CDCE62005RGZR [TI]

Five/Ten Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs; 5分/ 10路输出时钟发生器/抖动消除器具有集成双路VCO的
CDCE62005RGZR
型号: CDCE62005RGZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Five/Ten Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs
5分/ 10路输出时钟发生器/抖动消除器具有集成双路VCO的

时钟驱动器 时钟发生器 逻辑集成电路 CD PC
文件: 总80页 (文件大小:2027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Five/Ten Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs  
Check for Samples: CDCE62005  
1
FEATURES  
Frequency Synthesizer With PLL/VCO and  
Partially Integrated Loop Filter.  
Independent Coarse Skew Control on all  
Outputs, The coarse skew control does not  
operate for reference input frequencies less  
than 1 MHz  
Fully Configurable Outputs Including  
Frequency, Output Format, and Output Skew.  
Flexible Inputs With Innovative Smart  
Multiplexer Feature:  
Smart Input Multiplexer Automatically  
Switches Between One of Three Reference  
Inputs.  
Two Universal Differential Inputs Accept  
Frequencies in the Range of 40 kHz to  
1500 MHz (LVPECL), 800 MHz (LVDS), or  
250 MHz (LVCMOS).  
Multiple Operational Modes Include Clock  
Generation via Crystal, SERDES Startup Mode,  
Jitter Cleaning, and Oscillator Holdover Mode  
One Auxiliary Input Accepts Crystals in the  
Range of 2 MHz–42 MHz  
Integrated EEPROM Determines Device  
Configuration at Power-up  
Clock Generator Mode Using Crystal Input.  
Excellent Jitter Performance  
Smart Input Multiplexer can be Configured  
to Automatically Switch Between Highest  
Priority Clock Source Available Allowing  
for Fail-safe Operation and Holdover  
Modes.  
Integrated Frequency Synthesizer including  
PLL, Multiple VCOs, and Loop Filter:  
Full Programmability Facilitates Phase  
Noise Performance Optimization Enabling  
Jitter Cleaner Mode.  
Typical Power Consumption 1.7W (See  
Table 44) at 3.3V  
Programmable Charge Pump Gain and  
Loop Filter Settings  
Integrated EEPROM Stores Default Settings;  
Therefore, The Device Can Power up in a  
Known, Predefined State.  
Unique Dual-VCO Architecture Supports a  
Wide Tuning Range 1.750 GHz–2.356 GHz  
Universal Output Blocks Support up to 5  
Differential, 10 Single-ended, or Combinations  
of Differential or Single-ended:  
Offered in QFN-48 Package  
ESD Protection Exceeds 2kV HBM  
Industrial Temperature Range –40°C to 85°C  
0.35 ps RMS (10 kHz to 20 MHz) Output  
Jitter Performance  
APPLICATIONS  
Low Output Phase Noise: –130 dBc/Hz at 1  
MHz offset, Fc = 491.52 MHz  
Data Converter and Data Aggregation Clocking  
Wireless Infrastructure  
Switches and Routers  
Medical Electronics  
Military and Aerospace  
Industrial  
Clock Generation and Jitter Cleaning  
Output Frequency Ranges From 4.25 MHz  
to 1.175 GHz in Synthesizer Mode  
Output Frequency up to 1.5 GHz in Fan-out  
Mode  
LVPECL, LVDS, LVCMOS, and Special High  
Output Swing Modes  
Independent Output Dividers Support  
Divide Ratios from 1–80, Non-continuous  
values supported.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2010, Texas Instruments Incorporated  
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
DESCRIPTION  
The CDCE62005 is a high performance clock generator and distributor featuring low output jitter, a high degree  
of configurability via a SPI interface, and programmable start up modes determined by on-chip EEPROM.  
Specifically tailored for clocking data converters and high-speed digital signals, the CDCE62005 achieves jitter  
performance well under 1 ps RMS(1). It incorporates a synthesizer block with partially integrated loop filter, a  
clock distribution block including programmable output formats, and an input block featuring an innovative smart  
multiplexer. The clock distribution block includes five individually programmable outputs that can be configured to  
provide different combinations of output formats (LVPECL, LVDS, LVCMOS). Each output can also be  
programmed to a unique output frequency (ranging from 125 kHz to 1.5 GHz (2)) and skew relationship via a  
programmable delay block. If all outputs are configured in single-ended mode (e.g., LVCMOS), the CDCE62005  
supports up to ten outputs. Each output can select one of four clock sources to condition and distribute including  
any of the three clock inputs or the output of the frequency synthesizer. The input block includes two universal  
differential inputs which support frequencies in the range of 80 kHz to 500 MHz and an auxiliary input that can be  
configured to connect to an external crystal via an on board oscillator block. The smart input multiplexer has two  
modes of operation, manual and automatic. In manual mode, the user selects the synthesizer reference via the  
SPI interface. In automatic mode, the input multiplexer will automatically select between the highest priority input  
clock available.  
Data  
DSP  
Cleaned Clock  
SerDes  
DSP Clock  
Recovered Clock  
CDCE62005  
ADC Clock  
ADC Clock  
DAC Clock  
Figure 1. CDCE62005 Application Example  
(1) 10 kHz to 20 MHz integration bandwidth.  
(2) Frequency range depends on operational mode and output format selected.  
2
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
DEVICE INFORMATION  
PACKAGE  
The CDCE62005 is packaged in a 48-Pin Plastic Quad Flatpack Package with enhanced bottom thermal pad for  
heat dissipation. The Texas Instruments Package Designator is: RGZ (S-PQFP-N48)  
36  
25  
37  
24  
Top View  
Not up to Scale  
48  
13  
12  
1
Figure 2. 48-Pin QFN Package Outline  
PIN FUNCTIONS(1)  
DESCRIPTION  
PIN  
TYPE  
NAME  
QFN  
VCC_OUT  
8, 11, 18,  
21, 26, 29,  
32  
Power  
3.3V Supply for the Output Buffers and Output Dividers  
VCC_AUXOUT  
VCC1_PLL  
VCC2_PLL  
VCC_VCO  
VCC_IN_PRI  
VCC_IN_SEC  
VCC_AUXIN  
GND_VCO  
GND  
15  
5
Power  
3.3V to Power the AUX_OUT circuitry  
A. Power 3.3V PLL Supply Voltage for the PLL circuitry. (Filter Required)  
A. Power 3.3V PLL Supply Voltage for the PLL circuitry. (Filter Required)  
A. Power 3.3V VCO Input Buffer and Circuitry Supply Voltage. (Filter Required)  
A. Power 3.3V References Input Buffer and Circuitry Supply Voltage.  
A. Power 3.3V References Input Buffer and Circuitry Supply Voltage.  
A. Power 3.3V Crystal Oscillator Input Circuitry.  
39, 42  
34, 35  
47  
1
44  
36  
Ground  
Ground  
OD  
Ground that connects to VCO Ground. (VCO_GND is shorted to GND)  
Ground is on Thermal PAD. See Layout recommendation  
PAD  
SPI_MISO  
In SPI Mode it is an Open Drain Output and it functions as a Master In Slave Out as a serial  
Control Data Output to CDCE62005 .  
22  
25  
SPI_LE  
I
LVCMOS input, control Latch Enable for Serial Programmable Interface (SPI), with Hysteresis in  
SPI Mode. The input has an internal 150-kpull-up resistor if left unconnected it will default to  
logic level “1”.  
SPI_CLK  
I
I
LVCMOS input, serial Control Clock Input for the SPI bus interface, with Hysteresis. The input  
has an internal 150-kpull-up resistor if left unconnected it will default to logic level “1”.  
24  
23  
SPI_MOSI  
LVCMOS input, Master Out Slave In as a serial Control Data Input to CDCE62005 for the SPI  
bus interface. The input has an internal 150-kpull-up resistor if left unconnected it will default  
to logic level “1”.  
TEST_MODE  
33  
I
This pin should be tied high or left unconnected.  
(1) Note: The internal memory (EEPROM and RAM) are sourced from various power pins. All VCC connections must be powered for proper  
functionality of the device.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
PIN FUNCTIONS (1) (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
QFN  
REF_SEL  
31  
I
If Auto Reference Select Mode is OFF this Pin acts as External Input Reference Select Pin;  
The REF_SEL signal selects one of the two input clocks:  
REF_SEL [1]: PRI_IN is selected; REF_SEL [0]: SEC_IN is selected;  
The input has an internal 150-kpull-up resistor if left unconnected it will default to logic level  
“1”. If Auto Reference Select Mode in ON this Pin not used.  
Power_Down  
12  
I
Active Low. Power down mode can be activated via this pin. See Table 15 for more details. The  
input has an internal 150-kpull-up resistor if left unconnected it will default to logic level “1”.  
SPI_LE has to be HIGH in order for the rising edge of Power_Down signal to load the  
EEPROM.  
SYNC  
14  
43  
13  
45  
46  
I
I
Active Low. Sync mode can be activated via this pin. See Table 15 for more details. The input  
has an internal 150-k, pull-up resistor if left unconnected it will default to logic level “1”.  
AUX IN  
Auxiliary Input is a single ended input including an on-board oscillator circuit so that a crystal  
may be connected.  
AUX OUT  
PRI REF+  
PRI REF–  
SEC REF+  
O
I
Auxiliary Output LVCMOS level that can be programmed via SPI interface to be driven by  
Output 2 or Output 3.  
Universal Input Buffer (LVPECL, LVDS, LVCMOS) positive input for the Primary Reference  
Clock,  
I
Universal Input Buffer (LVPECL, LVDS) negative input for the Primary Reference Clock. In case  
of LVCMOS signaling Ground this pin.  
I
Universal Input Buffer (LVPECL, LVDS, LVCMOS) positive input for the Secondary Reference  
Clock,  
3
SEC REF–  
TESTOUTA  
REG_CAP1  
REG_CAP2  
VBB  
2
I
Universal Input Buffer (LVPECL, LVDS,) negative input for the Secondary Reference Clock.  
Analog Test Point for Use for TI Internal Testing. Pull Down to GND Via a 1ks Resistor.  
Capacitor for the internal Regulator. Connect to a 10uF Capacitor (Y5V)  
Capacitor for the internal Regulator. Connect to a 10uF Capacitor (Y5V)  
Capacitor for the internal termination Voltage. Connect to a 1uF Capacitor (Y5V)  
External Loop Filter Input Positive  
30  
4
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
AI/O  
38  
48  
40  
41  
37  
EXT_LFP  
EXT_LFN  
PLL_LOCK  
External Loop Filter Input Negative.  
Output that indicates PLL Lock Status. See Figure 37.  
U0P:U0N  
U1P:U1N:  
U2P:U2N  
U3P:U3N  
U4P:U4N  
27, 28  
19, 20  
16,17  
9, 10  
6, 7  
O
The Main outputs of CDCE62005 are user definable and can be any combination of up to 5  
LVPECL outputs, 5 LVDS outputs or up to 10 LVCMOS outputs. The outputs are selectable via  
SPI interface. The power-up setting is EEPROM configurable.  
4
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
FUNCTIONAL DESCRIPTION  
PRI_IN  
U0P  
U0N  
Output  
Divider  
0
SEC_IN  
/1:/2:HiZ  
/1:/2:HiZ  
Reference  
Divider  
U1P  
U1N  
Output  
Divider  
1
XTAL /  
AUX_IN  
EXT_LFP  
EXT_LFN  
U2P  
U2N  
Output  
Divider  
2
3
Input  
Divider  
U3P  
U3N  
PFD /  
CP  
Output  
Divider  
Prescaler  
Feedback  
Divder  
U4P  
U4N  
Output  
Divider  
4
REF_SELECT  
/Power_down  
/SYNC  
Interface  
&
Control  
EEPROM  
SPI_LE  
SPI_CLK  
AUX  
OUT  
SPI_MISO  
SPI_MOSI  
Figure 3. CDCE62005 Block Diagram  
The CDCE62005 comprises of four primary blocks: the interface and control block, the input block, the output  
block, and the synthesizer block. In order to determine which settings are appropriate for any specific  
combination of input/output frequencies, a basic understanding of these blocks is required. The interface and  
control block determines the state of the CDCE62005 at power-up based on the contents of the on-board  
EEPROM. In addition to the EEPROM, the SPI port is available to configure the CDCE62005 by writing directly  
to the device registers after power-up. The input block selects which of the three input ports is available for use  
by the synthesizer block and buffers all clock inputs. The output block provides five separate clock channels that  
are fully programmable and configurable to select and condition one of four internal clock sources. The  
synthesizer block multiplies and filters the input clock selected by the input block.  
NOTE  
This Section of the data sheet provides a high-level description of the features of the  
CDCE62005 for purpose of understanding its capabilities. For a complete description of  
device registers and I/O, please refer to the Device Configuration Section.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Interface and Control Block  
The CDCE62005 is a highly flexible and configurable architecture and as such contains a number of registers so  
that the user may specify device operation. The contents of nine 28-bit wide registers implemented in static RAM  
determine device configuration at all times. On power-up, the CDCE62005 copies the contents of the EEPROM  
into the RAM and the device begins operation based on the default configuration stored in the EEPROM.  
Systems that do not have a host system to communicate with the CDCE62005 use this method for device  
configuration. The CDCE62005 provides the ability to lock the EEPROM; enabling the designer to implement a  
fault tolerant design. After power-up, the host system may overwrite the contents of the RAM via the SPI (Serial  
Peripheral Interface) port. This enables the configuration and reconfiguration of the CDCE62005 during system  
operation. Finally, the device offers the ability to copy the contents of the RAM into EEPROM, if the EEPROM is  
unlocked.  
Static RAM (Device Registers)  
Register 8  
Register 7  
Register 6  
REF_SELECT  
/Power_Down  
/SYNC  
Register 5  
Interface  
&
Control  
Device  
Hardware  
Register 4  
Register 3  
Register 2  
Register 1  
Register 0  
SPI_LE  
SPI_CLK  
SPI_MISO  
SPI_MOSI  
EEPROM (Default Configuration)  
Register 7  
Register 6  
Register 5  
Register 4  
Register 3  
Register 2  
Register 1  
Register 0  
Figure 4. CDCE62005 Interface and Control Block  
6
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Input Block  
The Input Block includes a pair of Universal Input Buffers and an Auxiliary Input. The Input Block buffers the  
incoming signals and facilitates signal routing to the Internal Clock Distribution bus and the Synthesizer Block via  
the smart multiplexer (called the Smart MUX). The Internal Clock Distribution Bus connects to all output blocks  
discussed in the next section. Therefore, a clock signal present on the Internal Clock Distribution bus can appear  
on any or all of the device outputs. The CDCE62005 routes the PRI_IN and SEC_IN inputs directly to the Internal  
Clock Distribution Bus. Additionally, it can divide these signals via the dividers present on the inputs and output  
of the first stage of the Smart MUX.  
1500 MHz  
PRI_IN  
LVPECL: 1500 MHz  
LVDS: 800 MHz  
LVCMOS: 250 MHz  
1500 MHz  
SEC_IN  
Smart MUX  
Control  
REF_SEL  
Smart  
/1:/2:HiZ  
MUX1  
Smart  
MUX2  
Reference Divider  
/1 - /8  
/1:/2:HiZ  
XTAL/  
Crystal: 2 MHz - 40 MHz  
AUX_IN  
Figure 5. CDCE62005 Input Block  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Output Block  
Each of the five identical output blocks incorporates an output multiplexer, a clock divider module, and a  
universal output array as shown.  
Output  
MUX  
Output Buffer Control  
Sync  
Control  
Enable  
Pulse  
PRI_IN  
UxP  
UxN  
SEC_IN  
Clock Divider Module 0 - 4  
LVDS  
SMART_MUX  
SYNTH  
LVPECL  
Figure 6. CDCE62005 Output Block (1 of 5)  
Clock Divider Module 0–4  
The following shows a simplified version of a Clock Divider Module (CDM). If an individual clock output channel  
is not used, then the user should disable the CDM and Output Buffer for the unused channel to save device  
power. Each channel includes two 7-bit registers to control the divide ratio used and the clock phase for each  
output. The output divider supports divide ratios from divide by 1 (bypass the divider) to divide by 80; the divider  
does not support all integer values between 1 and 80. Refer to for a complete list of divide ratios supported.  
Enable  
Sync Pulse  
(internally generated)  
Digital Phase Adjust (7-bits)  
Output Divider (7-bits)  
From  
Output  
MUX  
To  
Output  
Buffer  
Figure 7. CDCE62005 Output Divider Module (1 of 5)  
8
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Synthesizer Block  
Figure 8 presents a high-level overview of the Synthesizer Block on the CDCE62005.  
1.750 GHz –  
SMART_MUX  
Input Divider  
/1 - /256  
2.356 GHz  
PFD/  
CP  
Prescaler  
/2,/3,/4,/5  
SYNTH  
Feedback Divider  
50 kHz –  
400 kHz  
/1, /2, /5, /8, /10, /15, /20  
/8 - /1280  
Feedback Divider  
Feedback Bypass Divider  
Figure 8. CDCE62005 Synthesizer Block  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
COMPUTING THE OUTPUT FREQUENCY  
Figure 9 presents the block diagram of the CDCE62005 in synthesizer mode highlighting the clock path for a  
single output. It also identifies the following regions containing dividers comprising the complete clock path  
R: Includes the cumulative divider values of all dividers included from the Input Ports to the output of the  
Smart Multiplexer (see Input Block for more details)  
O: The output divider value (see Output Block for more details)  
I: The input divider value (see Synthesizer Block for more details)  
P: The Prescaler divider value (see Synthesizer Block of more details)  
F: The cumulative divider value of all dividers falling within the feedback divider (see Synthesizer Block for  
more details)  
O
Output  
Divider 0  
U0P  
FOUT  
U0N  
FIN  
R
/1:/2:HiZ  
/1:/2:HiZ  
Reference  
Divider  
U1P  
U1N  
Output  
Divider 1  
EXT_LFP  
EXT_LFN  
U2P  
U2N  
Output  
Divider 2  
I
Input  
Divider  
P
U3P  
U3N  
PFD/  
CP  
Output  
Divider 3  
Prescaler  
Feedback  
Divider  
F
U4P  
U4N  
Output  
Divider 4  
AUX  
OUT  
Figure 9. CDCE62005 Clock Path – Synthesizer Mode  
With respect to Figure 9, any output frequency generated by the CDCE62005 relates to the input frequency  
connected to the Synthesizer Block by Equation 1.  
F
FOUT = F ´  
IN  
R´I´O  
(1)  
Equation 1 holds true when subject to the following constraints:  
1.750 Ghz < O x P x FOUT< 2.356 GHz  
(2)  
And the comparison frequency FCOMP  
,
40 kHz FCOMP < 40 MHz  
Where:  
F
IN  
FCOMP  
=
R ´I  
Note: This device cannot output the frequencies between 780 MHz to 880 MHz  
(3)  
10  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
-0.5 to 4.6  
–0.5 to VCC + 0.5  
–0.5 to VCC + 0.5  
±20  
UNIT  
V
VCC  
VI  
Supply voltage range(2)  
Input voltage range(3)  
Output voltage range(3)  
V
VO  
V
Input Current (VI < 0, VI > VCC  
)
mA  
mA  
°C  
°C  
Output current for LVPECL/LVCMOS Outputs (0 < VO < VCC  
)
±50  
TJ  
Maximum junction temperature  
125  
Tstg  
Storage temperature range  
–65 to 150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All supply voltages have to be supplied simultaneously.  
(3) The input and output negative voltage ratings may be exceeded if the input and output clamp–current ratings are observed.  
THERMAL CHARACTERISTICS  
Package Thermal Resistance for QFN (RGZ) Package  
(1) (2)  
AIRFLOW (lfm)  
qJP (°C/W)(3)  
qJA (°C/W)  
28.9  
0
JEDEC Compliant Board (6X6 VIAs on PAD)  
JEDEC Compliant Board (6X6 VIAs on PAD)  
Recommended Layout (7X7 VIAs on PAD)  
Recommended Layout (7X7 VIAs on PAD)  
2
2
2
2
100  
0
20.4  
27.3  
100  
20.3  
(1) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).  
(2) Connected to GND with 36 thermal vias (0,3 mm diameter).  
(3) qJP (Junction – Pad) is used for the QFN Package, because the main heat flow is from the Junction to the GND-Pad of the QFN.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS  
recommended operating conditions for the CDCE62005 device for under the specified Industrial temperature range of –40°C  
to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
3
TYP  
3.3  
MAX UNIT  
POWER SUPPLY  
VCC  
Supply voltage  
3.6  
3.6  
V
VCC_PLL  
,
VCC_IN  
VCC_VCO  
VCCA  
,
Analog supply voltage  
3
3.3  
&
PLVPECL  
PLVDS  
REF at 30.72,MHz, Outputs are LVPECL  
REF at 30.72 MHz, Outputs are LVDS  
Output 1 = 491.52 MHz  
1.9  
W
W
Output 2 = 245.76 MHz  
Output 3 = 122.88 MHz  
Output 4 = 61.44 MHz  
Output 5 = 30.72 MHz  
In case of LVCMOS  
Outputs = 245.76 MHz  
1.65  
PLVCMOS  
REF at 30.72 MHz, Outputs are LVCMOS  
REF at 30.72 MHz  
1.8  
W
Dividers are disabled. Outputs are  
disabled.  
POFF  
PPD  
0.75  
20  
W
Device is powered down  
mW  
DIFFERENTIAL INPUT MODE (PRI_IN, SEC_IN)  
(1)  
VINPP  
VIC  
Input amplitude (V_IN – V/IN  
)
0.1  
1.0  
1.3  
V
V
Common-mode input voltage  
VCC–0.3  
Differential input current high (no internal  
termination)  
IIH  
IIL  
VI = VCC, VCC = 3.6 V  
VI = 0 V, VCC = 3.6 V  
20  
20  
mA  
Differential input current low (no internal  
termination)  
–20  
8
mA  
Input Capacitance on PRI_IN, SEC_IN  
3
pF  
