LM9617CCEA-2 [TI]

SPECIALTY ANALOG CIRCUIT, CQCC48;
LM9617CCEA-2
型号: LM9617CCEA-2
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SPECIALTY ANALOG CIRCUIT, CQCC48

文件: 总40页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
March 2001  
LM9617 Monochrome CMOS Image Sensor VGA 30 FPS  
General Description  
Applications  
The LM9617 is a high performance, low power, third inch VGA  
CMOS Active Pixel Sensor capable of capturing grey-scale digi-  
tal still or motion images and converting them to a digital data  
stream.  
• Security Cameras  
• Toys  
• Machine Vision  
• Biometrics  
• Infrared Camera  
• Barcode Scanner  
In addition to the active pixel array, an on-chip 12 bit A/D conver-  
tor, fixed pattern noise elimination circuits and a video gain is  
provided. Furthermore, an integrated programmable smart tim-  
ing and control circuit allows the user maximum flexibility in  
adjusting integration time, active window size, gain and frame  
rate. Various control, timing and power modes are also provided.  
Key Specifications  
• Array Format  
Total: 664H x 504V  
Active: 648H x 488V  
Total: 4.98mm x 3.78 mm  
Active: 4.86 mm x 3.66 mm  
• Effective Image Area  
Features  
• Supplied with micro lenses  
• Optical Format  
• Pixel Size  
1/3“  
7.5mm x 7.5mm  
8,10 & 12 Bit Digital  
57dB  
• Video Outputs  
• Dynamic Range  
• FPN  
• Video or snapshot operations  
• Progressive scan and interlace read out modes.  
• Programmable pixel clock, inter-frame and inter-line delays.  
• Programmable partial or full frame integration  
• Programmable gain  
• Horizontal & vertical sub-sampling (2:1 & 4:2)  
• Windowing  
• External snapshot trigger & event synchronisation signals  
• Auto black level compensation  
• Flexible digital video read-out supporting programmable:  
0.35%  
Sensitivity  
28.7 Kilo LSBs / lux.s  
27%  
• Quantum Efficiency  
• Fill Factor  
47% (no micro lens)  
48 LCC  
• Package  
• Single Supply  
• Power Consumption  
• Operating Temp  
3.3 V  
90 mW  
0 to 50oC  
-
polarity for synchronisation and pixel clock signals  
-
leading edge adjustment for horizontal synchronization  
• Programmable via 2 wire I2C compatible serial interface  
• Power on reset & power down mode  
System Block Diagram  
Storage  
LM9617  
lens  
12bit digital image  
Digital Image  
Processor  
I2C compatible  
event trigger  
snapshot  
ã 2000 National Semiconductor Corporation  
Confidential  
www.national.com  
Overall Chip Block Diagram  
d[11:0]  
pclk  
AMP  
12 Bit A/D  
Row Address  
Decoder  
hsync  
vsync  
APS Array  
POR  
Vertical  
Timing  
Horizontal  
Timing  
Reset  
Gen  
Gain  
Control  
Row Address  
Gen  
sda  
sclk  
2
I C Compatible  
Serial I/F  
Register Bank  
Power  
Control  
Controller  
(sequencer)  
Clock Gen  
sadr  
Master Timer  
irq  
mclk  
extsync snapshot  
pdwn  
Figure 1. Chip Block Diagram  
Connection Diagram  
6
5
4
3
2
1
48 47 46 45 44 43  
42  
NC  
sclk  
7
fine_i  
snapshot  
resetb  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
8
gnd  
9
pdwn  
fine_ctrl  
offset  
10  
11  
12  
13  
14  
15  
16  
17  
18  
vss_dig  
vdd_dig  
hsync  
LM9617  
48 PIN LCC  
vdd_ana1  
vss_ana1  
vsync  
pclk  
mclk  
d0  
vref_adc  
vss_ana2  
vdd_ana2  
vss_od2  
vdd_od2  
NC  
19 20 21 22 23 24 25 26 27 28 29 30  
Ordering Information  
Temperature  
(0°C £ TA £ +50°C)  
NS Package  
LM9617 CCEA  
LCC  
Confidential  
2
www.national.com  
Typical Application Circuit  
System Control  
Camera Control  
Serial Control Bus  
16  
9
10  
4
8
48  
7
6
5
3.3V analog  
3.3V analog  
37  
36  
33  
34  
vdd_ana1  
vss_ana1  
vdd_ana2  
vss_ana2  
0.1mF  
0.1mF  
3.3V digital  
3.3V digital  
47  
46  
31  
vdd_od2  
vdd_od1  
vss_od1  
0.1mF  
0.1mF  
vss_od2 32  
3.3Vdigital  
3.3V digital  
44  
45  
12  
vdd_od3  
vss_od3  
vdd_dig  
0.1mF  
0.1mF  
11  
vss_dig  
3.3Vanalog  
3
2
LM9617  
1
vdd_pix  
vrl  
vsrvdd  
0.1  
m
F
1.0mF  
3.3V analog  
vdd_ana  
vdd_ana  
1.5k  
W
22kW  
1%  
35  
vref_adc  
41  
39  
fine_i  
820W  
1N4148  
0.1mF  
fine_ctrl  
2N3904  
10kW  
1%  
1.2kW  
1%  
18  
19  
42  
43  
NC  
NC  
NC  
NC  
38  
40  
offset  
gnd  
4.7m F  
470W  
1%  
13 14 15 30 29 28 27 26 25 24 23 22 21 20 17  
Digital Video Bus  
Figure 2. Typical Application Diagram  
Scan Read Out Direction  
pin 1  
(0,0)  
(0,0)  
digital  
out  
(0,0)  
horizontal scan  
CMOS Image Sensor  
lens  
Figure 3. Scan directions and position of origin in imaging system  
Confidential  
3
www.national.com  
Pin Descriptions  
Pin  
Name  
I/O  
Typ  
Description  
Analog bidirectional, it should be connect to ground via a 1.0mf capacitor. This pin is the  
internal charge pump voltage source.  
1
vsrvdd  
I0  
P
2
3
vrl  
I
I
A
P
Anti blooming pin. This pin is normally tied to ground.  
3.3 volt supply for the pixel array.  
vdd_pix  
Digital output, the interrupt request pin. This pin generates interrupts during snapshot  
mode.  
4
5
6
irq  
O
I
D
D
D
Digital input with pull down resistor. This pin is used to program different slave addresses  
for the sensor in an I2C compatible system.  
sadr  
sda  
I2C compatible serial interface data bus. The output stage of this pin has an open drain  
driver.  
IO  
7
8
sclk  
I
I
D
D
I2C compatible serial interface clock.  
snapshot  
Digital input with pull down resistor used to activate (trigger) a snapshot sequence.  
Digital input with pull up resistor. When forced to a logic 0 the sensor is reset to its default  
power up state. The resetb signal is internally synchronized to mclk which must be run-  
ning for a reset to occur.  
9
resetb  
pdwn  
I
I
D
D
Digital input with pull down resistor. When forced to a logic 1 the sensor is put into power  
down mode.  
10  
11  
12  
vss_dig  
vdd_dig  
I
I
P
P
0 volt power supply for the digital circuits.  
3.3 volt power supply for the digital circuits.  
Digital Bidirectional. This is a dual mode pin. When the sensor’s digital video port is con-  
figured to be a master, (the default), this pin is an output and is the horizontal synchroni-  
zation pulse. When the sensor’s digital video port is configured to be a slave, this pin is  
an input and is the row trigger.  
13  
14  
hsync  
vsync  
IO  
IO  
D
D
Digital Bidirectional. This is a dual mode pin. When the sensor’s digital video port is con-  
figured to be a master, (the default), this pin is an output and is the vertical synchroniza-  
tion pulse. When the sensor’s digital video port is configured to be a slave, this pin is an  
input and is the frame trigger.  
15  
16  
pclk  
O
I
D
D
Digital output. The pixel clock.  
mclk  
Digital input. The sensor’s master clock input.  
Digital output. Bit 0 of the digital video output bus. This output can be put into tri-state  
mode.  
17  
d0  
O
D
18  
19  
NC  
NC  
Pin not used, do not connect.  
Pin not used, do not connect.  
Digital output. Bit 1 of the digital video output bus. This output can be put into tri-state  
mode.  
20  
21  
22  
23  
24  
25  
d1  
d2  
d3  
d4  
d5  
d6  
O
O
O
O
O
O
D
D
D
D
D
D
Digital output. Bit 2 of the digital video output bus. This output can be put into tri-state  
mode.  
Digital output. Bit 3 of the digital video output bus. This output can be put into tri-state  
mode.  
Digital output. Bit 4 of the digital video output bus. This output can be put into tri-state  
mode.  
Digital output. Bit 5 of the digital video output bus. This output can be put into tri-state  
mode.  
Digital output. Bit 6 of the digital video output bus. This output can be put into tri-state  
mode.  
Confidential  
4
www.national.com  
Pin Descriptions (Continued)  
Pin  
Name  
I/O  
Typ  
Description  
Digital output. Bit 7 of the digital video output bus. This output can be put into tri-state  
mode.  
26  
d7  
O
D
Digital output. Bit 8 of the digital video output bus. This output can be put into tri-state  
mode.  
27  
28  
29  
30  
d8  
O
O
O
O
D
D
D
D
Digital output. Bit 9 of the digital video output bus. This output can be put into tri-state  
mode.  
d9  
Digital output. Bit 10 of the digital video output bus. This output can be put into tri-state  
mode.  
d10  
d11  
Digital output. Bit 11 of the digital video output bus. This output can be put into tri-state  
mode.  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
vdd_od2  
vss_od2  
vdd_ana2  
vss_ana2  
vref_adc  
vss_ana1  
vdd_ana1  
offset  
I
P
P
P
P
A
P
P
A
A
3.3 volt supply for the digital IO buffers.  
0 volt supply for the digital IO buffers  
3.3 volt supply for analog circuits.  
I
I
I
0 volt supply for analog circuits.  
I
A/D reference resistor ladder voltage. See figure 4 for equivalent circuit.  
0 volt supply for analog circuits.  
I
I
3.3 volt supply for analog circuits.  
I
Analog input used to adjust the offset of the sensor. See figure 4 for equivalent circuit.  
Analog output used to drive the offset pin.  
This pin must be tied to ground.  
fine_ctrl  
gnd  
O
fine_i  
I
A
Bias current for the fine offset adjust.  
Pin not used, do not connect.  
NC  
NC  
Pin not used, do not connect.  
vdd_od3  
vss_od3  
vss_od1  
vdd_od1  
I
I
I
I
P
P
P
P
3.3 volt supply for the sensor.  
0 volt supply for the sensor.  
0 volt supply for the digital IO buffers  
3.3 volt supply for the digital IO buffers.  
Digital output. The external event synchronization signal is used to synchronize external  
events in snapshot mode.  
48  
extsync  
O
D
Legend: (I=Input), (O=Output), (IO=Bi-directional), (P=Power), (D=Digital), (A=Analog).  
1KW  
adc_vref  
offset  
800W  
200W  
Figure 4. Equivalent Circuits For adc_ref and offset pins  
Confidential  
5
www.national.com  
Absolute Maximum Ratings (Notes 1 & 2)  
Operating Ratings (Notes 1 & 2)  
Any Positive Supply Voltage  
6.5V  
-0.5V to 6.5V  
±25mA  
Operating Temperature Range  
All VDD Supply Voltages  
Voltage Range on vref_adc pin  
Voltage Range on offset pin  
0°C£T£+50°C  
+3.15V to +3.6V  
+0.6V to +1.0V  
+0.04V to +0.4V  
Voltage On Any Input or Output Pin  
Input Current at any pin (Note 3)  
ESD Susceptibility (Note 5)  
Human Body Model  
2000V  
200V  
Machine Model  
Package Input Current (Note 3)  
Package Power Dissipation @ TA(Note 4)  
Soldering Temperature Infrared,  
10 seconds (Note 6)  
±50mA  
2.5W  
220°C  
Storage Temperature  
-40°C to 125°C  
DC and logic level specifications  
The following specifications apply for all VDD pins= +3.3V. Boldface limits apply for TA = TMIN to TMAX: all other limits TA = 25oC  
(Note 7)  
Min  
note 9  
Typical  
note 8  
Max  
note 9  
Units  
Symbol  
Parameter  
Conditions  
sclk, sda, sadr, Digital Input/Output Characteristics  
VIH  
VIL  
Logical “1” Input Voltage  
Logical “0” Input Voltage  
Logical “0” Output Voltage  
0.7*vdd_od  
-0.5  
vdd_od+0.5  
0.3*vdd_od  
0.5  
V
V
V
VOL  
vdd_od = +3.15V, Iout=3.0mA  
vdd_od = +3.15V  
0.05*vdd_o  
d
Vhys  
Ileak  
Hysteresis (SCLK pin only)  
V
Input Leakage Current  
Vin=vss_od  
-1  
mA  
mclk, snapshot, pdwn, resetb, hsync, vsync Digital Input Characteristics  
VIH  
VIL  
IIH  
IIL  
Logical “1” Input Voltage  
Logical “0” Input Voltage  
Logical “1” Input Current  
Logical “0” Input Current  
vdd_dig = +3.6V  
vdd_dig = +3.15V  
VIH = vdd_dig  
VIL = vss_dig  
2.0  
V
V
0.8  
0.1  
-1  
mA  
mA  
d0 - d11, pclk, hsync, vsync, extsync, irq, Digital Output Characteristics  
VOH  
VOL  
Logical “1” Output Voltage  
Logical “0” Output Voltage  
vdd_od=3.15V, Iout=-1.6mA  
vdd_od=3.15V, Iout =-1.6mA  
2.2  
V
V
0.5  
VOUT = vss_od  
VOUT = vdd_od  
-0.1  
0.1  
mA  
mA  
IOZ  
IOS  
TRI-STATE Output Current  
Output Short Circuit Current  
+/-17  
mA  
Power Supply Characteristics  
Power down mode, no clock.  
Operational mode in dark  
700  
19  
mA  
mA  
IA  
ID  
Analog Supply Current  
Digital Supply Current  
Power down mode, no clock.  
Operational mode in dark  
300  
7
mA  
mA  
Power Dissipation Specifications  
The following specifications apply for All VDD pins = +3.3V. Boldface limits apply for TA = TMIN to TMAX: all other limits TA = 25oC.  
Min  
note 9  
Typical  
note 8  
Max  
note 9  
Units  
Symbol  
Pdwn  
Parameter  
Power Down  
Average Power Dissipation  
Conditions  
no clock running  
5
mW  
mW  
mclk = 48Mhz & sensors default set-  
tings in dark.  
PWR  
90  
Confidential  
6
www.national.com  
Video Amplifier Specifications  
The following specifications apply for all VDD pins= +3.3V. Boldface limits apply for TA = TMIN to TMAX : all other limits TA = 25oC.  
Min  
note 9  
Typical  
note 8  
Max  
note 9  
Units  
Symbol  
Parameter  
Conditions  
64 linear steps  
Video Amplifier Nominal Gain  
