BQ25171QWDRCRQ1 [TI]

适用于 1-2 节锂离子、磷酸铁锂和 1-6 节镍氢电池的汽车类 800mA 线性电池充电器 | DRC | 10 | -40 to 125;
BQ25171QWDRCRQ1
型号: BQ25171QWDRCRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 1-2 节锂离子、磷酸铁锂和 1-6 节镍氢电池的汽车类 800mA 线性电池充电器 | DRC | 10 | -40 to 125

电池
文件: 总34页 (文件大小:1952K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
BQ25171-Q1:适用1-2 节锂离子、磷酸铁锂以1-6 节镍氢电池的汽车类、  
800mA 线性电池充电器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
BQ25171-Q1 是一款符合汽车标准800mA 线性充电  
适用1-2 节锂离子、锂聚合物和磷酸铁锂电池,  
以及 1-6 节镍氢电池应用。 该器件具有为电池充电的  
单电源输出。只要安全计时器期间内平均系统负载不会  
妨碍电池充满电就可以使系统负载与电池并联。当系  
统负载与电池并联时充电电流会由系统和电池共享。  
– 温度等140°C TA 125°C  
HBM ESD 分类等2  
CDM ESD 分类等C4B  
• 可承40V 负载突降支持直接3V 18V 工作  
范围的主电池为备用电池充电  
• 自动睡眠模式可降低功耗  
该器件分三个阶段为锂离子电池充电对完全放电电池  
进行恢复性充电的预充电阶段为电池充上大部分电量  
的恒流快速充电阶段以及使电池电量充满的电压调节  
阶段。  
350nA 电池泄漏电流  
– 禁用充电时输入泄漏电流2µA  
• 支持多化合物电池  
1-2 节锂离子、锂聚合物和磷酸铁锂电池  
1-6 节镍氢电池借助间歇性充电支持)  
• 操作可使用外部电阻器进行编程  
VSET 用于为锂离子电池设3.5V 8.4V 的电  
池稳压电压或为镍氢电池设1 6 节  
ISET 用于设10mA 800mA 的充电电流  
CHM_TMR 用于将电池化学成分设置为锂离子  
或镍氢并设置充电计时器时间  
• 高精度  
该器件只会以恒定电流模式为镍氢电池充电并会在可  
编程计时器到期或电池电压超VOUT_OVP 阈值时,  
终止充电周期。 在所有充电阶段内部控制环路都会  
监控 IC 结温当其超过内部温度阈值 TREG 它会  
减少充电电流。  
器件信息  
器件型号(1)  
BQ25171-Q1  
封装尺寸标称值)  
封装  
VSON (10)  
3.0mm x 3.0mm  
– 充电电压精度±0.5%  
– 充电电流精度±10%  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 充电特性  
1s~2s Li-Ion, LiFePO4  
1s~6s NiMH  
Abs. Max: 13V  
VIN: 3.0V œ 18V  
Abs. Max: 40V  
– 预充电电流20% ISET  
IN  
OUT  
– 终止电流10% ISET  
VREF  
NTC 热敏电阻输入用于监控电池温度  
CE 引脚用于充电功能控制  
– 两个开漏输出用于状态和故障指示  
• 集成故障保护  
CHM_TMR  
VSET  
STAT1  
STAT2  
TS  
ISET  
18V 输入过压保护  
– 基VSET 的输出过压保护  
1000mA 过流保护  
GND  
/CE  
HOST  
BQ25171-Q1  
125°C 热调节150°C 热关断保护  
OUT 短路保护  
简化版原理图  
VSETISETCHM_TMR 引脚短路/开路保护  
2 应用  
远程信息处理控制单(TCU)  
紧急呼(eCall)  
车队管理、资产跟踪  
远程无钥匙门(RKE) 钥匙扣  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDK0  
 
 
 
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................22  
8 Application and Implementation..................................24  
8.1 Application Information............................................. 24  
8.2 Typical Applications.................................................. 24  
9 Power Supply Recommendations................................30  
10 Layout...........................................................................30  
10.1 Layout Guidelines................................................... 30  
10.2 Layout Example...................................................... 30  
11 Device and Documentation Support..........................31  
11.1 Device Support........................................................31  
11.2 Receiving Notification of Documentation Updates..31  
11.3 支持资源..................................................................31  
11.4 Trademarks............................................................. 31  
11.5 静电放电警告...........................................................31  
11.6 术语表..................................................................... 31  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................6  
6.6 Timing Requirements .................................................8  
6.7 典型特性......................................................................9  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................14  
Information.................................................................... 32  
4 Revision History  
Changes from Revision * (August 2020) to Revision A (March 2021)  
Page  
• 将“预告信息”更改为“量产数据”..................................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
2
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN  
ISET  
/CE  
1
2
3
4
5
10  
9
OUT  
BQ25171-Q1  
VSET  
8
STAT2  
STAT1  
CHM_TMR  
TS  
7
Thermal Pad  
6
GND  
5-1. VSON Package 10-Pin (Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
IN  
1
P
I
Input power, connected to external DC supply. Bypass IN with at least 1-μF capacitor to GND,  
placed close to the IC.  
ISET  
CE  
2
3
4
Programs the fast-charge current setting. External resistor from ISET to GND defines fast-charge  
current value. Recommended range is 30 k(10 mA) to 375 (800 mA). ICHG = KISET / RISET  
Precharge current is defined as 20% of ICHG. Termination current is defined as 10% of ICHG.  
.
I
I
Active Low Charge Enable pin. Battery charging is enabled when CE pin is low. IC remains in  
Shutdown Mode and battery charging is disabled when CE pin is high. An internal pulldown resistor  
(RPD_CE) enables the IC by default if this pin is floating.  
TS  
Temperature Qualification Voltage Input. Connect a negative temperature coefficient (NTC)  
thermistor directly from TS to GND (AT103-2 recommended). Charge suspends when the TS pin  
voltage is out of range. If TS function is not needed, connect an external 10-kΩresistor from TS to  
GND.  
GND  
5
6
Ground pin  
CHM_TMR  
I
Programs the chemistry and charge time to be used with a pulldown resistor. Valid resistor range is  
3.6 kΩto 100 kΩ, values outside this range will suspend charge. Refer to 7.3.1.2 for voltage  
level details.  
STAT1  
STAT2  
VSET  
7
8
9
O
O
I
Open drain charge status 1 output. Connect to pullup rail via 10-kΩresistor.  
Open drain charge status 2 output. Connect to pullup rail via 10-kΩresistor.  
Programs the regulation voltage for OUT pin with a pull-down resistor. Valid resistor range is 3.6 kΩ  
to 100 kΩ, values outside this range will suspend charge. Refer to 7.3.1.3 for voltage level  
details.  
OUT  
10  
P
Battery Connection. System load may be connected in parallel to battery. Bypass OUT with at least  
1-μF capacitor to GND, placed close to the IC.  
Thermal Pad  
Exposed pad beneath the IC for heat dissipation. Solder thermal pad to the board with vias  
connecting to solid GND plane.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
MAX  
40  
UNIT  
V
Voltage  
Voltage  
IN  
OUT  
13  
V
CE, CHM_TMR, ISET, STAT1, STAT2,  
TS, VSET  
Voltage  
5.5  
V
0.3  
Output Sink Current  
STAT1, STAT2  
5
150  
150  
mA  
°C  
TJ  
Junction temperature  
Storage temperature  
40  
65  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±750  
±500  
Corner pins (IN, GND, CHM_TMR,  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per  
AEC Q100-011  
OUT)  
Other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
18  
UNIT  
VIN  
Input voltage  
3.0  
V
V
VOUT  
Output voltage  
10.5  
0.8  
IOUT  
Output current  
A
TJ  
Junction temperature  
IN capacitor  
125  
°C  
µF  
µF  
kΩ  
kΩ  
%
40  
1
CIN  
COUT  
OUT capacitor  
1
RCHM_TMR  
RVSET  
CHM_TMR resistor  
VSET resistor  
3.6  
3.6  
-1  
100  
100  
1
RVSET_CHM_TMR_TOL  
Tolerance for VSET, and CHM_TMR, resistors  
Temperature coefficient for VSET, and CHM_TMR  
resistors  
RVSET_CHM_TMR_TEMPCO  
200  
30  
ppm/℃  
RISET  
RTS  
ISET resistor  
0.375  
kΩ  
kΩ  
TS thermistor resistor (recommend 103AT-2)  
10  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
4
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
 
