CDCE62002 [TI]

Four Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs; 四个输出时钟发生器/抖动消除器具有集成双路VCO的
CDCE62002
型号: CDCE62002
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Four Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs
四个输出时钟发生器/抖动消除器具有集成双路VCO的

时钟发生器
文件: 总49页 (文件大小:1488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
Four Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs  
1
FEATURES  
Flexible Inputs With Innovative Smart  
Multiplexer Feature:  
Frequency Synthesizer With PLL/VCO and  
Partially Integrated Loop Filter  
Two Universal Differential Inputs Accept  
Frequencies from 1 MHz up to 500 MHz  
(LVPECL), 500 MHz (LVDS), or 250 MHz  
(LVCMOS).  
Fully Configurable Outputs Including  
Frequency and Output Format  
Smart Input Multiplexer Automatically  
Switches Between one of two Reference  
Inputs.  
One Auxiliary Input Accepts Single Ended  
Clock Source or Crystal. Auxiliary Input  
Accepts Crystals in the Range of  
2MHz–42MHz or an LVCMOS Input up to  
75MHz.  
Multiple Operational Modes Include Clock  
Generation via Crystal, SERDES Startup Mode,  
Jitter Cleaning, and Oscillator Based Holdover  
Mode.  
Clock Generator Mode Using Crystal Input  
Smart Input Multiplexer can be Configured  
to Automatically Switch Between Highest  
Priority Clock Source Available Allowing  
for Fail-Safe Operation.  
Integrated EEPROM Determines Device  
Configuration at Power-up.  
Excellent Jitter Performance  
Integrated Frequency Synthesizer Including  
PLL, Multiple VCOs, and Loop Filter:  
Typical Power Consumption 750mW at 3.3V  
Integrated EEPROM Stores Default Settings;  
Therefore, the Device can Power up in a  
Known, Predefined State.  
Full Programmability Facilitates Phase  
Noise Performance Optimization Enabling  
Jitter Cleaner Mode  
Offered in QFN-32 Package  
Programmable Charge Pump Gain and  
Loop Filter Settings  
ESD Protection Exceeds 2kV HBM  
Industrial Temperature Range –40°C to 85°C  
Unique Dual-VCO Architecture Supports a  
Wide Tuning Range 1.750 GHz – 2.356 GHz.  
APPLICATIONS  
Universal Output Blocks Support up to 2  
Differential, 4 Single-Ended, or Combinations  
of Differential or Single-Ended:  
Data Converter and Data Aggregation Clocking  
Wireless Infrastructure  
Switches and Routers  
Medical Electronics  
Military and Aerospace  
Industrial  
Clock Generation and Jitter Cleaning  
0.5 ps RMS (10 kHz to 20 MHz) Output  
Jitter Performance  
Low Output Phase Noise: –130 dBc/Hz  
at 1 MHz offset, Fc = 491.52 MHz  
Output Frequency Ranges From 10.94  
MHz to 1.175 GHz in Synthesizer Mode  
LVPECL, LVDS and LVCMOS  
Independent Output Dividers Support  
Divide Ratios for  
1,2,3,4,5,8,10,12,16,20,24 and 32.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION  
The CDCE62002 is a high performance clock generator featuring low output jitter, a high degree of configurability  
via a SPI interface, and programmable start up modes determined by on-chip EEPROM. Specifically tailored for  
clocking data converters and high-speed digital signals, the CDCE62002 achieves jitter performance under 0.5  
ps RMS(1). It incorporates a synthesizer block with partially integrated loop filter, a clock distribution block  
including programmable output formats, and an input block featuring an innovative smart multiplexer. The clock  
distribution block includes two individually programmable outputs that can be configured to provide different  
combinations of output formats (LVPECL, LVDS, LVCMOS). Each output can also be programmed to a unique  
output frequency (ranging from 10.94 MHz to 1.175 GHz(2)). If Both outputs are configured in single-ended mode  
(e.g., LVCMOS), the CDCE62002 supports up to four outputs. The input block includes one universal differential  
inputs which support frequencies up to 500 MHz and an auxiliary single ended input that can be connected to a  
CMOS level clock or configured to connect to an external AT-Cut crystal via an on board oscillator block. The  
smart input multiplexer has two modes of operation, manual and automatic. In manual mode, the user selects the  
synthesizer reference via the SPI interface. In automatic mode, the input multiplexer will automatically select  
between the highest priority input clock available.  
Data  
Cleaned Clock  
SERDES  
ASIC  
ASIC Clock  
Recovered Clock  
CDCE62002  
Figure 1. CDCE62002 Application Example  
(1) 10 kHz to 20 MHz integration bandwidth.  
(2) Frequency range depends on operational mode and output format selected.  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
DEVICE INFORMATION  
PIN FUNCTIONS  
Table 1. CDCE62002 Pin Functions(1)  
PIN  
TYPE  
DESCRIPTION  
NAME  
QFN  
VCC_OUT0  
VCC_OUT1  
9,12 13,16  
Power  
3.3V Supply for the Output Buffers.  
There is no internal connection between VCC and AVCC. It is recommended, that each VCC  
uses its own supply filter.  
VCC_PLLDIV  
VCC_PLLD  
VCC_PLLA  
VCC_VCO  
VCC_IN  
22  
4
Power  
Power  
3.3V Supply Power for the PLL circuitry.  
3.3V Supply Power for the PLL circuitry.  
28  
24  
31  
1
A. Power 3.3V Supply Power for the PLL circuitry.  
A. Power 3.3V Supply Power for the VCO Circuitry.  
Power  
3.3V Supply Power for Input Buffer Circuitry  
VCC_AUX  
GND_PLLDIV  
GND  
A. Power 3.3V Supply Power for Crystal/Auxiliary Input Buffer Circuitry  
21  
PAD  
7
Ground  
Ground  
OD  
Ground for PLL Divider circuitry. (short to GND)  
Ground is on Thermal PAD. See Layout recommendation  
SPI_MISO  
3-state LVCMOS Output that is enabled when SPI_LE is asserted low. It is the serial Data  
Output to the SPI bus interface.  
SPI_LE  
18  
I
LVCMOS input, control Latch Enable for Serial Programmable Interface.  
Note: The SPI_LE signal has to be high in order for the EEPROM to load correctly on the  
Rising edge of PD. The input has an internal 150-kpull-up resistor  
SPI_CLK  
17  
8
I
I
LVCMOS input, serial Control Clock Input for the SPI bus interface, with Hysteresis.  
SPI_MOSI  
LVCMOS input, Master Out Slave In as a serial Control Data Input to CDCE62002 for the  
SPI bus interface.  
PD  
6
I
PD or Power Down Pin is an active low pin and can be activated externally or via the  
corresponding Bit in SPI Register 2  
In case of PD is asserted , the Device shuts Down and after PD goes high the EEPROM  
Loads into RAM and the VCO core re-starts calibration, PLL will try to relock and the  
Output dividers will get re-initiated. The LVPECL outputs are static low and high  
respectively and the LVCMOS outputs are all low or high if inverted. The input has an  
internal 150-kpull-up resistor if left unconnected it will default to logic level “1”.  
Note: The SPI_LE signal has to be high in order for the EEPROM to load correctly into  
RAM on the Rising edge of PD.  
AUX_IN  
2
I
Auxiliary Input is a Crystal input pin that connect to an internal oscillator circuitry. This  
input can also be driven by an LVCMOS signal.  
This input also serves as the External Feedback Input that feeds directly to the PFD.  
Universal Input Buffer (LVPECL, LVDS, LVCMOS) positive input for the Reference Clock.  
REF+  
REF–  
29  
30  
I
I
Universal Input Buffer (LVPECL, LVDS,) negative input for the Reference Clock. In case of  
LVCMOS signaling pull-down this pin.  
PLL_LOCK  
TESTSYNC  
REG_CAP1  
REG_CAP2  
REG_CAP3  
REG_CAP4  
VBB  
32  
O
PLL Lock indicator  
19  
I
Test Point for Use for TI Internal SYNC Testing.  
5
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
O
Capacitor for the internal Regulator. Connect to a 10 µF Capacitor (Y5V)  
Capacitor for the internal Regulator. Connect to a 10 µF Capacitor (Y5V)  
Capacitor for the internal Regulator. Connect to a 10 µF Capacitor (Y5V)  
Capacitor for the internal Regulator. Connect to a 10 µF Capacitor (Y5V)  
Capacitor for the internal termination Voltage. Connect to a 1 µF Capacitor (Y5V)  
External Loop Filter Input Positive  
27  
20  
23  
3
EXT_LFP  
EXT_LFN  
25  
26  
External Loop Filter Input Negative.  
U0P:U0N  
U1P:U1N  
11,10 15,14  
The Main outputs of CDCE62002 are user definable and can be any combination of up to  
2 LVPECL outputs, 2 LVDS outputs or up to 4 LVCMOS outputs. The outputs are  
selectable via SPI interface. The power-up setting is EEPROM configurable.  
(1) NOTE: All VCC pins need to be connected for the device to operate properly.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): CDCE62002  
 