0-15  
dB  
AC Electrical Characteristics  
The following specifications apply for All VDD pins = +3.3V. Boldface limits apply for TA = TMIN to TMAX: all other limits TA = 25oC.  
Min  
note 9  
Typical  
note 8  
Max  
note 9  
Units  
Symbol  
Parameter  
Conditions  
Fmclk  
Tch  
Input Clock Frequency  
Clock High Time  
12  
10  
48  
45  
MHz  
ns  
@ CLKmax  
Tcl  
Clock Low Time  
@ CLKmax  
@ CLKmax  
10  
45  
ns  
Clock Duty Cycle  
45/55  
55/45  
min/max  
ns  
Trc, Tfc  
Fhclk  
Clock Input Rise and Fall Time  
3
Internal System Clock Fre-  
quency  
1.0  
14.0  
MHz  
Treset  
Reset pulse width  
Frame Rate  
1.0  
1
ms  
FRMrate  
30  
fps  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate con-  
ditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications  
and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions  
listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.  
Note 2: All voltages are measured with respect to VSS = vss_ana = vss_od = vss_dig = 0V, unless otherwise specified.  
Note 3: When the voltage at any pin exceeds the power supplies (VIN < VSS or VIN > VDD), the current at that pin should be lim-  
ited to 25mA. The 50mA maximum package input current rating limits the number of pins that can safely exceed the power  
supplies with an input current of 25mA.  
Note 4: The absolute maximum junction temperature (TJmax) for this device is 125oC. The maximum allowable power dissipation  
is dictated by TJmax, the junction-to-ambient thermal resistance (QJA), and the ambient temperature (TA), and can be cal-  
culated using the formula PDMAX = (TJmax - TA)/QJA. In the 48-pin LCC, QJA is 38.5oC/W, so PDMAX = 2.5W at 25oC  
and 1.94W at the maximum operating ambient temperature of 50oC. Note that the power dissipation of this device under  
normal operation will be well under the PDMAX of the package.  
Note 5: Human body model is 100pF capacitor discharged through a 1.5kW resistor. Machine model is 220pF discharged through  
ZERO Ohms.  
Note 6: See AN450, “Surface Mounting Methods and Their Effect on Product Reliability”, or the section entitled “Surface Mount”  
found in any post 1986 National Semiconductor Linear Data Book, for other methods of soldering surface mount devices.  
Note 7: The analog inputs are protected as shown below. Input voltage magnitude up to 500mV beyond the supply rails will not  
damage this device. However, input errors will be generated If the input goes above AV+ and below AGND.  
VDD  
IOP  
Internal Circuits  
Pad  
VSS  
Note 8: Typical figures are at TJ = 25oC, and represent most likely parametric norms.  
Note 9: Test limits are guaranteed to National's AOQL (Average Outgoing Quality Level).  
Confidential  
7
www.national.com  
CMOS Active Pixel Array Specifications  
Parameter  
Value  
Units  
Number of pixels (column, row)  
664 x 504  
648 x 488  
Total  
Active  
pixels  
pixels  
Array size (x,y Dimensions)  
4.98 x 3.78  
4.86 x 3.66  
Total  
Active  
mm  
mm  
Pixel Pitch  
7.5  
47  
m
Fill Factor (without micro-lens)  
%
Image Sensor Specifications  
The following specifications apply for All VDD pins = +3.3V, TA = 25oC, Illumination Color Temperature = 2850oK, IR cutoff filter at  
700nm, mclk = 48MHz, frame rate = 30Hz, vref_adc = 0.6 volt, video gain 0dB.  
Min  
Typical  
note 1  
Max  
Units  
Parameter  
Conditions  
Optical Sensitivity @ A/D output  
Optical Sensitivity @ A/D input  
28.7  
4.13  
kLSBs/(lux.s)  
volt/(lux.s)  
Dynamic Range  
Read Noise  
57  
dB  
5.3  
LSBs  
RMS value of pixel FPN in dark  
as a percentage of full scale.  
Offset Fixed Pattern Noise  
0.35  
1
%
%
RMS variation of pixel sensitivi-  
ties as a percentage of the aver-  
age sensitivity.  
Sensitivity Fixed Pattern Noise  
Note 1: Typical figures are at TJ = 25oC, and represent most likely parametric norms.  
Confidential  
8
www.national.com  
Sensor Response Curves  
1.20E+03  
1.00E+03  
8.00E+02  
6.00E+02  
4.00E+02  
2.00E+02  
0.00E+00  
370  
420  
470  
520  
570  
620  
670  
720  
770  
820  
wavelength [nm]  
Figure 5. Spectral Response Curve  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
Exposure (lux.sec)  
Figure 6. Linearity Response Curve  
Confidential  
9
www.national.com  
Functional Description  
0-15dB  
1.0 OVERVIEW  
Video  
AMP  
1.1  
Light Capture and Conversion  
12 Bit A/D  
The LM9617 contains a CMOS active pixel array consisting of  
648 rows by 488 columns. This active region is surrounded by 8  
columns and 8 rows of optically shielded (black) pixels as shown  
in Figure.  
Analog pixel values  
Digital pixel data  
8 columns, 8 rows  
Figure 9: Analog Signals In, Digital Data Out.  
648 columns, 488 rows  
mono-chrome active pixels  
black pixels  
The digital pixel data is further processed to:  
• remove defects due to bad pixels,  
• compensate black level, before being framed and presented  
on the digital output port. (see Figure 10).  
do[11:0]  
pclk  
hsync  
vsync  
8 columns, 8 rows  
black pixels  
Figure 10. Digital Pixel Processing.  
1.2  
Program and Control Interfaces  
The programming, control and status monitoring of the LM9617  
Figure 7: CMOS APS region of the LM9617  
2
is achieved through a two wire I C compatible serial bus. In  
addition, a slave address pin is provided (see Figure 11).  
At the beginning of a given integration time the on-board timing  
and control circuit will reset every pixel in the array one row at a  
time as shown in Figure 8. Note that all pixels in the same row  
are simultaneously reset, but not all pixels in the array.  
sda  
2
I C Compatible  
Serial I/F  
a
b
c
d
e
f
g
h
i
j
k l m n o p q r  
Register Bank  
0
1
sclk  
2
3
4
5
6
7
8
9
sadr  
10  
11  
Figure 11. Control Interface to the LM9617.  
12  
13  
14  
15  
Additional control and status pins: snapshot and external event  
synchronization are provided allowing the latency of the serial  
control port to be bypassed during single frame capture. An  
interrupt request pin is also available allowing complex snapshot  
operations to be controlled via an external micro-processor (see  
Figure 12).  
Analog Data Out  
CDS/Shift Register  
Figure 8: CMOS APS Row and Column addressing scheme  
irq  
At the end of the integration time, the timing and control circuit  
will address each row and simultaneously transfer the integrated  
value of the pixel to a correlated double sampling circuit and  
then to a shift register as shown in Figure 8.  
Timing  
Generator  
extsyn  
snapshot  
Figure 12. Snapshot & External Event Trigger Signals  
Once the correlated double sampled data has been loaded into  
the shift register, the timing and control circuit will shift them out  
one pixel at a time starting with column “a”.  
The pixel data is then fed into an analog video amplifier, where a  
user programmed gain is applied .  
After gain adjustment the analog value of each pixel is con-  
verted to a 12 bit digital data as shown in Figure 9.  
Confidential  
10  
www.national.com  
Functional Description (continued)  
Column/Horizontal  
a b c d e f g h i j k l mn o p q r  
2.0 WINDOWING  
0
1
2
3
4
5
The integrated timing and control circuit allows any size window  
in any position within the active region of the array to be read out  
with a 1x1 pixel resolution. The window read out is called the  
Display Window”.  
6
7
8
A “Scan Window” must be defined first, by programing the start  
and end row addresses as shown in Figure 13. Four coordinates  
(start row address, start column address, end row address &  
end column address) are programmed to define the size and  
location of the “Display Window” to be read out (see Figure 13).  
display col  
9
10  
11  
12  
display col  
scan row  
13  
end address  
start address  
start address  
14  
15  
16  
17  
18  
19  
20  
display row  
start address  
Display Window  
Figure 14: Progressive Scan Read Out Mode  
display row  
end address  
Scan Window  
3.2  
Interlaced Readout Mode  
In interlaced readout mode, pixels are read out in two fields, an  
Odd Field followed by an Even Field.  
Active Pixel Array  
scan row  
end address  
Figure 13. Windowing  
The Odd Field, consisting of all even rows contained within the  
display window, is read out first. Each pixel in the “Odd Field” is  
consecutively read out, one pixel at a time, starting with the left  
most pixel in the top most even row.  
Notes:  
• The Display Window” must always be defined within the  
Scan Window”.  
• A Display Window” can only be read out in the progressive  
scan mode.  
• By default the “Display Window” is the complete array.  
The Even Field, consisting of all odd rows contained within the  
display window, is then read out. Each pixel in the “Even Field”  
is consecutively read out, one pixel at a time, starting with the  
left most pixel in the top most odd row.  
2.1  
Programming the scan window  
Column/Horizontal  
a b c d e f g h i j k l m n o p q r  
Two registers (SROWS & SROWE) are provided to program the  
size of the scan window. The start and end row address of the  
scan window is given by:  
0
2
4
6
8
scan row start address = (2* SwStartRow) + SwLsb  
scan row end address = (2* SwEndRow) + 1 + SwLsb  
10  
12  
14  
16  
18  
20  
Where:  
SwStartRow  
is the contents of the Scan Window start row  
register (SROWS)  
Odd Field  
Column/Horizontal  
a b c d e f g h i j k l m n o p q r  
SwEndROW  
is the contents of the Scan Window end row reg-  
ister (SROWE)  
1
3
5
SwLsb  
is bit 6 of the Display Window LSB register  
(DWLSB)  
7
9
11  
13  
15  
17  
19  
2.2  
Programming the display window  
Five register (DROWS, DROWE, DCOLS, DCOLE and DWLSB)  
are provided to program the display window as described in the  
register section of this datasheet.  
Even Field  
3.0 READ OUT MODES  
Figure 15: Interlace Read Out Mode  
Hence, for the example shown in Figure , the display window is  
broken up into two fields, as shown in Figure . Pixels a0,b0,...,r0  
followed by a2,b2,...,r2 and so on until pixels a20,b20,...r20 in  
the even field are read out first. The even field read out is fol-  
lowed by pixels in the odd field, a1,b1,...,r1 then a3,b3,...,r3 until  
pixels a19,b19,...,r19.  
3.1  
Progressive Scan Readout Mode  
In progressive scan readout mode, every pixel in every row in  
the display window is consecutively read out, one pixel at a time,  
starting with the left most pixel in the top most row. Hence, for  
the example shown in Figure 13, the read out order will be  
a0,b0,...,r0 then a1,b1,...,r1 and so on until pixel r20 is read out.  
Confidential  
11  
www.national.com  
Functional Description (continued)  
4.0 SUBSAMPLING MODES  
4.2  
4:2 Sub-Sampling  
4.1  
2:1 Sub-Sampling  
The timing and control circuit can be programmed to sub-sam-  
ple pixels in the display window vertically, horizontally or both,  
with an aspect ratio of 4:2 as illustrated in Figure17.  
The timing and control circuit can be programmed to sub-sam-  
ple pixels in the display window vertically, horizontally or both,  
with an aspect ratio of 2:1 as illustrated in Figure16  
Column/Horizontal  
Column/Horizontal  
a b c d e f g h i j k l m n o p q r  
q
a b c d e f g h i j k l m n o p  
r
0
1
2
3
4
0
1
2
3
4
5
6
7
8
9
5
6
7
8
9
a) Horizontal Sub-sampling  
a) Horizontal Sub-Sampling  
Column/Horizontal  
a b c d e f g h i j k l m n o p q r  
Column/Horizontal  
a b c d e f g h i j k l m n o p q r  
0
0
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
9
b) Vertical Sub-sampling  
b) Vertical Sub-Sampling  
Column/Horizontal  
a b c d e f g h i j k l m n o p q r  
Column/Horizontal  
a b c d e f g h i j k l l n o p q r  
0
1
0
1
2
3
4
2
3
4
5
6
7
8
9
5
6
7
8
9
c) Horizontal & Vertical Sub-sampling  
c) Horizontal & Vertical Sub-Sampling  
Not Read Out  
Read Out  
Not Read Out  
Read Out  
Figure 17: 4:2 Horizontal and Vertical Sub-Sampling  
Figure 16: 2:1 Horizontal and Vertical Sub-Sampling  
Confidential  
12  
www.national.com  
Functional Description (continued)  
5.3  
Auto Snapshot Mode  
5.0 SNAPSHOT MODE  
In auto snapshot mode (see figure 20), upon the receipt of a  
snapshot or FTriggerNow trigger signal, the integrated timing and  
control circuit will set the FTriggerEN bit and generate an inter-  
nal TRIGGER signal (see figure 19), thus resetting the array one  
row at a time. At end of the reset cycle the timing and control cir-  
cuit will signal the shutter to open via extsync pin or FtSync bit.  
At the end of the programmed integration time the shutter will be  
signalled to close, and the pixel read-out will commence as  