 
 
 
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.4 Thermal Information  
BQ25171-Q1  
THERMAL METRIC(1)  
DRC  
10 PINS  
37  
UNIT  
RθJA  
Junction-to-ambient thermal resistance (EVM(2)  
)
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
Junction-to-ambient thermal resistance (JEDEC(1)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
)
60.3  
73.1  
34.2  
6.0  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
34.2  
16.7  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) 1oz Copper, 2-layer board  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
 
 
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
3.0V < VIN < 18V and VIN > VOUT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
QUIESCENT CURRENTS  
OUT= 4.2V, IN floating or IN = 0V - 5V,  
Charge Disabled (CE high), TJ = 25 °C  
0.350  
0.350  
0.8  
0.6 µA  
0.8 µA  
1.2 µA  
1.5 µA  
IQ_OUT  
IQ_OUT  
ISD_IN  
Quiescent output current (OUT)  
Quiescent output current (OUT)  
OUT= 4.2V, IN floating or IN = 0V - 5V,  
Charge Disabled (CE high), TJ < 105 °C  
OUT = 8.4V, IN floating or IN = 0V - 14V,  
Charge Disabled (CE high), TJ = 25 °C  
OUT = 8.4V, IN floating or IN = 0V - 14V,  
Charge Disabled (CE high), TJ < 105 °C  
0.8  
IN = 5V, Charge Disabled (CE high), no  
battery  
2
4
6
µA  
µA  
µA  
µA  
Shutdown input current (IN) with  
charge disabled  
IN = 14V, Charge Disabled (CE high), no  
battery  
3.5  
Standby input current (IN) with charge IN = 5V, Charge Enabled (CE low), charge  
terminated terminated  
ISTANDBY_IN  
ISTANDBY_IN  
IQ_IN  
190  
230  
0.45  
0.45  
Standby input current (IN) with charge IN = 14V, Charge Enabled (CE low), charge  
terminated  
terminated  
IN = 5V, OUT = 3.8V, Charge Enabled (CE  
low), ICHG = 0A  
Quiescent input current (IN)  
0.6 mA  
0.6 mA  
IN = 14V, OUT = 7.6V, Charge Enabled (CE  
low), ICHG = 0A  
IQ_IN  
Quiescent input current (IN)  
INPUT  
VIN_OP  
IN operating range  
3.0  
3.05  
2.80  
95  
18  
3.15  
3.10  
V
V
V
VIN_LOWV  
VIN_LOWV  
VSLEEPZ  
VSLEEP  
VIN_OV  
IN voltage to start charging  
IN voltage to stop charging  
Exit sleep mode threshold  
Sleep mode threshold hysteresis  
VIN overvoltage rising threshold  
VIN overvoltage falling threshold  
IN rising  
3.09  
2.95  
135  
80  
IN falling  
IN rising, VIN - VOUT, OUT = 4V  
IN falling, VIN - VOUT, OUT = 4V  
IN rising  
175 mV  
mV  
18.1  
18.4  
18.2  
18.7  
V
V
VIN_OVZ  
IN falling  
CONFIGURATION PINS SHORT/OPEN PROTECTION  
RISET below this at startup, charger does not  
initiate charge, power cycle or CE toggle to  
reset  
Highest resistor value considered  
short  
RISET_SHORT  
350  
2.8  
Ω
RVSET below this at startup, charger does  
not initiate charge, power cycle or CE toggle  
to reset  
Highest resistor value considered  
short  
RVSET_SHORT  
kΩ  
kΩ  
kΩ  
kΩ  
RVSET above this at startup, charger does  
Lowest resistor value considered open not initiate charge, power cycle or CE toggle  
to reset  
RVSET_OPEN  
120  
120  
RCHM_TMR below this at startup, charger  
latches off, power cycle or CE toggle to  
reset  
Highest resistor value considered  
short  
RCHM_TMR_SHORT  
2.8  
RCHM_TMR above this at startup, charger  
RCHM_TMR_OPEN Lowest resistor value considered open latches off, power cycle or CE toggle to  
reset  
BATTERY CHARGER  
VDO  
Dropout voltage (VIN - VOUT  
)
VIN falling, VOUT = 4.35V, IOUT = 500mA  
Tj = 25, all VSET settings  
425  
mV  
%
0.5  
0.8  
0.5  
0.8  
OUT charge voltage regulation  
accuracy  
VREG_ACC  
%
Tj = -40to 125, all VSET settings  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
6
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
3.0V < VIN < 18V and VIN > VOUT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Typical charge current regulation  
range  
ICHG_RANGE  
KISET  
VOUT > VBAT_LOWV  
10  
800 mA  
Charge current setting factor, ICHG  
KISET / RISET  
=
10mA < ICHG < 800mA  
270  
300  
330  
AΩ  
720  
450  
90  
800  
500  
100  
10  
880 mA  
550 mA  
110 mA  
11 mA  
RISET = 375Ω, OUT = 3.8V or 7.6V  
RISET = 600Ω, OUT = 3.8V or 7.6V  
RISET = 3.0kΩ, OUT = 3.8V or 7.6V  
RISET = 30kΩ, OUT = 3.8V or 7.6V  
ICHG_ACC  
Charge current accuracy(1)  
9
Typical pre-charge current, as  
percentage of ICHG  
IPRECHG  
VOUT < VBAT_LOWV  
20  
%
144  
85  
160  
100  
20  
176 mA  
110 mA  
22 mA  
2.6 mA  
RISET = 375Ω, OUT = 2.5V or 5.0V  
RISET = 600Ω, OUT = 2.5V or 5.0V  
RISET = 3.0kΩ, OUT = 2.5V or 5.0V  
RISET = 30kΩ, OUT = 2.5V or 5.0V  
IPRECHG_ACC  
Precharge current accuracy  
18  
1.4  
2
Typical termination current, as  
percentage of ICHG  
ITERM  
VOUT = VREG  
10  
50  
10  
1
%
55 mA  
11.5 mA  
1.6 mA  
45  
8.5  
0.4  
RISET = 600Ω, OUT = VREG = 4.2V or 8.4V  
RISET = 3.0kΩ, OUT = VREG = 4.2V or  
8.4V  
ITERM_ACC  
Termination current accuracy  
RISET =30kΩ, OUT = VREG = 4.2V or 8.4V  
Output (OUT) short circuit voltage  
rising threshold, per cell for Li-Ion  
chemistry  
OUT rising, VSET configured for Li-Ion , 1-  
cell or 2-cell  
VBAT_SHORT  
2.1  
1.1  
2.2  
1.2  
2.3  
1.3  
V
Output (OUT) short circuit voltage  
rising threshold, per cell for LiFePO4  
chemistry  
OUT rising, VSET configured for LiFePO4 ,  
1-cell or 2-cell  
VBAT_SHORT  
V
Output (OUT) short circuit voltage  
hysteresis, per cell  
VBAT_SHORT_HYS  
IBAT_SHORT  
OUT falling  
200  
16  
mV  
OUT short circuit charging current  
Pre-charge to fast-charge transition  
VOUT < VBAT_SHORT  
12  
20 mA  
OUT rising, VSET configured for Li-Ion , 1-  
VBAT_LOWV  
2.7  
2.8  
3.0  
2.1  
V
threshold, per cell for Li-Ion chemistry cell or 2-cell  
Pre-charge to fast-charge transition  
threshold, per cell for Li-FePO4  
chemistry  
OUT rising, VSET configured for LiFePO4 ,  
1-cell or 2-cell  
VBAT_LOWV  
1.9  
2.0  
V
VBAT_LOWV_HYS  
VRECHG  
VRECHG  
VRECHG  
Battery LOWV hysteresis, per cell  
OUT falling, all charger configurations  
100  
100  
mV  
Battery recharge threshold, per cell for OUT falling, VSET configured for Li-Ion , 1-  
Li-Ion chemistry cell or 2-cell, VREG_ACC - VOUT  
75  
175  
125 mV  
225 mV  
Battery recharge threshold, per cell for OUT falling, VSET configured for LiFePO4 ,  
LiFePO4 chemistry 1-cell or 2-cell, VREG_ACC - VOUT  
200  
Battery recharge threshold, per cell for OUT falling, VSET configured for 2-cell with  
NiMH chemistry  
1.305  
1.330  
1.355  
V
intermittent charge enabled  
IN > 5V, TJ = 25°C  
845  
845  
980  
mΩ  
mΩ  
RON  
Charging path FET on-resistance  
IN > 5V, TJ = -40°C - 125°C  
1350  
BATTERY CHARGER PROTECTION  
VOUT_OVP OUT overvoltage rising threshold  
VOUT_OVP  
VOUT rising, as percentage of VREG  
VOUT falling, as percentage of VREG  
103  
101  
104  
102  
105  
103  
%
%
OUT overvoltage falling threshold  
OUT overvoltage rising threshold, per  
cell for NiMH chemistry  
VOUT_OVP  
VOUT rising, TS normal  
1.65  
1.70  
1.75  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
3.0V < VIN < 18V and VIN > VOUT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VOUT falling, TS normal  
IOUT rising  
MIN  
1.40  
0.9  
TYP  
1.45  
1
MAX UNIT  
OUT overvoltage falling threshold, per  