 
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
FUNCTIONAL DESCRIPTION  
EXT_LFP  
EXT_LFN  
U0 P  
Output  
Reference  
Divider  
Divider 0  
U0N  
REF_IN  
XTAL /  
AUX_IN  
U1 P  
U1N  
Output  
Divider 1  
Input  
Divider  
PFD /  
CP  
Prescaler  
Feedback  
Divider  
PD  
Interface  
&
SPI_LE  
SPI _CLK  
EEPROM  
Control  
SPI_MOSI  
SPI_MISO  
Figure 2. CDCE62002 Block Diagram  
The CDCE62002 comprises of four primary blocks: the interface and control block, the input block, the output  
block, and the synthesizer block. In order to determine which settings are appropriate for any specific  
combination of input/output frequencies, a basic understanding of these blocks is required. The interface and  
control block determines the state of the CDCE62002 at power-up based on the contents of the on-board  
EEPROM. In addition to the EEPROM, the SPI port is available to configure the CDCE62002 by writing directly  
to the device registers after power-up. The input block selects which of the two input ports is available for use by  
the synthesizer block. The output block provides two separate clock channels that are fully programmable. The  
synthesizer block multiplies and filters the input clock selected by the input block.  
NOTE:  
This Section of the data sheet provides a high-level description of the features of the  
CDCE62002 for purpose of understanding its capabilities. For a complete description  
of device registers and I/O, refer to the Device Configuration Section.  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
Interface and Control Block  
The CDCE62002 is a highly flexible and configurable architecture and as such contains a number of registers so  
that the user may specify device operation. The contents of nine 28-bit wide registers implemented in static RAM  
determine device configuration at all times. On power-up, the CDCE62002 copies the contents of the EEPROM  
into the RAM and the device begins operation based on the default configuration stored in the EEPROM.  
Systems that do not have a host system to communicate with the CDCE62002 use this method for device  
configuration. The CDCE62002 provides the ability to lock the EEPROM; enabling the designer to implement a  
fault tolerant design. After power-up, the host system may overwrite the contents of the RAM via the SPI (Serial  
Peripheral Interface) port. This enables the configuration and reconfiguration of the CDCE62002 during system  
operation. Finally, the device offers the ability to copy the contents of the RAM into EEPROM, if the EEPROM is  
unlocked.  
Static RAM Device Registers  
Interface  
PD  
Register 2  
Register  
Device  
SPI_ LE  
SPI_ CLK  
SPI_ MOSI  
SPI_ MISO  
&
Control  
1
Hardware  
Register 0  
EEPROM Device Registers  
Register 2  
Register  
1
Register 0  
Figure 3. CDCE62002 Interface and Control Block  
Input Block  
The Input Block includes one Universal Input Buffer and an Auxiliary Input. The Input Block buffers the incoming  
signals and facilitates signal routing to the Internal Synthesizer Block via the smart multiplexer (called the Smart  
MUX). The CDCE62002 can divide the REF_IN signal via the dividers present on the inputs of the first stage of  
the Smart MUX.  
Smart MUX  
Control  
LVPECL/LVDS 500 MHz  
Reference Divider  
LVCMOS 250 MHz  
REF_IN  
/1 - /8  
Synthesizer  
Reference  
Crystal: 2 MHz – 42 MHz XTAL/  
Single Ended: 2 MHz - 75 MHz AUX_IN  
Figure 4. CDCE62002 Input Block  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): CDCE62002  
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Synthesizer Block  
Figure 5 presents a high-level overview of the Synthesizer Block on the CDCE62002. This block contains the  
Phase lock loop, internal loop filter and dual Voltage controlled oscillators. Only one VCO is selected at a time.  
The loop is closed after a Prescaler divider that feeds the output stage the feedback divider.  
1.75 GHz –  
2.356 GHz  
SMART_MUX  
AUX_IN  
Input Divider  
/1 - /256  
SYNTH  
PFD/  
CP  
Prescaler  
/2,/3,/4,/5  
70 kHz –  
400 kHz  
/1,/2,/5,/8,/10,/16,/20  
Feedback Bypass Divider  
/8 - /1280  
Feedback Divider  
Figure 5. CDCE62002 Synthesizer Block  
Output Block  
Both identical output blocks incorporate a Clock Divider Module (CDM), and a universal output array buffer  
driver. If an individual clock output channel is not used, then the user should disable the CDM and Output Buffer  
for the unused channel to save device power. Each channel includes 4-bit in register “0” to control the divide  
ratio. The output divider supports divide ratios from divide by 1 (bypass the divider) 2,3,4,5,8,10,12,16,20,24 and  
32.  
Output Buffer Control  
Sync  
Pulse  
Enable  
UxP  
UxN  
SYNTH  
Clock DividerModule 0& 1  
LVDS  
LVPECL  
Figure 6. CDCE62002 Output Block  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
COMPUTING THE OUTPUT FREQUENCY  
Figure 7 presents the block diagram of the CDCE62002 synthesizer highlighting the clock path for a single  
output. It also identifies the following regions containing dividers comprising the complete clock path:  
R: Is the Reference divider values.  
O: The output divider value (see Output Block for more details)  
I: The input divider value (see Synthesizer Block for more details)  
P: The Prescaler divider value (see Synthesizer Block of more details)  
F: The cumulative divider value of all dividers falling within the feedback divider (see Synthesizer Block for  
more details)  
R
Reference  
Divider  
Fin  
O
Output  
U0P  
FOUT  
U0N  
Divider 0  
EXT_LFP  
EXT_LFN  
I
Input  
Divider  
P
U1P  
U1N  
Output  
PFD/  
CP  
Prescaler  
Divider 1  
Feedback  
Divider  
F
Figure 7. CDCE62002 Clock Path – Synthesizer  
With respect to Figure 7, any output frequency generated by the CDCE62002 relates to the input frequency  
connected to the Synthesizer Block by the following equation:  
F
FOUT = F  
×
IN  
R ×I×O  
(1)  
(2)  
Equation 1 holds true subject to the following constraints:  
1.750GHz < O×P×FOUT < 2.356GHz  
And the comparison frequency FCOMP  
40.0 kHz FCOMP 40 MHz  
Where:  
,
F
IN  
FCOMP  
=
R×I  
(3)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): CDCE62002  
 
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE / UNIT  
Supply voltage range VCC(2)  
–0.5 V to 4.6 V  
–0.5 V to VCC + 0.5 V  
–0.5 V to VCC + 0.5 V  
±20 mA  
(3)  
Input voltage range, VI  
(3)  
Output voltage range, VO  
Input Current (VI < 0, VI > VCC)  
Output current for LVPECL/LVCMOS Outputs (0 < VO < VCC  
)
±50 mA  
Maximum junction temperature, TJ  
125°C  
Storage temperature range, Tstg  
–65°C to 150°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All supply voltages have to be supplied simultaneously.  
(3) The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
THERMAL CHARACTERISTICS  
Package Thermal Resistance for QFN (RGZ) Package  
Airflow (lfm)  
θJP (°C/W)  
1.13  
θJA (°C/W)  
35  
0
JEDEC Compliant Board (3X3 VIAs on PAD)  
JEDEC Compliant Board (3X3 VIAs on PAD)  
JEDEC Compliant Board (3X3 VIAs on PAD)  
200  
400  
1.13  
28.3  
1.13  
27.2  
PACKAGE  
The CDCE62002 is packaged in a 32-Pin Lead Free “Green” Plastic Quad Flatpack Package with enhanced  
bottom thermal pad for heat dissipation. The Texas Instruments Package Designator is; RHB (S-PQFP-N32).  
Please refer to the Mechanical Data appendix at the end of this document for more information.  
ELECTRICAL CHARACTERISTICS  
recommended operating conditions for the CDCE62002 Device for under the specified Industrial temperature range of –40°C  
to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
POWER SUPPLY  
Supply voltage, VCC_OUT, VCC_PLLDIV, VCC_PLLD, VCC_IN, and VCC_AUX  
Analog Supply Voltage, VCC_PLLA, & VCC_VCO  
3
3
3.3  
3.3  
3.6  
3.6  
V
V
REF at 30.72MHz  
PLVPECL  
850  
750  
800  
mW  
mW  
mW  
Outputs are LVPECL  
Output 1 = 491.52 MHz  
Output 2 = 245.76 MHz  
In case of LVCMOS Outputs (1) =  
245.76MHz  
REF at 30.72MHz  
Outputs are LVDS  
PLVDS  
REF at 30.72MHz  
Outputs are LVCMOS  
PLVCMOS  
POFF  
PPD  
REF at 30.72MHz  
Dividers and Outputs are disabled  
Device is Powered Down  
450  
40  
mW  
mW  
DIFFERENTIAL INPUT MODE (REF_IN)  
Input amplitude, VINPP (VIN+ – VIN–  
)
0.1  
1.0  
1.3  
V
V
Common-mode input voltage, VIC  
VCC–03  
VI = VCC,  
VCC = 3.6 V  
IIH  
IIL  
Differential input current High (No internal Termination)  
Differential input current Low (No internal Termination)  
20  
µA  
VI = 0 V,  
VCC = 3.6 V  
–20  
0
µA  
Input Capacitance on REF_IN  
3
pF  
LVCMOS INPUT MODE (AUX_IN)  
VIL  
Low-level input voltage LVCMOS  
0.3 VCC  
V
(1) All typical values are at VCC = 3.3 V, temperature = 25°C.  
8
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
 
 
 