shown in figure 18a. At the end of the read-out sequence the  
FTriggerEN will be automatically reset and the sensor will return  
to video capture mode as shown in figure 20.  
The LM9617 is capable of capturing a single frame of an image  
under hardware or software control, with or without the aid of an  
external shutter. Two registers, SNAPSHOTMODE0  
&
SNAPSHOTMODE1, are provided to program, monitor and con-  
trol all snapshot sequences.  
5.1  
Software Controlled Snapshots  
The snapshot mode events can be software controlled by writing  
2
to and reading from the snapshot mode registers over the I C  
compatible interface.  
5.2  
Hardware Controlled Snapshots  
If an external shutter is not available then at least two frames  
need to be taken so that the pixels can be integrated over one  
frame as shown in Figure 18b.  
Two dedicated pins are provided on the LM9617, snapshot &  
extsync, allowing the snapshot mode events to be controlled by  
hardware. The snapshot pin must be enabled by writing to the  
SnapEnable bit of the MCFG0 register.  
To use auto snapshot mode the SsEngage bit of the  
SNAPSHOTMODE1 register must be set to zero.  
Array reset,  
programmable 1 to 4 frames  
Capture Data  
image  
read-out  
note1  
snapshot or FTriggerNow  
note2  
note 3  
irq  
FTriggerEn  
extsync or FtSync  
FtBusy  
Start Snapshot Sequence  
Start of Array Reset Frames  
Open Shutter  
Close shutter & start read-out  
Read-out complete  
a) With External Shutter  
Array reset,  
programmable 1 to 4 frames  
Capture Data  
image  
read-out  
note 1  
snapshot or FTriggerNow  
note 2  
irq  
note 3  
FTriggerEn  
extsync or FtSync  
FtBusy  
Start Snapshot sequence  
Start of Array Reset Frames  
Integration Start  
Start Read-out  
Bold external pins  
italicregister bits  
Read-out Complete  
b) Without External Shutter  
Note 1:  
Note 2:  
Note 3:  
This wave form shows the snapshot pin programmed to the default pulse mode.  
The irq pulse is taken low when the snapshot trigger interrupt flag (SsTrigFlag) in the snapshot mode1 (SNAPMODE1) register is read.  
The irq pulse is taken low when the snapshot trigger interrupt flag (SsRdFlag) in the snapshot mode1 (SNAPMODE1) register is read.  
Figure 18. Snapshot Mode  
Confidential  
13  
www.national.com  
Functional Description (continued)  
snapshot  
SnapShotPol  
TRIGGER  
VIDEO  
SnapEnable  
FTriggerNow  
Figure 19. Snapshot Trigger Generation Logic  
c:TRIGGER==1  
VIDEO  
a:SsTrigFlag=1  
IRQ  
c:TRIGGER==1  
c:FTriggerEn==1  
SNAP  
a:FTriggerEn=1  
SNAP  
a:FTriggerEn=0  
PREVIEW  
a: SsRdFlag = 1  
a: FtTriggerEn = 0  
PREVIEW  
Figure 20. Auto Snapshot Mode State Diagram  
CPU Snapshot Mode  
5.4  
Figure 21. CPU Snapshot Mode State Diagram  
In CPU snapshot mode, the FTriggerEN is not set automatically  
and an Interrupt generator can be enabled.  
When an interrupt is generated by a TRIGGER event, the  
SsTrigFlag bit in the SNAPSHOTMODE1 register is set. Simi-  
larly when an interrupt is generated at the completion of a read-  
out the SsRdFlag in the SNAPSHOTMODE1 register is set.  
Hence, upon the receipt of a snapshot or FTriggerNow trigger  
signal, the integrated timing and control circuit will generate an  
internal TRIGGER signal as shown in figure 19 and then wait in  
the IRQ state for the FTriggerEN bit to be manually set as shown  
in figure 21.  
The polarity of the irq pin can be programmed. The interrupt can  
only be cleared by reading SsTrigFlag and the SsRdFlag as  
shown in figure 22.  
Once the FtriggerEn bit is set the integrated timing and control  
circuit will start resetting the array one row at a time. At end of  
the reset cycle the timing and control circuit will signal the shut-  
ter to open via extsync pin or FtSync bit. At the end of the pro-  
grammed integration time the shutter will be signalled to close,  
and the pixel read-out will commence as shown in figure 18a. At  
the end of the read-out sequence the FTriggerEN will be auto-  
matically disabled and the sensor will return to video capture  
mode as shown in figure 20.  
SsTrigFlag  
SsRdFlag  
irq  
SnapIntEn  
IrqPol  
Figure 22. Interrupt Request Generation Logic  
5.5  
Pulse & Level Trigger Mode  
If an external shutter is not available then at least two frames  
need to be taken so that the pixels can be integrated over one  
frame as shown in Figure 18b.  
The snapshot pin can be programmed to operate in pulse trig-  
ger mode where one snapshot sequence is executed per active  
pulse or in level trigger mode where by snapshot sequences are  
repeated as long as the level on the snapshot pin is held active.  
(see figures 20 and 21).  
To use CPU snapshot mode the SsEngage bit of the  
SNAPSHOTMODE1 register must be set to one.  
Pulse and level trigger modes can be set by programming the  
SnapshotMod bit in the SNAPSHOTMODE0 register.  
An interrupt generator can be enabled in CPU snapshot mode  
by setting the SnapIntEn bit of SNAPSHOTMODE1 register. An  
interrupt will be generated on the external interrupt pin, irq,  
when a snapshot sequence is triggered (TRIGGER=1) or when  
the array readout is complete at the end of the snapshot  
sequence as shown figure 21.  
Confidential  
14  
www.national.com  
Functional Description (continued)  
The number of rows in a scan window is given by:  
6.0 CLOCK GENERATION MODULE  
The LM9617 contains a clock generation module that will create  
two clocks as follows:  
SWNrows = (RADend - RADstart) + 1  
Hclk,  
the horizontal clock. This is an internal system  
clock and can be programmed to be the input  
clock (mclk) or mclk divided by any number  
between 1 and 255.  
Where:  
RADend is the end row address of the defined scan win-  
dow. (See section 2.1)  
CLK  
the pixel clock. This is the external pixel clock  
RADstart is the start row address of the defined scan win-  
pixel  
that appears at the digital video port. It can be  
Hclk or Hclk divided by 2. This clock cannot be  
programed.  
dow. (Scan section 2.1).  
The number of Hclk clocks required to process a full frame is  
given by:  
7.0 FRAME RATE PROGRAMING  
A frame is defined as the time it takes to reset every pixel in the  
array, integrate the incident light, convert it to digital data and  
present it on the digital video port. This is not a concurrent pro-  
cess and is characterized in a series of events each needing a  
certain amount of time as shown in Figure 23.  
FNHclk = [(Mfactor * SWNrows) + Fdelay  
] RNHclk  
*
Where:  
Mfactor  
is a Mode Factor which must be applied. It is  
dependent on the selected mode of operation as  
shown in the table below:  
Start  
Progressive Scan  
1
Sub-sampling or Interlace/  
Interlace  
Row address = 0  
0.5  
SWNrows is the Number of Rows in Selected Scan Win-  
dow.  
Row delay time  
Fdelay  
a programmable value between 0 & 4097 repre-  
senting the Inter Frame Delay in multiples of  
RNHclk. This parameter allows the frame time to  
Transfer all pixels to CDS  
Reset all pixels in row  
be extended. (See the Frame Delay High and  
Frame Delay Low registers).  
The frame rate is given by:  
Shift all pixels out of row  
Row address + 1  
Hclk  
FNHclk  
Frame Rate =  
7.2  
Partial Frame Integration  
In some cases it is desirable to reduce the time during which the  
pixels in the array are allowed to integrate incident light without  
changing the frame rate.  
Yes  
No  
Last row?  
This is known as Partial Fame Integration and can be achieved  
by resetting pixels in a given row ahead of the row being  
selected for readout as shown in Figure 24. The number of Hclk  
clocks required to process a partial frame is given by:  
Figure 23. Frame Readout Flow Diagram  
Full Frame Integration  
7.1  
Full frame integration is when each pixel in the array integrates  
light incident on it for the duration of a frame (see Figure 24).  
FPHclk = RNHclk * Itime  
Where:  
The number of Hclk clock cycles required to process & shift out  
one row of pixels is given by:  
RNHclk  
is the number of Hclk clock cycles required to  
process & shift out one row of pixels.  
Itime  
is the number of rows ahead of the current row  
RNHclk = Ropcycle + Rdelay  
to be reset. (See the Integration Time High and  
Low registers).  
Where:  
The Integration time is subject to the following limits:  
Ropcycle is a fixed integer value of 780 representing the  
Row Operation Cycle Time in multiples of Hclk  
clock cycles. It is the time required to carry out  
all fixed row operations outlined in Figure 23.  
Mode  
Progressive Scan  
Interlace  
Limit  
Itime <= SWNrows + Fdelay  
Itime <= SWNrows + 2*Fdelay  
Itime <= SWNrows + 0.5*Fdelay  
Rdelay  
a programmable value between 0 & 2047 repre-  
senting the Row Delay Time in multiples of Hclk.  
This parameter allows the Row Operation Cycle  
time to be extended. (See the Row Delay High  
and Row Delay Low registers).  
Sub-Sampled  
Confidential  
15  
www.national.com  
Functional Description (continued)  
Full Integration Time  
Partial Integration  
Time  
Frame  
Delay  
Frame  
Delay  
Row n  
Row 2  
Row 0 Row 1  
Row x  
Row x+  
D
Row n  
Row 0  
Programmable Row Delay Row CDS, Reset Row x & Shift  
Full Frame integration  
Programmable Row Delay Row CDS, Reset Row x+D & Shift  
Partial Frame Integration  
Frame N  
Figure 24. Partial and Full Frame Integration  
7.3  
Frame Rate Programming Guide  
The table bellow can be used as a guide for programming the sensor. Note that it is assumed that the sensor is being driven with a  
48MHz clock. All programmed values are given in decimal.  
register  
address  
fps  
vclkgen  
rdelayh  
rdelayl  
16hex  
[7:0]  
0
fdelayh  
fdelayl  
18hex  
[7:0]  
9
srows  
srowe  
0Chex  
[8:1]  
251  
dwlsb  
05hex  
15hex  
17hex  
[11:8]  
0
0Bhex  
12hex  
[10:8]  
[8:1]  
0
30  
4
4
4
4
4
5
5
4
4
5
5
6
6
0
0
0
3
0
0
0
0
2
0
0
0
3
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
15  
0
2
40  
0
251  
7.5  
3.75  
25  
0
6
12  
0
251  
12  
6
12  
0
251  
172  
0
0
0
0
251  
12.5  
6.25  
3.125  
5
1
226  
188  
14  
0
251  
0
5
0
251  
156  
255  
0
14  
4
0
251  
23  
0
251  
4
10  
14  
13  
15  
12  
0
251  
3
0
14  
0
251  
2
200  
241  
248  
126  
0
251  
1
0
251  
Confidential  
16  
www.national.com  
10.0 ANALOG GAIN ADJUSTMENT  
Functional Description (continued)  
The integrated analog programmable gain amplifier is capable  
of applying a linear gain 1X to 5.6X in 64 linear steps. This can  
be programmed using the VGAIN register as shown in the table  
8.0 SIGNAL PROCESSING  
8.1  
Bad Pixel Detection & Correction  
below:  
The LM9617 has a built-in bad pixel detection and correction  
block that operates on the fly. This block can be switched off by  
the user.  
VidGain  
Dec  
Code  
VidGain  
Hex  
Code  
VidGain  
Dec  
Code  
VidGain  
Hex  
Code  
Gain  
Amp  
Value  
Gain  
Amp  
Value  
8.2  
Black Level Compensation  
0
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
1
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
3.34  
3.41  
3.48  
3.56  
3.63  
3.7  
In addition to the programmable gain the LM9617 has a built in  
black level compensation block as illustrated in Figure 25. This  
block can be switched off.  
1
2
1.07  
1.15  
1.22  
1.29  
1.37  
1.44  
1.51  
1.58  
1.66  
1.73  
1.8  
only enabled for black pixels  
input signal  
3
*a  
+
-1  
z
4
S
-
+
S
+
5
*(1-a)  
6
3.77  
3.85  
3.92  
3.99  
4.07  
4.14  
4.21  
4.29  
4.36  
4.43  
4.5  
7
Figure 25. Digital Black Level Compensation.  
The black level compensation block will subtract the average  
signal level of the black pixels around the array from the digital  
video output to compensate for the temperature and integration  
time dependent dark signal level of the pixels. The exponential  
averaging circuit shown in figure 25 only operates on the least  
significant 8 bits of the video data.  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
9.0 POWER MANAGMENT  
1.88  
1.95  
2.02  
2.1  
9.1  
Power Up and Down  
The LM9617 is equipped with an on-board power management  
system allowing the analog and digital circuitry to be switched  
off (power down) and on (power up) at any time.  
The sensor can be put into power down mode by asserting a  
logic one on the “pdwn” pin or by writing to the power down bit in  
2.17  
2.24  
2.31  
2.39  
2.46  
2.53  
2.61  
2.68  
2.75  
2.83  
2.9  
2
the main configuration register via the I C compatible serial  
interface.  
4.58  
4.65  
4.72  
4.8  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
To power up the sensor a logic zero can be asserted on the  