cell for NiMH chemistry  
VOUT_OVP  
IOUT_OCP  
1.50  
1.1  
V
A
Output current limit threshold  
TEMPERATURE REGULATION AND TEMPERATURE SHUTDOWN  
Typical junction temperature  
regulation  
TREG  
125  
°C  
Thermal shutdown rising threshold  
Thermal shutdown falling threshold  
Temperature increasing  
150  
135  
°C  
°C  
TSHUT  
Temperature decreasing  
BATTERY-PACK NTC MONITOR  
ITS_BIAS TS nominal bias current  
36.5  
0.99  
0.83  
176  
208  
2.3  
38  
1.04  
0.88  
188  
220  
2.6  
39.5 µA  
Cold temperature threshold  
Cold temperature exit threshold  
Hot temperature threshold  
Hot temperature exit threshold  
TS maximum voltage clamp  
TS pin voltage rising (approx. 0°C)  
TS pin voltage falling (approx. 4°C)  
TS pin voltage falling (approx. 45°C)  
TS pin voltage rising (approx. 40°C)  
TS pin open-circuit (float)  
1.09  
0.93  
V
V
VCOLD  
200 mV  
232 mV  
VHOT  
VTS_CLAMP  
2.9  
V
LOGIC INPUT PIN (/CE)  
VIH  
Input high threshold level  
1.3  
3.3  
V
V
VIL  
Input low threshold level  
0.4  
RPD_CE  
CE pin internal pulldown resistor  
MΩ  
LOGIC OUTPUT PIN (STAT1, STAT2)  
VOL  
Output low threshold level  
High-level leakage current  
Sink current = 5mA  
Pull up rail 3.3V  
0.4  
1
V
IOUT_BIAS  
µA  
(1) Temperature Regulation (TREG) loop may reduce the output current depending on power dissipation and ambient temperature  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
BATTERY CHARGER  
tOUT_OCP_DGL  
tPRECHG  
Deglitch time for IOUT_OCP, IOUT rising  
Pre-charge safety timer accuracy  
Fast-charge safety timer accuracy  
100  
30  
µs  
min  
hr  
28.5  
9.5  
31.5  
10.5  
tSAFETY  
10  
Automotive Intermittent charge safety timer (NiMH), as  
percentage of tSAFETY  
tINTERMITTENT  
25  
%
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
8
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.7 典型特性  
CIN = 1µFCOUT = 1µFVIN = 5VVOUT = 3.8V除非另有说明)  
1
1
0.8  
0.6  
0.4  
0.2  
0
-40èC  
-40èC  
0èC  
25èC  
85èC  
105èC  
0.8  
0èC  
25èC  
0.6  
85èC  
105èC  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4
6
8
10  
VIN (V)  
12  
14  
16  
18  
8
9
10  
11  
12  
13  
VIN (V)  
14  
15  
16  
17  
18  
IOUT = 10mA  
VOUT = 4.2 V  
IOUT = 10mA  
VOUT = 8.4 V  
6-1. 线性调整率4.2VOUT 1s)  
6-2. 线性调整率8.4VOUT 2s  
1
0.8  
0.6  
0.4  
0.2  
0
10  
8
-40èC  
0èC  
25èC  
85èC  
105èC  
10mA  
50mA  
100mA  
200mA  
400mA  
600mA  
800mA  
6
4
2
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-2  
-4  
-6  
-8  
-10  
0
10  
20  
30  
40  
50  
IOUT (mA)  
60  
70  
80  
90 100  
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
VOUT (V)  
4
4.1  
VIN = 5V  
VOUT = 4.2 V  
VIN = 5V  
温度= 25ºC  
6-3. 负载调整率4.2VOUT 1s)  
6-4. ICHG 精度VOUT 间的关系  
1
0.8  
0.6  
0.4  
0.2  
0
5VIN ç 3.6VREG  
5VIN ç 4.1VREG  
12VIN ç 3.6VREG  
12VIN ç 4.1VREG  
12VIN ç 7.2VREG  
12VIN ç 8.2VREG  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
IOUT = 10 mA  
VIN = 5V 12V  
VIN = 5V 12V  
VOUT = 3.8V 7.6V  
6-6. VSET 精度与温度间的关系  
6-5. ISET 精度与温度间的关系  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.7 典型特(continued)  
CIN = 1µFCOUT = 1µFVIN = 5VVOUT = 3.8V除非另有说明)  
5.5  
5
-40èC  
0èC  
25èC  
105èC  
125èC  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
2
4
6
8
10  
VIN (V)  
12  
14  
16  
18  
VOUT=0V  
CE = 高电平  
6-7. 压降电压与输出电流间的关系  
6-8. 输入关断电流与输入电压间的关系  
1
2
1.8  
1.6  
1.4  
1.2  
1
-40èC  
-40èC  
0èC  
25èC  
105èC  
125èC  
0èC  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
25èC  
85èC  
105èC  
0.8  
0.6  
0.4  
0.2  
0
3
5
7
9
11  
VIN (V)  
13  
15  
17 18  
1
2
3
4
5
VOUT (V)  
6
7
8
9
10  
ICHG = 0A  
VIN = 0V  
CE = 低电平  
6-10. 输出静态电流与输出电压间的关系  
6-9. 输入静态电流与输入电压间的关系  
VOUT = 4.35 V  
6-11. 终止电流精度与终止电流设置间的关系  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
10  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The BQ25171-Q1 is an automotive rated, 800-mA linear charger for 1-cell and 2-cell Li-Ion, Li-Polymer, and  
LiFePO4, in addition to 1-cell up to 6-cell NiMH battery applications. The device has a single power output that  
charges the battery. The system load can be placed in parallel with the battery, as long as the average system  
load does not prevent the battery from charging fully within the safety timer duration. When the system load is  
placed in parallel with the battery, the input current is shared between the system and the battery.  
The device has three phases for charging a Li-Ion battery: precharge to recover a fully discharged battery, fast-  
charge constant current to supply the bulk of the charge, and voltage regulation to reach full capacity.  
The device charges a NiMH in constant current mode only, and terminates the charge cycle when the  
programmable timer expires or the battery voltage exceeds the VOUT_OVP threshold. An optional intermittent  
charging phase can be programmed to automatically recharge a full NiMH battery once its voltage falls below  
VRECHG  
.
The charger includes flexibility in programming of the fast-charge current and regulation voltage. This charger is  
designed to work with a variety of input supply ranges including direct car battery connection.  
The charger also comes with a full set of safety features: battery temperature monitoring, overvoltage protection,  
charge safety timers, and configuration pin (VSET, ISET, CHM_TMR) short and open protection. All of these  
features and more are described in detail below.  
The charger is designed for a single path from the input to the output to charge the battery. Upon application of a  
valid input power source, the configuration pins are checked for short/open circuit.  
If the Li-Ion battery voltage is below the VBAT_LOWV threshold, the battery is considered discharged and a  
preconditioning cycle begins. The amount of precharge current is 20% of the programmed fast-charge current  
via ISET pin. The tPRECHG safety timer is active, and stops charging after expiration if battery voltage fails to rise  
above VBAT_LOWV  
.
Once the battery has charged to the VBAT_LOWV threshold, Fast Charge Mode is initiated, applying the fast  
charge current and starting the tSAFETY timer. The fast charge constant current is programmed using the ISET  
pin. The constant current phase provides the bulk of the charge. Power dissipation in the IC is greatest in fast  
charge with a lower battery voltage. If the IC temperature reaches TREG, the IC enters thermal regulation, slows  
the timer clock by half, and reduces the charge current as needed to keep the temperature from rising any  
further. 7-1 shows the typical Lithium battery charging profile with thermal regulation. Under normal operating  
conditions, the ICs junction temperature is less than TREG and thermal regulation is not entered.  
Once the battery has charged to the regulation voltage, the voltage loop takes control and holds the battery at  
the regulation voltage until the current tapers to the termination threshold. The termination threshold is 10% of  
the programmed fast-charge current.  
Further details are described in 7.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
 