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
ELECTRICAL CHARACTERISTICS (continued)  
recommended operating conditions for the CDCE62002 Device for under the specified Industrial temperature range of –40°C  
to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
VCC  
–1.2  
UNIT  
V
VIH  
VIK  
IIH  
High-level input voltage LVCMOS  
LVCMOS input clamp voltage  
LVCMOS input current  
0.7 VCC  
VCC = 3 V, II = –18 mA  
V
VI = VCC, VCC = 3.6 V  
VI = 0 V, VCC = 3.6 V  
VI = 0 V or VCC 8  
300  
8
µA  
µA  
pF  
IIL  
LVCMOS input  
–10  
10  
CI  
Input capacitance (LVCMOS signals)  
CRYSTAL INPUT SPECIFICATIONS  
Crystal Shunt Capacitance  
10  
50  
pF  
Equivalent Series Resistance (ESR)  
LVCMOS INPUT MODE (SPI_CLK,SPI_MOSI,SPI_LE,PD, REF_IN)  
VIL  
VIH  
VIK  
IIH  
IIL  
Low-level input voltage LVCMOS  
High-level input voltage LVCMOS  
LVCMOS input clamp voltage  
LVCMOS input current VI =  
0
0.3 VCC  
VCC  
–1.2  
20  
V
V
0.7 VCC  
VCC = 3 V, II = –18 mA  
VCC, VCC = 3.6 V  
V
µA  
µA  
µA  
pF  
LVCMOS input (Except REF_IN)  
LVCMOS input (REF_IN)  
VI = 0 V, VCC = 3.6 V  
VI = 0 V, VCC = 3.6 V  
VI = 0 V or VCC 3  
–10  
–10  
–40  
IIL  
10  
CI  
Input capacitance (LVCMOS signals)  
3
SPI OUTPUT (MISO) / PLL  
IOH High-level output current  
IOL  
VCC = 3.3 V,  
VCC = 3.3 V,  
VO = 1.65 V  
–30  
33  
mA  
mA  
Low-level output current  
VO = 1.65 V  
High-level output voltage for LVCMOS  
outputs  
VOH  
VOL  
VCC = 3 V,  
VCC = 3 V,  
IOH = –100 µA  
VCC–0.5  
V
V
Low-level output voltage for LVCMOS  
outputs  
IOH = 100 µA  
0.3  
CO  
Output capacitance o MISO  
VCC = 3.3 V; VO = 0 V or VCC  
VO = VCC, VO = 0 V  
3
5
pF  
µA  
µA  
IOZH  
3-state output current  
IOZL  
–5  
EEPROM  
EEcyc  
EEret  
Programming cycle of EEPROM  
Data retention  
100  
10  
1000  
Cycles  
Years  
VBB ( INPUT BUFFER INTERNAL TERMINATION VOLTAGE REFERENCE)  
VBB Input termination voltage IBB = –0.2 mA, Depending on the setting  
INPUT BUFFERS INTERNAL TERMINATION RESISTORS (REF_IN)  
1.2  
1.9  
40  
V
Termination resistance  
PHASE DETECTOR  
fCPmax Charge pump frequency  
Single ended  
5
k  
0.04  
MHz  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): CDCE62002  
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
ELECTRICAL CHARACTERISTICS (Continued)  
recommended operating conditions for the CDCE62002 Device for under the specified Industrial temperature range of –40°C  
to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
LVCMOS  
fclk  
Output frequency, see Figure below  
Load = 5 pF to GND  
250 MHz  
V
VOH  
VOL  
High-level output voltage for LVCMOS outputs VCC = min to max IOH = –100 µA  
Low-level output voltage for LVCMOS outputs VCC = min to max IOL = 100 µA  
VCC–0.5  
0.3  
V
IOH  
High-level output current  
VCC = 3.3 V  
VCC = 3.3 V  
VO = 1.65 V  
VO = 1.65 V  
–30  
33  
mA  
mA  
ps  
IOL  
Low-level output current  
tsko  
Skew, output to output For Y0 to Y1  
Both Outputs set at 122.88 MHz,  
Reference = 30.72 MHz  
75  
CO  
Output capacitance on Y0 to Y1  
Tristate LVCMOS output current  
Tristate LVCMOS output current  
Power Down output current  
Power Down output current  
LVCMOS  
VCC = 3.3 V; VO = 0 V or VCC  
VO = VCC  
5
5
pF  
µA  
µA  
µA  
µA  
IOZH  
IOZL  
VO = 0 V  
-5  
IOPDH  
IOPDL  
Duty cycle  
tslew-rate  
VO = VCC  
25  
5
VO = 0 V  
45%  
3.6  
55%  
Output rise/fall slew rate  
5.2  
V/ns  
(1) All typical values are at VCC = 3.3 V, temperature = 25°C.  
5 pF  
LVCMOS  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
ELECTRICAL CHARACTERISTICS (Continued)  
recommended operating conditions for the CDCE62002 Device for under the specified Industrial temperature range of –40°C  
to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
LVDS OUTPUT  
fclk  
Output frequency  
Configuration Load (see Figure below)  
0
800  
550  
50  
MHz  
mV  
mV  
V
|VOD|  
ΔVOD  
VOS  
Differential output voltage  
LVDS VOD Magnitude Change  
Offset Voltage  
RL = 100 Ω  
270  
–40°C to 85°C  
1.24  
40  
ΔVOS  
VOS Magnitude Change  
mV  
mA  
mA  
ps  
Short Circuit Vout+ to Ground  
Short Circuit Vout- to Ground  
Skew, output to output For Y0 to Y1  
VOUT = 0  
VOUT = 0  
27  
27  
tsk(o)  
Both Outputs set at 122.88 MHz  
Reference = 30.72 MHz  
10  
5
CO  
Output capacitance on Y0 to Y1  
Power Down output current  
Power Down output current  
Duty Cycle  
VCC = 3.3 V; VO = 0 V or VCC  
VO= VCC  
pF  
µA  
µA  
IOPDH  
IOPDL  
25  
5
VO= 0 V  
45%  
55%  
190  
tr / tf  
Rise and fall time  
20% to 80% of Voutpp  
110  
160  
1.7  
ps  
ns  
LVCMOS-TO-LVDS  
tskP_C  
Output skew between LVCMOS and LVDS outputs VCC/2 to Crosspoint  
1.4  
2.0  
(1) All typical values are at VCC = 3.3 V, temperature = 25°C.  
LVDS DC Termination Test  
100Ω  
Oscilloscope  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
ELECTRICAL CHARACTERISTICS (Continued)  
recommended operating conditions for the CDCE62002 Device for under the specified Industrial temperature range of –40°C  
to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
LVPECL OUTPUT  
fclk  
Output frequency,  
Configuration Load (see Figure below)  
0
VCC –1.1  
VCC –2.02  
510  
1175  
VCC –0.88  
VCC –1.48  
870  
MHz  
V
VOH  
VOL  
|VOD|  
tsko  
LVPECL high-level output voltage  
LVPECL low-level output voltage  
Differential output voltage  
Skew, output to output For Y0 to Y1  
Output capacitance on Y0 to Y1  
Power Down output current  
Power Down output current  
Duty Cycle  
Load  
Load  
V
mV  
ps  
Both Outputs set at 122.88 MHz  
VCC = 3.3 V; VO = 0 V or VCC  
VO= VCC  
15  
5
pF  
µA  
µA  
CO  
IOPDH  
25  
5
IOPDL  
VO= 0 V  
45%  
55  
55%  
735  
tr / tf  
Rise and fall time  
20% to 80% of Voutpp  
Crosspoint to Crosspoint  
75  
200  
1.8  
ps  
ps  
ns  
LVDS-TO- LVPECL  
tskP_C  
Output skew between LVDS and LVPECL outputs  
130  
1.6  
280  
2.2  
LVCMOS-TO- LVPECL  
tskP_C  
Output skew between LVCMOS and LVPECL outputs VCC/2 to Crosspoint  
LVPECL Hi-PERFORMANCE OUTPUT  
VOH  
LVPECL high-level output voltage  
LVPECL low-level output voltage  
Differential output voltage  
Rise and fall time  
Load  
Load  
VCC –1.11  
VCC –2.06  
670  
VCC –0.91  
VCC –1.84  
950  
V
V
VOL  
|VOD|  
tr / tf  
mV  
ps  
20% to 80% of Voutpp  
55  
75  
135  
(1) All typical values are at VCC = 3.3 V, temperature = 25°C.  
LVPECL AC Termination Test  
LVPECL DC Termination Test  
50W  
Oscilloscope  
50W  
150W  
150W  
50W  
50W  
Oscilloscope  
Vcc-2  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
HIGH-PERFORMANCE LVPECL  
LVPECL OUTPUT VOLTAGE SWING  
OUTPUT VOLTAGE SWING  
vs  
vs  
FREQUENCY  
FREQUENCY  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
1200  
1150  
1100  
1050  
1000  
950  
T = 25°C  
R = 50 to VCC − 2 V  
L
T = 25°C  
R = 50 to VCC − 2 V  
L
A
A
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3.6 V  
VCC = 3.3 V  
900  
850  
800  
750  
VCC = 3 V  
VCC = 3 V  
700  
650  
0
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
800  
1000  
1200  
f − Frequency − MHz  
f − Frequency − MHz  
G002  
G001  
Figure 8.  
Figure 9.  
LVDS OUTPUT VOLTAGE SWING  
LVCMOS OUTPUT VOLTAGE SWING  
vs  
vs  
FREQUENCY  
FREQUENCY  
500  
475  
450  
425  
400  
375  
350  
325  
300  
275  
250  
225  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
T = 25°C  
R = 100 Ω  
L
T = 25°C  
C = 5 pF  
L
A
A
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3 V  
VCC = 3 V  
0
100 200 300 400 500 600 700 800 900  
f − Frequency − MHz  
50  
100  
150  
200  
250  
300  
f − Frequency − MHz  
G003  
G004  
Figure 10.  
Figure 11.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): CDCE62002  
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
TIMING REQUIREMENTS  
over recommended ranges of supply voltage, load and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
REF_IN REQUIREMENTS  
fREF – Diff IN-DIV  
Maximum clock frequency applied to reference divider when (Register 0 Bit 9 = 1)  
(Reg 0 RAM bit 9 = 1)  
500  
250  
MHz  
MHz  
MHz  
fREF – Diff REF_DIV  
Maximum clock frequency applied to reference divider when (Register 0 Bit 9 = 0)  
(Reg 0 RAM bit 9 = 0)  
fREF– Single  
For Single ended Inputs ( LVCMOS) on REF_IN  
Duty cycle of REF_IN at VCC / 2  
250  
60%  
60%  
Duty Cycle Single  
Duty Cycle Diff  
40%  
40%  
Duty cycle of REF_IN at VCC / 2  
AUXILARY_IN REQUIREMENTS  
fREF – Single  
For Single ended Inputs (LVCMOS) on AUX_IN  
2
2
75  
42  
MHz  
MHz  
fREF – Crystal  
PD REQUIREMENTS  
tr / tf  
For Single ended Inputs (AT-Cut Crystal Input)  
Rise and fall time of the PD signal from 20% to 80% of VCC  
4
ns  
PHASE NOISE ANALYSIS  
Table 2. Phase Noise for 30.72MHz External Reference  
Phase Noise Specifications under following configuration: VCO = 1966.08 MHz, REF_IN = 30.72MHz,  
PFD Frequency = 30.72MHz, Charge Pump Current = 1.5mA Loop BW = 400kHz at 3.3V and 25°C.  
PHASE NOISE  
AT  
Reference  
30.72MHz  
LVPECL-HP  
491.52MHz  
LVPECL  
491.52MHz  
LVDS-HP  
491.52MHz  
LVDS  
491.52MHz  
LVCMOS-HP  
122.88MHz  
LVCMOS  
122.88MHz  
UNIT  
10Hz  
–108  
–130  
–134  
–152  
–156  
–157  
–84  
–98  
–84  
–98  
–85  
–98  
–85  
–97  
–97  
–97  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
100Hz  
1kHz  
–110  
–118  
–130  
–133  
–143  
–152  
–152  
–111  
–118  
–130  
–133  
–142  
–151  
–151  
–106  
–118  
–121  
–131  
–146  
–146  
–106  
–118  
–121  
–131  
–146  
–146  
–106  
–118  
–121  
–130  
–146  
–146  
–106  
–118  
–121  
–130  
–145  
–145  
10kHz  
100kHz  
1MHz  
10MHz  
20MHz  
Jitter(RMS)  
10k~20MHz  
195  
(10k~20Mhz)  
319  
316  
332.4  
332.2  
366.5  
372.1  
fs  
Table 3. Phase Noise for 25MHz Crystal Reference  
Phase Noise Specifications under following configuration: VCO = 2000.00 MHz, AUX_IN -REF = 25.00MHz,  
PFD Frequency = 25.00MHz, Charge Pump Current = 1.5mA Loop BW = 400kHz 3.3V and 25°C.  
Phase Noise at  
Reference  
25.00MHz  
LVPECL-HP  
500.00MHz  
LVDS-HP  
250.00MHz  
LVCMOS-HP  
125.00MHz  
UNIT  
10Hz  
–72  
–97  
–72  
–97  
–79  
–103  
–118  
–126  
–130  
–142  
–151  
–151  
443  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fs  
100Hz  
1kHz  
–111  
–120  
–124  
–136  
–147  
–148  
426  
–111  
–120  
–124  
–136  
–147  
–148  
426  
10kHz  
100kHz  
1MHz  
10MHz  
20MHz  
Jitter(RMS)  
10k~20MHz  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
 