CRYSTAL INPUT SPECIFICATIONS  
Crystal load capacitance  
10  
50  
pF  
Equivalent series resistance (ESR)  
LVCMOS INPUT MODE (SPI_CLK,SPI_MOSI,SPI_LE,PD,SYNC,REF_SEL, PRI_IN, SEC_IN )  
Low-level input voltage LVCMOS,  
0
0.3 x VCC  
VCC  
V
V
High-level input voltage LVCMOS  
0.7 x VCC  
VIK  
IIH  
LVCMOS input clamp voltage  
LVCMOS input current  
VCC = 3 V, II = –18 mA  
VI = VCC, VCC = 3.6 V  
–1.2  
V
20  
mA  
LVCMOS input (Except PRI_IN and  
SEC_IN)  
IIL  
VI = 0 V, VCC = 3.6 V  
–10  
–10  
–40  
10  
mA  
IIL  
CI  
LVCMOS input (PRI_IN and SEC_IN)  
Input capacitance (LVCMOS signals)  
VI = 0 V, VCC = 3.6 V  
VI = 0 V or VCC  
mA  
3
pF  
(1) VINPP minimum and maximum is required to maintain ac specifications; the actual device function tolerates at a minimum VINPP of  
100mV.  
12  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS (Continued)  
recommended operating conditions for the CDCE62005 device for under the specified Industrial temperature range of –40°C  
to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1) MAX UNIT  
SPI OUTPUT (MISO) / PLL DIGITAL (OUTPUT MODE)  
IOH  
High-level output current  
VCC = 3.3 V,  
VO = 1.65 V  
VO = 1.65 V  
IOH = 100 mA  
IOL = 100 mA  
–30  
33  
mA  
mA  
V
IOL  
Low-level output current  
VCC = 3.3 V,  
VCC = 3 V,  
VCC = 3 V,  
VOH  
VOL  
CO  
High-level output voltage for LVCMOS outputs  
Low-level output voltage for LVCMOS outputs  
Output capacitance on MISO  
VCC–0.5  
0.3  
V
VCC = 3.3 V; VO = 0 V or VCC  
3
5
pF  
IOZH  
IOZL  
VO = VCC  
VO = 0 V  
3-state output current  
mA  
–5  
PLL ANALOG ( INPUT MODE)  
High-impedance state output current for PLL  
IOZH LOCK  
IOZL LOCK  
VT+  
VO = 3.6 V (PD is set low)  
VO = 0 V (PD is set low)  
22  
–1  
mA  
mA  
V
LOCK output(2)  
High-impedance state output current for PLL  
LOCK output  
Positive input threshold voltage VCC = min to  
max  
VCC×0.55  
VCC×0.35  
Negative input threshold voltage VCC c= min to  
max  
VT–  
V
VBB  
VBB  
IBB = –0.2 mA, Depending on the  
setting.  
Termination voltage for reference inputs.  
0.9  
1.9  
V
INPUT BUFFERS INTERNAL TERMINATION RESISTORS (PRI_IN and SEC_IN)  
Termination resistance Single ended  
PHASE DETECTOR  
fCPmax Charge pump frequency  
50  
0.04  
40 MHz  
(1) All typical values are at VCC = 3.3 V, temperature = 25°C  
(2) Lock output has a 80kpull-down resistor.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS (Continued)  
recommended operating conditions for the CDCE62005 device for under the specified Industrial temperature range of –40°C  
to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
LVCMOS OUTPUT OR AUXILIARY OUTPUT  
fclk  
Output frequency, see Figure Below  
Load = 5 pF to GND  
0
250 MHz  
High-level output voltage for LVCMOS  
outputs  
VOH  
VCC = min to max  
VCC = min to max  
IOH = –100 mA  
VCC –0.5  
Low-level output voltage for LVCMOS  
outputs  
VOL  
IOL =100 µA  
0.3  
V
IOH  
IOL  
High-level output current  
Low-level output current  
VCC = 3.3 V  
VCC = 3.3 V  
VO = 1.65 V  
VO = 1.65 V  
–30  
33  
mA  
mA  
Reference (PRI_IN or SEC_IN) to Output  
Phase offset  
Outputs are set to 122.88 MHz, Reference  
at 30.72 MHz  
tpho  
0.35  
4
ns  
ns  
ps  
tpd(LH)/  
tpd(HL)  
Propagation delay from PRI_IN or SEC_IN  
to Outputs  
Crosspoint to VCC/2, load In Bypass Mode  
All Outputs set at 200 MHz in bypass mode  
only, Reference = 200 MHz  
tsk(o)  
Skew, output to output For Y0 to Y4  
Output capacitance on Y0 to Y4  
75  
CO  
VCC = 3.3 V; VO = 0 V or VCC  
VO = VCC  
5
5
pF  
mA  
mA  
mA  
mA  
IOZH  
IOZL  
IOPDH  
IOPDL  
3-State LVCMOS output current  
Power Down output current  
VO = 0 V  
–5  
VO = VCC  
25  
5
VO = 0 V  
Duty cycle LVCMOS  
45%  
3.6  
55%  
tslew-rate  
Output rise/fall slew rate  
5.2  
V/ns  
(1) All typical values are at VCC = 3.3 V, temperature = 25°C  
5 pF  
LVCMOS  
14  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS (Continued)(1) (2) (3) (4)  
recommended operating conditions for the CDCE62005 device for under the specified Industrial temperature range of –40°C  
to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN TYP(5)  
MAX UNIT  
LVDS OUTPUT  
fclk  
Output frequency  
Configuration Load  
0
800 MHz  
|VOD  
|
Differential output voltage  
LVDS VOD magnitude change  
Offset Voltage  
RL = 100 Ω  
270  
550  
50  
mV  
mV  
V
ΔVOD  
VOS  
–40°C to 85°C  
1.24  
40  
ΔVOS  
VOS magnitude change  
Short circuit Vout+ to ground  
Short circuit Vout– to ground  
mV  
mA  
mA  
ns  
VOUT = 0  
VOUT = 0  
27  
27  
tpho  
Reference (PRI_IN or SEC_IN) to output  
phase offset  
Outputs are set to 491.52 MHz  
Reference at 30.72 MHz  
1.65  
3.1  
tpd(LH)/tpd(HL) Propagation delay from PRI_IN or SEC_IN to Crosspoint to Crosspoint, load In Bypass  
ns  
ps  
outputs  
Mode  
All Outputs set at 200 MHz  
In Bypass Mode Only  
Reference = 200 MHz  
(6)  
tsk(o)  
Skew, output to output For Y0 to Y4  
25  
5
CO  
IOPDH  
IOPDL  
Output capacitance on Y0 to Y4  
Power down output current  
Power down output current  
Duty cycle  
VCC = 3.3 V; VO = 0 V or VCC  
VO = VCC  
pF  
mA  
mA  
25  
5
VO = 0 V  
45%  
55%  
190  
tr / tf  
Rise and fall time  
20% to 80% of VOUT(PP)  
VCC/2 to Crosspoint  
110  
160  
1.4  
ps  
ns  
LVCMOS-TO-LVDS  
tskP_c  
Output skew between LVCMOS and LVDS  
outputs(7)  
0.9  
1.9  
(1) This is valid only for same REF_IN clock and Y output clock frequency  
(2) VINPP minimum and maximum is required to maintain ac specifications; the actual device function tolerates at a minimum VINPP of  
100mV.  
(3) Lock output has a 80 kpull-down resistor.  
(4) The phase of LVCMOS is lagging in reference to the phase of LVDS.  
(5) All typical values are at VCC = 3.3 V, temperature = 25°C  
(6) The tsk(o) specification is only valid for equal loading of all outputs.  
(7) Operating the LVCMOS or LVDS output above the maximum frequency will not cause a malfunction to the device, but the output signal  
swing might no longer meet the output specification  
LVDS DC Termination Test  
100 Ω  
Oscilloscope  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS (Continued)  
recommended operating conditions for the CDCE62005 device for under the specified Industrial temperature range of –40°C  
to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
UNIT  
LVPECL OUTPUT  
fclk  
Output frequency, Configuration load  
LVPECL high-level output voltage load  
LVPECL low-level output voltage load  
Differential output voltage  
0
1500  
VCC –0.88  
VCC–1.58  
970  
MHz  
V
VOH  
VOL  
|VOD  
VCC –1.06  
VCC–2.02  
610  
V
|
mV  
Outputs are set to 491.52 MHz,  
Reference at 30.72 MHz  
tpho  
Reference to Output Phase offset  
1.47  
3.4  
ns  
ns  
tpd(LH)  
tpd(HL)  
/
Crosspoint to Crosspoint, load In  
Bypass Mode  
Propagation delay from PRI_IN or SEC_IN to outputs  
All Outputs set at 200 MHz  
In Bypass Mode Only  
Reference = 200MHz  
tsk(o)  
Skew, output to output For Y0 to Y4  
25  
5
ps  
CO  
Output capacitance on Y0 to Y4  
Power Down output current  
VCC = 3.3 V; VO = 0 V or VCC  
VO = VCC  
pF  
mA  
mA  
IOPDH  
IOPDL  
25  
5
VO = 0 V  
Duty Cycle  
45%  
55  
55%  
135  
tr / tf  
Rise and fall time  
20% to 80% of VOUT(PP)  
Crosspoint to Crosspoint  
VCC/2 to Crosspoint  
75  
1.1  
ps  
ns  
ps  
LVDS-TO-LVPECL  
tskP_C  
Output skew between LVDS and LVPECL outputs  
0.9  
1.3  
LVCMOS-TO-LVPECL  
tskP_C  
Output skew between LVCMOS and LVPECL outputs  
–150  
260  
700  
LVPECL HI-PERFORMANCE OUTPUT  
VOH  
VOL  
LVPECL high-level output voltage load  
VCC –1.11  
VCC –2.06  
760  
VCC –0.87  
VCC –1.73  
1160  
V
V
LVPECL low-level output voltage load  
Differential output voltage  
Rise and fall time  
|VOD  
|
mV  
ps  
tr / tf  
20% to 80% of VOUT(PP)  
55  
75  
135  
(1) All typical values are at VCC = 3.3 V, temperature = 25°C  
LVPECL AC Termination Test  
LVPECL DC Termination Test  
50 Ω  
Oscilloscope  
50 Ω  
150 Ω  
150 Ω  
50 Ω 50 Ω  
Oscilloscope  
Vcc-2  
16  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
LVPECL OUTPUT SWING  
HI SWING LVPECL OUTPUT SWING  
vs  
vs  
FREQUENCY  
FREQUENCY  
V
Figure 10.  
Figure 11.  
LVDS OUTPUT SWING  
LVCMOS OUTPUT SWING  
vs  
vs  
FREQUENCY  
FREQUENCY  
Figure 12.  
Figure 13.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
TIMING REQUIREMENTS  
over recommended ranges of supply voltage, load and operating free air temperature (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
PRI_IN/SEC_IN_IN REQUIREMENTS  
Maximum Clock Frequency Applied to PRI_IN & SEC_IN in fan-out mode  
Maximum Clock Frequency Applied to Smart Multiplexer input Divider  
Maximum Clock Frequency Applied to Reference Divider  
For Single ended Inputs ( LVCMOS) on PRI_IN and SEC_IN  
Single duty cycle of PRI_IN or SEC_IN at VCC / 2  
1500  
500  
MHz  
MHz  
MHz  
MHz  
fmax  
250  
250  
40%  
40%  
60%  
60%  
Differential duty cycle of PRI_IN or SEC_IN at VCC / 2  
AUXILARY_IN REQUIREMENTS  
fREF Crystal single ended Inputs (AT-Cut Crystal Input)  
PD, SYNC, REF_SEL REQUIREMENTS  
2
42  
4
MHz  
ns  
tr/ tf  
Rise and fall time of the PD, SYNC, REF_SEL signal from 20% to 80% of VCC  
18  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
PHASE NOISE ANALYSIS  
Table 1. Device Output Phase Noise for 30.72 MHz External Reference  
Phase Noise Specifications under following configuration: VCO = 1966.08 MHz, REF = 30.72 MHz,  
PFD Frequency = 30.72 MHz, Charge Pump Current = 1.5 mA Loop BW = 400 kHz at 3.3 V and 25°C  
Phase Noise  
Reference 30.72  
MHz  
LVPECL 491.52  
MHz  
LVDS  
491.52 MHz  
LVCMOS  
122.88  
MHz  
Unit  
10 Hz  
-108  
-130  
-134  
-152  
-156  
-157  
–81  
–94  
–81  
–96  
–92  
–108  
–118  
–132  
–134  
–143  
–150  
–150  
377  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fs  
100 Hz  
1 kHz  
–106  
–119  
–121  
–131  
–145  
–145  
307  
–106  
–119  
–122  
–131  
–144  
–144  
315  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
20 MHz  
Jitter(RMS)  
193  
10k~20 MHz  
Table 2. Device Output Phase Noise for 25 MHz Crystal Reference  
Phase Noise Specifications under following configuration: VCO = 2000.00 MHz, AUX-REF = 25.00  
MHz,  
PFD Frequency = 25.00 MHz, Charge Pump Current = 1.5 mA Loop BW = 400 kHz at 3.3 V and 25°C  
Phase Noise Referenc LVPECL 500 MHz  
e 25 MHz  
LVDS 250 MHz  
LVCMOS 125 MHz  
Unit  
10 Hz  
-57  
-90  
-62  
-95  
-68  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fs  
100 Hz  
1 kHz  
-102  
-119  
-128  
-130  
-143  
-150  
-150  
437  
-107  
-115  
-118  
-130  
-145  
-145  
389  
-113  
-122  
-124  
-137  
-147  
-147  
405  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
20 MHz  
Jitter(RMS)  
10k~20 MHz  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
OUTPUT TO OUTPUT ISOLATION  
Measurement Method  
1. Connect output 2 to a spectrum analyzer. Disable Outputs 0, 1, 3, 4.  
2. Measure spurious on Output 2.  
3. Enable aggressor channels individually per Table 3.  
4. Measure spurious on Output 2.  
5. The difference between the spurious levels of Output 2 before and after enabling the aggressor channels  
determine the output-to-output isolation performance recorded.  
Table 3. Output to Output Isolation  
M SPUR  
Unit  
The Output to Output Isolation was tested under following settings are 25°C  
Output 2  
Output 2  
Output 2  
Output 0  
Output 1  
Output 3  
Output 4  
Measured Channel  
Measured Channel  
Measured Channel  
Aggressor Channel  
Aggressor Channel  
Aggressor Channel  
Aggressor Channel  
In LVPECL Signaling 15.5 MHz  
In LVPECL Signaling 93 MHz  
In LVPECL Signaling 930 MHz  
LVPECL 22.14 MHz  
–67  
–60  
–59  
db  
db  
db  
LVPECL 22.14 MHz  
LVPECL 22.14 MHz  
LVPECL 22.14 MHz  
20  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
SPI CONTROL INTERFACE TIMING  
t1  
t4  
t5  
SPI _CLK  
t2  
t3  
Bit0  
Bit1  
Bit29  
Bit30  
Bit31  
SPI _MOSI  
SPI _ LE  
t7  
t6  
Figure 14. Timing Diagram for SPI Write Command  
t4  
t5  
SPI _CLK  
t2  
t3  
Bit30  
Bit31  
SPI _MOSI  
SPI _MISO  
SPI _ LE  
t9  
Bit1  
Bit2  
Bit0  
t7  
t6  
t8  
Figure 15. Timing Diagram for SPI Read Command  
Table 4. SPI Bus Timing Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
20  
UNIT  
MHz  
ns  
fClock  
t1  
Clock Frequency for the SPI_CLK  
SPI_LE to SPI_CLK setup time  
SPI_MOSI to SPI_CLK setup time  
SPI_MOSI to SPI_CLK hold time  
SPI_CLK high duration  
10  
10  
10  
25  
25  
10  
20  
10  
t2  
ns  
t3  
ns  
t4  
ns  
t5  
SPI_CLK low duration  
ns  
t6  
SPI_CLK to SPI_LE Setup time  
SPI_LE Pulse Width  
ns  
t7  
ns  
t8  
SPI_MISO to SPI_CLK Data Valid (First Valid Bit after LE)  
ns  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
DEVICE CONFIGURATION  
The Functional Description Section described four different functional blocks contained within the CDCE62005.  
Figure 16 depicts these blocks along with a high-level functional block diagram of the circuit elements comprising  
each block. The balance of this section focuses on a detailed discussion of each functional block from the  
perspective of how to configure them.  
Output Blocks  
Synthesizer  
Block  
Output  
Channel 0  
Smart  
MUX  
Frequency  
Output  
Synthesizer  
Channel 1  
Input  
Block  
Output  
Channel 2  
Interface  
&
Interface  
&
Device  
Control  
Block  
Registers  
Control  
Output  
Channel 3  
Output  
Channel 4  
EEPROM  
Figure 16. CDCE62005 Circuit Blocks  
Throughout this section, references to Device Register memory locations follow the following convention:  
Register 5  
RAM Bit Number (s)  
5
4
3
2
Register Number (s)  
5.2  
Figure 17. Device Register Reference Convention  
22  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
INTERFACE AND CONTROL BLOCK  
The Interface & Control Block includes a SPI interface, four control pins, a non-volatile memory array in which  
the device stores default configuration data, and an array of device registers implemented in Static RAM. This  
RAM, also called the device registers, configures all hardware within the CDCE62005.  
Static RAM (Device Registers)  
Register 8  
Register 7  
Register 6  
REF_SELECT  
/Power_Down  
/SYNC  
Register 5  
Interface  
&
Control  
Device  
Hardware  
Register 4  
Register 3  
Register 2  
Register 1  
Register 0  
SPI_LE  
SPI_CLK  
SPI_MISO  
SPI_MOSI  
EEPROM (Default Configuration)  
Register 7  
Register 6  
Register 5  
Register 4  
Register 3  
Register 2  
Register 1  
Register 0  
Figure 18. CDCE62005 Interface and Control Block  
SPI (Serial Peripheral Interface)  
The serial interface of CDCE62005 is a simple bidirectional SPI interface for writing and reading to and from the  
device registers. It implements a low speed serial communications link in a master/slave topology in which the  
CDCE62005 is a slave. The SPI consists of four signals:  
SPI_CLK: Serial Clock (Output from Master) – the CDCE62005 clocks data in and out on the rising edge of  
SPI_CLK. Data transitions therefore occur on the falling edge of the clock.  
SPI_MOSI: Master Output Slave Input (Output from Master) .  
SPI_MISO: Master Input Slave Output (Output from Slave)  
SPI_LE: Latch Enable (Output from Master). The falling edge of SPI_LE initiates a transfer. If SPI_LE is high,  
no data transfer can take place.  
The CDCE62005 implements data fields that are 28-bits wide. In addition, it contains 9 registers, each  
comprising a 28 bit data field. Therefore, accessing the CDCE62005 requires that the host program append a  
4-bit address field to the front of the data field as follows:  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Device Register N  
27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
SPI Register  
Address  
Bits  
(4)  
Data Bits (28)  
First In/  
Last in/  
Last out  
First Out  
0
19 18 17 16 15  
27 26 25 24 23 22 21 20  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
3
2
1
SPI Master (Host)  
SPI_CLK  
SPI Slave (CDCE62005)  
SPI_CLK  
SPI_LE  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
SPI_LE  
SPI_MOSI  
SPI_MISO  
SPI_LE  
27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
3
2
1
0
SPI_MOSI  
SPI_MISO  
Figure 19. CDCE62005 SPI Communications Format  
CDCE62005 SPI Command Structure  
The CDCE62005 supports four commands issued by the Master via the SPI:  
Write to RAM  
Read Command  
Copy RAM to EEPROM – unlock  
Copy RAM to EEPROM – lock  
Table 5 provides a summary of the CDCE62005 SPI command structure. The host (master) constructs a Write to  
RAM command by specifying the appropriate register address in the address field and appends this value to the  
beginning of the data field. Therefore, a valid command stream must include 32 bits, transmitted LSB first. The  
host must issue a Read Command to initiate a data transfer from the CDCE62005 back to the host. This  
command specifies the address of the register of interest in the data field.  
Table 5. CDCE62005 SPI Command Structure  
Data Field (28 Bits)  
Addr Field  
(4 Bits)  
Register  
Operation  
NVM  
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0
3
2
1
0
0
Write to RAM  
Write to RAM  
Write to RAM  
Write to RAM  
Write to RAM  
Write to RAM  
Write to RAM  
Write to RAM  
Status/Control  
Read Command  
RAM EEPROM  
RAM EEPROM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
A
0
X
X
X
X
X
X
X
X
X
A
0
X
X
X
X
X
X
X
X
X
A
0
X
X
X
X
X
X
X
X
X
A
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
1
0
0
1
1
0
0
1
1
0
1
1
1
0
1
0
1
0
1
0
1
0
0
1
1
1
2
3
4
5
6
7
8
Instruction  
Instruction  
Instruction  
No  
Unlock  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(1)  
Lock  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
1
1
(1) CAUTION: After execution of this command, the EEPROM is permanently locked. After locking the EEPROM, device configuration can  
only be changed via Write to RAM after power-up; however, the EEPROM can no longer be changed  
24  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
The CDCE62005 on-board EEPROM has been factory preset to the default settings listed in the table below.  
REGISTER  
REG0000  
DEFAULT SETTING  
8184032  
REG0001  
8184030  
REG0002  
8186030  
REG0003  
EB86030  
REG0004  
0186031  
REG0005  
101C0BE  
04BE19A  
BD0037F  
80005DD  
REG0006  
REG0007  
REG0008 (RAM)  
The Default configurations programmed in the device is set to: Primary and Secondary are set to LVPECL AC  
termination and the Auxiliary input is enabled. The Smart Mux is set to auto select among Primary, Secondary  
and Auxiliary. Reference is set at 25MHz and the dividers are selected to run the VCO at 1875MHz.  
Output 0 & 1 are set to output 156.25MHz with LVPECL signaling  
Output 2 is set to output 125MHz/ LVPECL  
Output 3 is set to output 125MHz/ LVDS  
Output 4 is set to output 125MHz/ LVCMOS  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Writing to the CDCE62005  
Figure 20 illustrates a Write to RAM operation. Notice that the latching of the first data bit in the data stream (Bit  
0) occurs on the first rising edge of SPI_CLK after SPI_LE transitions from a high to a low. For the CDCE62005,  
data transitions occur on the falling edge of SPI_CLK. A rising edge on SPI_LE signals to the CDCE62005 that  
the transmission of the last bit in the stream (Bit 31) has occurred.  
SPI_CLK  
Bit0  
Bit1  
Bit29  
Bit30  
Bit31  
SPI_MOSI  
SPI_LE  
Figure 20. CDCE62005 SPI Write Operation  
Reading from the CDCE62005  
Figure 21 shows how the CDCE62005 executes a Read Command. The SPI master first issues a Read  
Command to initiate a data transfer from the CDCE62005 back to the host (see Table 6). This command  
specifies the address of the register of interest. By transitioning SPI_LE from a low to a high, the CDCE62005  
resolves the address specified in the appropriate bits of the data field. The host drives SPI_LE low and the  
CDCE62005 presents the data present in the register specified in the Read Command on SPI_MISO.  
SPI_CLK  
Bit30  
Bit31  
SPI_MOSI  
Bit0  
Bit1  
Bit2  
SPI_MISO  
SPI_LE  
Figure 21. CDCE62005 Read Operation  
Writing to EEPROM  
After the CDCE62005 detects a power-up and completes a reset cycle, it copies the contents of the on-board  
EEPROM into the Device Registers. Therefore, the CDCE62005 initializes into a known state pre-defined by the  
user. The host issues one of two special commands shown in Table 6 to copy the contents of Device Registers 0  
through 7 (a total of 184 bits) into EERPOM. They include:  