pdwn” pin or write to the power down bit in the main configura-  
tion register via the I2C compatible serial interface.  
It will take a few milli seconds for all the circuits to power up. The  
power management register contains a bit indicating when the  
sensor is ready for use. During this time the sensor cannot be  
used for capturing images. A status bit in the power manage-  
ment register will indicate when the sensor is ready for use.  
4.87  
4.94  
5.02  
5.09  
5.16  
5.23  
5.31  
5.38  
5.45  
5.53  
5.6  
9.2  
Advanced Power Features  
In addition to the power up/power down features of the sensor,  
sections of the analog video processing chain can be powered  
down and re-routed during normal operation. This flexibility  
allows power dissipation to be traded of with signal gain as  
shown in the table below:  
2.97  
3.04  
3.12  
3.19  
3.26  
PGA Amp  
Power Saving  
0mW  
on  
off  
10mW  
Figure 26. Power Control  
Confidential  
17  
www.national.com  
Functional Description (continued)  
11.0 OFFSET ADJUSTMENT  
12.0 OFFSET & GAIN  
For maximum image quality over a wide range of light conditions  
it is necessary to set an appropriate offset voltage before using  
the sensor to capture images. This offset voltage must be  
applied to the offset pin (38) of the sensor, and is used to adjust  
the analogue video signal being fed to the internal A/D.  
The fine offset adjustment and calibration method described in  
section 11.0 will ensure that the sensor’s black level is optimized  
for a fixed analog gain setting. However, when the analog gain is  
changed substantially, the black level of the sensor will shift  
resulting in a white washed image.  
To stop this effect from occurring, the black level needs to be re-  
calibrated. This can be done as part of the contrast adjustment  
which is carried out by most digital image processors. If this is  
not possible then the following method can be used.  
The relationship between the gain and the offset can be  
described with the following equation.  
The level of the offset voltage determines the black level of the  
image and has a direct impact on the image quality. Too high an  
offset results in a white washed or hazy looking image, while too  
low of an offset results in a dark image with low contrast even  
though the light conditions are good.  
Offset(G) = Offset(0) + C * G0.4  
A fine offset adjustment should be applied to each part by pro-  
gramming the offset voltage via the I2C compatible serial inter-  
face. To program an offset voltage the following procedure  
should be followed:  
where:  
Offset(G) is the offset that needs to be programmed in  
the OCR1, OCR2 & OCR3 registers to ensure  
the correct black level setting for an analog  
gain setting of G.  
The sensor’s offset, fine_i & fine_ctrl pins should be connected  
as shown in figure 2.  
Offset(0) is the offset that needs to be programmed in  
the OCR1, OCR2 & OCR3 registers to ensure  
the correct black level setting for unity analog  
gain, (G=0).  
The following procedure should be followed to calibrate the off-  
set  
• Disable the black level compensation block by writing a logic  
1 to bit 4 of the Main Configuration Register 0(MCFG0:  
address 02Hex).  
• The offset can be adjusted by writing to the Offset Compen-  
sation Registers (OCR: addresses 1F, 22 & 25 hex). Writing  
00hex will give the largest voltage, while writing FF hex will  
give the smallest value.  
• Run the following binary search algorithm  
• For n=7 to 0 step -1  
C
is a constant and will vary from sensor to sen-  
sor  
G
is the value programmed in the VGAIN regis-  
ter of the sensor which determines the sen-  
sor’s analog gain.  
The following procedure should be used to calculate the value of  
C:  
Use the calibration procedure described in section 11.0 to deter-  
mine the offset at unity gain, offset(0). Note the VGAIN register  
should be set to 0.  
• {  
Set bit n in the OCR registers (addresses 1F, 22 & 25  
Set the sensor’s analog gain register (VGAIN) to its max setting,  
31, and repeat the calibration procedure described in section  
11.0. This will allow the offset at full gain, 31, that needs to be  
programmed in the OCR1, OCR2 & OCR3 registers to ensure  
the correct black level setting to be determined.  
The value of C for a particular sensor can be calculated using  
the following formula:  
Hex) to a logic one by writing over the I2C compatible  
interface.  
Read a full frame and calculate the average black level  
(BLaverage) of the first and last 5 black pixels in the every  
row of the array  
If (BLaverage < 100) then  
Reset bit n in the OCR registers (addresses 1F, 22 &  
25 Hex) to 0  
Offset(31) - Offset(0)  
C =  
else  
3.95  
Keep bit n set to one.  
Once the value of C has been calculated, offset values for differ-  
ent gain settings can be calculated using equation 1. It is recom-  
mended that a two decimal point accuracy for C is maintained.  
}
• Enable the black level compensation block (if desired) by writ-  
ing a logic 0 to bit 4 of the Main Configuration Register 0  
(MCFG0: address 02Hex).  
Confidential  
18  
www.national.com  
Functional Description (continued)  
13.4 Data Valid  
13.0 SERIAL BUS  
The master must ensure that data is stable during the logic 1  
state of the sclk pin. All transitions on the sda pin can only occur  
when the logic level on the sclk pin is “0” as shown in Figure 29.  
The serial bus interface consists of the sda (serial data), sclk  
(serial clock) and sadr (device address select) pins. The  
LM9617 can operate only as a slave.  
The sclk pin is an input, it only and controls the serial interface,  
all other clock functions within LM9617 use the master clock pin,  
mclk.  
sda  
sclk  
data line  
stable;  
data valid  
data line  
stable;  
data valid  
change  
of data  
allowed  
13.1  
Start/Stop Conditions  
The serial bus will recognize a logic 1 to logic 0 transition on the  
sda pin while the sclk pin is at logic 1 as the start condition. A  
logic 0 to logic 1 transition on the sda pin while the sclk pin is at  
logic 1 is interrupted as the stop condition as shown in Figure  
27.  
Figure 29. Data Validity  
13.5 Byte Format  
Every byte consists of 8 bits. Each byte transferred on the bus  
must be followed by an Acknowledge. The most significant bit of  
the byte is should always be transmitted first. See Figure 30.  
sda  
sclk  
13.6 Write Operation  
A write operation is initiated by the master with a Start Condition  
followed by the sensor’s Device Address and Write bit. When  
the master receives an Acknowledge from the sensor it can  
transmit 8 bit internal register address. The sensor will respond  
with a second Acknowledge signaling the master to transmit 8  
write data bits. A third Acknowledge is issued by the sensor  
when the data has been successfully received.  
S
P
start condition  
stop condition  
Figure 27. Start/Stop Conditions  
13.2  
Device Address  
The serial bus Device Address of the LM9617 is set to 1010101  
when sadr is tied low and 0110011 when sadr is tied high. The  
value for sadr is set at power up.  
The write operation is completed when the master asserts a  
Stop Condition or a second Start Condition. See Figure 31.  
13.3  
Acknowledgment  
The LM9617 will hold the value of the sda pin to a logic 0 during  
the logic 1 state of the Acknowledge clock pulse on sclk as  
shown in Figure 28.  
13.7 Read Operation  
A read operation is initiated by the master with a Start Condition  
followed by the sensor’s Device Address and Write bit. When  
the master receives an Acknowledge from the sensor it can  
transmit the internal Register Address byte. The sensor will  
respond with a second Acknowledge. The master must then  
issue a new Start Condition followed by the sensor’s Device  
Address and read bit. The sensor will respond with an Acknowl-  
edged followed by the Read Data byte.  
sda  
MSB  
from master  
ACK  
ACK  
sda  
from sensor  
sclk  
S
7
8
1
2
9
The read operation is completed when the master asserts a Not  
Acknowledge followed by Stop Condition or a second Start Con-  
dition. See Figure 32.  
Clock pulse  
for ACK  
START  
Figure 28. Acknowledge  
MSB  
sda  
sclk  
ack signal  
from receiver  
ack signal  
from receiver  
byte complete  
7
9
1
8
2
8
9
ACK  
1
2
ACK  
clock line  
held low  
S
P
Figure 30. Serial Bus Byte Format  
Register  
Address  
Data  
Byte  
Device  
Address  
S
W
A
A
A
R
P
bold sensor action  
Figure 31. Serial Bus Write Operation  
Device  
Address  
Register  
Address  
Device  
Address  
Data  
Byte  
_
A
S
W
A
A
S
A
P
bold sensor action  
Figure 32. Serial Bus Read Operation  
Confidential  
19  
www.national.com  
Functional Description (continued)  
This feature allows a programmable digital gain to be imple-  
mented when connecting the sensor to 8 or 10 bit digital video  
processing systems as illustrated in Figure 34. The unused bits  
on the digital video bus can be optionally tri-stated.  
14.0 DIGITAL VIDEO PORT  
The captured image is placed onto a flexible 12-bit digital port as  
shown in Figure 10. The digital video port consists of a program-  
mable 12-bit digital Data Out Bus (d[11:0]) and three program-  
mable synchronisation signals (hsync, vsync, pclk).  
d11  
d10  
d9  
d8  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
d9  
d8  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
By default the synchronisation signals are configured to operate  
in “master” mode. They can be programed to operate in “slave”  
mode.  
10 bit  
Digital  
Image  
LM9617  
Processor  
The following sections are a detailed description of the timing  
and programming modes of digital video port.  
Pixel data is output on a 12-bit digital video bus. This bus can be  
tri-stated by asserting the TriState bit in the VIDEOMODE1 reg-  
ister.  
a) LM9617 Connected to a 10 bit Digital Image Processors  
14.1  
Digital Video Data Out Bus (d[11:0])  
A programmable matrix switch is provided to map the output of  
the internal pixel framer to the pins of the digital video bus as  
illustrated in Figure 33.  
d11  
d10  
d9  
d8  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
8 bit  
Digital  
Image  
Internal Pixel Framer Output Register  
11 10  
9
8
7
6
5
4
3
2
1
0
LM9617  
Processor  
d0  
d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0  
b) LM9617 Connected to a 8 bit Digital Image Processors  
a) MSB Bit 11, Switch Mode (default)  
Figure 34. Example of connection to 10/8 bit systems  
Internal Pixel Framer Output Register  
11 10  
9
8
7
6
5
4
3
2
1
0
Synchronisation Signals in Master Mode  
By default the sensor’s digital video port’s synchronisation sig-  
nals are configured to operate in master mode. In master mode  
the integrated timing and control block controls the flow of data  
onto the 12-bit digital port, three synchronisation outputs are  
provided:  
pclk  
is the pixel clock output pin.  
hsync  
vsync  
is the horizontal synchronisation output signal.  
is the vertical synchronisation output signal.  
d11d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0  
b) MSB Bit 10, Switch Mode  
14.2 Pixel Clock Output Pin (pclk) (Master Mode)  
Internal Pixel Framer Output Register  
The pixel clock output pin, pclk, is provided to act as a synchro-  
nisation reference for the pixel data appearing at the digital  
video out bus pins d[11:0]. This pin can be programmed to oper-  
ate in two modes:  
9
8
7
6
5
4
3
2
1
0
11 10  
• In free running mode the pixel clock output pin, pclk, is always  
running with a fixed period. Pixel data appearing on the digital  
video bus d[11:0] are synchronized to a specified active edge  
of the clock as shown in Figure 35.  
pclk  
d11d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0  
d[11:0]  
c) MSB bit 9, Switch Mode  
a) pclk active edge negative  
Internal Pixel Framer Output Register  
9
8
7
6
5
4
3
2
1
0
11 10  
pclk  
d[11:0]  
b) pclk active edge positive (default)  
invalid pixel data  
Figure 35. pclk in Free Running Mode  
• In data ready mode, the pixel clock output pin (pclk) will pro-  
duce a pulse with a specified level every time valid pixel data  
appears on the digital video bus d[11:0] as shown in Figure  
36.  
d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0  
d) MSB bit 8, Switch Mode  
Figure 33. Digital Video Bus Switching Modes  
Confidential  
20  
www.national.com  
Functional Description (continued)  
,
14.4 Vertical/Horizontal Synchronisation Pin (vsync)  
