RL = 10k, VRIPPLE = 200mVpp  
PSRR+ vs Frequency  
VCC = 17V, VEE = –17V  
RL = 10k, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 17V, VEE = –17V  
RL = 10k, VRIPPLE = 200mVpp  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
RL = 10k, VRIPPLE = 200mVpp  
www.national.com  
14  
PSRR- vs Frequency  
VCC = 12V, VEE = –12V  
PSRR+ vs Frequency  
VCC = 22V, VEE = –22V  
RL = 10k, VRIPPLE = 200mVpp  
RL = 10k, VRIPPLE = 200mVpp  
300194q4  
300194r0  
PSRR- vs Frequency  
VCC = 22V, VEE = –22V  
PSRR+ vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 10k, VRIPPLE = 200mVpp  
RL = 10k, VRIPPLE = 200mVpp  
300194r9  
300194p2  
PSRR- vs Frequency  
VCC = 2.5V, VEE = –2.5V  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
RL = 10k, VRIPPLE = 200mVpp  
RL = 2kΩ  
300194g0  
300194q7  
15  
www.national.com  
CMRR vs Frequency  
VCC = 12V, VEE = –12V  
CMRR vs Frequency  
VCC = 22V, VEE = –22V  
RL = 2kΩ  
RL = 2kΩ  
300194f7  
300194f4  
300194f9  
300194g3  
CMRR vs Frequency  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
VCC = 2.5V, VEE = –2.5V  
RL = 2kΩ  
RL = 600Ω  
300194o9  
CMRR vs Frequency  
VCC = 12V, VEE = –12V  
CMRR vs Frequency  
VCC = 22V, VEE = –22V  
RL = 600Ω  
RL = 600Ω  
300194g5  
www.national.com  
16  
CMRR vs Frequency  
VCC = 2.5V, VEE = –2.5V  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
RL = 600Ω  
RL = 10kΩ  
300194o8  
300194f6  
CMRR vs Frequency  
VCC = 12V, VEE = –12V  
CMRR vs Frequency  
VCC = 22V, VEE = –22V  
RL = 10kΩ  
RL = 10kΩ  
300194g4  
300194f8  
CMRR vs Frequency  
Output Voltage vs Load Resistance  
VCC = 15V, VEE = –15V  
THD+N = 1%  
VCC = 2.5V, VEE = –2.5V  
RL = 10kΩ  
300194h1  
300194f5  
17  
www.national.com  
Output Voltage vs Load Resistance  
VCC = 12V, VEE = –12V  
THD+N = 1%  
Output Voltage vs Load Resistance  
VCC = 22V, VEE = –22V  
THD+N = 1%  
300194h0  
300194h2  
Output Voltage vs Load Resistance  
VCC = 2.5V, VEE = –2.5V  
THD+N = 1%  
Output Voltage vs Total Power Supply Voltage  
RL = 2k, THD+N = 1%  
30019407  
300194g9  
Output Voltage vs Total Power Supply Voltage  
Output Voltage vs Total Power Supply Voltage  
RL = 600Ω, THD+N = 1%  
RL = 10k, THD+N = 1%  
30019409  
30019408  
www.national.com  
18  
Power Supply Current vs Total Power Supply Voltage  
Power Supply Current vs Total Power Supply Voltage  
RL = 2kΩ  
RL = 600Ω  
30019413  
30019415  
Power Supply Current vs Total Power Supply Voltage  
Full Power Bandwidth vs Frequency  
RL = 10kΩ  
VS = ±18V, RL = 2kΩ  
300194j0  
30019414  
Gain Phase vs Frequency  
Small-Signal Transient Response  
AV = 1, CL = 10pF  
VS = ±18V, RL = 2kΩ  
300194i7  
300194j1  
19  
www.national.com  
Small-Signal Transient Response  
AV = 1, CL = 100pF  
300194i8  
www.national.com  
20  
inputs changes the amplifier’s noise gain. The result is that  
the error signal (distortion) is amplified by a factor of 101. Al-  
though the amplifier’s closed-loop gain is unaltered, the feed-  
back available to correct distortion errors is reduced by 101,  
which means that measurement resolution increases by 101.  
To ensure minimum effects on distortion measurements,  
keep the value of R1 low as shown in Figure 1.  
Application Information  
DISTORTION MEASUREMENTS  
The vanishingly low residual distortion produced by  
LME49870 is below the capabilities of all commercially avail-  