Copy RAM to EEPROM – Unlock, Execution of this command can happen many times.  
Copy RAM to EEPROM – Lock: Execution of this command can happen only once; after which the EEPROM  
is permanently locked.  
After either command is initiated, power must remain stable and the host must not access the CDCE62005 for at  
least 50 ms to allow the EEPROM to complete the write cycle and to avoid the possibility of EEPROM corruption.  
26  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Device Registers: Register 0  
Table 6. CDCE62005 Register 0 Bit Definitions  
SPI RAM BIT NAME  
RELATED  
BLOCK  
DESCRIPTION/FUNCTION  
BIT  
BIT  
0
A0  
Address 0  
Address 1  
Address 2  
Address 3  
0
1
A1  
0
2
A2  
0
3
A3  
0
4
0
1
DIV2PRIX  
Pre-Divider Selection for the Primary Reference  
(X,Y)=00:3-state, 01:Divide by “1”, 10:Divide by “2”, 11:Reserved  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
Primary  
Reference  
5
DIV2PRIY  
6
2
RESERVED  
RESERVED  
OUTMUX0SELX  
OUTMUX0SELY  
PH0ADJC0  
PH0ADJC1  
PH0ADJC2  
PH0ADJC3  
PH0ADJC4  
PH0ADJC5  
PH0ADJC6  
OUT0DIVRSEL0  
OUT0DIVRSEL1  
OUT0DIVRSEL2  
OUT0DIVRSEL3  
OUT0DIVRSEL4  
OUT0DIVRSEL5  
OUT0DIVRSEL6  
Used in Test Mode  
Used in Test Mode  
7
3
8
4
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
OUTPUT MUX “0” Select. Selects the Signal driving Output Divider”0”  
(X,Y) = 00: PRI_IN, 01:SEC_IN, 10:SMART_MUX, 11:VCO_CORE  
9
5
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
7
8
9
Coarse phase adjust select for output divider “0”  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
OUTPUT DIVIDER “0” Ratio Select  
When set to “0”, the divider is disabled  
When set to “1”, the divider is enabled  
24  
20  
OUT0DIVSEL  
Output 0  
EEPROM  
High Swing LVPECL When set to “1” and Normal Swing when set to “0”  
– If LVCMOS or LVDS is selected the Output swing will stay at the same level.  
– If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to “1”  
and Normal LVPECL if it is set to “0”.  
25  
21  
HiSWINGLVPECL0  
Output 0  
EEPROM  
26  
27  
28  
29  
30  
22  
23  
24  
25  
26  
CMOSMODE0PX  
CMOSMODE0PY  
CMOSMODE0NX  
CMOSMODE0NY  
OUTBUFSEL0X  
Output 0  
Output 0  
Output 0  
Output 0  
Output 0  
LVCMOS mode select for OUTPUT “0” Positive Pin.  
(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT “0” Negative Pin.  
(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State  
OUTPUT TYPE  
RAM BITS  
22 23  
24  
0
25  
0
26  
0
27  
1
LVPECL  
0
0
0
1
LVDS  
0
1
1
1
31  
27  
OUTBUFSEL0Y  
Output 0  
EEPROM  
LVCMOS  
Output Disabled  
See Settings Above*  
0
0
0
1
0
1
1
0
* Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Device Registers: Register 1  
Table 7. CDCE62005 Register 1 Bit Definitions  
SPI RA BIT NAME  
RELATED  
BLOCK  
DESCRIPTION/FUNCTION  
BIT  
M
BIT  
0
1
A0  
Address 0  
Address 1  
Address 2  
Address 3  
1
A1  
0
2
A2  
0
3
A3  
0
4
0
1
2
3
4
5
6
7
8
9
DIV2SECX  
DIV2SECY  
RESERVED  
RESERVED  
OUTMUX1SELX  
OUTMUX1SELY  
PH1ADJC0  
PH1ADJC1  
PH1ADJC2  
PH1ADJC3  
Pre-Divider Selection for the Secondary Reference  
(X,Y)=00:3-state, 01:Divide by “1”, 10:Divide by “2”, 11:Reserved  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
Secondary  
Reference  
5
6
Used in Test Mode  
Used in Test Mode  
7
8
Output 1 OUTPUT MUX “1” Select. Selects the Signal driving Output Divider”1”  
(X,Y) = 00: PRI_IN, 01:SEC_IN, 10:SMART_MUX, 11:VCO_CORE  
9
Output 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Output 1  
Output 1  
Output 1  
Output 1 Coarse phase adjust select for output divider “1”  
10 PH1ADJC4  
Output 1  
11 PH1ADJC5  
Output 1  
12 PH1ADJC6  
Output 1  
13 OUT1DIVRSEL0  
14 OUT1DIVRSEL1  
15 OUT1DIVRSEL2  
16 OUT1DIVRSEL3  
17 OUT1DIVRSEL4  
18 OUT1DIVRSEL5  
19 OUT1DIVRSEL6  
Output 1  
Output 1  
Output 1  
Output 1 OUTPUT DIVIDER “1” Ratio Select  
Output 1  
Output 1  
Output 1  
When set to “0”, the divider is disabled  
Output 1  
24  
20 OUT1DIVSEL  
EEPROM  
When set to “1”, the divider is enabled  
High Swing LVPECL When set to “1” and Normal Swing when set to “0”  
– If LVCMOS or LVDS is selected the Output swing will stay at the same level.  
– If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to “1”  
and Normal LVPECL if it is set to “0”.  
25  
21 HiSWINGLVPECL1  
Output 1  
EEPROM  
26  
27  
28  
29  
30  
22 CMOSMODE1PX  
23 CMOSMODE1PY  
24 CMOSMODE1NX  
25 CMOSMODE1NY  
26 OUTBUFSEL1X  
Output 1 LVCMOS mode select for OUTPUT “1” Positive Pin.  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State  
Output 1  
Output 1 LVCMOS mode select for OUTPUT “1” Negative Pin.  
(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State  
Output 1  
Output 1  
OUTPUT TYPE  
RAM BITS  
22  
0
23  
0
24  
0
25 26 27  
LVPECL  
0
1
0
1
0
1
1
1
0
0
LVDS  
0
1
0
31  
27 OUTBUFSEL1Y  
Output 1  
EEPROM  
LVCMOS  
Output Disabled  
See Settings Above*  
0
1
0
1
* Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs  
28  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Device Registers: Register 2  
Table 8. CDCE62005 Register 2 Bit Definitions  
SPI RA BIT NAME  
RELATED  
BLOCK  
DESCRIPTION/FUNCTION  
BIT  
M
BIT  
0
1
A0  
Address 0  
0
A1  
Address 1  
1
2
A2  
Address 2  
0
3
A3  
Address 3  
0
4
0
1
2
3
4
5
6
7
8
9
REFDIV0  
REFDIV1  
RESERVED  
RESERVED  
OUTMUX2SELX  
OUTMUX2SELY  
PH2ADJC0  
PH2ADJC1  
PH2ADJC2  
PH2ADJC3  
Reference Divider Bit “0”  
Reference Divider Bit “1”  
Used in Test Mode  
Used in Test Mode  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
Reference  
Divider  
5
6
7
8
Output 2 OUTPUT MUX “2” Select. Selects the Signal driving Output Divider”2”  
(X,Y) = 00: PRI_IN, 01:SEC_IN, 10:SMART_MUX, 11:VCO_CORE  
9
Output 2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Output 2  
Output 2  
Output 2  
Output 2 Coarse phase adjust select for output divider “2”  
10 PH2ADJC4  
Output 2  
11 PH2ADJC5  
Output 2  
12 PH2ADJC6  
Output 2  
13 OUT2DIVRSEL0  
14 OUT2DIVRSEL1  
15 OUT2DIVRSEL2  
16 OUT2DIVRSEL3  
17 OUT2DIVRSEL4  
18 OUT2DIVRSEL5  
19 OUT2DIVRSEL6  
Output 2  
Output 2  
Output 2  
Output 2 OUTPUT DIVIDER “2” Ratio Select  
Output 2  
Output 2  
Output 2  
When set to “0”, the divider is disabled  
Output 2  
24  
20 OUT2DIVSEL  
EEPROM  
When set to “1”, the divider is enabled  
High Swing LVPECL When set to “1” and Normal Swing when set to “0”  
– If LVCMOS or LVDS is selected the Output swing will stay at the same level.  
– If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to “1”  
and Normal LVPECL if it is set to “0”.  
25  
21 HiSWINGLVPEC2  
Output 2  
EEPROM  
26  
27  
28  
29  
30  
22 CMOSMODE2PX  
23 CMOSMODE2PY  
24 CMOSMODE2NX  
25 CMOSMODE2NY  
26 OUTBUFSEL2X  
Output 2 LVCMOS mode select for OUTPUT “2” Positive Pin.  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State  
Output 2  
Output 2 LVCMOS mode select for OUTPUT “2” Negative Pin.  
(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State  
Output 2  
Output 2  
OUTPUT TYPE  
RAM BITS  
22  
0
23  
0
24  
0
25 26 27  
LVPECL  
0
1
0
1
0
1
1
1
0
0
LVDS  
0
1
0
31  
27 OUTBUFSEL2Y  
Output 2  
EEPROM  
LVCMOS  
Output Disabled  
See Settings Above*  
0
1
0
1
* Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Device Registers: Register 3  
Table 9. CDCE62005 Register 3 Bit Definitions  
SPI RAM BIT NAME  
RELATED  
BLOCK  
DESCRIPTION/FUNCTION  
BIT  
BIT  
0
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
1
0
0
1
2
3
Reference  
Divider  
4
0
REFDIV2  
Reference Divider Bit “2”  
EEPROM  
5
1
2
RESERVED  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
6
RESERVED  
Used in Test Mode  
Used in Test Mode  
7
3
RESERVED  
8
4
OUTMUX3SELX  
OUTMUX3SELY  
PH3ADJC0  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
OUTPUT MUX “3” Select. Selects the Signal driving Output Divider”3”  
(X,Y) = 00: PRI_IN, 01:SEC_IN, 10:SMART_MUX, 11:VCO_CORE  
9
5
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
7
PH3ADJC1  
8
PH3ADJC2  
9
PH3ADJC3  
Coarse phase adjust select for output divider “3”  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH3ADJC4  
PH3ADJC5  
PH3ADJC6  
OUT3DIVRSEL0  
OUT3DIVRSEL1  
OUT3DIVRSEL2  
OUT3DIVRSEL3  
OUT3DIVRSEL4  
OUT3DIVRSEL5  
OUT3DIVRSEL6  
OUTPUT DIVIDER “3” Ratio Select  
When set to “0”, the divider is disabled  
When set to “1”, the divider is enabled  
24  
20  
OUT3DIVSEL  
Output 3  
EEPROM  
High Swing LVPECL When set to “1” and Normal Swing when set to “0”  
– If LVCMOS or LVDS is selected the Output swing will stay at the same level.  
– If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to “1”  
and Normal LVPECL if it is set to “0”.  
25  
21  
HiSWINGLVPEC3  
Output 3  
EEPROM  
26  
27  
28  
29  
30  
22  
23  
24  
25  
26  
CMOSMODE3PX  
CMOSMODE3PY  
CMOSMODE3NX  
CMOSMODE3NY  
OUTBUFSEL3X  
Output 3  
Output 3  
Output 3  
Output 3  
Output 3  
LVCMOS mode select for OUTPUT “3” Positive Pin.  
(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT “3” Negative Pin.  
(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State  
OUTPUT TYPE  
RAM BITS  
22 23 24  
25  
0
26  
0
27  
1
LVPECL  
0
0
0
1
0
0
LVDS  
1
1
1
31  
27  
OUTBUFSEL3Y  
Output 3  
EEPROM  
LVCMOS  
Output Disabled  
See Settings Above*  
0
0
0
1
0
1
1
0
* Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs  
30  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Device Registers: Register 4  
Table 10. CDCE62005 Register 4 Bit Definitions  
SPI RAM BIT NAME  
RELATED  
BLOCK  
DESCRIPTION/FUNCTION  
BIT  
BIT  
0
A0  
Address 0  
0
1
A1  
Address 1  
0
2
A2  
Address 2  
1
0
3
A3  
Address 3  
4
0
1
RESERVED  
This bit must be set to a “1”  
0 (default): normal operation,  
EEPROM  
5
ATETEST  
TI Test Bit 1: outputs have deterministic delay relative to low-to-high pulse of SYNC pin when the  
SYNC signal is synchronized with the reference input  
EEPROM  
6
2
3
RESERVED  
Used in Test Mode  
Used in Test Mode  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
7
RESERVED  
8
4
OUTMUX4SELX  
OUTMUX4SELY  
PH4ADJC0  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
OUTPUT MUX “4” Select. Selects the Signal driving Output Divider”4”  
(X,Y) = 00: PRI_IN, 01:SEC_IN, 10:SMART_MUX, 11:VCO_CORE  
9
5
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
7
PH4ADJC1  
8
PH4ADJC2  
9
PH4ADJC3  
Coarse phase adjust select for output divider “4”  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PH4ADJC4  
PH4ADJC5  
PH4ADJC6  
OUT4DIVRSEL0  
OUT4DIVRSEL1  
OUT4DIVRSEL2  
OUT4DIVRSEL3  
OUT4DIVRSEL4  
OUT4DIVRSEL5  
OUT4DIVRSEL6  
OUTPUT DIVIDER “4” Ratio Select  
When set to “0”, the divider is disabled  
When set to “1”, the divider is enabled  
24  
20  
OUT4DIVSEL  
Output 4  
EEPROM  
High Swing LVPECL When set to “1” and Normal Swing when set to “0”  
– If LVCMOS or LVDS is selected the Output swing will stay at the same level.  
– If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to “1”  
and Normal LVPECL if it is set to “0”.  
25  
21  
HiSWINGLVPEC4  
Output 4  
EEPROM  
26  
27  
28  
29  
30  
22  
23  
24  
25  
26  
CMOSMODE4PX  
CMOSMODE4PY  
CMOSMODE4NX  
CMOSMODE4NY  
OUTBUFSEL4X  
Output 4  
Output 4  
Output 4  
Output 4  
Output 4  
LVCMOS mode select for OUTPUT “4” Positive Pin.  
(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
LVCMOS mode select for OUTPUT “3” Negative Pin.  
(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State  
OUTPUT TYPE  
RAM BITS  
22 23 24  
25  
0
26  
0
27  
1
LVPECL  
0
0
0
1
0
0
LVDS  
1
1
1
31  
27  
OUTBUFSEL4Y  
Output 4  
EEPROM  
LVCMOS  
Output Disabled  
See Settings Above*  
0
0
0
1
0
1
1
0
* Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Device Registers: Register 5  
Table 11. CDCE62005 Register 5 Bit Definitions  
SPI  
BIT  
RAM BIT NAME  
BIT  
RELATED  
BLOCK  
DESCRIPTION/FUNCTION  
0
1
2
3
A0  
A1  
A2  
A3  
Address 0  
Address 1  
Address 2  
Address 3  
1
0
1
0
Input Buffer Select (LVPECL,LVDS or LVCMOS)  
XY(01 ) LVPECL, (11) LVDS, (00) LVCMOS- Input is Positive Pin  
4
0
INBUFSELX  
INBUFSELX  
INBUFSELY  
EEPROM  
5
6
7
1
2
3
INBUFSELY  
PRISEL  
EEPROM  
EEPROM  
EEPROM  
WHEN EECLKSEL = 1;  
Bit (6,7,8) 100 – PRISEL, 010 – SECSEL , 001 – AUXSEL  
110 – Auto Select ( PRI then SEC)  
111 – Auto Select ( PRI then SEC and then AUX)  
When EECLKSEL = 0, REF_SEL pin determines the Reference Input to the Smart Mux  
circuitry.  
SECSEL  
Smart MUX  
8
4
5
AUXSEL  
EEPROM  
EEPROM  
If EEPROM Clock Select Input is set to “1” The Clock selections follows internal EEPROM  
Smart MUX settings and ignores REF_SEL Pin status, when Set to “0” REF_SEL is used to control  
the Mux, Auto Select Function is not available and AUXSEL is not available.  
9
EECLKSEL  
10  
6
7
ACDCSEL  
HYSTEN  
Input Buffers If Set to “1” DC Termination, If set to “0” AC Termination  
EEPROM  
EEPROM  
Input Buffers If Set to “1” Input Buffers Hysteresis Enabled. It is not recommended that Hysteresis be  
disabled.  
11  
12  
If Set to “0” Primary Input Buffer Internal Termination Enabled  
Input Buffers  
8
PRI_TERMSEL  
EEPROM  
If set to “1” Primary Internal Termination circuitry Disabled  
13  
14  
9
PRIINVBB  
SECINVBB  
Input Buffers If Set to “1” Primary Input Negative Pin Biased with Internal VBB Voltage.  
Input Buffers If Set to “1” Secondary Input Negative Pin Biased with Internal VBB Voltage  
EEPROM  
EEPROM  
10  
If Set to “1” Fail Safe is Enabled for all Input Buffers configured as LVDS, DC Coupling  
15  
11  
FAILSAFE  
Input Buffers  
only.  
EEPROM  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
RESERVED  
RESERVED  
SELINDIV0  
SELINDIV1  
SELINDIV2  
SELINDIV3  
SELINDIV4  
SELINDIV5  
SELINDIV6  
SELINDIV7  
LOCKW(0)  
LOCKW(1)  
LOCKW(2)  
LOCKW(3)  
Must be set to “0”  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
--------  
Must be set to “0”  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
PLL Lock  
INPUT DIVIDER Settings  
LOCKW(3:0): Lock-detect Window Width  
= 0000 (narrow window),  
= 0001,0010,0100,0101 …..  
= 1110 (widest window)  
= XX11 (RESERVED)  
Number of coherent lock events. If set to “0” it triggers after the first lock detection if set to  
“1” it triggers lock after 64 cycles of lock detections.  
30  
31  
26  
27  
LOCKDET  
ADLOCK  
PLL Lock  
PLL Lock  
EEPROM  
EEPROM  
Selects Digital PLL_LOCK “0” ,Selects Analog PLL_LOCK “1”  
32  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Device Registers: Register 6  
Table 12. CDCE62005 Register 6 Bit Definitions  
SPI  
BIT  
RAM BIT NAME  
BIT  
RELATED  
BLOCK  
DESCRIPTION/FUNCTION  
0
1
A0  
A1  
A2  
A3  
Address 0  
0
Address 1  
1
2
Address 2  
1
3
Address 3  
0
4
0
1
SELVCO  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Select, 0:VCO1(low range), 1:VCO2(high range)  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
5
SELPRESCA  
SELPRESCB  
SELFBDIV0  
SELFBDIV1  
SELFBDIV2  
SELFBDIV3  
SELFBDIV4  
SELFBDIV5  
SELFBDIV6  
SELFBDIV7  
RESERVED  
PRESCALER Setting.  
6
2
7
3
8
4
9
5
10  
11  
12  
13  
14  
15  
6
FEEDBACK DIVIDER Setting  
7
8
9
10  
11  
Must be set to “0”  
If Set to “0” Secondary Input Buffer Internal Termination Enabled  
If set to “1” Secondary Internal Termination circuitry Disabled  
16  
12  
SEC_TERMSEL  
Input Buffers  
EEPROM  
17  
18  
19  
20  
21  
22  
23  
24  
13  
14  
15  
16  
17  
18  
19  
20  
SELBPDIV0  
SELBPDIV1  
SELBPDIV2  
ICPSEL0  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
VCO Core  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
BYPASS DIVIDER Setting ( 6 settings + Disable + Enable)  
ICPSEL1  
CHARGE PUMP Current Select  
ICPSEL2  
ICPSEL3  
RESERVED  
When set to "0", outputs are synchronized to the reference input on the low-to-high  
pulse on SYNC pin or bit. When set to "1", outputs are synchronized to the SYNC  
low-to-high pulse  
25  
26  
21  
22  
CPPULSEWIDTH  
ENCAL  
VCO Core  
VCO Core  
If set to 1=wide pulse, 0=narrow pulse  
EEPROM  
EEPROM  
Enable VCO Calibration Command. To execute this command a rising edge must be  
generated (i.e. Write a LOW followed by a high to this bit location). This will initiate a  
VCO calibration sequence only if Calibration Mode = Manual Mode (i.e. Register 6 bit 27  
is HIGH).  
27  
28  
23  
24  
RESERVED  
AUXOUTEN  
Must be set to “0”  
EEPROM  
EEPROM  
Output AUX Enable Auxiliary Output when set to “1”.  
Select the Output that will driving the AUX Output;  
Output AUX  
29  
30  
25  
26  
AUXFEEDSEL  
EXLFSEL  
EEPROM  
EEPROM  
Low for Selecting Output Divider “2” and High for Selecting Output Divider “3”  
When Set to “1” External Loop filter is used.  
VCO Core  
When Set to “0” Internal Loop Filter is used.  
1: Calibration Mode = Manual Mode. In this mode, a calibration will be initiated if a rising  
edge is asserted on ENCAL (Register 6 Bit 22).  
0: Calibration Mode = Startup Mode.  
PLL  
Calibration  
31  
27  
ENCAL_MODE  
EEPROM  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Device Registers: Register 7  
Table 13. CDCE62005 Register 7 Bit Definitions  
SPI RAM BIT NAME  
RELATED DESCRIPTION/FUNCTION  
BLOCK  
BIT  
BIT  
0
A0  
Address 0  
1
1
A1  
Address 1  
1
2
A2  
Address 2  
1
3
A3  
Address 3  
0
4
0
1
2
3
4
5
6
7
8
9
LFRCSEL0  
LFRCSEL1  
LFRCSEL2  
LFRCSEL3  
LFRCSEL4  
LFRCSEL5  
LFRCSEL6  
LFRCSEL7  
LFRCSEL8  
LFRCSEL9  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
VCO Core Loop Filter Control Setting  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
10 LFRCSEL10  
11 LFRCSEL11  
12 LFRCSEL12  
13 LFRCSEL13  
14 LFRCSEL14  
15 LFRCSEL15  
16 LFRCSEL16  
17 LFRCSEL17  
18 LFRCSEL18  
19 LFRCSEL19  
20 LFRCSEL20  
21 RESERVED  
22 TESTMUX1  
Must be set to "0"  
Diagnostics Set to “1”  
If set to “0” it enables short delay for fast operation  
If Set to “1” Long Delay recommended for Input References below 150MHz.  
Diagnostics Set to “1”  
27  
28  
29  
23 SEL_DEL2  
24 TEXTMUX2  
25 SEL_DEL1  
Smart Mux  
EEPROM  
EEPROM  
EEPROM  
If set to “0” it enables short delay for fast operation  
If Set to “1” Long Delay recommended for Input References below 150MHz.  
Smart Mux  
Read Only  
If EPLOCK reads “0” EEPROM is unlocked. If EPLOCK reads “1”, then the  
EEPROM is locked (see Table 5 for how to lock the EEPROM – this can only  
be executed once after which the EEPROM is locked permanently).  
30  
31  
26 EPLOCK  
Status  
Status  
EEPROM  
EEPROM  
27 RESERVED  
Read Only Always reads “1”  
34  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Device Registers: Register 8  
Table 14. CDCE62005 Register 8 Bit Definitions  
SPI RAM BIT NAME  
RELATED  
BLOCK  
DESCRIPTION/FUNCTION  
BIT  
BIT  
0
A0  
Address 0  
Address 1  
Address 2  
Address 3  
0
0
1
A1  
2
A2  
0
3
A3  
1
4
0
1
2
3
4
5
6
7
CALWORD0  
CALWORD1  
CALWORD2  
CALWORD3  
CALWORD4  
CALWORD5  
PLLLOCKPIN  
/SLEEP  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
RAM  
RAM  
RAM  
5
6
“VCO Calibration Word” read back from device  
7
RAM  
RAM  
RAM  
RAM  
RAM  
8
9
10  
11  
Read Only: Status of the PLL Lock Pin Driven by the device.  
Set Device Sleep mode On when set to “0”, Normal Mode when set to “1”  
If set to “0” this bit forces “/SYNC ; Set to “1” to exit the Synchronization  
State.  
12  
8
/SYNC  
Status  
RAM  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
9
RESERVED  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
10 VERSION0  
Silicon Revision  
Silicon Revision  
Silicon Revision  
Must be set to “0”  
11 VERSION1  
12 VERSION2  
13 RESERVED  
14 CALWORD_IN0  
15 CALWORD_IN1  
16 CALWORD_IN2  
17 CALWORD_IN3  
18 CALWORD_IN4  
19 CALWORD_IN5  
20 RESERVED  
21 TITSTCFG0  
22 TITSTCFG1  
23 TITSTCFG2  
24 TITSTCFG3  
25 PRIACTIVITY  
26 SECACTIVITY  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
TI Test Registers. For TI Use Only  
Must be set to “0”  
Diagnostics  
Diagnostics  
Diagnostics  
Diagnostics  
Status  
TI Test Registers. For TI Use Only  
Synthesizer Source Indicator (27:25)  
0 0 1 Primary Input  
0 1 0 Secondary Input  
Status  
31  
27 AUXACTIVITY  
Status  
RAM  
1 0 0 Auxiliary Input  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Device Control  
Figure 22 provides a conceptual explanation of the CDCE62005 Device operation. Table 15 defines how the  
device behaves in each of the operational states.  
Power  
Applied  
Power ON  
Reset  
Device  
OFF  
Delay Finished  
Calibration  
Hold  
Sleep  
Sleep = OFF  
CAL_Enabled  
Sleep = ON  
VCO  
CAL  
Manual  
Recalibration = ON  
CAL Done  
Sync = ON  
Power Down = ON  
Power Down  
Active Mode  
Sync  
Sync = OFF  