The vertical synchronisation output pin, vsync, is used as an  
indicator for pixel data within a frame. The vsync output pin can  
be programmed to operate in two modes as follows:  
pclk  
d[11:0]  
a) pclk active edge negative  
• Level mode should be used when the pixel clock, pclk, is pro-  
grammed to operate in free running mode. In level mode the  
vsync output pin will go to the specified level (high or low) at  
the start of each frame and remain at that level until the last  
pixel of that row in the frame is placed on d[11:0] as shown in  
Figure 39. The hsync level is always synchronized to the  
active edge of pclk.  
pclk  
d[11:0]  
b) pclk active edge positive  
invalid pixel data  
Figure 36. pclk in Data Ready Mode  
By default the pixel clock is a free running active low (pixel data  
changes on the positive edge of the clock) with a period equal to  
the internal hclk. The active edge of the clock can be pro-  
grammed such that pixel data changes on the positive or nega-  
tive edge of the clock.  
pclk  
d[11:0]  
vsync  
Frame n+1  
Frame n  
14.3  
Horizontal Synchronisation Output Pin (hsync)  
a) vsync programmed to be active high  
pclk  
The horizontal synchronisation output pin, hsync, is used as an  
indicator for row data. The hsync output pin can be programmed  
to operate in two modes as follows:  
d[11:0]  
vsync  
• Level mode should be used when the pixel clock, pclk, is pro-  
grammed to operate in free running mode. In level mode the  
hsync output pin will go to the specified level (high or low) at  
the start of each row and remain at that level until the last  
pixel of that row is read out on d[11:0] as shown in Figure 37.  
The hsync level is always synchronized to the active edge of  
pclk.  
Frame n+1  
Frame n  
b) vsync programmed to be active low  
invalid pixel data  
Figure 39. vsync in Level Mode  
• Pulse mode should be used when the pixel clock,pclk, is pro-  
grammed to operate in data ready mode. In pulse mode the  
vsync output pin will produce a pulse at the end of each  
frame. The width of the pulse will be a minimum of four hclk  
cycles and its polarity can be programmed as shown in Figure  
40. The vsync level is always synchronized to the active edge  
of pclk.  
pclk  
d[11:0]  
hsync  
Row n+1  
Row n  
a) hsync programmed to be active high (default)  
pclk  
pclk  
d[11:0]  
hsync  
d[11:0]  
Row n+1  
Row n  
vsync  
Frame n+1  
Frame n  
b) hsync programmed to be active low  
invalid pixel data  
a) vsync programmed to be active high  
pclk  
Figure 37. hsyncin Level Mode  
• Pulse mode should be used when the pixel clock, pclk, is pro-  
grammed to operate in data ready mode. In pulse mode the  
hsync output pin will produce a pulse at the end of each row.  
The width of the pulse will be a minimum of four pclk cycles  
and its polarity can be programmed as shown in Figure 38.  
The hsync level is always synchronized to the active edge of  
pclk  
d[11:0]  
Frame n  
Frame n+  
vsync  
b) vsync programmed to be active low (default)  
invalid pixel data  
Figure 40. vsync in pulse mode  
14.5 Odd/Even Mode  
pclk  
In odd/even mode the vsync signal is used to indicate when  
pixel data from an odd and even field is being placed on the dig-  
ital video bus d[11:0]. The polarity of vsync can still be pro-  
grammed in this mode as shown in Figure 41  
d[11:0]  
hsync  
Row n+1  
Row n  
a) hsync programmed to be active high  
pclk  
pclk  
d[11:0]  
vsync  
d[11:0]  
Even Field  
Odd Field  
Row n  
Row n+1  
hsync  
a) vsync programmed to be active high (default)  
b) hsync programmed to be active low  
invalid pixel data  
Figure 38. hsync in Pulse Mode  
pclk  
d[11:0]  
vsync  
By default the first pixel data at the beginning of each row is  
placed on the digital video bus as soon as hsync is activated. It  
is possible to program up to 15 dummy pixels to be readout at  
the beginning of each row before the real pixel data is readout.  
This feature is supported for both level and pulse mode.  
Even Field  
Odd Field  
b) vsync programmed to be active low  
invalid pixel data  
Figure 41. vsync in odd/even Mode  
Confidential  
21  
www.national.com  
Functional Description (continued)  
pclk  
vsync  
hsync  
d[11:0]  
c0 c1  
c2  
c3 c4 c5  
c6  
c7 c8 c9  
c0  
c 1 c2  
c3  
c 4 c5  
c6  
c7  
c 8 c9  
c0  
c1  
c2  
c3  
c4  
c5  
c 6 c7  
c8 c9  
c0  
c1  
c2  
c3  
c4  
c5  
c 6 c7  
c8 c9  
row 2  
row1  
row 1  
row 2  
frame 1  
frame 2  
Programmable hsync to 1st valid pixel delay  
Programmable inter-frame delay  
Programmable row delay  
Figure 42. Example of Digital Video Port Timing in Progressive Scan Mode  
pclk  
vsync  
hsync  
d[11:0]  
c0  
c1 c2 c3 c4  
c5  
c6  
c7  
c8 c9  
c0 c1  
c2 c3 c4  
c5  
c6  
c7 c8 c9  
c0 c1  
c2  
c3 c4  
c5  
c6  
c7 c8 c9  
c0 c1  
c2  
c3 c4 c5  
c6  
c7 c8 c9  
row1  
row 3  
row 2  
row 4  
Odd Field  
Even Field  
Programmable hsync to 1st valid pixel delay  
Programmable inter-frame delay  
Programmable row delay  
Figure 43. Example of Digital Video Port Timing in Interlaced Mode  
pclk  
vsync  
hysync  
d[11:0]  
c 0  
c2  
c4  
c6  
c8  
c0  
c2  
c4  
c6  
c8  
c0  
c2  
c 4  
c6  
c8  
c0  
c2  
c4  
c6  
c8  
row 1  
row 3  
row 1  
row 3  
frame 1  
frame 2  
Programmable hsync to 1st valid pixel delay  
Programmable inter-frame delay  
Programmable inter-row delay  
Figure 44. Example of Digital Video Port Timing in 2:1 Sub-sampling Mode  
pclk  
vsync  
hsync  
d[11:0]  
c0  
c2  
c4  
c6  
c8  
c0  
c2  
c4  
c6  
c8  
c0  
c2  
c4  
c6  
c8  
c0  
c2  
c4  
c5  
c8  
row 1  
row 2  
row 1  
row 2  
frame 1  
frame 2  
Programmable hsync to 1st valid pixel delay  
Programmable inter-frame delay  
Programmable inter-row delay  
Figure 45. Example of Digital Video Port Timing in 4:2 Sub-sampling Mode  
Confidential  
22  
www.national.com  
Functional Description (continued)  
14.6  
Synchronisation Signals in Slave Mode  
14.7 Row Trigger Input Pin (hsync)  
The sensor’s digital video port’s synchronisation signals can be  
programmed to operate in slave mode. In slave mode the inte-  
grated timing and control block will only start frame and row pro-  
cessing upon the receipt of triggers from an external source.  
The row trigger input pin, hsync, is used to trigger the process-  
ing of a given row. It must be activated for at least two mclk”  
cycle. The first pixel data will appear at d[11:0] “Xmclk“periods  
after the assertion of the row trigger, were Xmclk is given by:  
Xmclk = 124 + DWStAd  
Only two synchronization signals are used in slave mode as fol-  
lows:  
Where:  
hsync  
vsync  
is the row trigger input signal.  
is the frame trigger input signal.  
DWStAd is the value of the display window column start  
address.  
Figure 46 shows the LM9617’s digital video port in slave mode  
connected to a digital video processor master DVP.  
The polarity of the active level of the row trigger is programma-  
ble. By default it is active high.  
d[11:0]  
hsync  
vsync  
din[11:0]  
RowTrig  
FrameTrig  
14.8 Frame Trigger Input Pin (vsync)  
The frame trigger input pin, vsync, is used to reset the row  
address counter and prepare the array for row processing. It  
must be activated for at least one “mclk” cycle and no more than  
96 mclk cycles after the activation of hsync as illustrated in Fig-  
ure 48.  
pclk  
mclk  
MasterClock  
DVP  
LM9617  
The polarity of the active level of the row trigger is programma-  
ble. By default it is active high.  
Figure 46. LM9617 in slave mode  
780 clock cycles per line  
hsync  
pixel 12  
pixel11  
pixel 652  
d[11:0]  
642 valid pixels  
776 777 778 779  
0
1
2
3
...  
134 135 136 136 137  
...  
774 775 776 777 778 779  
0
1
mclk  
count  
mclk  
Figure 47. hsync slave mode timing diagram for centred display window of 642 pixels  
780 clock cycles per line  
hsync  
vsync  
No more than  
96 clock cycles  
line502  
line503  
line 0  
line 502  
internal row  
counter  
776 777 778 779  
0
1
2
3
...  
774 775 776 777 778 779  
0
1
774 775 776 777 778 779  
0
1
mclk  
count  
...  
mclk  
Figure 48. vsync slave mode timing diagram for scan window of 504 rows.  
Confidential  
23  
www.national.com  
MEMORY MAP  
ADDR  
Register  
Reset Value  
Description  
Reserved for future use.  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Fh  
22h  
25h  
26h  
27h  
28h  
29h  
2Ah  
REV  
02h  
Revision Register  
MCFG0  
00h  
00h  
00h  
04h  
00h  
00h  
00h  
00h  
00h  
00h  
FBh  
Main Configuration Register 0  
Main Configuration Register 1  
Power Control Register.  
MCFG1  
PCR  
VCLKGEN  
VMODE0  
VMODE1  
VMODE2  
SNAPMODE0  
SNAPMODE1  
SROWS  
Video Clock Generator  
Video Mode 0 Register  
Video Mode 1 Register  
Video Mode 2 Register  
Snapshot Mode 0 Register  
Snapshot Mode 1 Register  
Scan Window Row Start Register  
Scan Window Row End Register  
Reserved for future use.  
SROWE  
DROWS  
DROWE  
DCOLS  
DCOLE  
DWLSB  
ITIMEH  
ITIMEL  
00h  
FBh  
00h  
A5h  
32h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
Display Window Row Start Register  
Display Window Row End Register  
Display Window Column Start Register  
Display Window Column End Register  
Display Window LSB Register.  
Integration Time High Register  
Integration Time Low Register  
Row Delay High Register  
RDELAYH  
RDELAYL  
FDELAYH  
FDELAYL  
VGAIN  
Row Delay Low Register  
Frame Delay High Register  
Frame Delay Low Register  
Video Gain Register  
OCR1  
Offset Compensation Register 1  
Offset Compensation Register 1  
Offset Compensation Register 2  
Black Level Compensation Coefficient Register  
Bad pixel Threshold 0 High Register  
Bad pixel Threshold 0 Low Register  
Bad pixel Threshold 1 High Register  
Bad pixel Threshold 1 Low Register  
OCR1  
OCR2  
BLCOEFF  
BPTH0H  
BPTH0L  
BPTH1H  
BPTH1L  
Confidential  
24  
www.national.com  
Register Set  
The following section describes all available registers in the  
LM9617 register bank and their function.  
Register Name Main Configuration 1  
Address  
Mnemonic  
Type  
03 Hex  
MCFG1  
Read/Write  
00 Hex  
Register Name Device Rev Register  
Mnemonic  
Address  
Type  
REV  
01 Hex  
Read Only.  
Reset Value  
Bit  
Bit Symbol  
ColorMode  
Description  
Bit  
Bit Symbol  
SiRev  
Description  
7
Assert when using a mono-  
chrome sensor. When this bit is  
at a logic 1, Sub-Sampling is set  
to 2:1 and every other row is  
read out during interlace mode.  
Clear (the default) when using a  
color sensor. When this bit is at  
logic 0, sub-sampling is set to  
4:2 and every other row pair is  
read out during interlace mode.  
7:0  
The silicon revision register.  
Register Name Main Configuration 0  
Address  
Mnemonic  
Type:  
02 Hex  
MCFG0  
Read/Write  
Reset Value  
00 Hex  
Bit  
Bit Symbol  
Description  
(Read Only Bit)  
Indicates that power on initializa-  
tion is in progress. The sensor is  
ready for use when this bit is at  
logic 0.  
6
ScanMode  
Assert to set the sensor to inter-  
lace readout mode. Clear (the  
default) to set the sensor to pro-  
gressive scan read out mode.  
7
PwrUpBusy  
PwrDown  
5
4
HSubSamEn  
VSubSamEn  
Assert to enable horizontal sub-  
sampling. Clear (the default) to  
disable horizontal sub-sampling.  
6
Assert to power down the sensor.  
Writing a logic 1 to this register bit  
has the same effect as taking the  
pdwn pin high. Clear (the default)  
this bit to power up the sensor.  
Assert to enable vertical sub-  
sampling. Clear (the default) to  
disable vertical sub-sampling.  
5
4
3
BPCorrection  
BlkLComp  
Assert to enable the bad pixel  
detection and correction circuit.  
Clear (the default) to switch it off.  
3
2
Reserved  
SlaveMode  
Use to configure the digital  
video port’s synchronisation sig-  
nal to operate in slave mode. By  
default the digital video’s port’s  
synchronization signals are con-  
figured to operate in master  
mode.  
Assert to disable the black level  
compensation circuit. Clear (the  
default) to switch it on.  
SnapEnable  
Assert to enable the external  
snapshot pin. Clear (the default)  
to disable the external snapshot  
pin.  
1:0  
Reserved  
Register Name Power Control Register 1  
Address  
Mnemonic  
Type  
04 Hex  
PCR  
Read/Write  
2:0  
Reserved  
Reset Value  
00 Hex  
Bit  
Bit Symbol  
Description  
7
ByPassGain  
Assert to route the analog video  
signal from the output of the CDS  
to the input of the 12 bit A/D. Clear  
(the default) to route the signal to  
the video gain amplifier.  
6:4  
3
Reserved  
PwdnPGA  
PwDnADC  
Assert to power down the pro-  