 
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
OUTPUT TO OUTPUT ISOLATION  
Measurement Method  
1. Connect output 1 to the phase noise and Spectrum analyzer.  
2. Measure spurious on Outputs 1.  
3. Enable aggressor channel 0  
4. Measure spurious on Output 1  
5. The difference between the spurious levels of Outputs 1 before and after enabling the aggressor channel determine the output-to-output  
isolation performance recorded.  
Table 4. Output to Output Isolation  
WORST CASE SPUR  
UNIT  
The Output to Output Isolation was tested at 3.3V supply and 25°C ambient temperature (Default Configuration):  
Output 1  
Measured Channel  
In LVDS Signaling at 125MHz  
-70  
dB  
Output 0  
Aggressor Channel  
LVPECL 156.25MHz  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): CDCE62002  
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
SPI CONTROL INTERFACE TIMING  
t1  
t4  
t5  
SPI_CLK  
SPI_MOSI  
SPI_LE  
t2  
t3  
Bit0  
Bit1  
Bit29  
Bit30  
Bit31  
t7  
t6  
Figure 12. Timing Diagram for SPI Write Command  
t4  
t5  
SPI_CLK  
t2  
t3  
Bit30  
Bit31  
SPI_MOSI  
SPI_MISO  
SPI_LE  
Bit1  
Bit2  
Bit0  
t7  
t6  
t8  
Figure 13. Timing Diagram for SPI Read Command  
Table 5. SPI Bus Timing Characteristics  
SPI BUS TIMINGS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
fClock  
t1  
Clock Frequency for the SPI_CLK  
SPI_LE to SPI_CLK setup time  
SPI_MOSI to SPI_CLK setup time  
SPI_MOSI to SPI_CLK hold time  
SPI_CLK high duration  
20  
MHz  
ns  
10  
10  
10  
25  
25  
10  
20  
10  
t2  
ns  
t3  
ns  
t4  
ns  
t5  
SPI_CLK low duration  
ns  
t6  
SPI_CLK to SPI_LE Setup time  
SPI_LE Pulse Width  
ns  
t7  
ns  
t8  
SPI_MISO to SPI_CLK Data Valid (First Valid Bit after LE)  
ns  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
DEVICE CONFIGURATION  
The Functional Description Section described four different functional blocks contained within the CDCE62002.  
Figure 14 depicts these blocks along with a high-level functional block diagram of the circuit elements comprising  
each block. The balance of this section focuses on a detailed discussion of each functional block from the  
perspective of how to configure them.  
Input  
Block  
Output Blocks  
Synthesizer  
Block  
Output  
Channel 0  
Smart  
MUX  
Frequency  
Synthesizer  
Output  
Channel 1  
Interface  
&
Control  
Block  
Interface  
&
Control  
Device  
Registers  
EEPROM  
Figure 14. CDCE62002 Circuit Blocks  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
INTERFACE and CONTROL BLOCK  
The Interface and Control Block includes a SPI interface, four control pins, a non-volatile memory array in which  
the device stores default configuration data, and an array of device registers implemented in Static RAM. This  
RAM, also called the device registers, configures all hardware within the CDCE62002.  
Device Registers  
Register2  
Static RAM  
Interface  
PD  
Device  
Hardware  
SPI_ LE  
SPI_ CLK  
SPI_ MOSI  
SPI_ MISO  
&
Control  
Register1  
Register0  
Device Registers  
Register2  
EEPROM  
Register1  
Register0  
Figure 15. CDCE62002 Interface and Control Block  
18  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
SPI (Serial Peripheral Interface)  
The serial interface of CDCE62002 is a simple bidirectional SPI interface for writing and reading to and from the  
device registers. It implements a low speed serial communications link in a master/slave topology in which the  
CDCE62002 is a slave. The SPI consists of four signals:  
SPI_CLK: Serial Clock (Output from Master) – the CDCE62002 clocks data in and out on the rising edge of SPI_CLK. Data transitions  
therefore occur on the falling edge of the clock.  
SPI_MOSI: Master Output Slave Input (Output from Master).  
SPI_MISO: Master Input Slave Output (Output from Slave)  
SPI_LE: Latch Enable (Output from Master). The falling edge of SPI_LE initiates a transfer. If SPI_LE is high, no data transfer can take  
place.  
The CDCE62002 implements data fields that are 28-bits wide. In addition, it contains 3 registers, each  
comprising a 28 bit data field. Therefore, accessing the CDCE62002 requires that the host program append a  
4-bit address field to the front of the data field as follows:  
Device Register N  
27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPI Register  
Address  
Bits  
(4)  
Data Bits (28)  
First In/  
First Out  
Last in/  
Last out  
19 18 17 16 15  
27 26 25 24 23 22 21 20  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
3
2
1
0
SPI Master (Host)  
SPI_CLK  
SPI Slave (CDCE62002)  
SPI_CLK  
SPI_LE  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
SPI_LE  
SPI_MOSI  
SPI_MISO  
SPI_LE  
27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
3
2
1
0
SPI_MOSI  
SPI_MISO  
Figure 16. CDCE62002 SPI Communications Format  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
CDCE62002 SPI Command Structure  
The CDCE62002 supports four commands issued by the Master via the SPI:  
Write to RAM  
Read Command  
Copy RAM to EEPROM – unlock  
Copy RAM to EEPROM – lock  
Table 6 provides a summary of the CDCE62002 SPI command structure. The host (master) constructs a Write to  
RAM command by specifying the appropriate register address in the address field and appends this value to the  
beginning of the data field. Therefore, a valid command stream must include 32 bits, transmitted LSB first. The  
host must issue a Read Command to initiate a data transfer from the CDCE62002 back to the host. This  
command specifies the address of the register of interest in the data field.  
Table 6. CDCE62002 SPI Command Structure  
Data Field (28 Bits)  
Addr Field  
(4 BIts)  
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
Register  
Operation  
NVM  
Yes  
9
X
X
X
0
0
1
8
X
X
X
0
0
0
7
X
X
X
0
0
0
6
X
X
X
0
0
0
5
X
X
X
0
0
0
4
X
X
X
0
0
0
3
X
X
X
A
0
2
X
X
X
A
0
1
X
X
X
A
0
0
X
X
X
A
1
3
0
0
0
1
1
1
2
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
0
0
1
1
0
1
2
Write to RAM  
Write to RAM  
Status/Control  
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
0
X
X
X
0
0
1
X
X
X
0
0
0
Yes  
No  
Instruction Read Command  
Instruction RAM EEPROM  
Instruction RAM EEPROM  
No  
Unlock  
(1)  
Lock  
0
0
1
1
(1) CAUTION: After execution of this command, the EEPROM is permanently locked. After locking the EEPROM, device configuration can  
only be changed via Write to RAM after power-up; however, the EEPROM can no longer be changed.  
20  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
Writing to the CDCE62002  
Figure 17 illustrates a Write to RAM operation. Notice that the latching of the first data bit in the data stream (Bit  
0) occurs on the first rising edge of SPI_CLK after SPI_LE transitions from a high to a low. For the CDCE62002,  
data transitions occur on the falling edge of SPI_CLK. A rising edge on SPI_LE signals to the CDCE62002 that  
the transmission of the last bit in the stream (Bit 31) has occurred.  
SPI_CLK  
Bit0  
Bit1  
Bit29  
Bit30  
Bit31  
SPI_MOSI  
SPI_LE  
Figure 17. CDCE62002 SPI Write Operation  
Reading from the CDCE62002  
Figure 18 shows how the CDCE62002 executes a Read Command. The SPI master first issues a Read  
Command to initiate a data transfer from the CDCE62002 back to the host (see Table 6). This command  
specifies the address of the register of interest. By transitioning SPI_LE from a low to a high, the CDCE62002  
resolves the address specified in the appropriate bits of the data field. The host drives SPI_LE low and the  
CDCE62002 presents the data present in the register specified in the Read Command on SPI_MISO.  
SPI_CLK  
Bit30  
Bit31  
SPI_MOSI  
Bit0  
Bit1  
Bit2  
SPI_MISO  
SPI_LE  
Figure 18. CDCE62002 Read Operation  
Writing to EEPROM  
After the CDCE62002 detects a power-up and completes a reset cycle, it copies the contents of the on-board  
EEPROM into the Device Registers. Therefore, the CDCE62002 initializes into a known state predefined by the  
user. The host issues one of two special commands shown in Table 6 to copy the contents of Device Registers 0  
through 1 into EERPOM. They include:  
Copy RAM to EEPROM – Unlock, Execution of this command can happen many times.  
Copy RAM to EEPROM – Lock: Execution of this command can happen only once; after which the EEPROM is permanently locked.  
After either command is initiated, power must remain stable and the host must not access the CDCE62002 for at  
least 50 ms to allow the EEPROM to complete the write cycle and to avoid the possibility of EEPROM corruption.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): CDCE62002  
 