Figure 22. CDCE62005 Device State Control Diagram  
Table 15. CDCE62005 Device State Definitions  
Status  
Output  
State  
Device Behavior  
Entered Via  
Exited Via  
Output  
Buffer  
SPI Port  
PLL  
Divider  
After device power supply reaches  
approximately 2.35 V, the contents  
of EEPROM are copied into the  
Device Registers, thereby initializing  
the device hardware.  
Power applied to the device or upon  
exit from Power Down State via the  
Power_Down pin set HIGH.  
Power On Reset and EEPROM loading  
delays are finished OR the Power_Down  
pin is set LOW.  
OFF  
Disabled  
Disabled  
OFF  
Power-On  
Reset  
The device waits until either  
Delay process in the Power-On Reset The device waits until either  
ON  
ON  
Enabled  
Enabled  
Disabled  
Disabled  
OFF  
ENCAL_MODE (Device Register 6  
bit 27) is low (Start up calibration  
enabled) or both ENCAL_MODE is  
high (Manual Calibration Enabled)  
AND ENCAL (Device Register 6 bit  
22) transitions from a low to a high  
signaling the device.  
State is finished or Sleep Mode (Sleep ENCAL_MODE (Device Register 6 bit 27)  
bit is in Register 8 bit 7) is turned OFF is low (Start up calibration enabled) or  
while in the Sleep State. Power Down both ENCAL_MODE is high (Manual  
Calibration  
Hold  
must be OFF to enter the Calibration  
Hold State.  
Calibration Enabled) AND ENCAL (Device  
Register 6 bit 22) transitions from a low to  
a high signaling the device  
The voltage controlled oscillator is  
Calibration Hold: CAL Enabled  
Calibration Process in completed  
OFF  
calibrated based on the PLL settings becomes true when either  
and the incoming reference clock.  
After the VCO has been calibrated,  
the device enters Active Mode  
automatically.  
ENCAL_MODE (Device Register 6 bit  
27) is low or both ENCAL_MODE is  
high AND ENCAL (Device Register 6  
bit 22) transitions from a low to a high.  
Active Mode: A Manual Recalibration  
is requested. This is initiated by  
setting ENCAL_MODE to HIGH  
(Manual Calibration Enabled) AND  
initiating a calibration sequence by  
applying a LOW to HIGH transition on  
ENCAL.  
VCO CAL  
Normal Operation  
CAL Done (VCO calibration process  
finished) or Sync = OFF (from Sync  
State).  
Sync, Power Down, Sleep, or Manual  
Recalibration activated.  
ON  
Enabled  
Disabled Disabled  
Active Mode  
or  
or  
Enabled  
Enabled  
36  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Table 15. CDCE62005 Device State Definitions (continued)  
Status  
Output  
State  
Device Behavior  
Entered Via  
Exited Via  
Output  
Buffer  
SPI Port  
PLL  
Divider  
Used to shut down all hardware and Power_Down pin is pulled LOW.  
Resets the device after exiting the  
Power_Down pin is pulled HIGH.  
ON  
Disabled  
Disabled Disabled  
Power  
Down  
Power Down State. Therefore, the  
EEPROM contents will eventually be  
copied into RAM after the Power  
Down State is exited.  
Identical to the Power Down State  
except the EEPROM contents are  
not copied into RAM.  
Sleep bit in device register 8 bit 7 is  
set LOW.  
Sleep bit in device register 8 bit 7 is set  
HIGH.  
ON  
ON  
Disabled  
Enabled  
Disabled Disabled  
Disabled Disabled  
Sleep  
Sync  
Sync synchronizes all output  
dividers so that they begin counting  
at the same time. Note: this  
operation is performed automatically  
each time a divider register is  
accessed.  
Sync Bit in device register 8 bit 8 is  
set LOW or Sync pin is pulled LOW  
Sync Bit in device register 8 bit 8 is set  
HIGH or Sync pin is pulled HIGH  
External Control Pins  
REF_SEL  
REF_SEL provides a way to switch between the primary and secondary reference inputs (PRI_IN and SEC_IN)  
via an external signal. It works in conjunction with the smart multiplexer discussed in the Input Block section.  
Power_Down  
The Power_Down pin places the CDCE62005 into the power down state . Additionally, the CDCE62005 loads  
the contents of the EEPROM into RAM after the Power_Down pin is de-asserted; therefore, it is used to initialize  
the device after power is applied. SPI_LE signal has to be HIGH in order for EEPROM to load correctly during  
the rising edge of Power_Down.  
SYNC  
The SYNC pin (Active LOW) has a complementary register location located in Device Register 8 bit 8. When  
enabled, Sync synchronizes all output dividers so that they begin counting simultaneously. Further, SYNC  
disables all outputs when in the active state. NOTE: The output synchronization does not work for reference input  
frequencies less than 1 MHz.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
INPUT BLOCK  
The Input Block includes two Universal Input Buffers, an Auxiliary Input, and a Smart Multiplexer. The Input Block  
drives three different clock signals onto the Internal Clock Distribution Bus: buffered versions of both the primary  
and secondary inputs (PRI_IN and SEC_IN) and the output of the Smart Multiplexer.  
Universal Input Buffers  
1500 MHz  
PRI_IN  
LVPECL : 1 MHz - 1500 MHz  
LVDS : 1 MHz - 800 MHz  
LVCMOS : 250 MHz  
Register 6  
12  
Register 5  
9
8
6
1
0
1 MHz - 250 MHz  
SEC_IN  
Register 5  
5
4
3
2
Smart MUX  
Control  
REF_SEL  
Register 0  
Smart Multiplexer  
1
0
Smart  
MUX1  
/1:/2:HiZ  
250 MHz  
250 MHz  
Smart  
MUX2  
Reference Divider  
/1 - /8  
Register 1  
1
0
Auxiliary Input  
Register 3 Register 2  
/1:/2:HiZ  
0
1
0
XTAL/  
AUX_IN  
Crystal : 2 MHz – 42 MHz  
Figure 23. CDCE62005 Input Block With References to Registers  
38  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Universal Input Buffers (UIB)  
Figure 24 shows the key elements of a universal input buffer. A UIB supports multiple formats along with different  
termination and coupling schemes. The CDCE62005 implements the UIB by including on board switched  
termination, a programmable bias voltage generator, and an output multiplexer. The CDCE62005 provides a high  
degree of configurability on the UIB to facilitate most existing clock input formats.  
PRI_IN  
Settings  
5.1  
5.0  
5.6  
INBUFSELY INBUFSELX ACDCSEL  
Nominal  
Vbb  
PINV  
Universal Input Control  
1
1
1
1
0
0
1
1
0
1
0
1
1.9V  
1.2V  
PN  
PP  
1.2V  
1.2V  
50 Ω  
50 Ω  
Register 6  
12  
Vbb  
Register 5  
Vbb  
1 mF  
10  
9
8
7
6
1
0
50 Ω  
SN  
50 Ω  
SP  
SINV  
Settings  
SWITCH Status  
5.0  
INBUFSELX  
5.1  
INBUFSELY  
5.8, 6.12  
TERMSEL  
5.9,5.10  
INVBB  
P
N
INV  
OFF  
OFF  
ON  
SEC_IN  
0
X
X
X
0
X
1
1
X
1
0
0
X
X
0
OFF  
OFF  
ON  
OFF  
OFF  
ON  
1
ON  
ON  
OFF  
Figure 24. CDCE62005 Universal Input Buffer  
Table 16 lists several settings for many possible clock input scenarios. Note that the two universal input buffers  
share the Vbb generator. Therefore, if both inputs use internal termination, they must use the same configuration  
mode (LVDS, LVPECL, or LVCMOS). If the application requires different modes (e.g. LVDS and LVPECL) then  
one of the two inputs must implement external termination.  
Table 16. CDCE62005 Universal Input Buffer Configuration Matrix  
PRI_IN CONFIGURATION MATRIX  
SETTINGS  
CONFIGURATION  
Register.Bit  
Bit Name →  
5.7  
5.1  
5.0  
5.8  
5.9  
5.6  
HYSTEN  
INBUFSELY  
INBUFSELX  
PRI_TERMSEL  
PRIINVBB  
ACDCSEL Hysteresis  
Mode  
LVCMOS  
LVPECL  
LVPECL  
LVPECL  
LVDS  
Coupling  
DC  
AC  
Termination  
Vbb  
1
1
1
1
1
1
1
0
1
0
1
1
1
1
1
1
X
X
0
0
0
0
1
1
1
X
X
X
0
0
1
0
0
1
X
X
X
0
X
0
ENABLED  
ENABLED  
ENABLED  
ENABLED  
ENABLED  
ENABLED  
ENABLED  
OFF  
N/A  
Internal  
Internal  
External  
Internal  
Internal  
External  
1.9V  
1.2V  
0
1
DC  
X
0
X
0
AC  
1.2V  
1.2V  
0
1
LVDS  
DC  
X
X
X
X
X
X
LVDS  
ENABLED  
SEC_IN CONFIGURATION MATRIX  
SETTINGS  
CONFIGURATION  
Register.Bit →  
Bit Name →  
5.7  
HYSTEN  
1
5.1  
INBUFSELY  
0
5.0  
INBUFSELX  
0
6.12  
5.10  
SECINVBB  
X
5.6  
SEC_TERMSEL  
ACDCSEL Hysteresis  
ENABLED  
Mode  
Coupling  
Termination  
Vbb  
X
X
LVCMOS  
DC  
N/A  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Table 16. CDCE62005 Universal Input Buffer Configuration Matrix (continued)  
PRI_IN CONFIGURATION MATRIX  
SETTINGS  
CONFIGURATION  
Register.Bit →  
Bit Name →  
5.7  
5.1  
5.0  
5.8  
5.9  
5.6  
HYSTEN  
INBUFSELY  
INBUFSELX  
PRI_TERMSEL  
PRIINVBB  
ACDCSEL Hysteresis  
Mode  
Coupling  
Termination  
Vbb  
1.9V  
1.2V  
1
1
1
1
1
1
0
1
1
1
1
1
1
1
X
X
0
0
0
1
1
1
X
X
0
0
1
0
0
1
X
X
0
0
0
1
ENABLED  
ENABLED  
ENABLED  
ENABLED  
ENABLED  
ENABLED  
OFF  
LVPECL  
LVPECL  
LVPECL  
LVDS  
LVDS  
LVDS  
AC  
DC  
Internal  
Internal  
External  
Internal  
Internal  
External  
X
0
X
0
AC  
DC  
1.2V  
1.2V  
0
1
X
X
X
X
X
X
ENABLED  
LVDS Fail Safe Mode  
Differential data line receivers can switch on noise in the absence of an input signal. This occurs when the bus  
driver is turned off or the interconnect is damaged or missing. Traditionally the solution to this problem involves  
incorporating an external resistor network on the receiver input. This network applies a steady-state bias voltage  
to the input pins. The additional cost of the external components notwithstanding, the use of such a network  
lowers input signal magnitude and thus reduces the differential noise margin. The CDCE62005 provides internal  
failsafe circuitry on all LVDS inputs if enabled as shown in Table 17 for DC termination only.  
Table 17. LVDS Failsafe Settings  
Bit Name  
Register.Bit →  
FAILSAFE  
5.11  
LVDS Failsafe  
0
1
Disabled for all inputs  
Enabled for all inputs  
Smart Multiplexer Controls  
The smart multiplexer implements a configurable switching mechanism suitable for many applications in which  
fault tolerance is a design consideration. It includes the multiplexer itself along with three dividers. With respect to  
the multiplexer control, Table 18 provides an overview of the configurations supported by the CDCE62005.  
Table 18. CDCE62005 Smart Multiplexer Settings  
REGISTER 5 SETTINGS  
EECLKSEL  
AUXSEL  
SECSEL  
PRISEL  
SMART MULTIPLEXER MODE  
5.5  
1
5.4  
0
5.3  
0
5.2  
1
Manual Mode: PRI_IN selected  
1
0
1
0
Manual Mode: SEC_IN selected  
1
1
0
0
Manual Mode: AUX_IN selected  
1
0
1
1
Auto MOde: PRI_IN then SEC_IN  
1
1
1
1
Auto Mode: PRI_IN then SEC_IN then AUX_IN  
REF_SEL pin selects PRI_IN or SEC_IN  
0
X
1
1
40  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Smart Multiplexer Auto Mode  
Smart Multiplexer Auto Mode switches automatically between clock inputs based on a prioritization scheme  
shown in Table 18. If using the Smart Multiplexer Auto Mode, the frequencies of the clock inputs may differ by up  
to 20%. The phase relationship between clock inputs has no restriction.  
Upon the detection of a loss of signal on the highest priority clock, the smart multiplex switches its output to the  
next highest priority clock on the first incoming rising edge of the next highest priority clock. During this switching  
operation, the output of the smart multiplexer is low. Upon restoration of the higher priority clock, the smart  
multiplexer waits until it detects four complete cycles from the higher priority clock prior to switching the output of  
the smart multiplexer back to the higher priority clock. During this switching operation, the output of the smart  
multiplexer remains high until the next falling edge as shown in Figure 25.  
PRI _ REF  
SEC _ REF  
Internal  
Reference Clock  
Secondary Clock  
Primary Clock  
Primary Clock  
Figure 25. CDCE62005 Smart Multiplexer Timing Diagram  
Smart Multiplexer Dividers  
Register 5  
5
4
3
2
Smart MUX  
Control  
REF_SEL  
Register 0  
1
0
Smart Multiplexer  
Smart  
MUX1  
/1:/2:HiZ  
PRI_IN  
Smart  
MUX2  
Reference Divider  
/1 - /8  
Register 1  
Universal Input Buffers  
SEC_IN  
1
0
Register 3 Register 2  
/1:/2:HiZ  
0
1
0
XTAL/  
AUX_IN  
Auxiliary Input  
Figure 26. CDCE62005 Smart Multiplexer  
The CDCE62005 Smart Multiplexer Block provides the ability to divide the primary and secondary UIB or to  
disconnect a UIB from the first state of the smart multiplexer altogether.  
Table 19. CDCE62005 Pre-Divider Settings  
Primary Pre-Divider  
Secondary Pre-Divider  
Bit Name →  
Register.Bit →  
DIV2PRIY  
0.1  
DIV2PRIX  
0.0  
Bit Name →  
Register.Bit →  
DIV2SECY  
1.1  
DIV2SECX  
1.0  
Divide Ratio  
Divide Ratio  
0
0
1
1
0
1
0
1
Hi-Z  
0
0
1
1
0
1
0
1
Hi-Z  
/2  
/1  
/2  
/1  
Reserved  
Reserved  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
The CDCE62005 provides a Reference Divider that divides the clock exiting the first multiplexer stage; thus  
dividing the primary (PRI_IN) or the secondary input (SEC_IN).  
Table 20. CDCE62005 Reference Divider Settings  
Reference Divider  
Bit Name →  
Register.Bit →  
REFDIV2  
3.0  
REFDIV1  
2.1  
REFDIV0  
2.0  
Divide Ratio  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
/1  
/2  
/3  
/4  
/5  
/6  
/7  
/8  
Auxiliary Input Port  
The auxiliary input on the CDCE62005 is designed to connect to an AT-Cut Crystal with a load capacitance of 8  
to 10pF. One side of the crystal connects to Ground while the other side connects to the Auxiliary input of the  
device. The circuit works optimally between 20 to 40MHz but it can accept crystals from 2 to 42MHz.  
8 pF  
Figure 27. CDCE62005 Auxiliary Input Port  
42  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
OUTPUT BLOCK  
The output block includes five identical output channels. Each output channel comprises an output multiplexer, a  
clock divider module, and a universal output buffer as shown in Figure 28.  
Registers 0 - 4  
Registers 0 - 4  
5
4
27 26 25 24 23 22 21  
Output  
MUX  
Control  
Output Buffer Control  
Sync  
Pulse  
Enable  
PRI_IN  
UxP  
UxN  
SEC_IN  
Clock Divider Module 0 - 4  
LVDS  
SMART_MUX  
SYNTH  
LVPECL  
Figure 28. CDCE62005 Output Channel  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Output Multiplexer Control  
The Clock Divider Module receives the clock selected by the output multiplexer. The output multiplexer selects  
from one of four clock sources available on the Internal Clock Distribution. For a description of PRI_IN, SEC_IN,  
and SMART_MUX, see Figure 23. For a description of SYNTH, see Figure 34.  
Table 21. CDCE62005 Output Multiplexer Control Settings  
OUTPUT MULTIPLEXER CONTROL  
Register n (n = 0,1,2,3,4)  
OUTMUXnSELX  
n.4  
OUTMUXnSELY  
n.5  
CLOCK SOURCE SELECTED  
0
0
1
1
0
1
0
1
PRI_IN  
SEC_IN  
SMART_MUX  
SYNTH  
Output Buffer Control  
Each of the five output channels includes a programmable output buffer; supporting LVPECL, LVDS, and  
LVCMOS modes. Table 22 lists the settings required to configure the CDCE62005 for each output type.  
Registers 0 through 4 correspond to Output Channels 0 through 4 respectively.  
Table 22. CDCE62005 Output Buffer Control Settings  
OUTPUT BUFFER CONTROL  
Register n (n = 0,1,2,3,4)  
OUTPUT TYPE  
CMOSMODEnPX  
CMOSMODEnPY  
CMOSMODEnNX  
CMOSMODEnNY  
OUTBUFSELnX  
OUTBUFSELnY  
n.22  
n.23  
n.24  
n.25  
n.26  
n.27  
0
0
0
1
0
0
0
1
0
1
0
1
1
1
0
0
LVPECL  
LVDS  
See LVCMOS Output Buffer Configuration Settings  
LVCMOS  
OFF  
0
1
0
1
Output Buffer Control – LVCMOS Configurations  
A LVCMOS output configuration requires additional configuration data. In the single ended configuration, each  
Output Channel provides a pair of outputs. The CDCE62005 supports four modes of operation for single ended  
outputs as listed in Table 23.  
Table 23. LVCMOS Output Buffer Configuration Settings  
OUTPUT BUFFER CONTROL – LVCMOS CONFIGURATION  
Register n (n = 0,1,2,3,4)  
Output  
Pin  
Output Mode  
Type  
CMOSMODEnPX  
CMOSMODEnPY  
CMOSMODEnNX  
CMOSMODEnNY  
OUTBUFSELnX  
OUTBUFSELnY  
n.22  
X
n.23  
X
n.24  
0
n.25  
0
n.26  
0
n.27  
0
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Negative Active – Non-inverted  
Negative Hi-Z  
X
X
0
1
0
0
X
X
1
0
0
0
Negative Active – Non-inverted  
Negative Low  
X
X
1
1
0
0
0
0
X
X
0
0
Positive  
Positive  
Positive  
Positive  
Active – Non-inverted  
0
1
X
X
0
0
Hi-Z  
1
0
X
X
0
0
Active – Non-inverted  
Low  
1
1
X
X
0
0
44  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Output Dividers  
Figure 29 shows that each output channel provides a 7-bit divider and digital phase adjust block. The Output  
Divider Settings lists the divide ratios supported by the output divider for each output channel. Figure 30  
illustrates the output divider architecture in detail. The Prescaler provides an array of low noise dividers with duty  
cycle correction. The Integer Divider includes a final divide by two stage which is used to correct the duty cycle of  
the /1–/8 stage. The output divider’s maximum input frequency is limited to 1.175GHz. If the divider is bypassed  
(divide ratio = 1) then the maximum frequency of the output channel is 1.5GHz.  
Registers 0 - 4  
12 11 10  
Registers 0 - 4  
20  
9
8
7
6
Enable  
Sync  
Pulse  
(internally generated )  
Digital Phase Adjust (7-bits)  
Output Divider (7-bits)  
To  
Output  
Buffer  
From  
Output  
MUX  
Registers 0 - 4  
19 18 17 16 15 14 13  
Figure 29. CDCE62005 Output Divider and Phase Adjust  
Registers 0 - 4  
Registers 0 - 4  
14 13  
Registers 0 - 4  
17 16 15  
19 18  
From  
Output  
MUX  
0 0  
/2-/5  
/1 - /8  
/2  
To  
Output  
Buffer  
Prescaler  
Integer Divider  
1 0  
0 1  
Figure 30. CDCE62005 Output Divider Architecture  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
CDCE62005 Output Divider Settings  
OUTPUT DIVIDER n SETTINGSRegister n (n = 0,1,2,3,4)  
Output Phase*  
Output Divide Ratio  
Multiplexer  
Integer Divider  
Prescaler  
Output  
Channels  
0-4  
OFF  
1
Auxiliary  
Output  
OFF  
OFF  
4
n.19  
X
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.18  
X
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.17  
n.16  
X
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
n.15  
n.14  
X
0
0
0
1
1
0
1
1
0
1
1
0
1
1
1
1
1
0
1
1
0
0
1
1
1
1
n.13  
X
0
0
1
0
1
1
0
1
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
n.20  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Cycles Degree  
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
X
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
1
1
0
0
0
0
1
1
OFF  
0
OFF  
0
2
3
4
5
3
4
5
3
4
5
3
4
5
4
5
5
3
4
5
2
3
4
5
4
5
0.5  
0
180  
2**  
3**  
4
0
6
0.5  
0
180  
8
0
5
10  
2
21  
7560  
10260  
12500  
8640  
11700  
14400  
9720  
13140  
16200  
14580  
18000  
19800  
12960  
17460  
21600  
9540  
14040  
18900  
23400  
20340  
25200  
6
6
2
28.5  
35  
8
8
2
10  
12  
16  
20  
18  
24  
30  
32  
40  
50  
36  
48  
60  
28  
42  
56  
70  
64  
80  
10  
4
24  
12  
4
32.5  
40  
16  
4
20  
6
27  
18  
6
36.5  
45  
24  
6
30  
8
40.5  
50  
32  
8
40  
10  
12  
12  
12  
14  
14  
14  
14  
16  
16  
55  
50  
36  
36  
48.5  
60  
48  
60  
25.5  
39  
28  
42  
52.5  
65  
56  
70  
56.5  
70  
64  
80  
*These columns show that the output divider generates a unique phase lag in the output clock (relative to the clock from the output multiplexer) determined by the  
divide ratio used.  
**Output channel 2 or 3 determine the auxiliary output divide ratio. For example, if the auxiliary output is programmed to drive via output 2 and output 2 divider is  
programmed to divide by 3, then the divide ratio for the auxiliary output will be 6.  
46  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Digital Phase Adjust  
Figure 31 provides an overview of the Digital Phase Adjust feature. The output divider includes a coarse phase  
adjust that shifts the divided clock signal that drives the output buffer. Essentially, the Digital Phase Adjust timer  
delays when the output divider starts dividing; thereby shifting the phase of the output clock. The phase adjust  
resolution is a function of the divide function. Coarse phase adjust parameters include:  
Number of Phase Delay Steps – the number of phase delay steps available is equal to the divide ratio  
selected. For example, if a Divide by 4 is selected, then the Digital Phase Adjust can be programmed to  
select when the output divider changes state based upon selecting one of the four counts on the input.  
Figure 31 shows an example of divide by 16 in which there are 16 rising edges of Clock IN at which the  
output divider changes state (this particular example shows the fourth edge shifting the output by one fourth  
of the period of the output).  
Phase Delay Step Size – the step size is determined by the number of phase delay steps according to the  
following equations:  
360 degrees  
Stepsize(deg) =  
OutputDivideRatio  
(4)  
1
fClockIN  
Stepsize(sec) =  
OutputDivideRatio  