grammable video gain amplifier.  
Clear (the default) to power up the  
video gain amplifiers.  
2:1  
0
Reserved  
Assert to power down the 12 bit  
analog to digital convertor. Clear  
(the default) to power up the 12 bit  
analog to digital convertor.  
Confidential  
25  
www.national.com  
Register Name Digital Video Mode 1  
Register Set (continued)  
Register Name Hclk Generator Register  
Address  
Mnemonic  
Type  
07 Hex  
VMODE1  
Read/Write  
00 Hext  
Address  
Mnemonic  
Type  
05 Hex  
VCLKGEN  
Read/Write  
04 Hex.  
Reset Value  
Bit  
Bit Symbol  
Description  
Reset Value  
7
6
PixClkMode  
Assert to set the pclk to “data  
ready mode”. Clear, the default, to  
set pclk to “free running mode”.  
Assert to set the vsync pin to  
“pulse mode”. Clear (the default)  
to set the vsync signal to “level  
mode”.  
Bit  
Bit Symbol  
HclkGen  
Description  
VsyncMode  
7:0  
Use to divide the frequency of  
the sensors master clock input,  
mclk to generate the internal  
sensor clock, Hclk.  
Program 00 Hex (the default) for  
Hclk to equal mclk or divide  
mclk by any number between 1  
and FF Hex.  
5
HsyncMode  
Assert to force the hsync signal to  
pulse for a minimum of four pixel  
clocks at the end of each row.  
Clear (the default) to force the  
hsync signal to a level indicating  
valid data within a row.  
Register Name Digital Video Mode 0  
Address  
Mnemonic  
Type  
06 Hex  
4
3
PixClkPol  
VsynPol  
Assert to set the active edge of  
the pixel clock to negative. Clear  
(the default) to set the active edge  
of the clock to positive.  
VMODE0  
Read/Write  
00 Hex  
Reset Value  
Assert to force the vsync signal to  
generate a logic 0 during a frame  
readout (Level Mode), or a nega-  
tive pulse at the end of a frame  
readout (Pulse Mode). Clear (the  
default) to force the vsync signal  
to generate a logic 1 during a  
frame readout (Level Mode), or a  
negative pulse at the end of a  
frame readout (Pulse Mode).  
Assert to force the hsync signal to  
generate a logic 0 during a row  
readout (Level Mode), or a nega-  
tive pulse at the end of a row  
readout (Pulse Mode). Clear (the  
default) to force the hsync signal  
to generate a logic 1 during a row  
readout (Level Mode), or a nega-  
tive pulse at the end of a readout  
(Pulse Mode).  
Bit  
Bit Symbol  
PixDataSel  
Description  
7:6  
Use to program the number of  
active bits on the digital video bus  
d[11:0], starting from the MSB  
(d[11]). Inactive bits are tri-stated.:  
00 12 bit mode, bits  
d[11:0] of the digital  
video bus are active.  
This is the default.  
2
HsynPol  
01 10 bit mode, bits  
d[11:2] of the digital  
video bus are active.  
10 8 bit mode, bits  
d[11:4] of the digital  
video bus are active.  
11 Reserved.  
1
0
OddEvenEn  
TriState  
Assert to force the vsync pin to act  
as an odd/even field indicator.  
Clear (the default) to force the  
vsync pin to act as a vertical syn-  
chronization signal.  
Assert to tri-state all output signals  
(data and control) on the digital  
video port. Clear (default) to  
enable all signals (data and con-  
trol) on the digital video port.  
5:4  
PixDataMsb  
Use to program the routing of the  
MSB output of the internal video  
A/D to a bit on the digital video  
bus.  
00 A/D [11:0] -> d[11:0].  
01 A/D [10:0] -> d[11:1]  
10 A/D [9:0] -> d[11:2]  
11 A/D [8:0] -> d[11:3]  
Register Name Digital Video Mode 2  
3:0  
Reserved  
Address  
Mnemonic  
Type  
08 Hex  
VMODE2  
Read/Write  
00 Hex  
Reset Value  
Bit  
Bit Symbol  
HsyncAdjust  
Description  
7:4  
Use to program the leading edge  
of hsync to the first valid pixel at  
the beginning of each row. This  
can be 0-hex to F-hex corre-  
sponding to 0 - 15 pixel clocks.  
Default 0.  
3:0  
Reserved  
Confidential  
26  
www.national.com  
Register Set (continued)  
Register Name Snapshot Mode Configuration Register 0  
Register Name Snapshot Mode Configuration Register 1  
Address  
Mnemonic  
Type  
09 Hex  
Address  
Mnemonic  
Type  
0A Hex  
SNAPMODE0  
Read/Write  
00 Hex  
SNAPMODE1  
Read/Write  
00 Hex.  
Reset Value  
Reset Value  
Bit  
Bit Symbol  
Description  
Bit  
Bit Symbol  
SsFrames  
Description  
7
6
SnapIntEn  
SsTrigFlag  
Assert to enable the snapshot  
interrupt generator. Clear (the  
default) to disable the interrupt  
generator.  
7.6  
Program to set the number of  
frames required before readout  
during a snapshot with no external  
shutter, (see Figure 18). By  
default these two bits are set to 00  
resulting in one frame before  
readout:  
(Read Only Bit)  
Snapshot trigger interrupt flag.  
A logic 1 in this bit indicates that  
the generated interrupt on the  
irq pin is due to a snapshot trig-  
ger. This bit is cleared when  
read.  
0
one frame  
01 two frames  
10 three frames  
11 four frames  
5
SsRdFlag  
(Read Only Bit)  
Snapshot read done interrupt  
flag. A logic 1 in this bit indicates  
that the generated interrupt on  
the irq pin is due to the comple-  
5
4
ShutterEn  
Assert to indicate that an external  
shutter will be used during snap-  
shot mode. Clear (the default) to  
indicate that snapshot mode will  
be carried out without the aid of an  
external shutter.  
tion of  
a snapshot readout  
sequence. This bit is cleared  
when read.  
4
SsEngage  
Assert to allow a CPU controlled  
snapshot sequence. In this  
mode the snapshot trigger will  
only generate an interrupt to the  
CPU and the CPU must manu-  
ally start the snapshot sequence  
by asserting the FTriggerEnbit  
of this register.  
Clear (the default) engage an  
automatic snapshot sequence.  
In auto mode the snapshot  
sequence is started as soon as  
a snapshot trigger is asserted.  
ExtSynPol  
Assert to set the active level of the  
extsync signal to 0. Clear (the  
default) to set the active level of  
the extsync signal to 1.  
3
2
Reserved  
SnapshotMod  
Assert to set the snapshot pin to  
level mode. In level mode the sen-  
sor will continually run snapshot  
sequences as long as the snap-  
shot pin is held to the active level.  
Clear (the default) to set the snap-  
shot signal to pulse mode. In  
pulse mode the sensor will only  
carry out one snapshot sequence  
per pulse applied to the snapshot  
pin.  
3
2
FtSync  
FtBusy  
(Read Only Bit)  
The internal synchronisation  
signal. A logic 1 on this bit indi-  
cates a synchronization event is  
required. This bit is functionally  
equivalent to the external  
extsync pin.  
1
0
SnapShotPol  
Assert to set the snapshot pin to  
be active on the positive edge.  
Clear (the default) to set the snap-  
shot pin to be active on the nega-  
tive edge.  
(Read Only Bit)  
The Frame Trigger Busy bit. A  
logic 1 on this bit indicates that  
the sensor is busy reading out  
pixel data as shown in Figure  
18.  
IrqPol  
Assert to set the active level of the  
irq signal to 0, Clear (the default)  
to set the active level of the irq  
signal to 1.  
1
0
FTriggerNow  
FTriggerEn  
Assert to start a snapshot  
sequence. The frame trigger  
now is functionally equivalent to  
the external snapshot pin. The  
default is 0.  
Assert to enable a snapshot  
sequence (see the SsEngage  
bit of this register). The default  
is 0.  
Confidential  
27  
www.national.com  
Register Set (continued)  
Register Name Scan Window Row Start Register  
Register Name Display Window Column Start Register  
Address  
Mnemonic  
Type  
0B Hex  
Address  
Mnemonic  
Type  
10 Hex  
SROWS  
Read/Write  
00 Hex  
DCOLS  
Read/Write  
00 Hex  
Reset Value  
Reset Value  
Bit  
Bit Symbol  
SwStartRow  
Description  
Bit  
Bit Symbol  
DwStartCol  
Description  
7:0  
Use to program the scan window’s  
start row address MSBs. If bit 6 of  
register DWLSB is set to 1 the  
start row address is incremented  
by 1 else the raw value is used.  
7:0  
Use to program the display win-  
dow’s start column address  
MSBs. The two LSBs can be pro-  
grammed using the DWLSB regis-  
ter.  
Register Name Scan Window Row End Register  
Register Name Display Window Column End Register  
Address  
Mnemonic  
Type  
0C Hex  
Address  
Mnemonic  
Type  
11 Hex  
DCOLE  
Read/Write  
A5 Hex  
SROWE  
Read/Write  
FB Hex  
Reset Value  
Reset Value  
Bit  
Bit Symbol  
SwEndRow  
Description  
Bit  
Bit Symbol  
DwEndCol  
Description  
7:0  
Use to program the scan window’s  
end row address MSBs. If bit 6 of  
register DWLSB is set to 1 the end  
row address is incremented by 1.  
else the raw value is used.  
7:0  
Use to program the scan window’s  
end column address MSBs. The  
two LSBs can be programmed  
using the DWLSB register.  
Register Name Display Window LSB register  
Register Name Display Window Row Start Register  
Address  
Mnemonic  
Type  
12 Hex  
Address  
Mnemonic  
Type  
0E Hex  
DROWS  
Read/Write  
DWLSB  
Read/Write  
32 Hex  
Reset Value  
Reset Value  
00 Hex  
Bit  
Bit Symbol  
Description  
Bit  
Bit Symbol  
DwStartRow  
Description  
7
Reserved  
7:0  
Use to program the display win-  
dow’s start row address MSBs.  
The LSB can be programmed  
using the DWLSB register.  
6
SwLsb  
Assert to increment the value of  
the scan window start and end  
row addresses by 1. Clear (the  
default) to use the raw values.  
Register Name Display Row End Register  
5
4
3
2
1
0
DwCel[1]  
DwCel[0]  
DwCSL[1]  
DwCSL [0]  
DwERLsb  
DwSRLsb  
Use to program bit 1 of the display  
window’s end column address.  
Default is 1.  
Address  
Mnemonic  
Type  
0F Hex  
DROWE  
Read/Write  
FB Hex  
Reset Value  
Use to program bit 0 of the display  
window’s end column address.  
Default is 1.  
Bit  
Bit Symbol  
DwEndRow  
Description  
7:0  
Use to program the scan window’s  
end row address. The LSB can be  
programmed using the DWLSB  
register.  
Use to program bit 1 of the display  
window’s start column address.  
Default is 0.  
Use to program bit 0 of the display  
window’s start column address.  
Default is 0.  
Use to program bit 0 of the display  
window’s end row address.  
Default is 1.  
Use to program bit 0 of the display  
window’s start row address.  
Default is 0.  
Confidential  
28  
www.national.com  
Register Set (continued)  
Register Name Integration Time High Register  
Register Name Frame Delay Low Register  
Address  
Mnemonic  
Type  
13 Hex  
ITIMEH  
Read/Write  
00 Hex.  
Address  
Mnemonic  
Type  
18 Hex  
FDELAYL  
Read/Write  
00 Hex  
Reset Value  
Reset Value  
Bit  
Bit Symbol  
Description  
Bit  
Bit Symbol  
FDelay [7:0]  
Description  
7:4  
Reserved  
7:0  
Use to program the LSBs of  
the frame delay.  
3:0  
Itime[11:8]  
Program to set the integration  
time of the array. The value pro-  
grammed in the register is the  
number of rows ahead of the  
selected row to be reset.  
Register Name Video Gain Register  
Address  
Mnemonic  
Type  
19 Hex  
VGAIN  
Read/Write  
00 Hex  
Reset Value  
Register Name Integration Time Low Register  
Address  
Mnemonic  
Type  
14 Hex  
ITIMEL  
Read/Write  
00 Hex.  
Bit  
Bit Symbol  
Description  
7:6  
Reserved  
Reset Value  
5:0  
VidGain  
Use to program the overall video  
gain. 00hex corresponds to a gain  
of 0dB while 3Fhex corresponds  
to a gain of 15dB. Steps are in lin-  
ear increments.  
Bit  
Bit Symbol  
Itime[7:0]  
Description  
7:0  
Program to set the integration  
time of the array. The value pro-  
grammed in the register is the  
number of rows ahead of the  
selected row to be reset.  
Register Name Offset Compensation Register 0  
address  
Mnemonic  
Type  
1FHex  
OCR0  
Read/Write  
00 Hex  
Register Name Row Delay High Register  
Address  
Mnemonic  
Type  
15 Hex  
Reset Value  
RDELAYH  
Read/Write  
00 Hex.  
Bit  
Bit Symbol  
OffsetVol  
Description  
Reset Value  
7:0  
This register defines the volt-  
age level appearing on the  
offset_ctrl pin.  
Bit  
Bit Symbol  
Description  
7:3  
Reserved  
Register Name Offset Compensation Register 1  
address  
Mnemonic  
Type  
22 Hex  
OCR1  
Read/Write  
00 Hex  
2:0  
Rdelay[10:8]  
Use to program the MSBs of the  
row delay.  
Register Name Row Delay Low Register  
Reset Value  
Address  
Mnemonic  
Type  
16 Hex  
RDELAYL  
Read/Write  
00 Hex  
Bit  
Bit Symbol  
OffsetVol  
Description  
Reset Value  
7:0  
This register defines the volt-  
age level appearing on the  
offset_ctrl pin.  
Bit  
Bit Symbol  
Rdelay[7:0]  
Description  
Register Name Offset Compensation Register 2  
7:0  
Use to program the LSBs of the  
row delay.  
address  
Mnemonic  
Type  
25 Hex  
OCR2  
Read/Write  
00 Hex  
Register Name Frame Delay High Register  
Address  
Mnemonic  
Type  
17  
Reset Value  