able equipment. This makes distortion measurements just  
slightly more difficult than simply connecting a distortion me-  
ter to the amplifier’s inputs and outputs. The solution, how-  
ever, is quite simple: an additional resistor. Adding this  
resistor extends the resolution of the distortion measurement  
equipment.  
This technique is verified by duplicating the measurements  
with high closed loop gain and/or making the measurements  
at high frequencies. Doing so produces distortion compo-  
nents that are within the measurement equipment’s capabili-  
ties. This datasheet’s THD+N and IMD values were generat-  
ed using the above described circuit connected to an Audio  
Precision System Two Cascade.  
The LME49870’s low residual distortion is an input referred  
internal error. As shown in Figure 1, adding the 10resistor  
connected between the amplifier’s inverting and non-inverting  
300194k4  
FIGURE 1. THD+N and IMD Distortion Test Circuit  
21  
www.national.com  
The LME49870 is a high speed op amp with excellent phase  
margin and stability. Capacitive loads up to 100pF will cause  
little change in the phase characteristics of the amplifiers and  
are therefore allowable.  
a resistor in series with the output. This resistor will also pre-  
vent excess power dissipation if the output is accidentally  
shorted.  
Capacitive loads greater than 100pF must be isolated from  
the output. The most straightforward way to do this is to put  
30019427  
Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.  
Noise Measurement Circuit  
Total Gain: 115 dB @f = 1 kHz  
Input Referred Noise Voltage: en = V0/560,000 (V)  
RIAA Preamp Voltage Gain, RIAA  
Deviation vs Frequency  
Flat Amp Voltage Gain vs  
Frequency  
30019428  
30019429  
www.national.com  
22  
TYPICAL APPLICATIONS  
NAB Preamp  
NAB Preamp Voltage Gain  
vs Frequency  
30019431  
30019430  
AV = 34.5  
F = 1 kHz  
En = 0.38 μV  
A Weighted  
Balanced to Single Ended Converter  
Adder/Subtracter  
30019433  
VO = V1 + V2 − V3 − V4  
30019432  
VO = V1–V2  
Sine Wave Oscillator  
30019434  
23  
www.national.com  
Second Order High Pass Filter  
(Butterworth)  
Second Order Low Pass Filter  
(Butterworth)  
30019435  
30019436  
Illustration is f0 = 1 kHz  
Illustration is f0 = 1 kHz  
State Variable Filter  
30019437  
Illustration is f0 = 1 kHz, Q = 10, ABP = 1  
www.national.com  
24  
AC/DC Converter  
30019438  
2 Channel Panning Circuit (Pan Pot)  
Line Driver  
30019439  
30019440  
25  
www.national.com  
Tone Control  
30019441  
Illustration is:  
fL = 32 Hz, fLB = 320 Hz  
fH =11 kHz, fHB = 1.1 kHz  
30019442  
RIAA Preamp  
30019403  
Av = 35 dB  
En = 0.33 μV  
S/N = 90 dB  
f = 1 kHz  
A Weighted  
A Weighted, VIN = 10 mV  
@f = 1 kHz  
www.national.com  
26  
Balanced Input Mic Amp  
30019443  
Illustration is:  
V0 = 101(V2 − V1)  
27  
www.national.com  
10 Band Graphic Equalizer  
30019444  
fo (Hz)  
32  
C1  
C2  
R1  
R2  
0.12μF  
0.056μF  
0.033μF  
0.015μF  
8200pF  
3900pF  
2000pF  
1100pF  
510pF  
4.7μF  
3.3μF  
75kΩ  
68kΩ  
62kΩ  
68kΩ  
62kΩ  
68kΩ  
68kΩ  
62kΩ  
68kΩ  
51kΩ  
500Ω  
510Ω  
510Ω  
470Ω  
470Ω  
470Ω  
470Ω  
470Ω  
510Ω  
510Ω  
64  
125  
250  
500  
1k  
1.5μF  
0.82μF  
0.39μF  
0.22μF  
0.1μF  
2k  
4k  
0.056μF  
0.022μF  
0.012μF  
8k  
16k  
330pF  
Note 9: At volume of change = ±12 dB  
ꢀꢀQ = 1.7  