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Device Registers: Register 0  
Table 7. CDCE62002 Register 0 Bit Definitions  
SPI RAM  
BIT BIT  
BIT  
NAME  
RELATED  
BLOCK  
DESCRIPTION / FUNCTION  
0
1
2
3
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
0
0
0
0
4
5
0
1
INBUFSELX  
INBUFSELY  
INBUFSELX  
INBUFSELY  
Input Buffer Select (LVPECL,LVDS or LVCMOS)  
XY(00 ) Disabled, (01) LVPECL, (10) LVDS, (11) LVCMOS  
The VBB internal Biasing will be determined from this setting  
EEPROM  
EEPROM  
6
7
2
3
REFSEL  
AUXSEL  
Smart MUX  
Bits(2,3)  
See specific section for more detailed description and configuration  
setup.  
00 – RESERVED  
EEPROM  
EEPROM  
10 – REF_IN Select  
01– AUX_IN Select  
11 – Auto Select ( Reference then AUX)  
8
4
5
6
7
8
9
ACDCSEL  
Input Buffers  
Input Buffers  
If Set to “1” DC Termination, If set to “0” AC Termination  
If Set to “0” Input Buffer Internal Termination Enabled  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
9
TERMSEL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
REFDIVIDE 0  
REFDIVIDE 1  
REFDIVIDE 2  
REFDIVIDE 3  
Reference Divider Settings.  
See specific section for more detailed description and configuration  
setup.  
10 EXTFEEDBACK  
11 I70TEST  
External Feedback to PFD from AUX Input enabled when set to “1”  
Set to “0” for Normal Operation.  
TEST  
12 ATETEST  
TEST  
Set to “0” for Normal Operation.  
13 LOCKW(0)  
PLL Lock  
PLL Lock  
Output 0  
Output 0  
Output 0  
Output 0  
Output 1  
Output 1  
Output 1  
Output 1  
Output 0 & 1  
Lock-detect window Bit 0  
14 LOCKW(1)  
Lock-detect window Bit 1  
15 OUT0DIVRSEL0  
16 OUT0DIVRSEL1  
17 OUT0DIVRSEL2  
18 OUT0DIVRSEL3  
19 OUT1DIVRSEL0  
20 OUT1DIVRSEL1  
21 OUT1DIVRSEL2  
22 OUT1DIVRSEL3  
23 HIPERORMANCE  
Output 0 Divider Settings.  
See specific section for more detailed description and configuration  
setup.  
Output 1 Divider Settings.  
See specific section for more detailed description and configuration  
setup.  
High Performance, If this Bit is set to “1”:  
– Increase the Bias in the device to achieve Best Phase Noise on the  
Output Divider  
– It changes the LVPECL Buffer to Hi Swing in LVPECL.  
– It increases the current consumption by 20mA (Typical)  
28  
29  
30  
31  
24 OUTBUFSEL0X  
25 OUTBUFSEL0Y  
26 OUTBUFSEL1X  
27 OUTBUFSEL1Y  
Output 0  
Output 0  
Output 1  
Output 1  
Output Buffer mode select for OUTPUT “0 ”.  
(X,Y)=00:Disabled, 01:LVCMOS, 10:LVDS, 11:LVPECL  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
Output Buffer mode select for OUTPUT “1 ”.  
(X,Y)=00:Disabled, 01:LVCMOS, 10:LVDS, 11:LVPECL  
22  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
Table 8. Reference Input AC/DC Input Termination Table  
REFERENCE INPUT  
RAM BITS  
VBB VOLTAGE  
REF+  
REF–  
TERMINATION  
TERMINATION  
INTERNAL  
0
1
4
5
GENERATOR  
5kto VBB  
5kto VBB  
TERMINATION  
External Termination  
Disabled  
X
0
1
0
0
1
1
X
0
1
1
1
0
0
X
X
X
0
1
0
1
1
X
0
0
0
0
0
OFF  
OFF  
OFF  
1.9V  
1.0V  
1.2V  
1.2V  
OPEN  
OPEN  
OPEN  
OPEN  
LVCMOS  
OPEN  
OPEN  
LVPECL-AC  
LVPECL-DC  
LVDS-AC  
CLOSED  
CLOSED  
CLOSED  
CLOSED  
CLOSED  
CLOSED  
CLOSED  
CLOSED  
LVDS-DC  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): CDCE62002  
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Device Registers: Register 1  
Table 9. CDCE62002 Register 1 Bit Definitions  
SPI  
BIT  
RAM  
BIT  
BIT NAME  
RELATED  
BLOCK  
DESCRIPTION / FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
1
Address 1  
0
2
Address 2  
0
3
Address 3  
0
4
0
1
SELVCO  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Select  
Input Divider Settings.  
See specific section for more detailed description and configuration  
setup.  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
5
SELINDIV0  
SELINDIV1  
SELINDIV2  
SELINDIV3  
SELINDIV4  
SELINDIV5  
SELINDIV6  
SELINDIV7  
SELPRESCA  
SELPRESCB  
6
2
7
3
8
4
9
5
10  
11  
12  
13  
14  
6
7
8
9
PRESCALER Setting.  
See specific section for more detailed description and configuration  
setup.  
10  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
SELFBDIV0  
SELFBDIV1  
SELFBDIV2  
SELFBDIV3  
SELFBDIV4  
SELFBDIV5  
SELFBDIV6  
SELFBDIV7  
SELBPDIV0  
SELBPDIV1  
SELBPDIV2  
LFRCSEL0  
LFRCSEL1  
LFRCSEL2  
LFRCSEL3  
EELOCK  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
Status  
FEEDBACK DIVIDER Setting  
See specific section for more detailed description and configuration  
setup.  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
BYPASS DIVIDER Setting ( 6 settings + Disable + Enable)  
See specific section for more detailed description and configuration  
setup.  
Loop Filter & Charge Pump Control Setting  
See specific section for more detailed description and configuration  
setup.  
If EELOCK reads "0" EEPROM is unlocked. If EELOCK reads "1," then  
EEPROM is locked.  
31  
27  
RESERVED  
Status  
Read Only always reads "1"  
EEPROM  
24  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
Device Registers: Register 2  
Table 10. CDCE62002 Register 2 Bit Definitions  
SPI  
BIT  
RAM BIT NAME  
BIT  
RELATED  
BLOCK  
DESCRIPTION / FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
0
Address 1  
1
2
Address 2  
0
3
Address 3  
0
4
0
1
2
3
4
5
6
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PLLLOCKPIN  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Status  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
5
6
7
8
9
10  
Read Only: Status of the PLL Lock Pin Driven by the device. PLL Lock  
= 1  
11  
12  
7
8
PD  
Control  
Control  
Power Down mode “On” when set to “0”, Off when set to “1” is normal  
operation (PD bit does not load the EEPROM into RAM when set to  
"1").  
RAM  
RAM  
SYNC  
If toggled “1-0-1” this bit forces “SYNC“ resynchronize the Output  
Dividers.  
13  
14  
15  
16  
17  
9
RESERVED  
VERSION0  
VERSION1  
VERSION2  
PLLRESET  
Diagnostics  
Read Only  
Read Only  
Read Only  
VCO Core  
TI Test Registers. For TI Use Only  
RAM  
RAM  
RAM  
RAM  
RAM  
10  
11  
12  
13  
If toggled “0-1-0” it Resets PLL to start calibration. “0” is normal  
operation.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TITSTCFG0  
TITSTCFG1  
TITSTCFG2  
TITSTCFG3  
RESERVED  
RESERVED  
RESERVED  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
TI Test Registers. For TI Use Only  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): CDCE62002  
 