(5)  
Clock  
IN  
(from Smart MUX )  
Start Divider  
Digital Phase Adjust (7-bits)  
To Output Buffer  
/1 - /80  
Clock IN  
Output Divider (no adjust )  
Output Divider (phase adjust )  
Figure 31. CDCE62005 Phase Adjust  
Phase Adjust example  
Given:  
Output Frequency: 30.72 MHz  
VCO Operating Frequency: 1966.08 MHz  
Prescaler Divider Setting: 2  
Output Divider Setting: 32  
360  
Stepsize(deg) =  
=11.25° / Step  
32  
(6)  
The tables that follow provide a list of valid register settings for the digital phase adjust blocks.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Table 24. CDCE62005 Output Coarse Phase Adjust Settings (1)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.7  
0
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
0
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
n.6 (radian)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.7  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
n.6 (radian)  
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
1
0
0
1
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
18  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
(2π/18)  
2(2π/18)  
3(2π/18)  
4(2π/18)  
5(2π/18)  
6(2π/18)  
7(2π/18)  
8(2π/18)  
9(2π/18)  
10(2π/18)  
11(2π/18)  
12(2π/18)  
13(2π/18)  
14(2π/18)  
15(2π/18)  
16(2π/18)  
17(2π/18)  
0
(2π/2)  
3
4
0
(2π/3)  
2(2π/3)  
0
(2π/4)  
2(2π/4)  
3(2π/4)  
0
5
6
(2π/5)  
2(2π/5)  
3(2π/5)  
4(2π/5)  
0
(2π/6)  
2(2π/6)  
3(2π/6)  
4(2π/6)  
5(2π/6)  
0
20  
(2π/20)  
2(2π/20)  
3(2π/20)  
4(2π/20)  
5(2π/20)  
6(2π/20)  
7(2π/20)  
8(2π/20)  
9(2π/20)  
10(2π/20)  
11(2π/20)  
12(2π/20)  
13(2π/20)  
14(2π/20)  
15(2π/20)  
16(2π/20)  
17(2π/20)  
18(2π/20)  
19(2π/20)  
0
8
(2π/8)  
2(2π/8)  
3(2π/8)  
4(2π/8)  
5(2π/8)  
6(2π/8)  
7(2π/8)  
0
10  
(2π/10)  
2(2π/10)  
3(2π/10)  
4(2π/10)  
5(2π/10)  
6(2π/10)  
7(2π/10)  
8(2π/10)  
9(2π/10)  
0
24  
12  
(2π/24)  
(2π/12)  
2(2π/12)  
3(2π/12)  
4(2π/12)  
5(2π/12)  
6(2π/12)  
7(2π/12)  
8(2π/12)  
9(2π/12)  
10(2π/12)  
11(2π/12)  
0
2(2π/24)  
3(2π/24)  
4(2π/24)  
5(2π/24)  
6(2π/24)  
7(2π/24)  
8(2π/24)  
9(2π/24)  
10(2π/24)  
11(2π/24)  
12(2π/24)  
13(2π/24)  
14(2π/24)  
15(2π/24)  
16(2π/24)  
17(2π/24)  
18(2π/24)  
19(2π/24)  
20(2π/24)  
21(2π/24)  
22(2π/24)  
23(2π/24)  
16  
(2π/16)  
2(2π/16)  
3(2π/16)  
4(2π/16)  
5(2π/16)  
6(2π/16)  
7(2π/16)  
8(2π/16)  
9(2π/16)  
10(2π/16)  
11(2π/16)  
12(2π/16)  
13(2π/16)  
14(2π/16)  
15(2π/16)  
48  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Table 25. CDCE62005 Output Coarse Phase Adjust Settings (2)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
n.7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
n.6 (radian)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.7  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
n.6 (radian)  
28  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
32  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
(2π/28)  
(2π/32)  
2(2π/28)  
3(2π/28)  
4(2π/28)  
5(2π/28)  
6(2π/28)  
7(2π/28)  
8(2π/28)  
9(2π/28)  
10(2π/28)  
11(2π/28)  
12(2π/28)  
13(2π/28)  
14(2π/28)  
15(2π/28)  
16(2π/28)  
17(2π/28)  
18(2π/28)  
19(2π/28)  
20(2π/28)  
21(2π/28)  
22(2π/28)  
23(2π/28)  
24(2π/28)  
25(2π/28)  
26(2π/28)  
27(2π/28)  
0
2(2π/32)  
3(2π/32)  
4(2π/32)  
5(2π/32)  
6(2π/32)  
7(2π/32)  
8(2π/32)  
9(2π/32)  
10(2π/32)  
11(2π/32)  
12(2π/32)  
13(2π/32)  
14(2π/32)  
15(2π/32)  
16(2π/32)  
17(2π/32)  
18(2π/32)  
19(2π/32)  
20(2π/32)  
21(2π/32)  
22(2π/32)  
23(2π/32)  
24(2π/32)  
25(2π/32)  
26(2π/32)  
27(2π/32)  
28(2π/32)  
29(2π/32)  
30(2π/32)  
31(2π/32)  
0
30  
(2π/30)  
2(2π/30)  
3(2π/30)  
4(2π/30)  
5(2π/30)  
6(2π/30)  
7(2π/30)  
8(2π/30)  
9(2π/30)  
10(2π/30)  
11(2π/30)  
12(2π/30)  
13(2π/30)  
14(2π/30)  
15(2π/30)  
16(2π/30)  
17(2π/30)  
18(2π/30)  
19(2π/30)  
20(2π/30)  
21(2π/30)  
22(2π/30)  
23(2π/30)  
24(2π/30)  
25(2π/30)  
26(2π/30)  
27(2π/30)  
28(2π/30)  
29(2π/30)  
36  
(2π/36)  
2(2π/36)  
3(2π/36)  
4(2π/36)  
5(2π/36)  
6(2π/36)  
7(2π/36)  
8(2π/36)  
9(2π/36)  
10(2π/36)  
11(2π/36)  
12(2π/36)  
13(2π/36)  
14(2π/36)  
15(2π/36)  
16(2π/36)  
17(2π/36)  
18(2π/36)  
19(2π/36)  
20(2π/36)  
21(2π/36)  
22(2π/36)  
23(2π/36)  
24(2π/36)  
25(2π/36)  
26(2π/36)  
27(2π/36)  
28(2π/36)  
29(2π/36)  
30(2π/36)  
31(2π/36)  
32(2π/36)  
33(2π/36)  
34(2π/36)  
35(2π/36)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Table 26. CDCE62005 Output Coarse Phase Adjust Settings (3)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.7  
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
n.6 (radian)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.7  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
n.6 (radian)  
40  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
48  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
(2π/40)  
(2π/48)  
2(2π/40)  
3(2π/40)  
4(2π/40)  
5(2π/40)  
6(2π/40)  
7(2π/40)  
8(2π/40)  
9(2π/40)  
10(2π/40)  
11(2π/40)  
12(2π/40)  
13(2π/40)  
14(2π/40)  
15(2π/40)  
16(2π/40)  
17(2π/40)  
18(2π/40)  
19(2π/40)  
20(2π/40)  
21(2π/40)  
22(2π/40)  
23(2π/40)  
24(2π/40)  
25(2π/40)  
26(2π/40)  
27(2π/40)  
28(2π/40)  
29(2π/40)  
30(2π/40)  
31(2π/40)  
32(2π/40)  
33(2π/40)  
34(2π/40)  
35(2π/40)  
36(2π/40)  
37(2π/40)  
38(2π/40)  
39(2π/40)  
0
2(2π/48)  
3(2π/48)  
4(2π/48)  
5(2π/48)  
6(2π/48)  
7(2π/48)  
8(2π/48)  
9(2π/48)  
10(2π/48)  
11(2π/48)  
12(2π/48)  
13(2π/48)  
14(2π/48)  
15(2π/48)  
16(2π/48)  
17(2π/48)  
18(2π/48)  
19(2π/48)  
20(2π/48)  
21(2π/48)  
22(2π/48)  
23(2π/48)  
24(2π/48)  
25(2π/48)  
26(2π/48)  
27(2π/48)  
28(2π/48)  
29(2π/48)  
30(2π/48)  
31(2π/48)  
32(2π/48)  
33(2π/48)  
34(2π/48)  
35(2π/48)  
36(2π/48)  
37(2π/48)  
38(2π/48)  
39(2π/48)  
40(2π/48)  
41(2π/48)  
42(2π/48)  
43(2π/48)  
44(2π/48)  
45(2π/48)  
46(2π/48)  
47(2π/48)  
42  
(2π/42)  
2(2π/42)  
3(2π/42)  
4(2π/42)  
5(2π/42)  
6(2π/42)  
7(2π/42)  
8(2π/42)  
9(2π/42)  
10(2π/42)  
11(2π/42)  
12(2π/42)  
13(2π/42)  
14(2π/42)  
15(2π/42)  
16(2π/42)  
17(2π/42)  
18(2π/42)  
19(2π/42)  
20(2π/42)  
21(2π/42)  
22(2π/42)  
23(2π/42)  
24(2π/42)  
25(2π/42)  
26(2π/42)  
27(2π/42)  
28(2π/42)  
29(2π/42)  
30(2π/42)  
31(2π/42)  
32(2π/42)  
33(2π/42)  
34(2π/42)  
35(2π/42)  
36(2π/42)  
37(2π/42)  
38(2π/42)  
39(2π/42)  
40(2π/42)  
41(2π/42)  
50  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Table 27. CDCE62005 Output Coarse Phase Adjust Settings (4)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
n.7  
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
n.6 (radian)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.7  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
n.6 (radian)  
50  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
56  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
(2π/50)  
(2π/56)  
2(2π/50)  
2(2π/56)  
3(2π/50)  
3(2π/56)  
4(2π/50)  
4(2π/56)  
5(2π/50)  
5(2π/56)  
6(2π/50)  
6(2π/56)  
7(2π/50)  
7(2π/56)  
8(2π/50)  
8(2π/56)  
9(2π/50)  
9(2π/56)  
10(2π/50)  
11(2π/50)  
12(2π/50)  
13(2π/50)  
14(2π/50)  
15(2π/50)  
16(2π/50)  
17(2π/50)  
18(2π/50)  
19(2π/50)  
20(2π/50)  
21(2π/50)  
22(2π/50)  
23(2π/50)  
24(2π/50)  
25(2π/50)  
26(2π/50)  
27(2π/50)  
28(2π/50)  
29(2π/50)  
30(2π/50)  
31(2π/50)  
32(2π/50)  
33(2π/50)  
34(2π/50)  
35(2π/50)  
36(2π/50)  
37(2π/50)  
38(2π/50)  
39(2π/50)  
40(2π/50)  
41(2π/50)  
42(2π/50)  
43(2π/50)  
44(2π/50)  
45(2π/50)  
46(2π/50)  
47(2π/50)  
48(2π/50)  
49(2π/50)  
10(2π/56)  
11(2π/56)  
12(2π/56)  
13(2π/56)  
14(2π/56)  
15(2π/56)  
16(2π/56)  
17(2π/56)  
18(2π/56)  
19(2π/56)  
20(2π/56)  
21(2π/56)  
22(2π/56)  
23(2π/56)  
24(2π/56)  
25(2π/56)  
26(2π/56)  
27(2π/56)  
28(2π/56)  
29(2π/56)  
30(2π/56)  
31(2π/56)  
32(2π/56)  
33(2π/56)  
34(2π/56)  
35(2π/56)  
36(2π/56)  
37(2π/56)  
38(2π/56)  
39(2π/56)  
40(2π/56)  
41(2π/56)  
42(2π/56)  
43(2π/56)  
44(2π/56)  
45(2π/56)  
46(2π/56)  
47(2π/56)  
48(2π/56)  
49(2π/56)  
50(2π/56)  
51(2π/56)  
52(2π/56)  
53(2π/56)  
54(2π/56)  
55(2π/56)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Table 28. CDCE62005 Output Coarse Phase Adjust Settings (5)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
n.7  
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
n.6 (radian)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n.7  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
n.6 (radian)  
60  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
64  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
(2π/60)  
(2π/64)  
2(2π/60)  
2(2π/64)  
3(2π/64)  
3(2π/60)  
4(2π/60)  
4(2π/64)  
5(2π/60)  
5(2π/64)  
6(2π/60)  
6(2π/64)  
7(2π/60)  
7(2π/64)  
8(2π/60)  
8(2π/64)  
9(2π/60)  
9(2π/64)  
10(2π/60)  
11(2π/60)  
12(2π/60)  
13(2π/60)  
14(2π/60)  
15(2π/60)  
16(2π/60)  
17(2π/60)  
18(2π/60)  
19(2π/60)  
20(2π/60)  
21(2π/60)  
22(2π/60)  
23(2π/60)  
24(2π/60)  
25(2π/60)  
26(2π/60)  
27(2π/60)  
28(2π/60)  
29(2π/60)  
30(2π/60)  
31(2π/60)  
32(2π/60)  
33(2π/60)  
34(2π/60)  
35(2π/60)  
36(2π/60)  
37(2π/60)  
38(2π/60)  
39(2π/60)  
40(2π/60)  
41(2π/60)  
42(2π/60)  
43(2π/60)  
44(2π/60)  
45(2π/60)  
46(2π/60)  
47(2π/60)  
48(2π/60)  
49(2π/60)  
50(2π/60)  
51(2π/60)  
52(2π/60)  
53(2π/60)  
54(2π/60)  
55(2π/60)  
56(2π/60)  
57(2π/60)  
58(2π/60)  
59(2π/60)  
10(2π/64)  
11(2π/64)  
12(2π/64)  
13(2π/64)  
14(2π/64)  
15(2π/64)  
16(2π/64)  
17(2π/64)  
18(2π/64)  
19(2π/64)  
20(2π/64)  
21(2π/64)  
22(2π/64)  
23(2π/64)  
24(2π/64)  
25(2π/64)  
26(2π/64)  
27(2π/64)  
28(2π/64)  
29(2π/64)  
30(2π/64)  
31(2π/64)  
32(2π/64)  
33(2π/64)  
34(2π/64)  
35(2π/64)  
36(2π/64)  
37(2π/64)  
38(2π/64)  
39(2π/64)  
40(2π/64)  
41(2π/64)  
42(2π/64)  
43(2π/64)  
44(2π/64)  
45(2π/64)  
46(2π/64)  
47(2π/64)  
48(2π/64)  
49(2π/64)  
50(2π/64)  
51(2π/64)  
52(2π/64)  
53(2π/64)  
54(2π/64)  
55(2π/64)  
56(2π/64)  
57(2π/64)  
58(2π/64)  
59(2π/64)  
60(2π/64)  
61(2π/64)  
62(2π/64)  
63(2π/64)  
52  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Table 29. CDCE62005 Output Coarse Phase Adjust Settings (6)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
n.7  
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
n.6 (radian)  
n.12 n.11 n.10 n.9  
n.8  
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
n.7  
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
n.6 (radian)  
70  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
80  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
(2π/70)  
(2π/80)  
2(2π/70)  
2(2π/80)  
3(2π/70)  
3(2π/80)  
4(2π/70)  
4(2π/80)  
5(2π/70)  
5(2π/80)  
6(2π/70)  
6(2π/80)  
7(2π/70)  
7(2π/80)  
8(2π/70)  
8(2π/80)  
9(2π/70)  
9(2π/80)  
10(2π/70)  
11(2π/70)  
12(2π/70)  
13(2π/70)  
14(2π/70)  
15(2π/70)  
16(2π/70)  
17(2π/70)  
18(2π/70)  
19(2π/70)  
20(2π/70)  
21(2π/70)  
22(2π/70)  
23(2π/70)  
24(2π/70)  
25(2π/70)  
26(2π/70)  
27(2π/70)  
28(2π/70)  
29(2π/70)  
30(2π/70)  
31(2π/70)  
32(2π/70)  
33(2π/70)  
34(2π/70)  
35(2π/70)  
36(2π/70)  
37(2π/70)  
38(2π/70)  
39(2π/70)  
40(2π/70)  
41(2π/70)  
42(2π/70)  
43(2π/70)  
44(2π/70)  
45(2π/70)  
46(2π/70)  
47(2π/70)  
48(2π/70)  
49(2π/70)  
50(2π/70)  
51(2π/70)  
52(2π/70)  
53(2π/70)  
54(2π/70)  
55(2π/70)  
56(2π/70)  
57(2π/70)  
58(2π/70)  
59(2π/70)  
60(2π/70)  
61(2π/70)  
62(2π/70)  
63(2π/70)  
64(2π/70)  
65(2π/70)  
66(2π/70)  
67(2π/70)  
68(2π/70)  
69(2π/70)  
10(2π/80)  
11(2π/80)  
12(2π/80)  
13(2π/80)  
14(2π/80)  
15(2π/80)  
16(2π/80)  
17(2π/80)  
18(2π/80)  
19(2π/80)  
20(2π/80)  
21(2π/80)  
22(2π/80)  
23(2π/80)  
24(2π/80)  
25(2π/80)  
26(2π/80)  
27(2π/80)  
28(2π/80)  
29(2π/80)  
30(2π/80)  
31(2π/80)  
32(2π/80)  
33(2π/80)  
34(2π/80)  
35(2π/80)  
36(2π/80)  
37(2π/80)  
38(2π/80)  
39(2π/80)  
40(2π/80)  
41(2π/80)  
42(2π/80)  
43(2π/80)  
44(2π/80)  
45(2π/80)  
46(2π/80)  
47(2π/80)  
48(2π/80)  
49(2π/80)  
50(2π/80)  
51(2π/80)  
52(2π/80)  
53(2π/80)  
54(2π/80)  
55(2π/80)  
56(2π/80)  
57(2π/80)  
58(2π/80)  
59(2π/80)  
60(2π/80)  
61(2π/80)  
62(2π/80)  
63(2π/80)  
64(2π/80)  
65(2π/80)  
66(2π/80)  
67(2π/80)  
68(2π/80)  
69(2π/80)  
70(2π/80)  
71(2π/80)  
72(2π/80)  
73(2π/80)  
74(2π/80)  
75(2π/80)  
76(2π/80)  
77(2π/80)  
78(2π/80)  
79(2π/80)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Output Synchronization  
Output  
Divider  
Ya  
Loop Filter  
VCO  
Reference Input  
Input  
Divider  
Prescaler  
Divider  
PFD  
Output  
Divider  
Yb  
Feedback  
Divider  
~ 6us delay  
f(ref clk)  
0
/SYNC  
SET  
D
Q
MUX  
1
F(ref clk)  
0
1
Reg 4, SPI Bit 5  
Reg 6, SPI Bit24  
CLR  
Q
Phase Error(on edge transition of reference input)  
Reference Input Clock  
VCO Clock after Prescaler Divider  
Propagation delay of SYNC inside device  
SYNC synchronized to reference input  
Reg 4 SPI Bit 5 = “1”, Reg 6 SPI Bit 24 = “0”  
Divider delay  
Output Clock(output divider= 2)  
When Reg 6, SPI Bit 24 = “0”, Reg 4 SPI Bit 5 = “1” and the SYNC pulse low-to-high transition is synchronized to the reference input, the delay of the SYNC low-to-high pulse to the toggling  
of synchronized outputs is equal to the propagation delay of SYNC signal inside device + phase error (on reference input edge transition after SYNC signal) + divider delay (2.5 clock cycles of  
VCO clock after prescaler) + delay between SYNC and input transition. Total uncertainty is 1 clock cycle of VCO clock after prescaler (uncertainty irrespective of output divide value)  
.
Figure 32. CDCE62005 SYNC to Output delay variation  
Output Synchronization Timing  
Synchronization of the outputs is edecuted in several ways:  
The SYNC pin is forced low and then released (manual sync).  
By setting and then resetting Register 8, SPI Bit 12.  
Whenever the output dividers are changed.  
The most common way to execute the output synchronization is to toggle the SYNC pin where the outputs are  
aligned on a low-to-high pulse on the SYNC after a delay as explained in Figure 32. For having tight control on  
the delay variation of the outputs synchronization after a low-to-high pulse on the SYNC pin, the Register 4, SPI  
Bit 5 needs to be set to “1”. When Reg 6, SPI Bit 24 = "0", the outputs are synchronized to each other and to the  
reference input. In this case, the total delay from SYNC low-to-high pulse to toggling of synchronized outputs is  
given in Figure 32.  
When Reg 6, SPI Bit 24 = "1", the outputs are synchronized to each other and to the SYNC low-to-high pulse. In  
this case, the total delay from SYNC low-to-high pulse to toggling of synchronized outputs is equal to the  
propagation delay of SYNC signal inside device + divider delay. Total uncertainty is 1 cycle of VCO clock after  
prescaler (uncertainty irrespective of output divide value).  
54  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Auxiliary Output  
Figure 33 shows the auxiliary output port. Table 30 lists how the auxiliary output port is controlled. The output  
buffer supports a maximum output frequency of 250 MHz and drives at LVCMOS levels. Refer to for the list of  
divider settings that establishes the output frequency.  
Output Divider 2  
AUX  
OUT  
Output Divider 3  
Register 6  
25  
Register 6  
24  
Figure 33. CDCE62005 Auxiliary Output  
Table 30. CDCE62005 Auxiliary Output Settings  
Bit Name →  
AUXFEEDSEL  
AUXOUTEN  
AUX OUTPUT SOURCE  
Register.Bit →  
6.25  
X
6.24  
0
1
1
OFF  
0
Divider 2  
Divider 3  
1
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
SYNTHESIZER BLOCK  
Figure 34 provides an overview of the CDCE62005 synthesizer block. The Synthesizer Block provides a Phase  
Locked Loop, a partially integrated programmable loop filter, and two Voltage Controlled Oscillators (VCO). The  
synthesizer block generates an output clock called “SYNTH” and drives it onto the Internal Clock Distribution  
Bus.  
Charge Pump Current  
Register 6  
Loop Filter Settings  
Register 7  
Input Divider Settings  
Register 5  
19 18 17 16  
7
6
5
4
3
2
1
9
0
8
15 14 13 12 11 10  
21 20 19 18 17 16 15 14  
20 19 18 17 16  
Prescaler  
Register 6  
2
1
1.75 GHz –  
2.356 GHz  
SMART_MUX  
Input Divider  
/1 - /256  
PFD/  
CP  
Prescaler  
/2,/3,/4,/5  
SYNTH  
Feedback Divider  
50 kHz –  
400 kHz  
/1,/2,/5,/8,/10,/16,/20  
/8 - /1280  
Register 6  
0
VCO Select  
Register 6  
10  
Register 6  
15 14 13  
9
8
7
6
5
4
3
Feedback Divider  
Feedback Bypass Divider  
Figure 34. CDCE62005 Synthesizer Block  
Input Divider  
The Input Divider divides the clock signal selected by the Smart Multiplexer (see Table 18) and presents the  
divided signal to the Phase Frequency Detector / Charge Pump of the frequency synthesizer.  
Table 31. CDCE62005 Input Divider Settings  
INPUT DIVIDER SETTINGS  
DIVIDE  
RATIO  
SELINDIV7  
SELINDIV6  
SELINDIV5  
SELINDIV4  
SELINDIV3  
SELINDIV2  
SELINDIV1  
SELINDIV0  
5.21  
5.20  
5.19  
5.18  
5.17  
5.16  
5.15  
5.14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
1
2
3
4
5
6
1
1
1
1
1
1
1
1
256  
56  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Feedback and Feedback Bypass Divider  
Table 32 shows how to configure the Feedback divider for various divide values  
Table 32. CDCE62005 Feedback Divider Settings  
FEEDBACK DIVIDER  
DIVIDE  
RATIO  
SELFBDIV7 SELFBDIV6 SELFBDIV5 SELFBDIV4 SELFBDIV3 SELFBDIV2 SELFBDIV1 SELFBDIV0  
6.10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6.9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
1
0
1
1
1
1
1
9.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
1
0
1
1
0
1
1
0
0
1
0
0
0
0
1
6.7  
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6.6  
0
0
0
0
0
0
1
0
1
1
1
1
0
1
1
0
0
1
1
0
1
1
0
1
1
1
0
0
0
1
0
1
1
1
0
0
1
1
0
1
1
0
6.5  
0
0
0
0
1
1
0
1
0
0
0
1
1
1
0
1
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
6.4  
0
0
1
1
0
1
0
1
1
0
1
1
0
1
0
1
1
0
1
1
1
1
0
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
1
1
0
1
6.3  
0
1
0
1
1
0
1
1
0
0
1
0
1
1
1
0
1
1
0
1
0
1
1
1
1
1
0
1
1
0
1
1
0
1
0
1
1
0
1
0
0
1
8
12  
16  
20  
24  
32  
36  
40  
48  
56  
60  
64  
72  
80  
84  
96  
100  
108  
112  
120  
128  
140  
144  
160  
168  
180  
192  
200  
216  
224  
240  
252  
256  
280  
288  
300  
320  
336  
360  
384  
392  
400  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Table 32. CDCE62005 Feedback Divider Settings (continued)  
FEEDBACK DIVIDER  
DIVIDE  
RATIO  
SELFBDIV7 SELFBDIV6 SELFBDIV5 SELFBDIV4 SELFBDIV3 SELFBDIV2 SELFBDIV1 SELFBDIV0  
6.10  
0
1
0
0
1
1
0
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
6.9  
1
0
1
1
0
0
1
1
0
1
0
1
0
0
0
0
1
0
0
1
0
1
1
1
1
9.8  
0
1
1
0
0
1
1
1
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
6.7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6.6  
1
0
1
1
0
1
1
1
0
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
6.5  
0
1
0
1
0
0
1
0
1
0
1
1
0
0
1
1
0
1
0
1
1
0
1
1
1
6.4  
1
0
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6.3  
1
1
0
1
1
1
0
1
0
1
1
1
0
1
1
0
0
1
1
0
1
1
0
1
1
420  
432  
448  
480  
500  
504  
512  
560  
576  
588  
600  
640  
672  
700  
720  
768  
784  
800  
840  
896  
960  
980  
1024  
1120  
1280  
Table 33 shows how to configure the Feedback Bypass Divider.  
Table 33. CDCE62005 Feedback Bypass Divider Settings  
FEEDBACK BYPASS DIVIDER  
SELBPDIV2  
SELBPDIV1  
SELBPDIV0  
DIVIDE RATIO  
6.15  
0
6.14  
0
6.13  
0
2
0
0
1
5
0
1
0
8
10  
0
1
1
1
0
0
16  
1
0
1
20  
1
1
0
RESERVED  
1(bypass)  
1
1
1
58  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
VCO Select  
Table 34 illustrates how to control the dual voltage controlled oscillators.  
Table 34. CDCE62005 VCO Select  
VCO Select  
SELVCO  
VCO CHARACTERISTICS  
Bit Name →  
Register.Bit →  
6.0  
0
VCO Range  
Low  
Fmin (MHz)  
1750  
Fmax (MHz)  
2046  
1
High  
2040  
2356  
Prescaler  
Table 35 shows how to configure the prescaler.  
Table 35. CDCE62005 Prescaler Settings  
SETTINGS  
SELPRESCB  
SELPRESCA  
DIVIDE RATIO  
6.2  
0
6.1  
0
5
4
3
2
1
0
0
1
1
1
Charge Pump Current Settings  
Table 36 provides the settings for the charge pump:  
Table 36. CDCD62005 Charge Pump Settings  
CHARGE PUMP SETTINGS  
CHARGE PUMP  
CURRENT  
ICPSEL3  
ICPSEL2  
ICPSEL1  
ICPSEL0  
Bit Name →  
Register.Bit →  
6.19  
0
6.18  
0
6.17  
0
6.16  
0
50 mA  
100 mA  
150 mA  
200 mA  
300 mA  
400 mA  
600 mA  
750 mA  
1 mA  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1.25 mA  
1.5 mA  
2 mA  
1
0
1
0
1
0
1
1
1
1
0
0
2.5 mA  
3 mA  
1
1
0
1
1
1
1
0
3.5 mA  
3.75 mA  
1
1
1
1
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s) :CDCE62005  
 