FDELAYH  
Read/Write  
00 Hex  
Bit  
Bit Symbol  
OffsetVol  
Description  
Reset Value  
7:0  
This register defines the volt-  
age level appearing on the  
offset_ctrl pin.  
Bit  
Bit Symbol  
Description  
7:4  
Reserved  
3:0  
FDelay[11:8]  
Use to program the MSBs of the  
frame delay.  
Confidential  
29  
www.national.com  
Register Set (continued)  
Register Name Black Level Compensation Coefficient  
Register  
Address  
Mnemonic  
Type  
26 Hex  
BLCOEFF  
Read/Write  
00 Hex  
Reset Value  
Bit  
Bit Symbol  
Alpha[7:0]  
Description  
7:0  
Exponential averaging coeffi-  
cient for black pixels  
Register Name Threshold 0 High Register  
Address  
Mnemonic  
Type  
27 Hex  
BPTH0H  
Read/Write  
00 Hex.  
Reset Value  
Bit  
Bit Symbol  
BpT0 [11:4]  
Description  
7:0  
Use to program the MSBs of  
the bad pixel correction  
threshold 0.  
Register Name Threshold 0 Low Register  
Address  
Mnemonic  
Type  
28 Hex  
BPTH0L  
Read/Write  
00 Hex  
Reset Value  
Bit  
Bit Symbol  
BpT0 [3.0]  
Description  
7:4  
Use to program the LSBs of  
the bad pixel correction  
threshold 0.  
3:0  
Reserved  
Register Name Threshold 1 High Register  
Address  
Mnemonic  
Type  
29 Hex  
BPTH1H  
Read/Write  
00 Hex  
Reset Value  
Bit  
Bit Symbol  
THR1[11.4]  
Description  
7:0  
Use to program the MSBs of  
the bad pixel correction  
threshold 1.  
Register Name Threshold 1 Low Register  
Address  
Mnemonic  
Type  
2A Hex  
BPTH1L  
Read/Write  
00 Hex  
Reset Value  
Bit  
Bit Symbol  
THR1 [3.0]  
Description  
7:4  
3:0  
Use to program the LSBs of  
the bad pixel correction  
threshold 1.  
Reserved  
Confidential  
30  
www.national.com  
Timing Information  
1.0 DIGITAL VIDEO PORT MASTER MODE TIMING  
pclk  
hsync  
t2  
t1  
d[11:0]  
P0  
P1  
Pn  
t3  
Figure 49. Row Timing Diagram  
pclk  
vsync  
t6  
t5  
hsync  
R2  
R3  
Rn  
t1  
t2  
Figure 50. Frame Timing  
pclk  
vsync  
t6  
t5  
hsync  
R0  
R1  
R2  
t2  
Rn  
F
n-1  
F
n-2  
F
n
delay  
delay  
delay  
t1  
Inter Frame Delay  
Frame (n)  
Figure 51. Frame Delay Timing (With Inter Frame Delay).  
Label  
Descriptions  
Min  
Typ  
Max  
t0  
pclk period  
74.4ns  
83.3ns  
1.0ms  
hsync low  
hsync high  
level mode  
pulse mode  
(116-HsyncAdjust) *pclk  
16 * pclk  
(see note a & b)  
(see note a & b)  
t1  
level mode  
pulse mode  
(664 -HsyncAdjust) *pclk  
764 * pclk  
t2  
t3  
t5  
first valid pixel data after hsync active  
HsyncAdjust * pclk  
(see note a & b)  
(see note a & b)  
vsync low  
vsync high  
level mode  
pulse mode  
116 *pclk  
16 * pclk  
level mode  
pulse mode  
(FNHclk - 116) * pclk  
16 * pclk  
(see note a & b)  
t6  
Note a: See Frame Rate Programming section for more details  
Note b: See Digital Video Port Registers for more details  
Confidential  
31  
www.national.com  
Timing Information (continued)  
d[11:0]  
hsync  
vsync  
pclk  
t1  
t2  
Figure 52. d[11:0], hsync & vsync to Active High pclk Timing  
d[11:0]  
hsync  
vsync  
pclk  
t3  
t4  
Figure 53. d[11:0], hsync & vsync to Active Low pclk Timing  
The following specifications apply for all supply pins = +3.3V and CL = 10pF unless otherwise noted. Boldface limits apply for TA =  
TMIN to TMAX: all other limits TA = 25oC (Note 7)  
Label  
t1  
Descriptions  
Min  
Typ  
Max  
Rising pclk to Rising hsync, vsync or d[11:0]  
Rising pclkto Falling hsync, vsync or d[11:0]  
Falling pclk to rising hsync, vsync or d[11:0]  
Falling pclk to falling hsync, vsync or d[11:0]  
25ns  
23ns  
25ns  
23ns  
t2  
t3  
t4  
Confidential  
32  
www.national.com  
Timing Information (continued)  
2.0 DIGITAL VIDEO PORT SLAVE MODE TIMING  
t1  
t3  
trigger row n  
hsync  
trigger row n+1  
t2  
d[11:0]  
P654  
P655  
P640  
P652  
P653  
P652  
P653  
P654  
P1  
mclk  
Row n-1  
Row n  
Figure 54. Slave Mode Row Trigger and Readout Timing  
trigger last row  
in frame n  
hsync  
t5  
trigger Frame n+1  
vsync  
mclk  
t4  
Figure 55. Slave Mode d[11:0], hsync & vsync to pclk Timing  
d[11:0]  
mclk  
t6  
Figure 56. Rising Edge of mclk to Valid Pixel Data  
The following specifications apply for all supply pins = +3.0V & CL = 10pF unless otherwise noted. Boldface limits apply for TA =  
TMIN to TMAX: all other limits TA = 25oC (Note 7)  
Label  
t1  
Descriptions  
Min  
Typ  
Max  
Pulse width of row trigger  
2 * mclk  
124 * mclk  
780 * mclk  
t2  
First pixel out after rising edge of row trigger  
Minimum time between row triggers.  
124 * mclk  
t3  
Max time to assert next frame trigger after last row  
trigger.  
t4  
96 * mclk  
t5  
t6  
Pulse width of Frame trigger  
2 * mclk  
Time to valid pixel data after rising edge of mclk  
44ns  
Confidential  
33  
www.national.com  
Timing Information (continued)  
3.0 DIGITAL VIDEO PORT SINGLE FRAME CAPTURE (SNAPSHOT MODE) TIMING  
t1  
snapshot or FTriggerNow  
irq  
FTriggerEn  
extsync or FtSync  
FtBusy  
t4  
t3  
t2  
Figure 57. Snapshot Mode Timing With External Shutter  
t1  
snapshot or FTriggerNow  
irq  
FTriggerEn  
extsync or FtSync  
FtBusy  
t3  
t2  
t4  
Figure 58. Snapshot Timing Without External Shutter  
Label  
t1  
Descriptions  
Equation  
Minimum Snapshot Trigger Pulse Width  
Minimum time from Snapshot Pulse to extsync  
Array Integration Time  
2 * mclk  
FNHclk  
FNHclk  
FNHclk  
(see notes a & b)  
(see notes a & b)  
(see notes a & b)  
(see notes a & b)  
t2  
t3  
t4  
Pixel Read Out  
Note a: See 7.0Frame Rate Programming section for more details  
Note b: See Snapshot Mode for more details  
Confidential  
34  
www.national.com  
Timing Information (continued)  
4.0 SERIAL BUS TIMING  
Sr  
P
Sr  
tfDA  
tfDA  
SDA  
t
HD;DAT  
t
t
t
SU;STA  
HD;STA  
SU;STO  
t
SU;DAT  
SCLK  
trCL  
trCL1  
trCL  
trCL1  
(1)  
= Rp resistor pull-up  
= MCS current source pull-up  
(1) Rising edge of the first SCLK pulse after an acknowledge bit.  
Figure 59. I2C Compatible Serial Bus Timing.  
tLOW  
tHIGH  
tHIGH  
tLOW  
The following specifications apply for all supply pins = +3.3V, CL = 10pF, and sclk = 400KHz unless otherwise noted. Boldface limits  
apply for TA = TMIN to TMAX: all other limits TA = 25oC (Note 7)  
PARAMETER  
SYMBOL  
fSCLH  
MIN  
0
MAX  
UNIT  
KHz  
mS  
sclk clock frequency  
400  
Set-up time (repeated) START condition  
Hold time (repeated) START condition  
LOW period of the sclk clock  
HIGH period of the sclk clock  
Data set-up time  
tSU;STA  
tHD;STA  
tLOW  
0.6  
0.6  
1.3  
0.6  
180  
0
-
-
mS  
-
mS  
tHIGH  
-
mS  
tSU;DAT  
tHD;DAT  
tSU;STO  
Cb  
-
nS  
Data hold time  
0.9  
mS  
Set-up time for STOP condition  
Capacitive load for sda and sclk lines  
0.6  
mS  
400  
pF  
Confidential  
35  
www.national.com  
Array Mechanical Information  
.440 +/-.005 TYP  
[11.18 +/- 0.12]  
.040 +/-.003 TYP  
[1.02 +/- 0.07]  
.060 +.010 TYP  
-.005  
[1.52 + 0.25]  
[- 0.12]  
43  
6
1
48  
.085 +/-.010  
[2.16 +/- 0.25]  
7
42  
distance from pixel (die surface) to top surface of  
glass lid= 0.894 mm  
R.0075 +/-.0050  
[0.191+/- 0.127]  
TYP  
.020 +/-.003  
[0.51 +/- 0.07]  
TYP  
0.328  
[8.325]  
Note 3  
31  
18  
30  
19  
(4X R.0075)  
[0.19]  
0.281  
[7.131]  
Note 3  
.040 +/-.007 TYP  
[1.02 +/- 0.17]  
Optical Center of  
Sensor Array  
.560 +.012  
-.005  
[14.22 + 0.30]  
.102 MAX  
[2.58]  
[ - 0.12]  
Notes:  
1. Controlling dimensions are in inches, values in [] are in millimeters  
2. All Exposed metallized areas shall be gold plated 60 micro-inches [1.52 micrometers] minimum thickness over nickel plate  
3. Reference dimensions only. Tolerance will depend on die placement [+/-0.1 mm].  
4. Reference JEDEC registration MS-009, variation AF issue A, dated 9/29/1980.  
Confidential  
36  
www.national.com  
LIFE SUPPORT POLICY  
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and whose failure to perform when  
properly used in accordance with instructions for use pro-  
vided in the labeling, can be reasonably expected to result in  
a significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
National Semiconductor  
Corporation  
Americas  
Tel: 1-800-272-9959  
Fax: 1-800-737-7018  
Email: support @ nsc.com  
National Semiconductor Europe  
Fax: +49 (0) 1 80-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Response Group  
National Semiconductor  
Japan Ltd.  
Tel: 81-3-5639-7560  
Fax: 81-3-5639-7507  
Email: europe.support @ nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Francais Tel: +33 (0) 1 41 91 8790  
Tel: 65-2544466  
Fax: 65-2504466  
Email: ap.support@nsc.com  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  
See Interface Products  
Products > Imaging > CMOS Imaging Sensor > LM9617  
LM9617 Product Folder  
Monochrome CMOS Image Sensor VGA 30 FPS  
Generic P/N 9617  
General  
Description  
Package  
& Models  
Samples  
& Pricing  
Design  
Tools  
Features  
Datasheet  
Parametric Table  
Monochrome or Color  
Microlenses  
Parametric Table  
Monochrome  
Optical Format  
1/3 in.  
30  
Yes  
Max Frame Rate at Full Resolution (FPS)  
Maximum Sensitivity (V/lux.s)  
System Dynamic Range (dB)  
Total Size of Image Array (pixels)  
664x504  
4.13  
57  
Datasheet  
Title  
Size in Kbytes Date  
Receive via Email  
Download  
View Online  
View Online Download Receive via Email  
4-May-01  
LM9617 Monochrome CMOS Image  
Sensor VGA 30 FPS  
366 Kbytes  
If you have trouble printing or viewing PDF file(s), see Printing Problems.  
Package Availability, Models, Samples & Pricing  
Budgetary  
Pricing  
Samples &  
Electronic  
Orders  
Std  
Pack  
Size  
Package  
Models  
Package  
Marking  
Part Number  
Status  
Type Pins MSL  
SPICE IBIS  
Qty $US each  
Full  
production  
LM9617-5SENSORS  
LM9617EVAL-KIT  
LM9617HEADBOARD  
LM9617CCEA  
kit/group  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1+ $40.0000  
1
1
1
-
Buy Now  
Buy Now  
Buy Now  
evaluation  
board  
Full production  
Full production  
Full production  
Full production  
1+ $2600.0000  
1+ $200.0000  
1K+ $19.5000  
1K+ $16.5000  
-
-
evaluation  
board  
tray [logo]¢U¢Z¢2¢T¢P  
of  
96  
LCC  
LCC  
MSL  
MSL  
48  
48  
LM9617  
CCEA  
tray [logo]¢U¢Z¢2¢T  
of  
96  
LM9617CCEA-2  
LM9617  
CCEA  
General Description  
The LM9617 is a high performance, low power, one-third inch VGA CMOS Active Pixel Sensor capable of  
capturing grey-scale digital still or motion images and converting them to a digital data stream.  
In addition to the active pixel array, an on-chip 12 bit A/D convertor, fixed pattern noise elimination circuit,  
and a video gain amplifier is provided. Furthermore, an integrated programmable smart timing and control  
circuit allows the user maximum flexibility in adjusting integration time, active window size, gain and frame  
rate. Various control, timing and power modes are also provided.  
Features  
Supplied with micro lenses  
Video or snapshot operations  
Progressive scan and interlace read out modes.  
Programmable pixel clock, inter-frame and inter-line delays.  
Programmable partial or full frame integration  
Programmable gain  
Horizontal & vertical sub-sampling (2:1 & 4:2)  
Windowing  
External snapshot trigger & event synchronisation signals  
Auto black level compensation  
Flexible digital video read-out supporting programmable polarity (for synchronisation and pixel clock  
signals) and leading edge adjustment (for horizontal synchronization)  
Programmable via 2 wire I2C compatible serial interface  
Power on reset & power down mode  
Key Specification  
Total:  
Active: 648H x 488V  
664H x 504V  
ò Array Format  
Total: 4.98mm x 3.78 mm  
Active: 4.86 mm x 3.66 mm  
ò Effective Image Area  
ò Optical Format  
ò Pixel Size  
1/3"  
7.5um x 7.5um  
8, 10, 12 Bit Digital  
57dB  
ò Video Outputs  
ò Dynamic Range  
ò FPN  
0.35%  
ò Sensitivity  
28.7 kLSBs/lux.sec  
27%  
ò Quantum Efficiency  
ò Fill Factor  
47% (no micro lens)  
48LCC  
ò Package  
ò Single Supply  
3.3 V  
ò Power Consumption 90mW  
ò Operating Temp  
0 to 50 C  
Applications  
Biometrics  
Infrared Camera  
Barcode Scanner  
Security Camera  
Toys  
Machine Vision  
Design Tools  
Title  
Size in Kbytes  
Date  
Receive via Email  
Download  
View Online  
View  
Buy LM96XX-LENS-KIT  
If you have trouble printing or viewing PDF file(s), see Printing Problems.  
[Information as of 5-Aug-2002]  
Search  
Design  
Purchasing  
Quality  
Company  
Home  
About Languages . Website Guide . About "Cookies" . National is QS 9000 Certified . Privacy/Security Statement .  
Contact Us . Site Terms & Conditions of Use . Copyright 2002 © National Semiconductor Corporation . My Preferences .  
Feedback  