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
Thermal  
Regulation  
Phase  
Current  
Regulation  
Phase  
Voltage Regulation and  
Charge Termination  
Phase  
Pre-  
Conditioning  
Phase  
DONE  
V
REG  
I
CHG  
Battery Current,  
I
FAST-CHARGE  
CURRENT  
OUT  
Battery  
Voltage,  
V
OUT  
Charge  
Complete  
Status,  
Charger  
Off  
PRE-CHARGE  
CURRENT AND  
TERMINATION  
THRESHOLD  
V
BAT_LOWV  
I
TERM  
I
PRECHG  
T
REG  
0A  
Temperature, Tj  
t
t
DONE  
PRECHG  
SAFETY  
7-1. Lithium-Ion Battery Charging Profile with Thermal Regulation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
12  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
OUT  
IN  
VBAT  
VBAT_REF  
ICHG  
VIN  
+
+
VREF  
VIN_OV  
VSLEEPZ  
VIN_UVLOZ  
ICHG_REF  
INPUT  
MONITOR  
+
QBLK  
CNTRL  
TREG  
TJ  
/PG  
FAULT  
/CE  
ISET  
CEN  
STAT1  
STAT2  
ICHG_REF  
VBAT_REF  
tSAFETY  
TREG  
PIN DETECT  
&
REF DAC  
STAT1,2  
VSET  
CHM_TMR  
ITERM  
TJ  
TERM  
TJSHUT  
TS HOT  
+
+
+
+
+
+
+
+
+
+
ICHG  
TSHUT  
(VBAT_REF  
)
VTS_CLAMP  
ITS  
VHOT  
VTS  
- VRECHG  
RECHG  
VBAT  
TS  
tCHARGE  
tSAFETY  
VTS  
TMR_EXP  
BATLOW  
TS COLD  
BATOVP  
BATOCP  
CHARGE  
CONTROL  
VTS  
VCOLD  
VBAT_LOWV  
VBAT  
VBAT  
GND  
VOUT_OVP  
VBAT_SHORT  
VBAT  
ICHG  
BATSHORT  
FAULT  
IOUT_OCP  
STATE  
MONITOR  
BQ25171-Q1  
STAT1,2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Device Power Up from Input Source  
When an input source is plugged in and charge is enabled, the device checks the input source voltage to turn on  
all the bias circuits. It detects and sets the input chemistry configuration, charge current and charge voltage limits  
before the linear regulator is started. The power up sequence from input source is as listed:  
1. ISET pin detection  
2. CHM_TMR pin detection to select chemistry and charge timer  
3. VSET pin detection to select charge voltage  
4. Charger power up  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
14  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
 