 
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Loop Filter  
Figure 35 depicts the loop filter topology of the CDCE62005. It facilitates both internal and external  
implementations providing optimal flexibility.  
C2  
R2  
C1  
EXT_LFP  
EXT_LFN  
internal  
external  
internal  
external  
VB  
+
-
R3  
PFD/  
CP  
C3  
C1  
C2  
R2  
Figure 35. CDCE62005 Loop Filter Topology  
Internal Loop Filter Component Configuration  
Figure 35 contains five different loop filter components with programmable values: C1, C2, R2, R3, and C3.  
Table 37 shows that the CDCE62005 uses one of four different types of circuit implementation (shown in  
Figure 36) for each of the internal loop filter components.  
Table 37. CDCE62005 Loop Filter Component Implementation Type  
Implementation Type  
Component  
Control Bits Used  
(see Figure 36)  
C1  
C2  
R2  
R3  
C3  
5
5
5
2
4
a
a
c
d
b
Ceq  
Ceq  
c.3  
c.2  
c.1  
c.0  
c.4  
c.3  
c.2  
c.1  
c.0  
(a)  
(b)  
Req  
Req  
r.base  
r.1  
r.0  
r.4  
r.3  
r.2  
r.1  
r.0  
(c)  
(d)  
Figure 36. CDCE62005 Internal Loop Filter Component Schematics  
60  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Table 38. CDCE62005 Internal Loop Filter – C1 Settings  
C1 SETTINGS  
LFRCSEL13 LFRCSEL12 LFRCSEL11 LFRCSEL10  
Bit Name →  
EXLFSEL  
LFRCSEL14  
Capacitor Value →  
Register.Bit →  
6.26  
1
37.5 pF  
21.5 pF  
10 pF  
6.5 pF  
1.5 pF  
7.14  
X
0
7.13  
X
0
7.12  
X
0
7.11  
X
0
7.10  
X
0
Capacitor Value  
External Loop Filter  
0 pF  
0
0
0
0
0
0
1
1.5 pF  
0
0
0
0
1
0
6.5 pF  
0
0
0
0
1
1
8 pF  
0
0
0
1
0
0
10 pF  
0
0
0
1
0
1
11.5 pF  
16.5 pF  
18 pF  
0
0
0
1
1
0
0
0
0
1
1
1
0
0
1
0
0
0
21.5 pF  
23 pF  
0
0
1
0
0
1
0
0
1
1
1
0
0
69 pF  
0
1
1
1
0
1
70.5 pF  
75.5 pF  
77 pF  
0
1
1
1
1
0
0
1
1
1
1
1
Table 39. CDCE62005 Internal Loop Filter – C2 Settings  
C2 SETTINGS  
Bit Name 1  
EXLFSEL  
LFRCSEL4 LFRCSEL3 LFRCSEL2 LFRCSEL1 LFRCSEL0  
Capacitor Value →  
Register.Bit 1→  
6.26  
1
226 pF  
123 pF  
87 pF  
25 pF  
12.5 pF  
7.4  
0
0
0
0
0
0
0
0
0
0
0
7.3  
0
0
0
0
0
0
0
0
0
1
1
7.2  
0
0
0
0
0
1
1
1
1
0
0
7.1  
0
0
0
1
1
0
0
1
1
0
0
7.0  
0
0
1
0
1
0
1
0
1
0
1
Capacitor Value  
External Loop Filter  
0 pF  
0
0
12.5 pF  
25 pF  
0
0
37.5 pF  
87 pF  
0
0
99.5 pF  
112 pF  
0
0
124.5 pF  
123 pF  
0
0
135.5 pF  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
436 pF  
0
448.5 pF  
461 pF  
0
0
473.5 pF  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Table 40. CDCE62005 Internal Loop Filter – R2 Settings  
R2 SETTINGS  
Bit Name →  
EXLFSEL  
LFRCSEL9 LFRCSEL8 LFRCSEL7 LFRCSEL6 LFRCSEL5  
Resistor Value →  
Register.Bit →  
6.26  
1
56.4 k  
38.2 k  
20 k  
7.7  
X
0
9 k  
7.6  
X
0
4 k  
7.5  
X
0
7.9  
X
0
0
0
0
0
0
0
0
0
0
7.8  
X
0
0
0
0
0
0
0
0
1
1
Resistor Value (k)  
External Loop Filter  
0
127.6  
123.6  
118.6  
114.6  
107.6  
103.6  
98.6  
94.6  
89.4  
85.4  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
1
1
1
0
0
13  
0
1
0
1
9
0
1
1
0
4
0
1
1
1
0
Table 41. CDCE62005 Internal Loop Filter – C3 Settings  
C3 SETTINGS  
Bit Name →  
EXLFSEL  
LFRCSEL18 LFRCSEL17 LFRCSEL16 LFRCSEL15  
Capacitor Value →  
Register.Bit →  
6.26  
1
85 pF  
19.5 pF  
5.5 pF  
2.5 pF  
7.18  
X
0
7.17  
X
0
7.16  
X
0
7.15  
X
0
Capacitor Value  
External Loop Filter  
0 pF  
0
0
0
0
0
1
2.5 pF  
0
0
0
1
0
5.5 pF  
0
0
0
1
1
8 pF  
0
0
1
0
0
19.5 pF  
22 pF  
0
0
1
0
1
0
0
1
1
0
25 pF  
0
0
1
1
1
27.5 pF  
85 pF  
0
1
0
0
0
0
1
0
0
1
87.5 pF  
0
0
1
1
1
0
104.5 pF  
107 pF  
0
1
1
1
1
0
1
1
1
0
110 pF  
0
1
1
1
1
112.5 pF  
62  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Table 42. CDCE62005 Internal Loop Filter – R3 Settings  
R3 SETTINGS  
Bit Name →  
EXLFSEL  
LFRCSEL20  
LFRCSEL19  
Resistor Value →  
Register.Bit →  
6.26  
1
10 k  
7.20  
X
5 k  
7.19  
X
Resistor Value (k)  
External Loop Filter  
0
0
0
20  
15  
10  
5
0
0
1
0
1
0
0
1
1
External Loop Filter Component Configuration  
To implement an external loop filter, set EXLFSEL bit (6.26) high. Setting all of the control switches low that  
control capacitors C1 and C2 (see Table 40) remove them from the loop filter circuit. This is necessary for an  
external loop filter implementation.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Lock Detect  
Digital Lock Detect  
The CDCE62005 provides both an analog and a digital lock detect circuit. With respect to lock detect, two signals  
whose phase difference is less than a prescribed amount are ‘locked’ otherwise they are ‘unlocked’. The phase  
frequency detector / charge pump compares the clock provided by the input divider and the feedback divider;  
using the input divider as the phase reference. The digital lock detect circuit implements a programmable lock  
detect window. Table 43 shows an overview of how to configure the digital lock detect feature. When selecting  
the digital PLL lock option, the PLL_LOCK pin will possibly jitter several times between lock and out of lock until  
the PLL achieves a stable lock. If desired, choosing a wide loop bandwidth and a high number of successive  
clock cycles virtually eliminates this characteristic. PLL_LOCK will return to out of lock, if just one cycle is outside  
the lock detect window or if a cycle slip occurs.  
Lock Detect Window (Max)  
From Input Divider  
Locked  
From Feedback Divider  
Unlocked  
From Input Divider  
From Feedback Divider  
From Input Divider  
From Digital  
Lock Detector  
PFD/  
CP  
Lock Detect Window Adjust  
PLL_LOCK  
To Loop Filter  
1 = Locked  
O = Unlocked  
Register 5  
From Feedback Divider  
27 26  
25 24 23 22  
(a)  
(b)  
(c)  
Figure 37. CDCE62005 Digital Lock Detect  
Table 43. CDCE62005 Digital Lock Detect Control  
DIGITAL LOCK DETECT  
Bit Name  
ADLOCK  
LOCKDET  
LOCKW(3)  
LOCKW(2)  
LOCKW(1)  
LOCKW(0)  
Register.Bit →  
5.27  
1
5.26  
X
5.25  
X
5.24  
X
5.23  
X
5.22  
X
Lock Detect Window  
Analog Lock  
X
0
X
X
X
X
1 cycle in lock window triggers a lock  
64 continuous cycles in lock window triggers a  
lock  
X
1
X
X
X
X
0
0
0
0
0
X
X
X
X
X
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
1
0
0
1
Narrow Window  
One step wider than narrow window  
Two steps wider than narrow window  
Three steps wider than narrow window  
Four steps wider than narrow window  
0
0
X
X
1
X
1
X
1
1
0
1
Widest Window  
Reserved  
64  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Analog Lock Detect  
Figure 38 shows the Analog Lock Detect circuit. Depending upon the phase relationship of the two signals  
presented at the PFD/CP inputs, the lock detect circuit either charges (if the PLL is locked) or discharges (if PLL  
is unlocked) the circuit shown via 100mA current sources. An external capacitor determines the sensitivity of the  
lock detect circuit. The value of the capacitor determines the rate of change of the voltage presented on the  
output pin PLL_LOCK and hence how quickly the PLL_LOCK output toggles based on a change of PLL locked  
status. The PLL_LOCK pin is an analog output in analog lock detect mode.  
1
Vout = ´ i´ t  
C
(7)  
Solving for t yields:  
Vout ´C  
t =  
i
(8)  
VH = 0.55 × VCC  
VL = 0.35 × VCC  
For Example, let:  
C =10 nF  
Vcc = 3.3 V\VH @ 1.8 V = VOut  
1.8´10n  
110 μ  
t =  
@ 164 μs  
(9)  
Vcc  
110 uA  
Locked  
PLL_LOCK  
5 pF  
Lock_I  
To Host  
Unlocked  
110 uA  
C
80k  
From Input Divider  
PFD/  
CP  
From Feedback Divider  
Figure 38. CDCE62005 Analog Lock Detect  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
DEVICE POWER CALCULATION AND THERMAL MANAGEMENT  
The CDCE62005 is a high performance device, therefore careful attention must be paid to device configuration  
and printed circuit board layout with respect to power consumption. Table 44 provides the power consumption for  
the individual blocks within the CDCE62005. To estimate total power consumption, calculate the sum of the  
products of the number of blocks used and the power dissipated of each corresponding block.  
Table 44. CDCE62005 Power Consumption  
Internal Block (Power at 3.3V)  
Input Circuit  
Power Dissipated per Block  
Number of Blocks per Device  
250 mW  
500 mW  
185 mW  
116 mW  
76 mW  
1
1
PLL and VCO Core  
Output Divider  
5
Output Buffer ( LVPECL)  
Output Buffer (LVDS)  
Output Buffer (LVCMOS)  
5
5
86 mW  
10  
This power estimate determines the degree of thermal management required for a specific design. Employing the  
thermally enhanced printed circuit board layout shown in Figure 40 insures that the thermal performance curves  
shown in Figure 39 apply. Observing good thermal layout practices enables the thermal pad on the backside of  
the QFN-48 package to provide a good thermal path between the die contained within the package and the  
ambient air. This thermal pad also serves as the ground connection the device; therefore, a low inductance  
connection to the ground plane is essential.  
Figure 40 shows a layout optimized for good thermal performance and a good power supply connection as well.  
The 7×7 filled via patter facilitates both considerations. Finally, the recommended layout achieves qJA  
=
27.3°C/W in still air and 20.3°C/W in an environment with 100 LFM airflow if implemented on a JEDEC compliant  
thermal test board..  
Die Temperature vs Total Device Power  
RL 0 LFM 85 C  
125  
JEDEC 0 LFM 25 C  
JEDEC 100 LFM 25 C  
RL 0 LFM 25 C  
JDEC 0 LFM 85 C  
JEDEC 0 LFM 25 C  
100  
JEDEC 100 LFM 25 C  
RL 0 LFM 25 C  
RL 100 LFM 85 C  
JEDEC 100 LFM 85 C  
RL 100 LFM 25 C  
75  
50  
25  
0
RL 100 LFM 25 C  
JEDEC 0 LFM 85 C  
JEDEC 100 LFM 85 C  
RL 0 LFM 85 C  
RL 100 LFM 85 C  
0
1
2
3
4
Power (W)  
Figure 39. CDCE62005 Die Temperature vs Device Power  
66  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Component Side  
QFN-48  
Solder Mask  
Thermal Slug  
(package bottom)  
Internal  
Ground  
Plane  
Internal  
Power  
Plane  
Thermal  
Dissipation  
Pad (back side)  
Thermal Vias  
No Solder Mask  
Back Side  
Figure 40. CDCE62005 Recommended PCB Layout  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
CDCE62005 Power Supply Bypassing – Recommended Layout  
Figure 41 shows two conceptual layouts detailing recommended placement of power supply bypass capacitors. If  
the capacitors are mounted on the back side, 0402 components can be employed; however, soldering to the  
Thermal Dissipation Pad can be difficult. For component side mounting, use 0201 body size capacitors to  
facilitate signal routing. Keep the connections between the bypass capacitors and the power supply on the  
device as short as possible. Ground the other side of the capacitor using a low impedance connection to the  
ground plane.  
Component Side  
Back Side  
Figure 41. CDCE62005 Power Supply Bypassing  
68  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
APPLICATION INFORMATION AND GENERAL USAGE HINTS  
Fan-out Buffer  
Each output of the CDCE62005 can be configured as a fan-out buffer (divider bypassed) or fan-out buffer with  
divide and skew control functionality.  
PRI_IN  
U0P  
Divide by 1: Up to 1500 MHz  
Otherwise: Up to 1175 MHz  
/1 - /80  
U0N  
SEC_IN  
Up to 5 Outputs:  
LVPECL or LVDS  
Up to 10 Outputs:  
LVCMOS  
U4P  
U4N  
/1 - /80  
Figure 42. CDCE62005 Fan-out Buffer Mode  
Clock Generator  
The CDCE62005 can generate 5–10 low noise clocks from a single crystal as follows:  
Feedback  
XTAL/  
U0P  
U0N  
Divider  
PFD/  
CP  
Output  
AUX_IN  
Prescaler  
Divider 0  
Smart  
MUX  
Input  
Divider  
U4P  
U4N  
Output  
Divider 4  
Figure 43. CDCE62005 Clock Generator Mode  
Jitter Cleaner – Mixed Mode (1)  
The following table presents a common scenario. The CDCE62005 must generate several integer-related clocks  
from a reference that has traversed a backplane. In order for jitter cleaning to take place, the phase noise of the  
on-board clock path must be better than that of the incoming clock. The designer must pay attention to the  
optimization of the loop bandwidth of the synthesizer and understand the phase noise profiles of the oscillators  
involved. Further, other devices on the card require clocks at frequencies not related to the backplane clock. The  
system requires combinations of differential and single-ended clocks in specific formats with specific phase  
(1)  
relationships.  
CLOCK FREQUENCY  
10.000 MHz  
30.72 MHz  
INPUT/OUTPUT  
Input  
FORMAT  
LVDS  
NUMBER  
CDCE62005 PORT  
COMMENT  
Low end crystal oscillator  
Reference from backplane  
SERDES Clock  
ASIC  
1
1
1
1
1
2
2
SEC_IN  
PRI_IN  
U0  
Input  
LVDS  
122.88 MHz  
491.52 MHz  
245.76 MHz  
30.72 MHz  
Output  
LVDS  
Output  
LVPECL  
LVPECL  
LVCMOS  
LVCMOS  
U1  
Output  
U2  
FPGA  
Outputs  
Outputs  
U3  
ASIC  
10.000 MHz  
U4  
CPU, DSP  
(1) Pay special attention when using the universal inputs with two different clock sources. Two clocks derived from the same source may  
use the internal bias generator and internal termination network without jitter performance degradation. However, if their origin is from  
different sources (e.g. two independent oscillators) then sharing the internal bias generator can degrade jitter performance significantly.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Link(s) :CDCE62005  
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
30.72 MHz  
Output  
122.88 MHz  
Divider 0  
10.00 MHz  
/1:/2:HiZ  
/1:/2:HiZ  
Reference  
Divider  
Output  
491.52 MHz  
245.76 MHz  
Divider 1  
Output  
Divider 2  
Input  
30.72 MHz  
30.72 MHz  
Divider  
PFD/  
Output  
Prescaler  
CP  
Feedback  
Divider  
Divider 3  
10 MHz  
10 MHz  
Output  
Divider 4  
Figure 44. CDCE62005 Jitter Cleaner Example  
Clocking ADCs with the CDCE62005  
High-speed analog to digital converters incorporate high input bandwidth on both the analog port and the sample  
clock port. Often the input bandwidth far exceeds the sample rate of the converter. Engineers regularly  
implement receiver chains that take advantage of the characteristics of bandpass sampling. This implementation  
trend often causes engineers working in communications system design to encounter the term clock limited  
performance. Therefore, it is important to understand the impact of clock jitter on ADC performance. Equation 10  
shows the relationship of data converter signal to noise ratio (SNR) to total jitter.  
é
ê
ë
ù
ú
û
1
SNRjitter = 20log10  
2πfin jittertotal  
(10)  
Total jitter comprises two components: the intrinsic aperture jitter of the converter and the jitter of the sample  
clock:  
2
)
jittertotal  
=
jitter  
2 + jitter  
(
ADC ) (  
CLK  
(11)  
With respect to an ADC with N-bits of resolution, ignoring total jitter, DNL, and input noise, the following equation  
shows the relationship between resolution and SNR:  
SNRADC = 6.02N+1.76  
(12)  
Figure 45 plots Equation 10 and Equation 12 for constant values of total jitter. When used in conjunction with  
most ADCs, the CDCE62005 supports a total jitter performance value of <1 ps.  
70  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
 