相关型号:

LM9617CEA

AREA CCD IMAGE ARRAY,504 VERT PIXELS,664 HORIZ PIXELS,LLCC
NSC

LM9618

Monochrome CMOS Image Sensor VGA 30 FPS
NSC

LM9618IEA

IMAGE SENSOR-CMOS, 30fps, SQUARE
TI

LM96194

TruTherm⑩ Hardware Monitor with PI Fan Control for Workstation Management
NSC

LM96194

具有 β 补偿、风扇控制、硬件和电源监控器、采用 QFN 封装的 ±2°C 四路远程和本地温度传感器
TI

LM96194CISQ

TruTherm⑩ Hardware Monitor with PI Fan Control for Workstation Management
NSC

LM96194CISQ/NOPB

具有 β 补偿、风扇控制、硬件和电源监控器、采用 QFN 封装的 ±2°C 四路远程和本地温度传感器 | RHS | 48 | -40 to 100
TI

LM96194CISQX

TruTherm⑩ Hardware Monitor with PI Fan Control for Workstation Management
NSC

LM96194CISQX/NOPB

具有 β 补偿、风扇控制、硬件和电源监控器、采用 QFN 封装的 ±2°C 四路远程和本地温度传感器 | RHS | 48 | -40 to 100
TI

LM9619IEA

LM9619IEA
ONSEMI

LM9627

Color CMOS Image Sensor VGA 30 FPS
NSC

LM9627CCEA

Color CMOS Image Sensor VGA 30 FPS
NSC