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
SHUTDOWN  
POWER DOWN =  
VIN crossing  
below UVLO  
No  
POWER DOWN or  
/CE Toggle  
POWER DOWN or  
/CE Toggle  
Charge Enabled  
& Power Good  
Yes  
STAT1 LOW  
STAT1 LOW  
STAT2 LOW  
STAT2 LOW  
PIN DETECT  
PIN SHORT/OPEN  
NON-RECOVERABLE  
FAULT  
NON-RECOVERABLE  
FAULT  
Valid Resistor  
(Lithium)  
Valid Resistor  
(NiMH)  
STAT1 LOW  
STAT2 HIGH  
STAT1 LOW  
STAT2 HIGH  
Fault Removed  
Fault Removed  
RECOVERABLE  
RECOVERABLE  
FAULT  
FAULT  
STAT1 HIGH  
STAT2 LOW  
VIN OVP  
TS HOT/COLD  
BAT OVP  
VIN OVP  
TS HOT/COLD  
BAT OVP  
LITHIUM  
BATTERY CHARGE  
NIMH  
BATTERY CHARGE  
BAT OCP  
TIMER EXP.  
BAT OCP  
TIMER  
EXPIRED  
TERMINATION  
STAT1 HIGH  
STAT2 HIGH  
STANDBY  
STANDBY  
ENABLE  
INTERMITTENT  
VBAT <  
VRECHG  
VBAT <  
VRECHG  
7-2. Simplified BQ25171-Q1 Flow Chart  
7.3.1.1 ISET Pin Detection  
After a valid VIN is plugged in and CE pin is pulled LOW, the device checks the resistor on the ISET pin for a  
short circuit (RISET < RISET_SHORT). If a short condition is detected, the charger remains in the FAULT state until  
the input or CE pin is toggled. If the ISET pin is open-circuit, the charger proceeds through pin detection and  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
starts the charger with no charge current. This pin is monitored while charging and changes in RISET while the  
charger is operating will immediately translate to changes in charge current.  
An external pulldown resistor (±1% or better recommended to minimize charge current error) from ISET pin to  
GND sets the charge current as:  
KISET  
ICHG  
=
RISET  
(1)  
where  
ICHG is the desired fast-charge current  
KISET is a gain factor found in the electrical specifications  
RISET is the pulldown resistor from ISET pin to GND  
For charge currents below 50 mA, an extra RC circuit is recommended on ISET to achieve more stable current  
signal. For greater accuracy at lower currents, part of the current-sensing FET is disabled to give better  
resolution.  
7.3.1.2 CHM_TMR Pin Detection  
CHM_TMR pin is used to program the device chemistry and safety timer using a ±1% pulldown resistor. The  
available pulldown resistor and corresponding behaviors are:  
7-1. CHM_TMR Pin Resistor Value Table  
RESISTOR  
> 150 kΩ  
100 kΩ  
82 kΩ  
CHEMISTRY  
CHARGE TIMER (HR)  
No charge (open-circuit)  
No charge (open-circuit)  
Li+  
5 hr  
Li+  
10 hr  
Li+  
Timer disable  
62 kΩ  
No charge (pin fault / margin)  
No charge (pin fault / margin)  
47 kΩ  
NiMH  
4 hr  
36 kΩ  
NiMH  
6 hr  
27 kΩ  
NiMH  
8 hr  
24 kΩ  
NiMH  
10 hr  
18 kΩ  
NiMH  
12 hr  
15 kΩ  
NiMH  
14 hr  
11 kΩ  
NiMH  
16 hr  
8.2 kΩ  
6.2 kΩ  
4.7 kΩ  
3.6 kΩ  
< 3.0 kΩ  
NiMH  
NiMH  
18 hr  
20 hr  
NiMH  
22 hr  
No charge (short-circuit)  
No charge (short-circuit)  
If either a short- or open-circuit condition is detected, charger stops operation and remains in the FAULT state  
until the input or CE pin is toggled.  
Once a value has been detected, it is latched in and the pin is not continuously monitored during operation. A  
change in this pin will not be acknowledged by the IC until the input supply or CE pin is toggled.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
16  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
7.3.1.3 VSET Pin Detection  
VSET pin is used to program the device regulation voltage at end-of-charge using a ±1% pulldown resistor. The  
available pulldown resistor and corresponding charging levels are:  
7-2. VSET Pin Resistor Value Table  
Li+ CONFIGURATION  
CHARGE VOLTAGE (V)  
No charge (open-circuit)  
1-cell LiFePO4: 3.50 V  
1-cell LiFePO4: 3.60 V  
1-cell LiFePO4: 3.70 V  
1-cell LiIon: 3.80 V  
NiMH CONFIGURATION  
CELL COUNT  
RESISTOR  
No charge (open-circuit)  
No charge (open-circuit)  
No charge (open-circuit)  
1-cell  
> 150 kΩ  
100 kΩ  
82 kΩ  
62 kΩ  
47 kΩ  
36 kΩ  
27 kΩ  
24 kΩ  
18 kΩ  
15 kΩ  
11 kΩ  
1-cell + intermittent charge  
2-cell  
1-cell LiIon: 3.90 V  
1-cell LiIon: 4.05 V  
2-cell + intermittent charge  
3-cell  
1-cell LiIon: 4.10 V  
1-cell LiIon: 4.20 V  
3-cell + intermittent charge  
4-cell  
1-cell LiIon: 4.35 V  
2-cell LiFePO4: 7.00 V  
2-cell LiFePO4: 7.20 V  
2-cell LiFePO4: 7.40 V  
2-cell LiIon: 8.20 V  
4-cell + intermittent charge  
5-cell  
8.2 kΩ  
6.2 kΩ  
4.7 kΩ  
3.6 kΩ  
< 3.0 kΩ  
5-cell + intermittent charge  
6-cell  
2-cell LiIon: 8.40 V  
6-cell + intermittent charge  
No charge (short-circuit)  
No charge (short-circuit)  
If either a short- or open-circuit condition is detected, charger stops operation and remains in the FAULT state  
until the input or CE pin is toggled.  
Once a valid resistor value has been detected, the corresponding charge voltage is latched in and the pin is not  
continuously monitored during operation. A change in this pin will not be acknowledged by the IC until the input  
supply or CE pin is toggled.  
7.3.1.4 Charger Power Up  
After VSET, ISET and CHM_TMR pin resistor values have been validated, the device proceeds to enable the  
charger. The device automatically begins operation at the correct stage of battery charging depending on the  
OUT voltage.  
7.3.2 Battery Charging Features  
When charge is enabled , the device automatically completes a charging cycle according to the settings on  
VSET, ISET and CHM_TMR pins without any intervention. The lithium-based charging cycle is automatically  
terminated when the charging current is below termination threshold, charge voltage is above recharge  
threshold, and device is not in thermal regulation (TREG). When a full battery is discharged below the recharge  
threshold (VRECHG), the device automatically starts a new charging cycle. After charge is done, toggling the input  
supply or the CE pin can initiate a new charging cycle.  
7.3.2.1 Lithium-Ion Battery Charging Profile  
The device charges a lithium based battery in four phases: trickle charge, precharge, constant current and  
constant voltage. At the beginning of a charging cycle, the device checks the battery voltage and regulates  
current and voltage accordingly.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
If the charger is in thermal regulation during charging, the actual charging current will be less than the  
programmed value. In this case, termination is temporarily disabled and the charging safety timer is counted at  
half the clock rate. For more information, refer to 7.3.2.3.  
Regulation Voltage  
VSET  
VRECHG  
Battery Voltage  
Charge Current  
ISET  
Charge Current  
VBAT_LOWV  
VBAT_SHORT  
IPRECHG = ISET x 20%  
ITERM = ISET x 10%  
IBAT_SHORT  
Trickle Charge  
Pre-charge  
Re-  
charge  
Fast-Charge  
CC  
Taper-Charge  
CV  
Charge  
Done  
Precharge Timer  
(30min)  
Safety Timer  
CHM_TMR  
7-3. Lithium-Based Battery Charging Profile  
7.3.2.1.1 NiMH Battery Charging Profile  
The device charges a NiMH battery in two phases: constant current and intermittent charge (optional). The  
duration for constant current charing is controlled by the charge timer, which is programmed using the  
CHM_TMR pin. Intermittent charging is designed to replenish the natural self-discharge of NiMH by restarting a  
short charge cycle (25% of programmed charge timer) when the output voltage falls below VRECHG threshold. If  
the intermittent charging function is disabled, the device will charge a battery once, and not start a recharge  
cycle automatically. In this case, a new charge cycle can be initiated by toggling the input supply or the CE pin.  
Before initiating a NiMH charge cycle, the device checks for a full battery. If battery voltage is above VRECHG, the  
battery is considered full and the device does not charge. Once the battery voltage falls below VRECHG, the  
device automatically begins charging. If the intermittent charging function is disabled, a single charge cycle is  
initiated with the charge timer as programmed by CHM_TMR pin. If intermittent charging is enabled, an  
intermittent charge cycle is initiated with charge timer as 25% of CHM_TMR programmed value.  
If the charger is in thermal regulation during charging, the actual charging current will be less than the  
programmed value. For NiMH charging, termination by timer is still enabled, but the charging safety timer is  
counted at half the clock rate. For more information, refer to 7.3.2.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
18  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
OUT Over-voltage  
VOUT_OVP  
Battery Voltage  
Charge Current  
ISET  
Charge Current  
Constant  
Timer Expire  
Current CC  
(Charge Done)  
Charge Timer  
CHM_TMR  
7-4. NiMH Battery Charging Profile with Intermittent Charging Disabled  
OUT Over-voltage  
VOUT_OVP  
Battery Voltage  
VRECHG  
Charge Current  
ISET  
Charge Current  
Constant  
Current CC  
Charge  
Done  
Intermittent  
Charge  
Charge Timer  
CHM_TMR  
25% x TMR  
7-5. NiMH Battery Charging Profile with Intermittent Charging Enabled  
7.3.2.2 Charge Termination and Battery Recharge  
When configured as a lithium battery charger, the device terminates a charge cycle when the OUT pin voltage is  
above the recharge threshold (VRECHG), and the current is below the termination threshold (ITERM). Termination is  
temporarily disabled when the charger device is in thermal regulation. After charge termination is detected, the  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
linear regulator turns off and the device enters STANDBY state. Once the OUT pin drops below the VRECHG  
threshold, a new charge cycle is automatically initiated.  
When configured as NiMH battery charger, the device terminates a charge cycle when the charge safety timer  
expires. If intermittent charging is enabled, a new charge cycle with 25% of original programmed timer duration  
will start once the battery voltage falls below VRECHG. For example, after a 20 hour charge cycle finishes, and  
then the battery falls below VRECHG, the device recharges the battery for 5 hours: (tINTERMITTENT = 25% x  
tSAFETY). If intermittent charging is disabled, the device will not start a new charge cycle automatically based on  
the VRECHG threshold. A toggle on the input supply or the CE pin is required to restart a charge cycle in this  
case.  
7.3.2.3 Charging Safety Timers  
The device has built-in safety timers to prevent an extended charging cycle due to abnormal battery conditions.  
The precharge timer is fixed at 30 minutes. The user can program or disable the fast charge safety timer through  
the CHM_TMR pin. When safety timer expires, the charge cycle ends. A toggle on the input supply or CE pin is  
required to restart a charge cycle after the safety timer has expired.  
During thermal regulation, the safety timer counts at half clock rate as the actual charge current is likely to be  
below the ISET setting. For example, if the charger is in thermal regulation throughout the whole charging cycle,  
and the safety timer is 10 hours, then the timer will expire in 20 hours.  
During faults which disable charging, such as VIN OVP, BAT OVP, TSHUT or TS faults, the timer is suspended.  
Once the fault goes away, charging and the safety timer resumes. If the charging cycle is stopped and started  
again, the timer gets reset (toggle CE pin restarts the timer).  
The safety timer restarts counting for the following events:  
1. Charging cycle stop and restart (toggle CE pin, charged battery falls below recharge threshold, or toggle  
input supply)  
2. OUT pin voltage crosses the VBAT_LOWV threshold in either direction  
The precharge safety timer (fixed counter that runs when VOUT < VBAT_LOWV), follows the same rules as the fast-  
charge safety timer in terms of getting suspended, reset, and counting at half-rate.  
7.3.2.4 Battery Cold, Hot Temperature Qualification (TS Pin)  
While charging, the device continuously monitors battery temperature by sensing the voltage at the TS pin. A  
negative temperature coefficient (NTC) thermistor should be connected between the TS and GND pins  
(recommend: 103AT-2). If temperature sensing is not required in the application, connect a fixed 10-kΩ resistor  
from TS to GND to allow normal operation. Battery charging is allowed when the TS pin voltage falls between  
VCOLD and VHOT thresholds (typically 0°C 45°C). The temperature corresponding to these voltage thresholds  
can be modified by adding resistors in parallel and in series with the thermistor, as shown in 7-6. If the TS pin  
indicates battery temperature is outside this range, the device stops charging, enters the STANDBY state, and  
sets the STAT pins to STAT1 = LOW , STAT2 = HIGH to indicate a recoverable fault. Once battery temperature  
returns to normal conditions, charging resumes automatically.  
VTS_CLAMP  
ITS_BIAS  
TS  
RS  
RP  
RTH  
7-6. TS Resistor Network For Modified Temperature Charging Window  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
 