 
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
Data Converter Jitter Requirements  
140  
130  
120  
110  
100  
90  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
100 fs  
50 fs  
80  
70  
60  
50  
1 ps  
40  
6
30  
350 fs  
4
20  
2
10  
0
0
1
10  
100  
1000  
10000  
Figure 45. Data Converter Jitter Requirements  
CDCE62005 SERDES Startup Mode  
A common scenario involves a host communicating to a satellite system via a high-speed wired communications  
link. Typical communications media might be a cable, backplane, or fiber. The reference clock for the satellite  
system is embedded in the high speed link. This reference clock must be recovered by the SERDES, however,  
the recovered clock contains unacceptable levels of jitter due to a degradation of SNR associated with  
transmission over the media. At system startup, the satellite system must self-configure prior to the recovery and  
cleanup of the reference clock provided by the host. Furthermore, upon loss of the communication link with the  
host, the satellite system must continue to operate albeit with limited functionality. Figure 46 shows a block  
diagram of an optical based system with such a mechanism that takes advantage of the features of the  
CDCE62005:  
Data  
Cleaned Clock  
SERDES  
ASIC  
ASIC Clock  
Recovered Clock  
CDCE62005  
Figure 46. CDCE62005 SERDES Startup Overview  
The functionality provided by the Smart Multiplexer provides a straightforward implementation of a SERDES  
clock link. The Auxiliary Input provides a startup clock because it connects to a crystal. The on-chip EEPROM  
determines the default configuration at power-up; therefore, the CDCE62005 requires no host communication to  
begin cleaning the recovered clock once it is available. The CDCE62005 immediately begins clocking the  
satellite components including the SERDES using the crystal as a clock source and a frequency reference. After  
the SERDES recovers the clock, the CDCE62005 removes the jitter via the on-chip synthesizer/loop filter. The  
recovered clock from the communications link becomes the frequency reference for the satellite system after the  
smart multiplexer automatically switches over to it. The CDCE62005 applies the cleaned clock to the recovered  
clock input on the SERDES; thereby establishing a reliable communications link between host and satellite  
systems.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Link(s) :CDCE62005  
 
CDCE62005  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
www.ti.com  
Cleaned Clock  
Output Blocks  
Synthesizer  
Block  
SERDES  
Recovered Clock  
Output  
Channel  
0
1
2
3
4
Start-up/  
Back-up  
Clock  
Smart  
MUX  
Frequency  
Synthesizer  
Output  
Channel  
Input  
Block  
Output  
Channel  
Interface  
&
To Satellite  
System  
Interface  
&
Control  
Device  
Control  
Block  
Components  
Registers  
Output  
Channel  
Output  
Channel  
EEPROM  
Figure 47. CDCE62005 SERDES Startup Mode  
72  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s) :CDCE62005  
CDCE62005  
www.ti.com  
SCAS862C NOVEMBER 2008REVISED FEBRUARY 2010  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (July, 2009) to Revision C  
Page  
Deleted features involving single-ended clock sources and crystal auxiliary inputs ............................................................ 1  
Deleted LVCMOS INPUT MODE (AUX_IN) section from Electrical Characteristics table ................................................. 12  
Deleted fREF Single-ended Inputs .. from AUXILARY_IN REQUIREMENTS in the TIMING REQUIREMENTS table ....... 18  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Link(s) :CDCE62005  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Feb-2010  
PACKAGING INFORMATION  
Orderable Device  
CDCE62005RGZR  
CDCE62005RGZT  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
VQFN  
RGZ  
48  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
VQFN  
RGZ  
48  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Feb-2010  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CDCE62005RGZR  
CDCE62005RGZT  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
330.0  
330.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Feb-2010  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CDCE62005RGZR  
CDCE62005RGZT  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
333.2  
333.2  
345.9  
345.9  
28.6  
28.6  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

CDCE62005RGZT

Five/Ten Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs
TI

CDCE62005_10

Five/Ten Output Clock Generator/Jitter Cleaner With Integrated Dual VCOs
TI

CDCE6214

具有一个 PLL、四个差分输出的超低功耗时钟发生器
TI

CDCE6214-Q1

支持第 1-5 代 PCIe 且具有 2 个输入、4 个输出和内部 EEPROM 的超低功耗时钟发生器
TI

CDCE6214RGER

具有一个 PLL、四个差分输出的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI

CDCE6214RGET

具有一个 PLL、四个差分输出的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI

CDCE6214TWRGERQ1

支持第 1-5 代 PCIe 且具有 2 个输入、4 个输出和内部 EEPROM 的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI

CDCE6214TWRGETQ1

支持第 1-5 代 PCIe 且具有 2 个输入、4 个输出和内部 EEPROM 的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI

CDCE706

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDCE706PW

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER/MULTIPLIER/DIVIDER
TI

CDCE706PWG4

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER/MULTIPLIER/DIVIDER
TI

CDCE706PWR

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER/MULTIPLIER/DIVIDER
TI