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Device Control  
Figure 19 provides a conceptual explanation of the CDCE62002 Device operation. Table 11 defines how the  
device behaves in each of the operational states.  
Power  
Applied  
Power ON  
Device  
Reset  
OFF  
Delay  
Finished  
PLLRESET= ON  
VCO  
CAL  
Sync = ON  
Power Down = ON  
Power Down  
Active Mode  
Sync  
Sync = OFF  
Figure 19. CDCE62002 Device State Control Diagram  
Table 11. CDCE62002 Device State Definitions  
Output  
Divider  
Status  
Output  
Buffer  
Status  
SPI Port  
Status  
PLL  
Status  
State  
Device Behavior  
Entered Via  
Exited Via  
Power-On  
Reset  
After device power supply reaches  
approximately 2.35V, the contents of  
EEPROM are copied into the Device  
Registers, thereby initializing the device  
hardware .  
Power applied to the device or  
upon exit from Power Down State  
via the PD pin set HIGH.  
Power On Reset and EEPROM  
loading delays are finished OR the  
PD pin is set LOW.  
OFF  
Disabled Disabled  
OFF  
VCO CAL  
The voltage controlled oscillator is  
calibrated based on the PLL settings  
and the incoming reference clock. After  
the VCO has been calibrated, the device  
enters Active Mode automatically.  
Delay process in the Power-On  
Reset State is finished or  
PLLRESET=ON  
Calibration Process in completed  
ON  
Enabled  
Enabled  
Disabled  
OFF  
Active Mode  
Power Down  
Normal Operation  
CAL Done (VCO calibration  
process finished) or Sync = OFF  
(from Sync State).  
Power Down or PLLRESET=ON  
PD pin is pulled HIGH.  
ON  
ON  
Disabled  
or  
Enabled  
Disabled or  
Enabled  
Used to shut down all hardware and  
Resets the device after exiting the  
Power Down State. Therefore, the  
EEPROM contents will eventually be  
copied into RAM after the Power Down  
State is exited.  
PD pin is pulled LOW.  
Disabled Disabled  
Disabled  
Sync  
Sync synchronizes both outputs dividers Sync Bit in device register 2 bit 8  
Sync bit in device register 2 bit 8 is  
set HIGH  
ON  
Enabled  
Disabled  
Disabled  
so that they begin counting at the same  
time  
is set LOW  
External Control Pins  
Power Down (PD)  
When pulled LOW, PD activates the Power Down state which shuts down all hardware and resets the device.  
Restoring PD high will cause the CDCE62002 to exit the Power Down State. This causes the device to behave  
as if it has been powered up including copying the EEPROM contents into RAM. PD pin also has a shadowed  
PD bit residing in Register 2 Bit 7. When asserted Low it puts the device in Power Down Mode, but it does not  
load the EEPROM when the bits is disserted.  
NOTE:  
26  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
 
 
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
The SPI_LE signal has to be high in order for the EEPROM to load correctly into RAM  
on the Rising edge of PD Pin.  
FACTORY DEFAULT PROGRAMMING  
The CDCE62002 is factory pre-programmed to work with 25 MHz input from the reference input or from the  
auxiliary input with auto switching enabled. An internal PFD of 6.25 MHz and about 400 KHz loop bandwidth.  
Output 0 is pre-programmed as an LCPECL driver to output 156.25 MHz and output 1 is pre-programmed as  
LVDS driver to output 125 MHz.  
U0P  
U0N  
LVPECL  
156.25 MHz  
z  
25 MHz  
XTAL  
25 MHz  
2
U1P  
U1N  
CDCE62002  
Default Programing  
LVDS  
125 MHz  
EEPROM  
Register Content  
72A000E0  
Register 0  
Register 1  
8389A061  
Figure 20. CDCE62002 Default Factory Programming  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): CDCE62002  
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
INPUT BLOCK  
The Input Block includes one Universal Input Buffers, an Auxiliary Input, and a Smart Multiplexer.  
Register 0  
2
3
Smart MUX  
Control  
Register 0  
1
0
Smart Multiplexer  
Universal Input Buffers  
Smart  
MUX  
LVPECL : 500 MHz  
LVDS: 500 MHz  
LVCMOS : 250 MHz  
Pre-Divider  
/1 or /2  
Reference Divider  
/1 - /8  
REF_IN  
XTAL/  
9
8
7
6
Auxiliary Input  
Register 0  
Crystal: 2 MHz – 42 MHz  
Single Ended : 2 MHz - 75 MHz AUX_IN  
Figure 21. CDCE62002 Input Block With References to Registers  
The CDCE62002 provides a Reference Divider that divides the clock exiting Reference (REF_IN) input buffer.  
Table 12. CDCE62002 Reference Divider Settings  
REFERENCE DIVIDER  
REFDIVIDE2 REFDIVIDE1  
0.8 0.7  
TOTAL  
DIVIDE  
RATIO  
BIT NAME →  
REFDIVIDE3  
REFDIVIDE0  
REGISTER BIT →  
0.9  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0.6  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
/1  
/2  
/3  
/4  
/5  
/6  
/7  
/8  
/2  
/4  
/6  
/8  
/10  
/12  
/14  
/16  
28  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
Reference Input Buffer  
Figure 22 shows the key elements of a Universal Input Buffer (UIB). A UIB supports multiple formats along with  
different termination and coupling schemes. The CDCE62002 implements the UIB by including on board  
switched termination, a programmable bias voltage generator, and a multiplexer. The CDCE62002 provides a  
high degree of configurability on the UIB to facilitate most existing clock input formats.  
REF_IN  
Input Buffer Select  
Input Buffer  
Bit Name-->  
INBUFSELX  
INBUFSELY  
Mode  
Register.Bit -->  
0.0  
0.1  
Disabled  
LVPECL  
LVDS  
0
0
0
1
1
1
0
1
Universal Input Control  
Register0  
LVCMOS  
1
0
PN  
PP  
Settings  
SWITCH Status VBB  
0.0  
0.1  
0.4  
0.5  
Register 0  
5k  
5k  
INBUFSELX  
INBUFSELY ACDCSEL TERMSEL  
P
N
VBB  
OFF  
1.2V  
1.2V  
1.9V  
1.2V  
0
1
4
5
X
0
1
0
X
1
0
1
X
1
1
0
1
0
0
OFF  
ON  
OFF  
ON  
V
bb  
ON ON  
ON ON  
ON ON  
V
bb  
0
0
1uF  
1
0
0
Figure 22. CDCE62002 Universal Input Buffer  
Smart Multiplexer Dividers  
Register 0  
2
3
Setting  
REFSEL AUXSEL  
Smart Mux  
Mode  
0.2  
0
0.3  
0
Smart MUX  
Control  
Register 0  
Reserved  
0
1
1
0
REF Select  
AUX Select  
Auto Select  
Smart Multiplexer  
0
1
1
1
Smart  
MUX  
Reference Divider  
/1 - /8  
Pre-Divider  
/1 or /2  
REF_IN  
9
8
7
6
Register 0  
XTAL/  
AUX_IN  
Figure 23. CDCE62002 Smart Multiplexer  
In Auto Select Mode the Smart Mux switches automatically between Reference input and Auxiliary input with a  
preference to the Reference input. In order for the Smart Mux to function correctly the frequency after the  
reference divider and the Auxiliary Input signal frequency should be within 20% of each other or one of them  
should be zero or ground. In This mode a valid frequency needs to be present on AUX_IN before the /PD is  
deasserted or power is applied.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): CDCE62002  
 