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
7-3. Recommended Resistor Values for Different Temperature Charging Windows  
TEMPERATURE CHARGING WINDOW  
RS  
RP  
0°C to 60°C  
10°C to 60°C  
10°C to 50°C  
1.9 kΩ  
2.3 kΩ  
1.1 kΩ  
400 kΩ  
70 kΩ  
70 kΩ  
7.3.3 Status Outputs (STAT1, STAT2)  
7.3.3.1 Charging Status Indicator (STAT1, STAT2)  
The device indicates the charging state on the open-drain STAT1, STAT2 pin. This pin can drive an LED.  
7-4. STAT1 and STAT2 Pin States  
CHARGING STATE  
STAT1 PIN STATE  
STAT2 PIN STATE  
Charge completed, charger in sleep mode or charge disabled (including VOUT  
VRECHG after TMR_EXP for NiMH charging)  
>
HIGH  
HIGH  
Normal charge in progress (including intermittent charge active for NiMH, and  
automatic recharge for Li+ charger)  
HIGH  
LOW  
LOW  
HIGH  
Recoverable fault (VIN OVP, BAT OVP, TS HOT, TS COLD, TSHUT)  
Non-recoverable or latch-off fault (VSET/CHM_TMR/ISET pin short/open, BAT  
OCP, TMR_EXP for Li+ charging, VOUT < VRECHG after TMR_EXP for NiMH  
charging)  
LOW  
LOW  
Safety timer expiration event (TMR_EXP) is addressed differently depending on whether the charger is  
configured as a NiMH or Li+ charger. For Lithium-based charging, TMR_EXP is reported as a non-recoverable  
fault by setting STAT1 = LOW and STAT2 = LOW. For NiMH-based charging, TMR_EXP with VOUT > VRECHG is  
the expected termination method, and shall be reported as charge complete with STAT1 = HIGH and STAT2 =  
HIGH. For NiMH-based charging, TMR_EXP with VOUT < VRECHG is a non-recoverable fault and shall be  
reported by setting STAT1 = LOW and STAT2 = LOW. An input supply or CE pin toggle is required to attempt  
charging after a non-recoverable fault is detected.  
7.3.4 Protection Features  
The device closely monitors input and output voltage, as well as internal FET current and temperature for safe  
linear regulator operation.  
7.3.4.1 Input Overvoltage Protection (VIN OVP)  
If the voltage at IN pin exceeds VIN_OV, the device turns off after a deglitch, tVIN_OV_DGL. The safety timer  
suspends count and device enters STANDBY mode. Once the IN voltage recovers to normal level, the charge  
cycle and the safety timer automatically resume operation.  
7.3.4.2 Output Overvoltage Protection (BAT OVP)  
If the voltage at OUT pin exceeds VOUT_OVP, the device immediately stops charging. The safety timer suspends  
count and device enters STANDBY mode. Once the OUT voltage recovers to normal level, the charge cycle and  
the safety timer resume operation.  
7.3.4.3 Output Overcurrent Protection (BAT OCP)  
During normal operation, the OUT current should be regulated to ISET programmed value. However, if a short  
circuit occurs on ISET pin, the OUT current may rise to unintended level. If the current at OUT pin exceeds  
IOUT_OCP, the device turns off after a deglitch, tOUT_OCP_DGL. The safety timer resets the count, and device  
remains latched off. An input supply or CE pin toggle is required to restart operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
IOUT_OCP  
ICHG  
tOUT_OCP_DGL  
RISET  
Short Circuit  
event on ISET  
Charger  
latched off  
7-7. Overcurrent Protection  
7.3.4.4 Thermal Regulation and Thermal Shutdown (TREG and TSHUT)  
The device monitors its internal junction temperature (TJ) to avoid overheating and to limit the IC surface  
temperature. When the internal junction temperature exceeds the thermal regulation limit, the device  
automatically reduces the charge current to maintain the junction temperature at the thermal regulation limit  
(TREG). During thermal regulation, the actual charging current is usually below the programmed value on the  
ISET pin. Therefore, the termination comparator for the Lithium-Ion battery is disabled, and the safety timer runs  
at half the clock rate.  
Additionally, the device has thermal shutdown to turn off the linear regulator when the IC junction temperature  
exceeds the TSHUT threshold. A recoverable fault is signaled via the status pins (STAT1 = LOW, STAT2 =  
HIGH). The charger resumes operation when the IC die temperature decreases below the TSHUT falling  
threshold.  
1000  
800  
600  
400  
200  
5Vin, 3.8Vout  
9Vin, 7.6Vout  
12Vin, 7.6Vout  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
T
AMB°(C)  
7-8. Typical Charge Current Capability vs Ambient Temperature  
7.4 Device Functional Modes  
7.4.1 Shutdown or Undervoltage Lockout (UVLO)  
The device is in shutdown state if the IN pin voltage is less than VIN_LOWV, or the CE pin is HIGH. The internal  
circuitry is powered down, all the pins are high impedance, and the device draws ISD_IN from the input supply.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
22  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
Once the IN voltage rises above the VIN_LOW threshold and the CE pin is LOW, the IC will enter Sleep Mode or  
Active Mode depending on the OUT pin voltage.  
7.4.2 Sleep Mode  
The device is in Sleep Mode when VIN_LOWV < VIN < VOUT + VSLEEPZ . The device waits for the input voltage to  
rise above VOUT + VSLEEPZ to start operation.  
7.4.3 Active Mode  
The device is powered up and charges the battery when the CE pin is LOW and the IN voltage ramps above  
both VIN_LOWV, and VOUT + VSLEEPZ. The device draws IQ_IN from the supply to bias the internal circuitry. For  
details on device power-up sequence, refer to 7.3.1.  
7.4.3.1 Standby Mode  
The device is in Standby Mode if a valid input supply is present and charge is terminated or if a recoverable fault  
is detected. The internal circuitry is partially biased, and the device continues to monitor for either VOUT to drop  
below VRECHG, or the recoverable fault to be removed.  
7.4.4 Fault Mode  
The fault conditions are categorized into recoverable and nonrecoverable as follows:  
Recoverable(STAT1 = LOW, STAT2 = HIGH), from which the device should automatically recover once the  
fault condition is removed:  
VIN OVP  
BAT OVP  
TS HOT  
TS COLD  
Nonrecoverable(STAT1 = LOW, STAT2 = HIGH), requiring CE pin or input supply toggle to resume operation:  
BAT OCP  
ISET pin short detected  
VSET pin short/open detected  
CHM_TMR pin short/open detected  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
A typical application consists of the device configured as a standalone battery charger for Lithium-Ion, Li-  
Polymer, LiFePO4, or NiMH batteries. The battery charge profile and the safety charge timer are configured  
using a pulldown resistor on the CHM_TMR pin. The charge voltage and the number of cells are configured  
using a pulldown resistor on the VSET pin. Charge current is configured using a pulldown resistor on the ISET  
pin. A battery thermistor may be connected to the TS pin to allow the device to monitor battery temperature and  
control charging. Pulling the CE pin high disables the charging function. Charger status is reported via the  
STAT1 and STAT2 status pins.  
8.2 Typical Applications  
8.2.1 1s LiFePO4 Charger Design Example  
VIN  
IN  
OUT  
1s LiFePO4  
System  
Load  
1µF  
1µF  
10k  
10k  
100k  
82k  
CHM_TMR  
VSET  
STAT1  
STAT2  
TS  
10k NTC  
600  
ISET  
GND  
/CE  
HOST  
BQ25171-Q1  
8-1. BQ25171-Q1 Typical Application for 1s LiFePO4 Charging at 500 mA  
8.2.1.1 Design Requirements  
Supply voltage = 5 V  
Battery is single-cell LiFePO4  
Fast charge current: ICHG = 500 mA  
Charge voltage: VREG = 3.6 V  
Charge safety timer: tSAFETY: 5 hr  
Termination ucrrent: ITERM = 10% of ICHG or 50 mA  
Precharge current: IPRECHG = 20% of ICHG or 100 mA  
TS Battery temperature sense = 10-kΩNTC (103AT)  
CE is an open drain control pin  
8.2.1.2 Detailed Design Procedure  
The regulation voltage is set via the VSET pin to 3.6 V, the input voltage is 5 V, and the charge current is  
programmed via the ISET pin to 500 mA.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
24  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
 