ꢀꢀReference: “AUDIO/RADIO HANDBOOK”, National Semiconductor, 1980, Page 2–61  
www.national.com  
28  
Headphone Amplifier  
30019410  
29  
www.national.com  
High Performance Synchronous Demodulator  
30019411  
Long-Wavelength Infrared Detector Amplifier  
30019412  
www.national.com  
30  
Revision History  
Rev  
1.0  
1.1  
1.2  
1.3  
Date  
Description  
09/20/07  
09/27/07  
12/20/07  
01/14/08  
Initial release.  
Updated Notes 1–7 (per National standard).  
Deleted all Crosstalk vs Frequency curves.  
Edited some graphics.  
31  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
Narrow SOIC Package  
Order Number LME49870MA  
NS Package Number M08A  
www.national.com  
32  
Notes  
33  
www.national.com  
Notes  
For more National Semiconductor product information and proven design tools, visit the following Web sites at:  
Products  
www.national.com/amplifiers  
Design Support  
Amplifiers  
WEBENCH  
www.national.com/webench  
www.national.com/AU  
Audio  
www.national.com/audio  
www.national.com/timing  
www.national.com/adc  
Analog University  
App Notes  
Clock Conditioners  
Data Converters  
Displays  
www.national.com/appnotes  
www.national.com/contacts  
www.national.com/quality/green  
www.national.com/packaging  
Distributors  
www.national.com/displays  
www.national.com/ethernet  
www.national.com/interface  
www.national.com/lvds  
Green Compliance  
Packaging  
Ethernet  
Interface  
Quality and Reliability www.national.com/quality  
LVDS  
Reference Designs  
Feedback  
www.national.com/refdesigns  
www.national.com/feedback  
Power Management  
Switching Regulators  
LDOs  
www.national.com/power  
www.national.com/switchers  
www.national.com/ldo  
LED Lighting  
PowerWise  
www.national.com/led  
www.national.com/powerwise  
Serial Digital Interface (SDI) www.national.com/sdi  
Temperature Sensors  
Wireless (PLL/VCO)  
www.national.com/tempsensors  
www.national.com/wireless  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2008 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Technical  
Support Center  
Email:  
new.feedback@nsc.com  
Tel: 1-800-272-9959  
National Semiconductor Europe  
Technical Support Center  
Email: europe.support@nsc.com  
German Tel: +49 (0) 180 5010 771  
English Tel: +44 (0) 870 850 4288  
National Semiconductor Asia  
Pacific Technical Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Technical Support Center  
Email: jpn.feedback@nsc.com  
www.national.com  

相关型号:

LME49870MA/NOPB

44V Single High Performance, High Fidelity Audio Operational Amplifier 8-SOIC -40 to 85
TI

LME49871

High Performance, High Fidelity Current Feedback Audio Operational Amplifier
NSC

LME49871MA

High Performance, High Fidelity Current Feedback Audio Operational Amplifier
NSC

LME49871MAX

IC,OP-AMP,SINGLE,BIPOLAR,SOP,8PIN,PLASTIC
TI

LME49880

Dual JFET Input Audio Operational Amplifier
NSC

LME49880

E-Series Dual JFET Input Audio Operational Amplifier
TI

LME49880MR

Dual JFET Input Audio Operational Amplifier
NSC

LME49880MR/NOPB

E-Series Dual JFET Input Audio Operational Amplifier
TI

LME49880MRX

Dual JFET Input Audio Operational Amplifier
NSC

LME49880MRX/NOPB

Dual JFET Input Audio Operational Amplifier 8-SO PowerPAD -40 to 85
TI

LME49990

Ultra-low Distortion, Ultra-low Noise Operational Amplifier
NSC

LME49990MA

Ultra-low Distortion, Ultra-low Noise Operational Amplifier
NSC