 
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Auxiliary Input Port  
The auxiliary input on the CDCE62002 is designed to connect to an AT-Cut Crystal with a total load capacitance  
of 8 pF to 18pF. One side of the crystal connects to Ground while the other side connects to the Auxiliary input of  
the device. The circuit accepts crystals from 2 to 42 MHz.  
Since the Auxiliary input operates between 0 and 2 Volts with a crystal, it can accept single-ended signals (e.g.,  
LVCMOS). Electrically, it is equivalent to an LVCMOS input buffer with 8 pF of input capacitance.  
Figure 24. CDCE62002 Auxiliary Input Port  
External Feedback Mode  
The auxiliary input on the CDCE62002 is to serve as an external feedback port if Bit (10) in Register 0 is set to  
“1” and input smart Mux setting is set to Reference input. In addition, The Reference Divider and the input divider  
have to be set to divide by 1. This feature is implemented to allow direct access to the PFD of the PLL. The  
delay from Reference input to PFD and from Auxiliary Reference to PFD is not matched. However, in close loop  
system where the device output is fed to close the loop the delay difference between the Reference and External  
feedback path will cancel out.  
Div by 1  
REF_IN  
FB  
Div by 1  
PFD/  
CP  
Feedback  
Divider  
Figure 25. CDCE62002 in External Feedback Mode  
30  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
OUTPUT BLOCK  
The output block includes two identical output channels. Each output channel comprises of a clock divider  
module, and a universal output buffer as shown in Figure 26.  
OUTPUT 0  
OUTPUT 1  
Registers 0  
15 16 17 18  
Registers 0  
19 20 21 22  
Output Buffer Control  
Sync  
Pulse  
Enable  
UxP  
UxN  
SYNTH  
Clock Divider Module 0  
Clock Divider Module 1  
LVDS  
LVPECL  
Figure 26. CDCE62002 Output Channel  
Table 13. CDCE62002 Output Divider Settings  
OUTPUT DIVIDERS SETTING  
DIVIDER 0 →  
DIVIDER 1 →  
0.18  
0.22  
0
0.17  
0.21  
0
0.16  
0.20  
0
0.15  
0.19  
0
DIVIDE RATIO  
Disabled  
0
0
0
1
/1  
/2  
0
0
1
0
0
0
1
1
/3  
0
1
0
0
/4  
0
1
0
1
/5  
0
1
1
0
/6  
0
1
1
1
Disabled  
/8  
1
0
0
0
1
0
0
1
Disabled  
/10  
1
0
1
0
1
0
1
1
/20  
1
1
0
0
/12  
1
1
0
1
/24  
1
1
1
0
/16  
1
1
1
1
/32  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
SYNTHESIZER BLOCK  
Figure 27 provides an overview of the CDCE62002 synthesizer block. The Synthesizer Block provides a Phase  
Locked Loop, a partially integrated programmable loop filter, and two Voltage Controlled Oscillators (VCO). The  
synthesizer block generates an output clock called “SYNTH” and drives it onto the Internal Clock Distribution  
Bus.  
Loop Filter and Charge Pump  
Current Settings  
Input Divider Settings  
Register 1  
Register 1  
25 24 23 22  
8
7
6
5
4
3
2
1
Prescaler  
Register 1  
9
8
1.75 GHz –  
2.356 GHz  
SMART_MUX  
Input Divider  
/1 - /256  
PFD/  
CP  
Prescaler  
/2,/3,/4,/5  
SYNTH  
Feedback Divider  
70 kHz –  
400 kHz  
/1,/2,/5,/8,/10,/16,/20  
/8 - /1280  
Register 1  
0
VCO Select  
Register 1  
Register 1  
21 20 19  
18 17 16 15 14 13 12 11  
Feedback Divider  
Feedback Bypass Divider  
Figure 27. CDCE62002 Synthesizer Block  
Input Divider  
The Input Divider divides the clock signal selected by the Smart Multiplexer and presents the divided signal to  
the Phase Frequency Detector / Charge Pump of the frequency synthesizer.  
Table 14. CDCE62002 Input Divider Settings  
INPUT DIVIDER SETTINGS  
DIVIDE  
RATIO  
SELINDIV7  
SELINDIV6  
SELINDIV5  
SELINDIV4  
SELINDIV3  
SELINDIV2  
SELINDIV1  
SELINDIV0  
1.8  
0
1.7  
0
1.6  
0
1.5  
0
1.4  
0
1.3  
0
1.2  
0
1.1  
0
1
2
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
3
0
0
0
0
0
0
1
1
4
0
1
0
0
0
1
0
0
5
0
1
0
0
0
1
0
1
6
1
1
1
1
1
1
1
1
256  
32  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
Feedback and Feedback Bypass Divider  
Table 15 shows how to configure the Feedback divider for various divide values:  
Table 15. CDCE62002 Feedback Divider Settings  
FEEDBACK DIVIDER  
DIVIDE  
RATIO  
SELFBDIV7 SELFBDIV6 SELFBDIV5 SELFBDIV4 SELFBDIV3 SELFBDIV2 SELFBDIV1 SELFBDIV0  
1.18  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1.17  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
1
0
1
1
1
1
1
1.16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
0
1
0
0
0
0
1
1.15  
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.14  
0
0
0
0
0
0
1
0
1
1
1
1
0
1
1
0
0
1
1
0
1
1
0
1
1
1
0
0
0
1
0
1
1
1
0
0
1
1
0
1
1
0
1.13  
0
0
0
0
1
1
0
1
0
0
0
1
1
1
0
1
0
0
0
1
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1.12  
0
0
1
1
0
1
0
1
1
0
1
1
0
1
0
1
1
0
1
1
1
1
0
1
1
1
1
1
0
1
1
0
1
1
1
1
1
1
1
1
0
1
1.11  
0
1
1
1
1
0
1
1
0
0
1
0
1
1
1
0
1
1
0
1
0
1
1
1
1
1
0
1
1
0
1
1
0
1
0
1
1
0
1
0
0
1
8
12  
16  
20  
24  
32  
36  
40  
48  
56  
60  
64  
72  
80  
84  
96  
100  
108  
112  
120  
128  
140  
144  
160  
168  
180  
192  
200  
216  
224  
240  
252  
256  
280  
288  
300  
320  
336  
360  
384  
392  
400  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Table 15. CDCE62002 Feedback Divider Settings (continued)  
FEEDBACK DIVIDER  
DIVIDE  
RATIO  
SELFBDIV7 SELFBDIV6 SELFBDIV5 SELFBDIV4 SELFBDIV3 SELFBDIV2 SELFBDIV1 SELFBDIV0  
1.18  
0
1
0
0
1
1
0
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1.17  
1
0
1
1
0
0
1
1
0
1
0
1
0
0
0
0
1
0
0
1
0
1
1
1
1
1.16  
0
1
1
0
0
1
1
1
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1.15  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.14  
1
0
1
1
0
1
1
1
0
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1.13  
0
1
0
1
0
0
1
0
1
0
1
1
0
0
1
1
0
1
0
1
1
0
1
1
1
1.12  
1
0
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.11  
1
1
0
1
1
1
0
1
0
1
1
1
0
1
1
0
0
1
1
0
1
1
0
1
1
420  
432  
448  
480  
500  
504  
512  
560  
576  
588  
600  
640  
672  
700  
720  
768  
784  
800  
840  
896  
960  
980  
1024  
1120  
1280  
Table 16 shows how to configure the Feedback Bypass Divider.  
34  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
Table 16. CDCE62002 Feedback Bypass Divider Settings  
FEEDBACK BYPASS DIVIDER  
SELBPDIV2  
SELBPDIV1  
SELBPDIV0  
DIVIDE RATIO  
1.21  
0
1.20  
0
1.19  
0
2
0
0
1
5
0
1
0
8
10  
0
1
1
1
0
0
16  
1
0
1
20  
1
1
0
RESERVED  
1(bypass)  
1
1
1
VCO Select  
Table 17 illustrates how to control the dual voltage controlled oscillators.  
Table 17. CDCE62002 VCO Select  
VCO SELECT  
SELVCO  
VCO CHARACTERISTICS  
BIT NAME →  
REGISTER NAME →  
1.0  
0
VCO RANGE  
Low  
Fmin (MHz)  
1750  
Fmax (MHz)  
2046  
1
High  
2040  
2356  
Prescaler  
Table 18 shows how to configure the prescaler.  
Table 18. CDCE62002 Prescaler Settings  
SETTINGS  
SELPRESCB  
SELPRESCA  
DIVIDE RATIO  
1.10  
1.9  
0
0
1
0
1
5
4
3
2
0
1
1
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): CDCE62002  
 
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Loop Filter  
Figure 28 depicts the loop filter topology of the CDCE62002. It facilitates both internal and external  
implementations providing optimal flexibility.  
EXT_LFP  
EXT_LFN  
Registers 0  
22  
internal  
external  
internal  
external  
25 24 23  
VB  
+
-
R3  
PFD/  
CP  
C3  
C1  
C2  
R2  
Figure 28. CDCE62002 Loop Filter Topology  
Internal Loop Filter Component Configuration  
Figure 28 illustrates the switching between four fixed internal loop filter settings and the external loop filter  
setting. Table 19 shows that the CDCE62002 has 16 settings different settings for the loop filter. Four of the  
settings are internal and twelve are external.  
Table 19. CDCE62002 Loop Filter Settings  
Charge  
LFRCSEL  
3 db Corner  
C3R3  
Pump  
Current  
1.5 mA  
400 µA  
250 µA  
150 µA  
1.0 mA  
2.0 mA  
3.0 mA  
3.75 mA  
1.0 mA  
2.0 mA  
3.0 mA  
3.75 mA  
1.0 mA  
2.0 mA  
3.0 mA  
3.75 mA  
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Loop Filter  
Internal  
C1  
C2  
R2  
4.0k  
4.0k  
2.7k  
2.7k  
X
R3  
5k  
C3  
1.5 pF  
473.5 pF  
2.5 pF  
2.5 pF  
2.5 pF  
2.5 pF  
112 pF  
112 pF  
112 pF  
112 pF  
100 pF  
100 pF  
100 pF  
100 pF  
100 pF  
64 pF  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
70 kHz  
Internal  
1.5 pF  
473.5 pF  
5k  
Internal  
1.5 pF  
473.5 pF  
5k  
Internal  
1.5 pF  
473.5 pF  
5k  
External  
External  
External  
External  
External  
External  
External  
External  
External  
External  
External  
External  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
20k  
20k  
20k  
20k  
10k  
10k  
10k  
10k  
5k  
X
70 kHz  
X
70 kHz  
X
70 kHz  
X
150 kHz  
150 kHz  
150 kHz  
150 kHz  
300 kHz  
500 kHz  
700 kHz  
800 kHz  
X
X
X
X
X
5k  
X
5k  
48 pF  
X
5k  
38 pF  
36  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
Lock Detect  
The CDCE62002 provides a lock detect indicator circuit that can be detected on an external Pin PLL_LOCK (Pin  
32) and internally by reading PLLLOCKPIN bit (6) in Register 2.  
Two signals whose phase difference is less than a prescribed amount are ‘locked’ otherwise they are ‘unlocked’.  
The phase frequency detector / charge pump compares the clock provided by the input divider and the feedback  
divider; using the input divider as the phase reference. The lock detect circuit implements a programmable lock  
detect window. Table 20 shows an overview of how to configure the lock detect feature. The PLL_LOCK pin will  
possibly jitter several times between lock and out of lock until the PLL achieves a stable lock. If desired, choosing  
a wide loop bandwidth and a high number of successive clock cycles virtually eliminates this characteristic.  
PLL_LOCK will return to out of lock, if just one cycle is outside the lock detect window or if a cycle slip occurs.  
Lock Detect Window (Max)  
From Input Divider  
Locked  
From Feedback Divider  
Unlocked  
From Input Divider  
From Feedback Divider  
From Input Divider  
PFD/  
CP  
From Lock Detector  
Lock Detect Window Adjust  
To Loop Filter  
PLL_LOCK  
1 = Locked  
O = Unlocked  
Register 0  
From Feedback Divider  
13 14  
(b)  
(c)  
(a)  
Figure 29. CDCE62002 Lock Detect  
Table 20. CDCE62002 Lock Detect Control  
LOCK DETECT  
LOCK DETECT  
BIT NAME →  
REGISTER NAME →  
LOCKW(1)  
LOCKW(0)  
WINDOW  
0.13  
0.14  
0
0
1
1
0
1
0
1
2.1 ns  
4.6 ns  
7.2 ns  
19.9 ns  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
Device Power Calculation and Thermal Management  
The CDCE62002 is a high performance device; therefore careful attention must be paid to device configuration  
and printed circuit board layout with respect to power consumption. Table 21 provides the power consumption for  
the individual blocks within the CDCE62002. To estimate total power consumption, calculate the sum of the  
products of the number of blocks used and the power dissipated of each corresponding block.  
Table 21. CDCE62002 Power Consumption  
INTERNAL BLOCK  
(Power at 3.3V)  
POWER DISSIPATED  
PER BLOCK  
NUMBER OF BLOCKS  
PER DEVICE  
Input Circuit  
32  
333  
92  
1
1
2
2
2
4
PLL and VCO Core  
Output Divider  
Output Buffer ( LVPECL)  
Output Buffer (LVDS)  
Output Buffer (LVCMOS)  
150  
95  
62  
This power estimate determines the degree of thermal management required for a specific design. Observing  
good thermal layout practices enables the thermal pad on the backside of the QFN-32 package to provide a  
good thermal path between the die contained within the package and the ambient air. This thermal pad also  
serves as the ground connection the device; therefore, a low inductance connection to the ground plane is  
essential.  
Component Side  
Back Side  
QFN-32  
Thermal Slug  
(package bottom)  
Solder Mask  
Internal  
Ground  
Plane  
Internal  
Power  
Plane  
Thermal  
Dissipation  
Pad (back side)  
Thermal Vias  
No Solder Mask  
Figure 30. CDCE62002 Recommended PCB Layout  
CDCE62002 Power Supply Bypassing – Recommended Layout  
Figure 31 shows a conceptual layout focusing on power supply bypass capacitor placement. If the capacitors are  
mounted on the back side, 0402 components can be employed; however, soldering to the Thermal Dissipation  
Pad can be difficult. If the capacitors are mounted on the component side, 0201 components must be used to  
facilitate signal routing. In either case, the connections between the capacitor and the power supply terminal on  
the device must be kept as short as possible.  
Component & Back Side  
Component Side  
Only  
Figure 31. CDCE62002 Power Supply Bypassing  
38  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
APPLICATION INFORMATION AND GENERAL USAGE HINTS  
Clock Generator  
The CDCE62002 can generate 1 to 4 low noise clocks from a single crystal or crystal oscillator as follows:  
Feedback  
XTAL/  
U0P  
U0N  
Divider  
PFD/  
CP  
Output  
AUX_IN  
Prescaler  
Divider 0  
Smart  
MUX  
Input  
Divider  
U1P  
U1N  
Output  
Divider 1  
Figure 32. CDCE62002 as a Clock Generator  
External Feedback Option  
The CDCE62002 has a limited optional external feedback path that give access to the PFD inside the device.  
This option enables customers to implement complex or custom PLL designed to control the VCO inside the  
CDCE62002. In addition, the External feedback allows the device to operate in a deterministic delay mode where  
the reference to output delay is fixed but dependable on the routing path length from the outputs to the auxiliary  
input pin. Figure 33 illustrates how the output is loopback to the Auxiliary Input in bypass mode to put the device  
in fixed delay mode.  
LF  
U0P  
REF_IN  
Output  
Divider 0  
U0N  
Div by 1  
Prescaler  
FB  
U1P  
U1N  
Output  
Divider 1  
Div by 1  
PFD/  
CP  
Feedback  
Divider  
100nF  
Figure 33. CDCE62002 External Feedback Example  
This function is limited by the output divider divide ratio and can be implemented when one of the outputs is set  
from 10.94 MHz to 40.00MHz.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
SERDES Startup and Clock Cleaner  
The CDCE62002 can serve as a SERDES device companion by providing a crystal based reference for the  
SERDES device to lock to receive data stream and when the SERDES locks to the data and outputs the  
recovered clock the CDCE62002 can switch and use the recovered clock and serve as a jitter cleaner.  
Data  
SERDES  
Cleaned Clock  
Recovered Clock  
EXT_LFP  
Reference  
Divider  
EXT _LFN  
REF_IN  
XTAL/AUX_IN  
U0P  
U0N  
Output  
Divider 0  
Input  
Divider  
PFD/  
CP  
U1P  
U1N  
Output  
Prescaler  
Feedback  
Divider  
Divider 1  
Figure 34. CDCE62002 Clocking SERDES  
Since the jitter of the recovered clock can be above 100 ps (RMS) the output jitter from CDCE62002 can be as  
low and 6 ps (RMS) depending on the external loop filter configuration.  
40  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
 