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
The charging chemistry and safety timer are set to LiFePO4 and 5 hr, respectively, via the CHM_TMR pin.  
8.2.1.2.1 Program the Fast Charge Current, ISET:  
RISET = [KISET / ICHG  
]
from electrical characteristics table. . . KISET = 300 AΩ  
RISET = [300 A/0.5 A] = 600 Ω  
Selecting the closest 1% resistor standard value, use a 604-resistor between ISET and GND, for an expected  
ICHG of 497 mA.  
8.2.1.2.2 TS Function  
Use a 10-kΩ NTC thermistor in the battery pack (recommend: 103AT-2). The VCOLD and VHOT thresholds in the  
data sheet are designed to meet a charging window between 0°C and 45°C for a 10-kΩNTC with β= 3435 K.  
To disable the TS sense function, use a fixed 10-kΩresistor between the TS and GND pins.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
8.2.1.3 Application Curves  
CIN = 1 µF, COUT = 1 µF, VIN = 5 V, VOUT = 3.8 V, ICHG = 250 mA (unless otherwise specified)  
OUT = open-circuit  
RISET = 1.2 kΩ  
RISET = 1.2 kΩ  
8-2. Power Up with Battery (1-cell Li-Ion)  
8-3. Power Up without Battery  
VIN = 5 V 0 V  
CE = High Low  
8-4. Power Down  
8-5. Charge Enable  
CE = Low High  
8-7. IN OVP Response  
8-6. Charge Disable  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
VOUT = VSET = 4.2 V  
VOUT = VSET = 4.2 V  
VIN = 5 V 9 V  
ISYS = 0 mA 500 mA  
8-8. IN Transient Response  
8-9. OUT Transient Response  
VOUT = VSET = 4.2 V 0 V  
ISET = 1.2 kΩ0 Ω  
8-10. OUT Short-Circuit Response  
8-11. ISET Short-Circuit Response  
ISET = 50 mA 500 mA  
8-13. TS Change Response  
8-12. ISET Change Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
8.2.2 2s Li-Ion Charger with Power Path Design Example  
System  
Load  
VIN  
IN  
OUT  
2s Li-Ion  
VREF  
10k  
10k  
100k  
CHM_TMR  
VSET  
STAT1  
STAT2  
TS  
4.7k  
3k  
ISET  
GND  
/CE  
HOST  
BQ25171-Q1  
8-14. BQ25171-Q1 Typical Application for 2s LiIon Charging at 100 mA  
8.2.2.1 Design Requirements  
The design requirements include the following:  
Input supply up to 18 V  
Battery is 2-cell Li-Ion  
Fast charge current: ICHG = 100 mA  
Charge voltage: VREG = 8.2 V  
Charge safety timer: tSAFETY: 5 hr  
Termination current: ITERM = 10% of ICHG or 10 mA  
Precharge current: IPRECHG = 20% of ICHG or 20 mA  
TS Battery temperature sense = 10-kΩNTC (103AT)  
Charging allowed between battery temperatures of 0ºC to 45ºC  
CE is a control pin, pull high to disable the charger  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
28  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
8.2.3 4s NiMH Charger Design Example  
VIN  
IN  
OUT  
4s NiMH  
System  
Load  
VREF  
1µF  
1µF  
10k  
10k  
8.2k  
11k  
10k  
CHM_TMR  
VSET  
STAT1  
STAT2  
TS  
ISET  
1.9k  
400k  
HOST  
GND  
/CE  
BQ25171-Q1  
8-15. BQ25171-Q1 Typical Application for 4s NiMH with Intermittent Charging Enabled  
8.2.3.1 Design Requirements  
The design requirements include the following:  
Input supply up to 18 V  
Battery is 4-cell NiMH  
Fast charge current: ICHG = 30 mA  
Recharge voltage for intermittent cycles: VRECHG = 1.33V x 4 = 5.32 V  
Charge safety timer: tSAFETY: 16 hr  
TS Battery temperature sense = 10-kΩNTC (103AT-2)  
RS = 1.9 kΩand RP = 400 kΩadded to modify battery charging temperature window to: 0ºC to 60ºC  
CE is a control pin, pull high to disable the charger  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 3.0 V and 18 V (up to 40 V  
tolerant) and current capability of at least the maximum designed charge current. If located more than a few  
inches from the IN and GND pins, a larger capacitor is recommended.  
10 Layout  
10.1 Layout Guidelines  
To obtain optimal performance, the decoupling capacitor from IN to GND and the output filter capacitor from OUT  
to GND should be placed as close as possible to the device, with short trace runs to both IN, OUT and GND.  
All low-current GND connections should be kept separate from the high-current charge or discharge paths  
from the battery. Use a single-point ground technique incorporating both the small signal ground path and the  
power ground path.  
The high current charge paths into IN pin and from the OUT pin must be sized appropriately for the maximum  
charge current in order to avoid voltage drops in these traces.  
10.2 Layout Example  
TS  
IN  
GND  
OUT  
VREF  
STAT2  
STAT1  
VSET  
CHM_  
TMR  
10-1. BQ25171-Q1 Board Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
30  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
 
 
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25171-Q1  
English Data Sheet: SLUSDK0  
 
 
 
 
 
 
 
BQ25171-Q1  
ZHCSNP0A AUGUST 2020 REVISED MARCH 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDK0  
32  
Submit Document Feedback  
Product Folder Links: BQ25171-Q1  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

BQ25172

采用 QFN 封装的 0.8A、1 至 6 节镍氢电池独立线性充电器
TI

BQ25172DSGR

采用 QFN 封装的 0.8A、1 至 6 节镍氢电池独立线性充电器 | DSG | 8 | -40 to 125
TI

BQ25173

适用于 1 至 4 节超级电容器电池的 800mA 线性充电器
TI

BQ25173DSGR

适用于 1 至 4 节超级电容器电池的 800mA 线性充电器 | DSG | 8 | -40 to 125
TI

BQ25175

采用 WCSP 封装的独立单节 800mA 线性电池充电器
TI

BQ25175YBGR

采用 WCSP 封装的独立单节 800mA 线性电池充电器 | YBG | 6 | -40 to 85
TI

BQ25176M

适用于单节锂离子和磷酸铁锂电池且具有 VINDPM 的 800mA 线性电池充电器
TI

BQ25176MDSGR

适用于单节锂离子和磷酸铁锂电池且具有 VINDPM 的 800mA 线性电池充电器 | DSG | 8 | -40 to 125
TI

BQ25180

采用 WCSP 封装且具有稳压电源路径的 1A 锂离子和磷酸铁锂 I²C 可编程线性充电器
TI

BQ25180YBGR

采用 WCSP 封装且具有稳压电源路径的 1A 锂离子和磷酸铁锂 I²C 可编程线性充电器 | YBG | 8 | -40 to 85
TI

BQ25181

采用 QFN 封装且具有电源路径的 I²C 可编程单节 1A 线性锂离子电池充电器
TI

BQ25300

BQ25303J Standalone 1-Cell, 17-V, 3.0-A Battery Charger with JEITA Battery Temperature Monitoring
TI