CDCE62002  
www.ti.com.............................................................................................................................................................. SCAS882AJUNE 2009REVISED JULY 2009  
CLOCKING ADCS WITH THE CDCE62002  
High-speed analog to digital converters incorporate high input bandwidth on both the analog port and the sample  
clock port. Often the input bandwidth far exceeds the sample rate of the converter. Engineers regularly  
implement receiver chains that take advantage of the characteristics of bandpass sampling. This implementation  
trend often causes engineers working in communications system design to encounter the term “clock limited  
performance”. Therefore, it is important to understand the impact of clock jitter on ADC performance. The  
following equation shows the relationship of data converter signal to noise ratio (SNR) to total jitter:  
é
10 ê  
ë
ù
ú
û
1
SNRjitter = 20log  
2p fin jittertotal  
(4)  
Total jitter comprises two components: the intrinsic aperture jitter of the converter and the jitter of the sample  
clock:  
2
)
jittertotal  
=
jitter  
2 + jitter  
(
ADC ) (  
CLK  
(5)  
With respect to an ADC with N-bits of resolution, ignoring total jitter, ADC quantization error, and input noise, the  
following equation shows the relationship between resolution and SNR:  
SNR ADC = 6.02N + 1.76  
(6)  
Figure 35 plots Equation 4 and Equation 6 for constant values of total jitter. When used in conjunction with most  
ADCs, the CDCE62002 supports a total jitter performance value of <1ps.  
Data Converter Jitter Requirements  
140  
130  
120  
110  
100  
90  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
100 fs  
1ps  
80  
50 fs  
70  
60  
350 fs  
50  
40  
6
30  
4
20  
2
10  
0
0
1
10  
100  
Input Bandwidth (MHz)  
1000  
10000  
Figure 35. Data Converter Jitter Requirements  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): CDCE62002  
 
 
 
CDCE62002  
SCAS882AJUNE 2009REVISED JULY 2009.............................................................................................................................................................. www.ti.com  
REVISION HISTORY  
Changes from Original (June 2009) to Revision A ......................................................................................................... Page  
Added information - The input has an internal 150-kpull-up resist .................................................................................... 3  
Deleted (as described in later future revisions of this document).......................................................................................... 3  
Added NOTE: All VCC pins need to be connected for the device to operate properly......................................................... 3  
Changed graphic input naming.............................................................................................................................................. 4  
Changed graphic input naming.............................................................................................................................................. 5  
Changed W to mW ................................................................................................................................................................ 8  
Changed W to mW ................................................................................................................................................................ 8  
Changed W to mW ................................................................................................................................................................ 8  
Changed W to mW ................................................................................................................................................................ 8  
Deleted underscore before IN+.............................................................................................................................................. 8  
Deleted 6 from 8006 ............................................................................................................................................................ 11  
Changed Y4 to Y1 ............................................................................................................................................................... 12  
Added MIN, TYP, and MAX values...................................................................................................................................... 12  
Added (Reg 0 RAM bit 9 = 1) .............................................................................................................................................. 14  
Added (Reg 0 RAM bit 9 = 0) .............................................................................................................................................. 14  
Changed REF into REF_IN ................................................................................................................................................. 14  
Changed AUX into AUX_IN ................................................................................................................................................. 14  
Deleted t9 from timing.......................................................................................................................................................... 16  
Changed input naming......................................................................................................................................................... 18  
Changed part number error ................................................................................................................................................. 19  
Changed REFERENCE to REF_IN and AUXILARY to AUX_IN ......................................................................................... 22  
Changed power to current ................................................................................................................................................... 22  
Changed 0110 to 1000 ........................................................................................................................................................ 24  
Changed 0001 to 0100 ........................................................................................................................................................ 25  
Changed description for RAM BIT to - TI Test Registers. For TI Use Only ........................................................................ 25  
Changed graphic.................................................................................................................................................................. 26  
Changed table information................................................................................................................................................... 26  
Changed PDDRESET to PLLRESET .................................................................................................................................. 26  
Changed Power_Down to PD.............................................................................................................................................. 26  
Changed PRI_IN to REF_IN................................................................................................................................................ 28  
Changed PRI_IN to REF_IN................................................................................................................................................ 29  
Added sentence - In This mode a valid frequency needs to be present on AUX_IN before the /PD is deasserted or  
power is applied................................................................................................................................................................... 29  
Changed PRI_IN to REF_IN................................................................................................................................................ 40  
42  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): CDCE62002  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jul-2009  
PACKAGING INFORMATION  
Orderable Device  
CDCE62002RHBR  
CDCE62002RHBT  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RHB  
32  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
RHB  
32  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Jul-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
CDCE62002RHBR  
CDCE62002RHBT  
QFN  
QFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.5  
1.5  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Jul-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CDCE62002RHBR  
CDCE62002RHBT  
QFN  
QFN  
RHB  
RHB  
32  
32  
3000  
250  
340.5  
340.5  
333.0  
333.0  
20.6  
20.6  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

CDCE62002RHBR

Four Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs
TI

CDCE62002RHBT

Four Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs
TI

CDCE62005

Five/Ten Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs
TI

CDCE62005RGZR

Five/Ten Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs
TI

CDCE62005RGZT

Five/Ten Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs
TI

CDCE62005_10

Five/Ten Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs
TI

CDCE6214

具有一个 PLL、四个差分输出的超低功耗时钟发生器
TI

CDCE6214-Q1

支持第 1-5 代 PCIe 且具有 2 个输入、4 个输出和内部 EEPROM 的超低功耗时钟发生器
TI

CDCE6214RGER

具有一个 PLL、四个差分输出的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI

CDCE6214RGET

具有一个 PLL、四个差分输出的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI

CDCE6214TWRGERQ1

支持第 1-5 代 PCIe 且具有 2 个输入、4 个输出和内部 EEPROM 的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI

CDCE6214TWRGETQ1

支持第 1-5 代 PCIe 且具有 2 个输入、4 个输出和内部 EEPROM 的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI