AWR1642ABISABLQ1 [TI]

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125;
AWR1642ABISABLQ1
型号: AWR1642ABISABLQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125

雷达 传感器
文件: 总87页 (文件大小:2735K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AWR1642  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
AWR1642 芯片 77GHz 79GHz FMCW 雷达感器  
器件安全(在部分器件型号上)  
1 特性  
支持经过身份验证和加密的安全引导  
具有密钥撤销功能的客户可编程根密钥、对称密  
钥(256 位)、非对称密钥(最高 RSA-2K)  
加密软件加速器 – PKAAES(最高 256  
位)、SHA(最高 256 位)、TRNG/DRGB  
符合功能安全标准  
FMCW 收发器  
集成 PLL、发送器、接收器、基带和 ADC  
– 76GHz 81GHz 的覆盖范围,具有 4GHz 的可  
用带宽  
四个接收通道  
两个发送通道  
专为功能安全应用开发  
基于分数 N PLL 的超精确线性调频脉冲(时  
序)引擎  
文档有助于使 ISO 26262 功能安全系统设计满  
ASIL-D 级要求  
– TX 功率:12dBm  
– RX 噪声系数:  
硬件完整性高达 ASIL-B 级  
安全相关认证  
14dB76 77GHz)  
TUV SUD 进行 ISO 26262 认证达到 ASIL  
15dB77 81GHz)  
B 级  
– 1MHz 时的相位噪声:  
符合 AEC-Q100 标准  
器件高级特性  
–95dBc/Hz76 77GHz)  
–93dBc/Hz77 81GHz)  
嵌入式自监控,无需使用主机处理器  
内置校准和自检(监控)  
复基带架构  
®
嵌入式干扰检测功能  
电源管理  
基于 Arm® Cortex®-R4F 的无线电控制系统  
内置固件 (ROM)  
针对工艺和温度进行自校准的系统  
用于 FMCW 信号处理的 C674x DSP  
片上存储器:1.5MB  
内置 LDO 网络,可增强 PSRR  
– I/O 支持双电压 3.3V/1.8V  
时钟源  
支持频率为 40MHz 的外部振荡器  
支持外部驱动、频率为 40MHz 的时钟(方波/正  
弦波)  
支持 40MHz 晶体与负载电容器相连接  
轻松的硬件设计  
– 0.65mm 间距、161 引脚 10.4mm × 10.4mm 覆  
BGA 封装,可实现轻松组装和低成本 PCB  
设计  
小尺寸解决方案  
运行条件  
用于物体跟踪和分类、AUTOSAR 和接口控制的  
Cortex-R4F 微控制器  
支持自主模式(从 QSPI 闪存加载用户应用)  
集成外设  
具有 ECC 的内部存储器  
主机接口  
– CAN CAN-FD  
为用户应用提供的其他接口  
多达 6 ADC 通道  
多达 2 SPI 通道  
结温范围:–40°C 125°C  
多达 2 UART  
– I2C  
– GPIO  
用于原始 ADC 数据和调试仪表的双通道 LVDS  
接口  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SWRS203  
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
泊车辅助  
占位检测  
手势识别  
2 应用  
盲点检测  
变道辅助  
侧向来车警示  
40-MHz  
Crystal  
Serial  
Flash  
Power Management  
QSPI  
Integrated MCU  
ARM Cortex-R4F  
DCAN  
PHY  
Automotive  
Network  
CAN  
Antenna  
Structure  
RX1  
RX2  
RX3  
RX4  
MCAN  
PHY  
Automotive  
Network  
CAN FD  
Radar  
Front End  
TX1  
TX2  
Integrated DSP  
TI C674x  
AWR1642  
2-1. 适用于汽车应用的自主雷达传感器  
3 说明  
AWR1642 器件是一款能够在 76 81GHz 频带中运行的集成式单芯片 FMCW 雷达传感器。该器件采用 TI 的低  
功耗 45nm RFCMOS 工艺进行构建,并且在超小封装中实现了出色的集成度。AWR1642 是适用于汽车领域中的  
低功耗、自监控、超精确雷达系统的理想解决方案。  
AWR1642 器件是一种自包含 FMCW 雷达传感器单芯片解决方案,能够简化 76 81GHz 频带中的汽车雷达传  
感器实施。它基于 TI 的低功耗 45nm RFCMOS 工艺构建,从而实现了一个具有内置 PLL ADC 转换器的单片  
实施 2TX4RX 系统。它集成了 DSP 子系统,该子系统包含 TI 用于雷达信号处理的高性能 C674x DSP。该器  
件包含一个基于 ARM R4F 的处理器子系统,该子系统负责无线电配置、控制和校准。简单编程模型更改可支持  
各种传感器实施(近距离、中距离和远距离),并且能够进行动态重新配置,从而实现多模式传感器。此外,该  
器件作为完整的平台解决方案进行提供,其中包括 TI 参考设计、软件驱动程序、示例配置、API 指南以及用户文  
档。  
器件信息  
器件型号(2)  
AWR1642ABIGABLQ1  
AWR1642ABIGABLRQ1  
AWR1642ABISABLQ1  
AWR1642ABISABLRQ1  
封装(1)  
封装尺寸  
托盘/卷带包装  
托盘  
卷带包装  
托盘  
FCBGA (161)  
10.4mm × 10.4mm  
卷带包装  
(1) 如需更多信息,请参阅13 机械、封装和可订购信息。  
(2) 如需更多信息,请参阅12.1器件命名规则。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
2
Submit Document Feedback  
 
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
4 功能方框图  
4-1 展示了器件的功能方框图  
Serial Flash  
interface  
QSPI  
Cortex R4F  
@ 200 MHz  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
RX1  
RX2  
RX3  
RX4  
Optional  
External MCU  
interface  
SPI  
(User programmable)  
SPI / I2C  
DCAN  
PMIC control  
Digital Front  
End  
Prog  
RAM  
(256kB*)  
Data  
RAM  
(192kB*)  
Boot  
ROM  
Primary  
communication  
interfaces (automotive)  
(Decimation  
filter chain)  
CAN-FD  
UARTs  
DMA  
Main subsystem  
(Customer programmed)  
JTAG for debug/  
development  
Test/  
Debug  
TX1  
TX2  
PA  
Mailbox  
High-speed ADC  
output interface  
(for recording)  
High-speed input for  
hardware-in-loop  
verification  
LVDS  
HIL  
Synth  
(20 GHz)  
Ramp  
Generator  
PA  
x4  
C674x DSP  
@600 MHz  
ADC  
Buffer  
6
GPADC  
Osc.  
RF Control/  
BIST  
L1P  
(32KB)  
L1D  
(32KB)  
L2  
(256KB)  
VMON  
Temp  
DMA  
CRC  
Radar Data Memory  
(L3)  
768 KB*  
DSP subsystem  
(Customer programmed)  
RF/Analog subsystem  
* Up to 512 KB of Data Memory can be switched to the Main R4F if required  
Copyright © 2018, Texas Instruments Incorporated  
4-1. 功能方框图  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
English Data Sheet: SWRS203  
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
4 功能方框图.........................................................................3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagram................................................................ 8  
7.2 Signal Descriptions................................................... 13  
7.3 Pin Attributes.............................................................18  
8 Specifications................................................................ 28  
8.1 Absolute Maximum Ratings...................................... 28  
8.2 ESD Ratings............................................................. 28  
8.3 Power-On Hours (POH)............................................29  
8.4 Recommended Operating Conditions.......................29  
8.5 Power Supply Specifications.....................................30  
8.6 Power Consumption Summary................................. 31  
8.7 RF Specification........................................................32  
8.8 CPU Specifications................................................... 33  
8.9 Thermal Resistance Characteristics for FCBGA  
9 Detailed Description......................................................57  
9.1 Overview...................................................................57  
9.2 Functional Block Diagram.........................................57  
9.3 Subsystems.............................................................. 58  
9.4 Other Subsystems.................................................... 65  
10 Monitoring and Diagnostics....................................... 68  
10.1 Monitoring and Diagnostic Mechanisms................. 68  
11 Applications, Implementation, and Layout............... 73  
11.1 Application Information............................................73  
11.2 Short-Range Radar ................................................73  
11.3 Reference Schematic..............................................74  
12 Device and Documentation Support..........................75  
12.1 Device Nomenclature..............................................75  
12.2 Tools and Software................................................. 76  
12.3 Documentation Support.......................................... 76  
12.4 支持资源..................................................................76  
12.5 Trademarks.............................................................77  
12.6 静电放电警告.......................................................... 77  
12.7 术语表..................................................................... 77  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 78  
13.1 Packaging Information............................................ 78  
13.2 Tray Information for ................................................82  
Package [ABL0161].....................................................33  
8.10 Timing and Switching Characteristics..................... 34  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
4
Submit Document Feedback  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
5 Revision History  
Changes from May 1, 2020 to December 30, 2021 (from Revision B (May 2020) to Revision C  
(December 2021 ))  
Page  
通篇:已更新以反映功能安全合规性..................................................................................................................1  
通篇:“A2D”替换为“ADC”;将主子系统R4F”更改为主要子系统主要 R4F”;在主/从术语方面改  
用了更具包容性的措辞 .......................................................................................................................................1  
(特性):更新了功能安全合规性认证资料;提及了毫米波传感器的额定工作温度范围;更新了关于器件安全  
的其他信息 ........................................................................................................................................................ 1  
器件信息):添加了毫米波传感器的其他安全量产器件..................................................................................2  
更新/更改了功能方框图以改用包容性术语....................................................................................................... 3  
(Device Comparison): Removed a row on Functional-Safety compliance and instead added a table-note for  
this and LVDS Interface; Additional information on Device security added........................................................ 6  
(Signal Descriptions) :Updated/Changed CLKP and CLKM descriptions.........................................................16  
(Absolute Maximum Ratings): Added entries for externally supplied power on the RF inputs (TX and RX) and  
a table-note for the signal level applied on TX..................................................................................................28  
(Clock Specifications): Updated/Changed 8-5 to reflect correct device operating temperature range........ 35  
(Table. External Clock Mode Specifications): Revised frequency tolerance specs from +/-50 to +/-100 ppm..35  
Added a footnote for L3-Shared memory in DSP C674x Memory Map ...........................................................64  
(Monitoring and Diagnostic Mechanisms): Updated/Changed table header and description to reflect  
Functional Safety-Compliance; added a note for reference to safety related collateral................................... 68  
(Reference Schematics) : Added weblinks to device EVM documentation collateral ......................................74  
(Device Nomenclature):Updated/changed Device Nomenclature ................................................................... 75  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
6 Device Comparison  
FUNCTION  
AWR1243  
AWR1443  
AWR1642(1)  
AWR1843  
Number of receivers  
Number of transmitters  
On-chip memory  
4
3
4
3
4
2
4
3
576KB  
5
1.5MB  
5
2MB  
10  
Max I/F (Intermediate Frequency) (MHz)  
Max real/complex 2x sampling rate (Msps)  
Max complex 1x sampling rate (Msps)  
Device Security(2)  
15  
37.5  
18.75  
12.5  
6.25  
12.5  
6.25  
Yes  
25  
12.5  
Yes  
Processor  
MCU (R4F)  
Yes  
Yes  
Yes  
Yes  
Yes  
DSP (C674x)  
Peripherals  
Serial Peripheral Interface (SPI) ports  
Quad Serial Peripheral Interface (QSPI)  
Inter-Integrated Circuit (I2C) interface  
Controller Area Network (DCAN) interface  
CAN-FD  
1
Yes  
Yes  
Yes  
2
1
2
2
Yes  
1
Yes  
1
Yes  
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Trace  
PWM  
Hardware In Loop (HIL/DMM)  
GPADC  
Yes  
Yes  
LVDS/Debug(3)  
CSI2  
Hardware accelerator  
1-V bypass mode  
Yes  
Yes  
Yes  
Yes  
Yes  
Cascade (20-GHz sync)  
JTAG  
Yes  
2
Yes  
2
Yes  
3(4)  
Yes  
Number of Tx that can be simultaneously used  
Per chirp configurable Tx phase shifter  
PRODUCT PREVIEW (PP),  
Product  
ADVANCE INFORMATION (AI),  
status(5)  
PD  
PD  
PD  
PD  
or PRODUCTION DATA (PD)  
(1) Developed for Functional Safety applications, the device supports hardware integrity upto ASIL-B. Refer to the related documentation  
for more details.  
(2) Device security features including Secure Boot and Customer Programmable Keys are available in select devices for only select part  
variants as indicated by the Device Type identifier in Section 3, Device Information table.  
(3) The LVDS interface is not a production interface and is only used for debug.  
(4) 3 Tx Simultaneous operation is supported only in AWR1843 with 1V LDO bypass and PA LDO disable mode. In this mode 1V supply  
needs to be fed on the VOUT PA pin. Rest of the other devices only support simultaneous operation of 2 Transmitters.  
(5) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
6
Submit Document Feedback  
 
 
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
6.1 Related Products  
For information about other devices in this family of products or related products see the links that follow.  
mmWave sensors  
TI’s mmWave sensors rapidly and accurately sense range, angle and velocity with less  
power using the smallest footprint mmWave sensor portfolio for automotive applications.  
Automotive  
mmWave sensors  
TI’s automotive mmWave sensor portfolio offers high-performance radar front end to  
ultra-high resolution, small and low-power single-chip radar solutions. TI’s scalable  
sensor portfolio enables design and development of ADAS system solution for every  
performance, application and sensor configuration ranging from comfort functions to  
safety functions in all vehicles.  
Companion  
products for  
AWR1642  
Review products that are frequently purchased or used in conjunction with this product.  
Reference designs TI Designs Reference Design Library is a robust reference design library spanning  
for AWR1642  
analog, embedded processor and connectivity. Created by TI experts to help you jump-  
start your system design, all TI Designs include schematic or block diagrams, BOMs  
and design files to speed your time to market. Search and download designs at ti.com/  
tidesigns.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
7 Terminal Configuration and Functions  
7.1 Pin Diagram  
7-1 shows the pin locations for the 161-pin FCBGA package. 7-2, 7-3, 7-4, and 7-5 show the  
same pins, but split into four quadrants.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VOUT_  
14APLL  
VOUT  
_14SYNTH  
OSC  
_CLKOUT  
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
GPIO_46  
VSSA  
VIN  
_18CLK  
VIN  
_18VCO  
VSSA  
VSSA  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
GPIO_45  
GPIO_43  
GPIO_44  
GPIO_42  
VBGAP  
GPADC5  
SPIA_cs_n  
SPIA_mosi  
SPIA_clk  
SPIB_mosi  
SYNC_OUT  
GPIO_0  
GPIO_40  
GPADC6  
GPIO_41  
VIN  
_13RF2  
VSSA  
VSSA  
CLKP  
VIN  
_13RF2  
GPIO_39  
SPIA_miso  
SPIB_clk  
CLKM  
VIOIN  
_18DIFF  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX4  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VIN_18BB  
VSS  
VSS  
VSS  
VIOIN  
VIN_SRAM  
VDDIN  
VIN  
_13RF1  
G
H
J
VSSA  
RX3  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SPIB_miso  
SPIB_cs_n  
VIN  
_13RF1  
VSSA  
VSS  
VIN  
_13RF1  
VSSA  
RX2  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
GPIO_1  
LVDS_TXP0 LVDS_TXM0  
LVDS_TXP1 LVDS_TXM1  
LVDS_CLKP LVDS_CLKM  
K
L
VSSA  
VIN_18BB  
VSS  
GPIO_2  
VSSA  
RX1  
VSSA  
VSS  
VPP  
LVDS  
_FRCLKP  
LVDS  
_FRCLKM  
M
N
P
R
VSSA  
MCU  
_CLKOUT  
Warm  
_Reset  
VSSA  
GPADC1  
VSSA  
VSSA  
GPADC2  
GPADC4  
VSSA  
rs232_rx  
SYNC_in  
GPIO_31  
rs232_tx  
GPIO_32  
GPIO_33  
nERROR_OUT nERROR_IN  
TMS  
TCK  
VDDIN  
QSPI_cs_n  
TDI  
QSPI[1]  
TDO  
DMM_SYNC  
GPIO_47  
VDDIN  
PMIC  
_CLKOUT  
GPADC3  
NRESET  
GPIO_34  
VDDIN  
GPIO_36  
GPIO_35  
GPIO_38  
GPIO_37  
QSPI[3] SPI_HOST_INTR  
VNWA  
VIOIN_18  
VIOIN  
QSPI_clk  
QSPI[0]  
QSPI[2]  
VSS  
Not to scale  
7-1. Pin Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
8
Submit Document Feedback  
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
GPIO_45  
GPIO_43  
VIN  
_13RF2  
VSSA  
VSSA  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
RX4  
VIN_18BB  
VIN  
_13RF1  
G
VSSA  
VSSA  
VSS  
VSS  
VSS  
Not to scale  
1
3
2
4
7-2. Top Left Quadrant  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
9
10  
11  
12  
13  
14  
15  
VOUT  
VOUT  
OSC  
A
GPIO_46  
VSSA  
_14APLL  
_14SYNTH  
_CLKOUT  
VIN  
_18CLK  
VIN  
B
GPIO_44  
VBGAP  
GPADC5  
SPIA_cs_n  
SPIA_mosi  
SPIA_clk  
GPIO_40  
GPADC6  
GPIO_41  
_18VCO  
C
GPIO_42  
CLKP  
GPIO_39  
SPIA_miso  
SPIB_clk  
SPIB_miso  
CLKM  
D
E
VIOIN  
VSS  
VSS  
VSS  
_18DIFF  
VSS  
SPIB_mosi  
VIOIN  
F
VSS  
SYNC_OUT  
VIN_SRAM  
G
Not to scale  
1
3
2
4
7-3. Top Right Quadrant  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
10  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
1
2
3
4
5
6
7
8
VIN  
_13RF1  
H
RX3  
VSSA  
VSS  
VIN  
_13RF1  
J
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
RX2  
VIN_18BB  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
M
N
P
R
RX1  
VSSA  
MCU  
_CLKOUT  
VSSA  
GPADC1  
VSSA  
VSSA  
VSSA  
rs232_rx  
SYNC_in  
GPIO_31  
rs232_tx  
GPIO_32  
GPIO_33  
nERROR_OUT nERROR_IN  
GPADC2  
GPADC4  
GPADC3  
NRESET  
GPIO_34  
GPIO_36  
GPIO_35  
GPIO_38  
VDDIN  
GPIO_37  
Not to scale  
1
3
2
4
7-4. Bottom Left Quadrant  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
9
10  
11  
12  
13  
14  
15  
H
J
VSS  
VSS  
GPIO_0  
SPIB_cs_n  
VDDIN  
VSS  
VSS  
VSS  
GPIO_1  
GPIO_2  
VPP  
LVDS_TXP0 LVDS_TXM0  
LVDS_TXP1 LVDS_TXM1  
LVDS_CLKP LVDS_CLKM  
K
L
VSS  
VSS  
LVDS  
_FRCLKP  
LVDS  
_FRCLKM  
M
N
P
R
Warm  
_Reset  
TMS  
TCK  
VDDIN  
QSPI_cs_n  
TDI  
QSPI[1]  
TDO  
DMM_SYNC  
GPIO_47  
VDDIN  
PMIC  
_CLKOUT  
QSPI[3] SPI_HOST_INTR  
VNWA  
VIOIN_18  
VIOIN  
QSPI_clk  
QSPI[0]  
QSPI[2]  
VSS  
Not to scale  
1
3
2
4
7-5. Bottom Right Quadrant  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
12  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
7.2 Signal Descriptions  
备注  
All digital IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET) are  
non-failsafe; hence, care needs to be taken that they are not driven externally without the VIO supply  
being present to the device.  
备注  
The GPIO state during the power supply ramp is not ensured. In case the GPIO is used in the  
application where the state of the GPIO is critical, even when NRESET is low, a tri-state buffer should  
be used to isolate the GPIO output from the radar device and a pull resister used to define the  
required state in the application. The NRESET signal to the radar device could be used to control the  
output enable (OE) of the tri-state buffer.  
7.2.1 Signal Descriptions - Digital  
SIGNAL NAME  
BSS_UART_TX  
PIN TYPE  
DESCRIPTION  
Debug UART Transmit [Radar Block]  
BALL NO.  
F14, H14, K13, N10, N13,  
N4, N5, R8  
O
B14, D13, F14, N10, N4,  
P12  
CAN_FD_RX  
CAN_FD_TX  
I
CAN FD (MCAN) Receive Signal  
CAN FD (MCAN) Transmit Signal  
D14, E14, H14, N5, P10,  
R14  
O
CAN_RX  
CAN_TX  
DMM0  
I
IO  
I
CAN (DCAN) Receive Signal  
B9, E13  
C13, C8  
R4  
CAN (DCAN) Transmit Signal  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Clock  
DMM1  
I
P5  
DMM2  
I
R5  
DMM3  
I
P6  
DMM4  
I
R7  
DMM5  
I
P7  
DMM6  
I
R8  
DMM7  
I
P8  
DMM8  
I
D14  
B14  
B15  
C9  
DMM9  
I
DMM10  
DMM11  
DMM12  
DMM13  
DMM14  
DMM15  
DMM_CLK  
I
I
I
C8  
I
B9  
I
B8  
I
A9  
I
N15  
Debug Interface (Hardware In Loop) Mux Select between DMM1 and  
DMM2 (Two Instances)  
DMM_MUX_IN  
I
G13, J13, P4  
DMM_SYNC  
DSS_UART_TX  
EPWM1A  
I
Debug Interface (Hardware In Loop) - Sync  
Debug UART Transmit [DSP]  
PWM Module 1 - Output A  
N14  
D13, E13, G14, P8, R12  
C8, N5, N8  
O
O
O
I
EPWM1B  
PWM Module 1 - Output B  
B9, H13, N5, P9  
D14, J13  
EPWM1SYNCI  
PWM Module 1 - Sync Input  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
BALL NO.  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
SIGNAL NAME  
EPWM1SYNCO  
PIN TYPE  
O
DESCRIPTION  
PWM Module 1 - Sync Output  
B14  
EPWM2A  
EPWM2B  
EPWM2SYNCO  
EPWM3A  
EPWM3B  
EPWM3SYNCO  
GPIO_0  
O
PWM Module 2- Output A  
PWM Module 2 - Output B  
PWM Module 2 - Sync Output  
PWM Module 3 - Output A  
PWM Module 3 - Output B  
PWM Module 3 - Sync Output  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
B8, H13, N4, N5, P9  
A9, N4  
R7  
O
O
O
B15, N4  
C9  
O
O
P6  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
H13  
J13  
GPIO_1  
GPIO_2  
K13  
E13  
H14  
F14  
P11  
R12  
R13  
N12  
R14  
P12  
P13  
H13  
N5  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
GPIO_17  
GPIO_18  
GPIO_19  
GPIO_20  
GPIO_21  
GPIO_22  
GPIO_23  
GPIO_24  
GPIO_25  
GPIO_26  
GPIO_27  
GPIO_28  
GPIO_29  
GPIO_30  
GPIO_31  
GPIO_32  
GPIO_33  
GPIO_34  
GPIO_35  
GPIO_36  
GPIO_37  
GPIO_38  
N4  
J13  
P10  
N10  
D13  
E14  
F13  
G14  
R11  
N13  
N8  
K13  
P9  
P4  
G13  
C13  
R4  
P5  
R5  
P6  
R7  
P7  
R8  
P8  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
14  
Submit Document Feedback  
AWR1642  
www.ti.com.cn  
SIGNAL NAME  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
PIN TYPE  
DESCRIPTION  
BALL NO.  
D14  
B14  
GPIO_39  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
I2C Clock  
GPIO_40  
GPIO_41  
B15  
GPIO_42  
C9  
GPIO_43  
C8  
GPIO_44  
B9  
GPIO_45  
B8  
GPIO_46  
A9  
GPIO_47  
N15  
G14, N4  
F13, N5  
J14  
I2C_SCL  
I2C_SDA  
I2C Data  
LVDS_TXP[0]  
LVDS_TXM[0]  
LVDS_TXP[1]  
LVDS_TXM[1]  
LVDS_CLKP  
LVDS_CLKM  
LVDS_FRCLKP  
LVDS_FRCLKM  
MCU_CLKOUT  
MSS_UARTA_RX  
MSS_UARTA_TX  
MSS_UARTB_RX  
Differential data Out – Lane 0  
Differential data Out – Lane 1  
Differential clock Out  
O
J15  
O
K14  
O
K15  
O
L14  
O
L15  
O
M14  
M15  
Differential Frame Clock  
O
O
Programmable clock given out to external MCU or the processor  
Main Subsystem - UART A Receive  
N8  
I
F14, N4, R11  
H14, N13, N5, R4  
N4, P4  
O
Main Subsystem - UART A Transmit  
IO  
Main Subsystem - UART B Receive  
F14, H14, K13, N13, N5,  
P10, P7  
MSS_UARTB_TX  
NDMM_EN  
O
I
Main Subsystem - UART B Transmit  
Debug Interface (Hardware In Loop) Enable - Active Low Signal  
N13, N5  
Failsafe input to the device. Nerror output from any other device  
can be concentrated in the error signaling monitor module inside the  
device and appropriate action can be taken by Firmware  
NERROR_IN  
I
N7  
Open drain fail safe output signal. Connected to PMIC/  
Processor/MCU to indicate that some severe criticality fault has  
happened. Recovery would be through reset.  
NERROR_OUT  
O
N6  
PMIC_CLKOUT  
QSPI[0]  
O
IO  
IO  
I
Output Clock from AWR1642 device for PMIC  
QSPI Data Line #0 (Used with Serial Data Flash)  
QSPI Data Line #1 (Used with Serial Data Flash)  
QSPI Data Line #2 (Used with Serial Data Flash)  
QSPI Data Line #3 (Used with Serial Data Flash)  
QSPI Clock (Used with Serial Data Flash)  
QSPI Clock (Used with Serial Data Flash)  
QSPI Chip Select (Used with Serial Data Flash)  
Debug UART (Operates as Bus Main) - Receive Signal  
Debug UART (Operates as Bus Main) - Transmit Signal  
Sense On Power - Line#0  
H13, K13, P9  
R13  
N12  
R14  
P12  
QSPI[1]  
QSPI[2]  
QSPI[3]  
IO  
IO  
I
QSPI_CLK  
QSPI_CLK_EXT  
QSPI_CS_N  
RS232_RX  
RS232_TX  
SOP[0]  
R12  
H14  
P11  
IO  
I
N4  
O
I
N5  
N13  
G13  
P9  
SOP[1]  
I
Sense On Power - Line#1  
SOP[2]  
I
Sense On Power - Line#2  
SPIA_CLK  
SPIA_CS_N  
IO  
IO  
SPI Channel A - Clock  
E13  
SPI Channel A - Chip Select  
C13  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
BALL NO.  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
SIGNAL NAME  
SPIA_MISO  
PIN TYPE  
DESCRIPTION  
SPI Channel A - Main In Slave Out  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
I
E14  
SPIA_MOSI  
SPI Channel A - Main Out Slave In  
SPI Channel B - Clock  
D13  
SPIB_CLK  
F14, R12  
SPIB_CS_N  
SPI Channel B Chip Select (Instance ID 0)  
SPI Channel B Chip Select (Instance ID 1)  
SPI Channel B Chip Select (Instance ID 2)  
SPI Channel B - Main In Slave Out  
SPI Channel B - Main Out Slave In  
Out of Band Interrupt to an external host communicating over SPI  
Low frequency Synchronization signal input  
Low Frequency Synchronization Signal output  
JTAG Test Clock  
H14, P11  
SPIB_CS_N_1  
SPIB_CS_N_2  
SPIB_MISO  
G13, J13, P13  
G13, J13, N12  
G14, R13  
SPIB_MOSI  
F13, N12  
SPI_HOST_INTR  
SYNC_IN  
P13  
P4  
SYNC_OUT  
O
I
G13, J13, K13, P4  
TCK  
P10  
R11  
N13  
N10  
N15  
N14  
R4  
TDI  
I
JTAG Test Data Input  
TDO  
O
I
JTAG Test Data Output  
TMS  
JTAG Test Mode Signal  
TRACE_CLK  
TRACE_CTL  
TRACE_DATA_0  
TRACE_DATA_1  
TRACE_DATA_2  
TRACE_DATA_3  
TRACE_DATA_4  
TRACE_DATA_5  
TRACE_DATA_6  
TRACE_DATA_7  
TRACE_DATA_8  
TRACE_DATA_9  
TRACE_DATA_10  
TRACE_DATA_11  
TRACE_DATA_12  
TRACE_DATA_13  
TRACE_DATA_14  
TRACE_DATA_15  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Debug Trace Output - Clock  
Debug Trace Output - Control  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
P5  
R5  
P6  
R7  
P7  
R8  
P8  
D14  
B14  
B15  
C9  
C8  
B9  
B8  
A9  
Open drain fail safe warm reset signal. Can be driven from PMIC for  
diagnostic or can be used as status signal that the device is going  
through reset.  
WARM_RESET  
IO  
N9  
7.2.2 Signal Descriptions - Analog  
PIN  
TYPE  
INTERFACE  
SIGNAL NAME  
DESCRIPTION  
Single ended transmitter1 o/p  
BALL NO.  
TX1  
TX2  
RX1  
RX2  
RX3  
RX4  
O
O
I
B4  
B6  
M2  
K2  
H2  
F2  
R3  
Transmitters  
Single ended transmitter2 o/p  
Single ended receiver1 i/p  
Single ended receiver2 i/p  
Single ended receiver3 i/p  
Single ended receiver4 i/p  
Power on reset for chip. Active low  
I
Receivers  
Reset  
I
I
NRESET  
I
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
16  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
INTERFACE  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
BALL NO.  
In XTAL mode: Input for the reference crystal  
In External clock mode: Single ended input  
reference clock port  
CLKP  
CLKM  
I
I
C15  
Reference  
Oscillator  
In XTAL mode: : Feedback drive for the reference  
crystal  
In External clock mode: Connect this port to ground  
D15  
A14  
Reference clock output from clocking subsystem  
after cleanup PLL (1.4V output voltage swing).  
Reference clock  
Bandgap voltage  
OSC_CLKOUT  
O
O
VBGAP  
VDDIN  
Device's Band Gap Reference Output  
B10  
H15, N11, P15, R6  
G15  
Power 1.2V digital power supply  
VIN_SRAM  
VNWA  
Power 1.2V power rail for internal SRAM  
Power 1.2V power rail for SRAM array back bias  
P14  
I/O Supply (3.3V or 1.8V): All CMOS I/Os would  
operate on this supply  
VIOIN  
Power  
R10, F15  
Power supply  
VIOIN_18  
VIN_18CLK  
VIOIN_18DIFF  
VPP  
Power 1.8V supply for CMOS IO  
Power 1.8V supply for clock module  
Power 1.8V supply for LVDS port  
Power Voltage supply for fuse chain  
R9  
B11  
E15  
L13  
1.3V Analog and RF supply,VIN_13RF1 and  
Power  
VIN_13RF1  
G5, H5, J5  
VIN_13RF2 could be shorted on the board  
VIN_13RF2  
VIN_18BB  
VIN_18VCO  
Power 1.3V Analog and RF supply  
Power 1.8V Analog base band power supply  
Power 1.8V RF VCO supply  
C2,D2  
K5, F5  
B12  
L5, L6, L8, L10, K7,  
K8, K9, K10, K11,  
J6, J7, J8, J10, H7,  
H9, H11, G6, G7,  
G8, G10, F9, F11,  
E5, E6, E8, E10,  
E11, R15  
VSS  
Ground Digital ground  
Power supply  
A1, A3, A5, A7,  
A15, B1, B3, B5,  
B7, C1, C3, C4, C5,  
C6, C7, E1, E2, E3,  
F3, G1, G2, G3, H3,  
J1, J2, J3, K3, L1,  
L2, L3, M3, N1, N2,  
N3, R1  
VSSA  
Ground Analog ground  
VOUT_14APLL  
O
Internal LDO output  
Internal LDO output  
Internal LDO output  
ADC Channel 1(1)  
ADC Channel 2(1)  
ADC Channel 3(1)  
ADC Channel 4(1)  
ADC Channel 5(1)  
ADC Channel 6(1)  
A10  
A13  
A2, B2  
P1  
Internal LDO output/  
inputs  
VOUT_14SYNTH  
VOUT_PA  
O
O
Analog Test1 / ADC1  
Analog Test2 / ADC2  
Analog Test3 / ADC3  
Analog Test4 / ADC4  
ANAMUX / ADC5  
VSENSE / ADC6  
IO  
IO  
IO  
IO  
IO  
IO  
Test and Debug  
output for pre-  
production phase.  
Can be pinned  
out on production  
hardware for field  
debug  
P2  
P3  
R2  
B13  
C14  
(1) For details, see 9.4.1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
7.3 Pin Attributes  
7-1. Pin Attributes (ABL0161 Package)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5] [9]  
TYPE [6]  
ADDRESS[4]  
TYPE [8]  
H13  
GPIO_0  
GPIO_13  
0xFFFFEA04  
0
IO  
IO  
O
Output Disabled  
Pull Down  
GPIO_0  
1
PMIC_CLKOUT  
ADC_VALID  
ePWM1b  
2
9
O
10  
11  
O
ePWM2a  
O
ADC_VALID  
J13  
9
O
0xFFFFEA08  
0
IO  
IO  
O
O
I
Output Disabled  
Pull Down  
GPIO_1  
GPIO_16  
GPIO_1  
1
SYNC_OUT  
ADC_VALID  
DMM_MUX_IN  
SPIB_cs_n_1  
SPIB_cs_n_2  
ePWM1SYNCI  
O
2
7
12  
13  
14  
15  
IO  
IO  
I
ADC_VALID  
K13  
7
0xFFFFEA64  
0
1
2
7
8
9
10  
0
1
2
4
0
1
2
0
1
2
0
1
2
4
IO  
IO  
O
O
O
O
O
O
IO  
I
Output Disabled  
Pull Down  
GPIO_2  
GPIO_26  
GPIO_2  
OSC_CLKOUT  
MSS_uartb_tx  
BSS_uart_tx  
SYNC_OUT  
PMIC_CLKOUT  
TRACE_DATA_0  
GPIO_31  
R4  
GPIO_31  
0xFFFFEA7C  
Output Disabled  
Pull Down  
DMM0  
MSS_uarta_tx  
TRACE_DATA_1  
GPIO_32  
IO  
O
IO  
I
P5  
R5  
P6  
GPIO_32  
GPIO_33  
GPIO_34  
0xFFFFEA80  
0xFFFFEA84  
0xFFFFEA88  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
DMM1  
TRACE_DATA_2  
GPIO_33  
O
IO  
I
DMM2  
TRACE_DATA_3  
GPIO_34  
O
IO  
I
DMM3  
ePWM3SYNCO  
O
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
18  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
7-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5] [9]  
TYPE [6]  
ADDRESS[4]  
TYPE [8]  
R7  
P7  
GPIO_35  
GPIO_36  
GPIO_37  
GPIO_38  
GPIO_39  
TRACE_DATA_4  
GPIO_35  
0xFFFFEA8C  
0xFFFFEA90  
0xFFFFEA94  
0xFFFFEA98  
0xFFFFEA9C  
0
1
2
4
0
1
2
5
0
1
2
5
0
1
2
5
0
1
2
4
5
0
1
2
4
5
0
1
2
4
0
1
2
4
O
IO  
I
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
DMM4  
ePWM2SYNCO  
TRACE_DATA_5  
GPIO_36  
O
O
IO  
I
DMM5  
MSS_uartb_tx  
TRACE_DATA_6  
GPIO_37  
O
O
IO  
I
R8  
P8  
DMM6  
BSS_uart_tx  
TRACE_DATA_7  
GPIO_38  
O
O
IO  
I
DMM7  
DSS_uart_tx  
TRACE_DATA_8  
GPIO_39  
O
O
IO  
I
D14  
DMM8  
CAN_FD_tx  
ePWM1SYNCI  
TRACE_DATA_9  
GPIO_40  
IO  
I
B14  
GPIO_40  
0xFFFFEAA0  
O
IO  
I
Output Disabled  
Pull Down  
DMM9  
CAN_FD_rx  
ePWM1SYNCO  
TRACE_DATA_10  
GPIO_41  
IO  
O
O
IO  
I
B15  
C9  
GPIO_41  
GPIO_42  
0xFFFFEAA4  
0xFFFFEAA8  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
DMM10  
ePWM3a  
O
O
IO  
I
TRACE_DATA_11  
GPIO_42  
DMM11  
ePWM3b  
O
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
7-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5] [9]  
TYPE [6]  
ADDRESS[4]  
TYPE [8]  
C8  
B9  
GPIO_43  
GPIO_44  
TRACE_DATA_12  
GPIO_43  
0xFFFFEAAC  
0
1
2
4
5
0
1
2
4
5
0
1
2
4
0
1
2
4
0
1
2
0
1
2
0
1
12  
0
0
O
IO  
I
Output Disabled  
Pull Down  
DMM12  
ePWM1a  
O
IO  
O
IO  
I
CAN_tx  
TRACE_DATA_13  
GPIO_44  
0xFFFFEAB0  
Output Disabled  
Pull Down  
DMM13  
ePWM1b  
O
I
CAN_rx  
B8  
A9  
GPIO_45  
GPIO_46  
TRACE_DATA_14  
GPIO_45  
0xFFFFEAB4  
0xFFFFEAB8  
O
IO  
I
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
DMM14  
ePWM2a  
O
O
IO  
I
TRACE_DATA_15  
GPIO_46  
DMM15  
ePWM2b  
O
O
IO  
I
N15  
N14  
N8  
GPIO_47  
TRACE_CLK  
GPIO_47  
0xFFFFEABC  
0xFFFFEAC0  
0xFFFFEA60  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
DMM_CLK  
TRACE_CTL  
RESERVED  
DMM_SYNC  
GPIO_25  
DMM_SYNC  
MCU_CLKOUT  
O
IO  
I
IO  
O
O
I
MCU_CLKOUT  
ePWM1a  
N7  
N6  
P9  
nERROR_IN  
nERROR_IN  
nERROR_OUT  
SOP[2]  
0xFFFFEA44  
0xFFFFEA4C  
0xFFFFEA68  
Input  
nERROR_OUT  
PMIC_CLKOUT  
O
I
Hi-Z (Open Drain)  
Output Disabled  
During Power Up  
Pull Down  
GPIO_27  
0
IO  
O
O
O
IO  
IO  
IO  
PMIC_CLKOUT  
ePWM1b  
1
11  
12  
0
ePWM2a  
R13  
QSPI[0]  
GPIO_8  
0xFFFFEA2C  
Output Disabled  
Pull Down  
QSPI[0]  
1
SPIB_miso  
2
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
20  
Submit Document Feedback  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
7-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5] [9]  
TYPE [6]  
ADDRESS[4]  
TYPE [8]  
N12  
QSPI[1]  
GPIO_9  
0xFFFFEA30  
0
IO  
IO  
IO  
IO  
IO  
I
Output Disabled  
Pull Down  
QSPI[1]  
1
SPIB_mosi  
SPIB_cs_n_2  
GPIO_10  
2
8
R14  
P12  
R12  
QSPI[2]  
QSPI[3]  
QSPI_clk  
0xFFFFEA34  
0xFFFFEA38  
0xFFFFEA3C  
0
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
QSPI[2]  
1
CAN_FD_tx  
GPIO_11  
8
O
IO  
IO  
I
0
QSPI[3]  
1
CAN_FD_rx  
GPIO_7  
8
0
IO  
IO  
O
O
IO  
IO  
IO  
IO  
I
QSPI_clk  
1
SPIB_clk  
2
DSS_uart_tx  
GPIO_6  
6
P11  
N4  
QSPI_cs_n  
rs232_rx  
0xFFFFEA40  
0xFFFFEA74  
0
Output Disabled  
Input Enabled  
Pull Up  
Pull Up  
QSPI_cs_n  
SPIB_cs_n  
GPIO_15  
1
2
0
rs232_rx  
1
MSS_uarta_rx  
BSS_uart_tx  
MSS_uartb_rx  
CAN_FD_rx  
I2C_scl  
2
I
6
IO  
IO  
I
7
8
9
IO  
O
O
O
IO  
O
IO  
IO  
IO  
O
IO  
O
O
I
ePWM2a  
10  
11  
12  
0
ePWM2b  
ePWM3a  
N5  
rs232_tx  
GPIO_14  
0xFFFFEA78  
Output Enabled  
rs232_tx  
1
MSS_uarta_tx  
MSS_uartb_tx  
BSS_uart_tx  
CAN_FD_tx  
I2C_sda  
5
6
7
10  
11  
12  
13  
14  
15  
ePWM1a  
ePWM1b  
NDMM_EN  
ePWM2a  
O
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
7-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5] [9]  
TYPE [6]  
ADDRESS[4]  
TYPE [8]  
E13  
SPIA_clk  
GPIO_3  
0xFFFFEA14  
0
1
6
7
0
1
6
0
1
2
0
1
2
8
0
1
2
6
7
8
0
1
2
6
7
8
9
0
1
2
6
0
1
2
0
1
2
6
IO  
IO  
I
Output Disabled  
Pull Up  
SPIA_clk  
CAN_rx  
DSS_uart_tx  
GPIO_30  
O
C13  
E14  
D13  
SPIA_cs_n  
SPIA_miso  
SPIA_mosi  
0xFFFFEA18  
0xFFFFEA10  
0xFFFFEA0C  
IO  
IO  
O
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
Pull Up  
Pull Up  
SPIA_cs_n  
CAN_tx  
GPIO_20  
IO  
IO  
O
SPIA_miso  
CAN_FD_tx  
GPIO_19  
IO  
IO  
I
SPIA_mosi  
CAN_FD_rx  
DSS_uart_tx  
GPIO_5  
O
F14  
SPIB_clk  
0xFFFFEA24  
IO  
IO  
I
Output Disabled  
Pull Up  
SPIB_clk  
MSS_uarta_rx  
MSS_uartb_tx  
BSS_uart_tx  
CAN_FD_rx  
GPIO_4  
O
O
I
H14  
SPIB_cs_n  
0xFFFFEA28  
IO  
IO  
O
Output Disabled  
Pull Up  
SPIB_cs_n  
MSS_uarta_tx  
MSS_uartb_tx  
BSS_uart_tx  
QSPI_clk_ext  
CAN_FD_tx  
GPIO_22  
O
IO  
I
O
G14  
SPIB_miso  
0xFFFFEA20  
IO  
IO  
IO  
O
Output Disabled  
Pull Up  
SPIB_miso  
I2C_scl  
DSS_uart_tx  
GPIO_21  
F13  
P13  
SPIB_mosi  
0xFFFFEA1C  
0xFFFFEA00  
IO  
IO  
IO  
IO  
O
Output Disabled  
Output Disabled  
Pull Up  
SPIB_mosi  
I2C_sda  
SPI_HOST_INTR  
GPIO_12  
Pull Down  
SPI_HOST_INTR  
ADC_VALID  
SPIB_cs_n_1  
O
IO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
22  
Submit Document Feedback  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
7-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5] [9]  
TYPE [6]  
ADDRESS[4]  
TYPE [8]  
ADC_VALID  
P4  
2
O
0xFFFFEA6C  
0
1
6
7
9
IO  
I
Output Disabled  
Pull Down  
SYNC_in  
GPIO_28  
SYNC_IN  
MSS_uartb_rx  
DMM_MUX_IN  
SYNC_OUT  
SOP[1]  
IO  
I
O
I
G13  
SYNC_OUT  
0xFFFFEA70  
During Power Up  
Output Disabled  
Pull Down  
GPIO_29  
0
IO  
O
I
SYNC_OUT  
DMM_MUX_IN  
SPIB_cs_n_1  
SPIB_cs_n_2  
GPIO_17  
1
9
10  
IO  
IO  
IO  
I
11  
P10  
TCK  
0xFFFFEA50  
0
Input Enabled  
Pull Down  
Pull Up  
TCK  
1
MSS_uartb_tx  
CAN_FD_tx  
GPIO_23  
2
O
O
IO  
I
8
R11  
N13  
TDI  
0xFFFFEA58  
0xFFFFEA5C  
0
Input Enabled  
TDI  
1
MSS_uarta_rx  
SOP[0]  
2
I
TDO  
During Power Up  
I
Output Enabled  
GPIO_24  
0
1
2
6
7
9
0
1
2
6
0
IO  
O
O
O
O
I
TDO  
MSS_uarta_tx  
MSS_uartb_tx  
BSS_uart_tx  
NDMM_EN  
GPIO_18  
N10  
N9  
TMS  
0xFFFFEA54  
0xFFFFEA48  
IO  
I
Input Enabled  
Pull Down  
TMS  
BSS_uart_tx  
CAN_FD_rx  
Warm_Reset  
O
I
Warm_Reset  
IO  
Hi-Z Input (Open  
Drain)  
The following list describes the table column headers:  
1. BALL NUMBER: Ball numbers on the bottom side associated with each signal on the bottom.  
2. BALL NAME: Mechanical name from package device (name is taken from muxmode 0).  
3. SIGNAL NAME: Names of signals multiplexed on each ball (also notice that the name of the ball is the signal name in muxmode 0).  
4. PINCNTL ADDRESS: MSS Address for PinMux Control  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
English Data Sheet: SWRS203  
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
5. MODE: Multiplexing mode number: value written to PinMux Cntl register to select specific Signal name for this Ball number. Mode column has bit  
range value.  
6. TYPE: Signal type and direction:  
I = Input  
O = Output  
IO = Input or Output  
7. BALL RESET STATE: The state of the terminal at power-on reset  
8. PULL UP/DOWN TYPE: indicates the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled  
via software.  
Pull Up: Internal pullup  
Pull Down: Internal pulldown  
An empty box means No pull.  
9. Pin Mux Control Value maps to lower 4 bits of register.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
24  
Submit Document Feedback  
 
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
IO MUX registers are available in the MSS memory map and the respective mapping to device pins is as follows:  
7-2. PAD IO Control Registers  
Default Pin/Ball Name  
SPI_HOST_INTR  
GPIO_0  
Package Ball /Pin (Address)  
Pin Mux Config Register  
0xFFFFEA00  
0xFFFFEA04  
0xFFFFEA08  
0xFFFFEA0C  
0xFFFFEA10  
0xFFFFEA14  
0xFFFFEA18  
0xFFFFEA1C  
0xFFFFEA20  
0xFFFFEA24  
0xFFFFEA28  
0xFFFFEA2C  
0xFFFFEA30  
0xFFFFEA34  
0xFFFFEA38  
0xFFFFEA3C  
0xFFFFEA40  
0xFFFFEA44  
0xFFFFEA48  
0xFFFFEA4C  
0xFFFFEA50  
0xFFFFEA54  
0xFFFFEA58  
0xFFFFEA5C  
0xFFFFEA60  
0xFFFFEA64  
0xFFFFEA68  
0xFFFFEA6C  
0xFFFFEA70  
0xFFFFEA74  
0xFFFFEA78  
P13  
H13  
J13  
D13  
E14  
E13  
C13  
F13  
G14  
F14  
H14  
R13  
N12  
R14  
P12  
R12  
P11  
N7  
GPIO_1  
SPIA_MOSI  
SPIA_MISO  
SPIA_CLK  
SPIA_CS_N  
SPIB_MOSI  
SPIB_MISO  
SPIB_CLK  
SPIB_CS_N  
QSPI[0]  
QSPI[1]  
QSPI[2]  
QSPI[3]  
QSPI_CLK  
QSPI_CS_N  
NERROR_IN  
WARM_RESET  
NERROR_OUT  
TCK  
N9  
N6  
P10  
N10  
R11  
N13  
N8  
TMS  
TDI  
TDO  
MCU_CLKOUT  
GPIO_2  
K13  
P9  
PMIC_CLKOUT  
SYNC_IN  
P4  
SYNC_OUT  
RS232_RX  
RS232_TX  
G13  
N4  
N5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
7-2. PAD IO Control Registers (continued)  
Default Pin/Ball Name  
GPIO_31  
GPIO_32  
GPIO_33  
GPIO_34  
GPIO_35  
GPIO_36  
GPIO_37  
GPIO_38  
GPIO_39  
GPIO_40  
GPIO_41  
GPIO_42  
GPIO_43  
GPIO_44  
GPIO_45  
GPIO_46  
GPIO_47  
DMM_SYNC  
Package Ball /Pin (Address)  
Pin Mux Config Register  
0xFFFFEA7C  
0xFFFFEA80  
0xFFFFEA84  
0xFFFFEA88  
0xFFFFEA8C  
0xFFFFEA90  
0xFFFFEA94  
0xFFFFEA98  
0xFFFFEA9C  
0xFFFFEAA0  
0xFFFFEAA4  
0xFFFFEAA8  
0xFFFFEAAC  
0xFFFFEAB0  
0xFFFFEAB4  
0xFFFFEAB8  
0xFFFFEABC  
0xFFFFEAC0  
R4  
P5  
R5  
P6  
R7  
P7  
R8  
P8  
D14  
B14  
B15  
C9  
C8  
B9  
B8  
A9  
N15  
N14  
The register layout is as follows:  
7-3. PAD IO Register Bit Descriptions  
RESET (POWER  
ON DEFAULT)  
BIT  
FIELD  
TYPE  
DESCRIPTION  
31-11 NU  
RW  
RW  
0
0
Reserved  
10  
9
SC  
IO slew rate control:  
0 = Higher slew rate  
1 = Lower slew rate  
PUPDSEL  
PI  
RW  
RW  
RW  
0
0
1
Pullup/PullDown Selection  
0 = Pull Down  
1 = Pull Up (This field is valid only if Pull Inhibit is set as '0')  
8
Pull Inhibit/Pull Disable  
0 = Enable  
1 = Disable  
7
OE_OVERRIDE  
Output Override  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
26  
Submit Document Feedback  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
7-3. PAD IO Register Bit Descriptions (continued)  
RESET (POWER  
ON DEFAULT)  
BIT  
FIELD  
TYPE  
DESCRIPTION  
6
OE_OVERRIDE_CTRL  
RW  
1
Output Override Control:  
(A '1' here overrides any o/p manipulation of this IO by any of the peripheral block hardware it is  
associated with for example a SPI Chip select)  
5
4
IE_OVERRIDE  
RW  
RW  
0
0
Input Override  
IE_OVERRIDE_CTRL  
Input Override Control:  
(A '1' here overrides any i/p value on this IO with a desired value)  
3-0  
FUNC_SEL  
RW  
1
Function select for Pin Multiplexing (Refer to the Pin Mux Sheet)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8 Specifications  
8.1 Absolute Maximum Ratings  
PARAMETERS(1) (2)  
1.2 V digital power supply  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
UNIT  
VDDIN  
1.4  
1.4  
1.4  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this  
supply.  
VIOIN  
–0.5  
3.8  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for LVDS port  
–0.5  
–0.5  
–0.5  
2
2
2
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
VIN_13RF1  
1.3 V Analog and RF supply, VIN_13RF1 and VIN_13RF2 could  
be shorted on the board.  
–0.5  
1.45  
V
1-V Internal LDO bypass mode. Device supports mode  
where external Power Management block can supply 1 V on  
VIN_13RF1 and VIN_13RF2 rails. In this configuration, the  
internal LDO of the device would be kept bypassed.  
–0.5  
1.4  
V
VIN_13RF2  
VIN_18BB  
VIN_18VCO supply  
RX1-4  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
–0.5  
–0.5  
2
V
2
V
Externally applied power on RF inputs  
Externally applied power on RF outputs(3)  
Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)  
10  
10  
dBm  
dBm  
TX1-3  
–0.3V  
VIOIN + 0.3  
Input and output  
voltage range  
V
Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V  
(Transient Overshoot/Undershoot) or external oscillator input  
VIOIN + 20% up to  
20% of signal period  
CLKP, CLKM  
Clamp current  
Input ports for reference crystal  
–0.5  
2
V
Input or Output Voltages 0.3 V above or below their respective  
power rails. Limit clamp current that flows through the internal  
diode protection cells of the I/O.  
–20  
20  
mA  
TJ  
Operating junction temperature range  
–40  
–55  
125  
150  
°C  
°C  
TSTG  
Storage temperature range after soldered onto PC board  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) This value is for an externally applied signal level on the TX. Additionally, a reflection coefficient up to Gamma = 1 can be applied on  
the TX output.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011(2)  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) Corner pins are rated as ±750 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
28  
Submit Document Feedback  
 
 
 
 
 
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.3 Power-On Hours (POH)  
JUNCTION  
OPERATING  
TEMPERATURE (Tj)  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)  
CONDITION  
(1) (2)  
–40°C  
600 (6%)  
2000 (20%)  
6500 (65%)  
900 (9%)  
75°C  
100% duty cycle  
95°C  
1.2  
125°C  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
(2) The specified POH are applicable with max Tx output power settings using the default firmware gain tables. The specified POH would  
not be applicable, if the Tx gain table is overwritten using an API.  
8.4 Recommended Operating Conditions  
MIN  
1.14  
1.14  
1.14  
3.135  
1.71  
1.71  
1.71  
1.71  
NOM  
1.2  
1.2  
1.2  
3.3  
1.8  
1.8  
1.8  
1.8  
MAX  
1.32  
1.32  
1.32  
3.465  
1.89  
1.9  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V):  
All CMOS I/Os would operate on this supply.  
VIOIN  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for LVDS port  
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
1.9  
1.9  
1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2  
could be shorted on the board  
1.23  
1.3  
1.36  
V
VIN_13RF1  
(1-V Internal LDO  
bypass mode)  
0.95  
1
1.05  
V
VIN_13RF2  
(1-V Internal LDO  
bypass mode)  
VIN18BB  
1.8-V Analog baseband power supply  
1.8V RF VCO supply  
1.71  
1.71  
1.17  
2.25  
1.8  
1.8  
1.9  
1.9  
V
V
VIN_18VCO  
Voltage Input High (1.8 V mode)  
Voltage Input High (3.3 V mode)  
Voltage Input Low (1.8 V mode)  
Voltage Input Low (3.3 V mode)  
High-level output threshold (IOH = 6 mA)  
Low-level output threshold (IOL = 6 mA)  
VIL (1.8V Mode)  
VIH  
VIL  
V
V
0.3*VIOIN  
0.62  
VOH  
VOL  
VIOIN – 450  
mV  
mV  
450  
0.2  
VIH (1.8V Mode)  
0.96  
1.57  
NRESET  
SOP[2:0]  
V
VIL (3.3V Mode)  
0.3  
VIH (3.3V Mode)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
English Data Sheet: SWRS203  
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.5 Power Supply Specifications  
8-1 describes the four rails from an external power supply block of the AWR1642 device.  
8-1. Power Supply Rails Characteristics  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOS IN THE DEVICE  
Input: VIN_18VCO, VIN18CLK, VIN_18BB,  
VIOIN_18DIFF, VIOIN_18  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC, LVDS  
1.8 V  
1.3 V (or 1 V in internal  
LDO bypass mode)(1)  
Power Amplifier, Low Noise Amplifier, Mixers and LO  
Distribution  
Input: VIN_13RF2, VIN_13RF1  
LDO Output: VOUT_PA  
3.3 V (or 1.8 V for 1.8 V  
I/O mode)  
Digital I/Os  
Input VIOIN  
1.2 V  
Core Digital and SRAMs  
Input: VDDIN, VIN_SRAM  
(1) Three simultaneous transmitter operation is supported only in 1-V LDO bypass and PA LDO disable mode. In this mode 1V supply  
needs to be fed on the VOUT PA pin.  
The 1.3-V (1.0 V) and 1.8-V power supply ripple specifications mentioned in 8-2 are defined to meet a target  
spur level of –105 dBc (RF Pin = –15 dBm) at the RX. The spur and ripple levels have a dB-to-dB relationship,  
for example, a 1-dB increase in supply ripple leads to a ~1 dB increase in spur level. Values quoted are rms  
levels for a sinusoidal input applied at the specified frequency.  
8-2. Ripple Specifications  
RF RAIL  
VCO/IF RAIL  
FREQUENCY (kHz)  
1.0 V (INTERNAL LDO BYPASS)  
1.3 V (µVRMS  
)
1.8 V (µVRMS)  
(µVRMS  
)
137.5  
275  
7
4
648  
76  
22  
4
83  
21  
11  
6
550  
3
1100  
2200  
4400  
6600  
2
11  
13  
22  
82  
93  
117  
13  
19  
29  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
30  
Submit Document Feedback  
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.6 Power Consumption Summary  
8-3 and 8-4 summarize the power consumption at the power terminals.  
8-3. Maximum Current Ratings at Power Terminals  
PARAMETER  
SUPPLY NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Total current drawn by all  
nodes driven by 1.2V rail  
VDDIN, VIN_SRAM, VNWA  
1000  
Total current drawn by all  
nodes driven by 1.3V or  
1.0V rail  
VIN_13RF1, VIN_13RF2  
2000  
850  
Current consumption(1)  
mA  
VIOIN_18, VIN_18CLK,  
VIOIN_18DIFF, VIN_18BB,  
VIN_18VCO  
Total current drawn by all  
nodes driven by 1.8V rail  
Total current drawn by  
all nodes driven by 3.3V  
rail(2)  
VIOIN  
50  
(1) The specified current values are at typical supply voltage level.  
(2) The exact VIOIN current depends on the peripherals used and their frequency of operation.  
8-4. Average Power Consumption at Power Terminals  
PARAMETER  
CONDITION  
DESCRIPTION  
MIN  
TYP MAX UNIT  
1TX, 4RX  
2TX, 4RX  
1TX, 4RX  
2TX, 4RX  
1TX, 4RX  
2TX, 4RX  
1TX, 4RX  
2TX, 4RX  
Use Case: Low power mode,  
3.2 MSps complex transceiver,  
25-ms frame time, 128  
chirps, 128 samples/chirp, 8-  
µs interchirp time (25% duty  
cycle), DSP active  
1.3  
25% Duty  
Cycle  
1.38  
1.77  
1.92  
1.0-V internal  
LDO bypass  
mode  
Use Case: Low power mode,  
3.2 MSps complex transceiver,  
25-ms frame time, 256  
chirps, 128 samples/chirp, 8-  
µs interchirp time (50% duty  
cycle), DSP active  
50% Duty  
Cycle  
Average power  
consumption  
W
Use Case: Low power mode,  
3.2 MSps complex transceiver,  
25-ms frame time, 128  
chirps, 128 samples/chirp, 8-  
µs interchirp time (25% duty  
cycle), DSP active  
1.4  
25% Duty  
Cycle  
1.48  
1.94  
2.14  
1.3-V internal  
LDO enabled  
mode  
Use Case: Low power mode,  
3.2 MSps complex transceiver,  
25-ms frame time, 256  
chirps, 128 samples/chirp, 8-  
µs interchirp time (50% duty  
cycle), DSP active  
50% Duty  
Cycle  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
English Data Sheet: SWRS203  
 
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.7 RF Specification  
over recommended operating conditions and with run time calibrations enabled (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
14  
15  
–8  
48  
24  
2
MAX UNIT  
76 to 77 GHz  
77 to 81 GHz  
Noise figure(2)  
dB  
1-dB compression point (Out Of Band / Specified at 10 kHz)(1)  
dBm  
dB  
Maximum gain  
Gain range  
dB  
Gain step size  
dB  
Image Rejection Ratio (IMRR)  
IF bandwidth(3)  
30  
dB  
5
MHz  
ADC sampling rate (real/complex 2x)  
ADC sampling rate (complex 1x)  
ADC resolution  
12.5 Msps  
6.25 Msps  
Receiver  
12  
<–10  
±0.5  
±3  
Bits  
dB  
dB  
°
Return loss (S11)  
Gain mismatch variation (over temperature)  
Phase mismatch variation (over temperature)  
RX gain = 30dB  
In-band IIP2  
IF = 1.5, 2 MHz at  
–12 dBFS  
16  
24  
dBm  
dBm  
RX gain = 24dB  
IF = 10 kHz at -10dBm,  
1.9 MHz at -30 dBm  
Out-of-band IIP2  
Idle Channel Spurs  
Output power  
–90  
12  
dBFS  
dBm  
Transmitter  
Amplitude noise  
Frequency range  
Ramp rate  
–145  
dBc/Hz  
76  
81 GHz  
100 MHz/µs  
Clock  
subsystem  
76 to 77 GHz  
77 to 81 GHz  
–95  
–93  
Phase noise at 1-MHz offset  
dBc/Hz  
(1) 1-dB Compression Point (Out Of Band) is measured by feed a Continuous wave Tone (10 kHz) well below the lowest HPF cut-off  
frequency.  
(2) Specification is quoted for complex 1x mode.  
(3) The analog IF stages include high-pass filtering, with two independently configurable first-order high-pass corner frequencies. The set  
of available HPF corners is summarized as follows:  
Available HPF Corner Frequencies (kHz)  
HPF1  
HPF2  
175, 235, 350, 700  
350, 700, 1400, 2800  
The filtering performed by the digital baseband chain is targeted to provide:  
Less than ±0.5 dB pass-band ripple/droop, and  
Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.  
8-1 shows variations of noise figure and in-band P1dB parameters with respect to receiver gain programmed.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
32  
Submit Document Feedback  
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
18  
16  
14  
12  
10  
8
-18  
NF (dB)  
In-band P1DB (dBm)  
-24  
-30  
-36  
-42  
-48  
30  
32  
34  
36  
38 40  
RX Gain (dB)  
42  
44  
46  
48  
8-1. Noise Figure, In-band P1dB vs Receiver Gain  
8.8 CPU Specifications  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
600  
32  
MAX UNIT  
Clock Speed  
DSP  
MHz  
KB  
L1 Code Memory  
Subsystem  
(C674  
Family)  
L1 Data Memory  
32  
KB  
L2 Memory  
256  
200  
256  
192  
KB  
Clock Speed  
MHz  
KB  
Main  
Subsystem  
(R4F Family)  
Tightly Coupled Memory - A (Program)  
Tightly Coupled Memory - B (Data)  
KB  
Shared  
Memory  
Shared L3 Memory  
768  
KB  
8.9 Thermal Resistance Characteristics for FCBGA Package [ABL0161]  
THERMAL METRICS(1)  
°C/W(2) (3)  
4.2  
JC  
JB  
JA  
JMA  
PsiJT  
PsiJB  
Junction-to-case  
Junction-to-board  
5.7  
Junction-to-free air  
Junction-to-moving air  
Junction-to-package top  
Junction-to-board  
20.9  
14.5 (4)  
0.38  
5.6  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on  
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(4) Air flow = 1 m/s  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
English Data Sheet: SWRS203  
 
 
 
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10 Timing and Switching Characteristics  
8.10.1 Power Supply Sequencing and Reset Timing  
The AWR1642 device expects all external voltage rails and SOP lines to be stable before reset is deasserted.  
describes the device wake-up sequence.  
SOP  
Setup  
Time  
SOP  
Hold time to  
nRESET  
DC power  
Stable before  
nRESET  
MSS  
BOOT  
START  
nRESET  
ASSERT  
tPGDEL  
DC  
Power  
notOK  
DC  
Power  
OK  
QSPI  
READ  
release  
VDDIN,  
VIN_SRAM  
VNWA  
VIOIN_18  
VIN18_CLK  
VIOIN_18DIFF  
VIN18_BB  
VIN_13RF1  
VIN_13RF2  
VIOIN  
SOP IO  
Reuse  
SOP IO‘s can be used as functional IO‘s  
SOP[2.1.0]  
nRESET  
WARMRESET  
OUTPUT  
VBGAP  
OUTPUT  
CLKP, CLKM  
Using Crystal  
MCUCLK  
OUTPUT (1)  
QSPI_CS  
OUTPUT  
8 ms (XTAL Mode)  
850 µs (REFCLK Mode)  
A. MCU_CLK_OUT in autonomous mode, where AWR1642 application is booted from the serial flash, MCU_CLK_OUT is not enabled by  
default by the device bootloader.  
8-2. Device Wake-up Sequence  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
34  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.2 Input Clocks and Oscillators  
8.10.2.1 Clock Specifications  
The AWR1642 requires external clock source (that is, a 40-MHz crystal) for initial boot and as a reference for an  
internal APLL hosted in the device. An external crystal is connected to the device pins. 8-3 shows the crystal  
implementation.  
Cf1  
CLKP  
Cp  
40 MHz  
CLKM  
Cf2  
8-3. Crystal Implementation  
备注  
The load capacitors, Cf1 and Cf2 in 8-3, should be chosen such that 方程式 1 is satisfied. CL in the  
equation is the load specified by the crystal manufacturer. All discrete components used to implement  
the oscillator circuit should be placed as close as possible to the associated oscillator CLKP and  
CLKM pins.  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
(1)  
8-5 lists the electrical characteristics of the clock crystal.  
8-5. Crystal Electrical Characteristics (Oscillator Mode)  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
fP  
Parallel resonance crystal frequency  
40  
CL  
Crystal load capacitance  
Crystal ESR  
5
8
12  
ESR  
50  
Ω
Temperature range Expected temperature range of operation  
–40  
125  
°C  
Frequency  
Crystal frequency tolerance(1) (2)  
tolerance  
–200  
200  
200  
ppm  
µW  
Drive level  
50  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM  
is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally. 8-6 lists  
the electrical characteristics of the external clock signal.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
English Data Sheet: SWRS203  
 
 
 
 
 
 
AWR1642  
www.ti.com.cn  
UNIT  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8-6. External Clock Mode Specifications  
SPECIFICATION  
PARAMETER  
MIN  
TYP  
MAX  
Frequency  
40  
MHz  
mV (pp)  
V
AC-Amplitude  
700  
0.00  
1.6  
1200  
0.20  
1.95  
–132  
–143  
–152  
–153  
65  
DC-Vil  
DC-Vih  
V
Input Clock:  
External AC-coupled sine wave or DC-  
coupled square wave  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
Phase Noise referred to 40 MHz  
35  
Freq Tolerance  
–100  
100  
ppm  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
36  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.3 Multibuffered / Standard Serial Peripheral Interface (MibSPI)  
8.10.3.1 Peripheral Description  
The SPI uses a MibSPI Protocol by TI.  
The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of  
programmed length (2 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate.  
The MibSPI/SPI is normally used for communication between the microcontroller and external peripherals or  
another microcontroller.  
Standard and MibSPI modules have the following features:  
16-bit shift register  
Receive buffer register  
8-bit baud clock generator  
SPICLK can be internally-generated (controller mode) or received from an external clock source  
(peripheral mode)  
Each word transferred can have a unique format.  
SPI I/Os not used in the communication can be used as digital input/output signals  
8.10.3.2 MibSPI Transmit and Receive RAM Organization  
The Multibuffer RAM is comprised of 256 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a 16-bit  
transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer RAM can be  
partitioned into multiple transfer group with variable number of buffers each.  
8.10.3.2.2 and 8.10.3.2.3 assume the operating conditions stated in 8.10.3.2.1.  
8.10.3.2.1 SPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
8.10.3.2.2 SPI Controller Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1) (2) (3)  
NO.  
PARAMETER  
Cycle time, SPICLK(4)  
MIN  
25  
TYP  
MAX UNIT  
1
tc(SPC)M  
256tc(VCLK)  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 3  
2(4)  
ns  
3(4)  
ns  
ns  
td(SPCH-  
Delay time, SPISIMO valid before SPICLK low, (clock  
polarity = 0)  
SIMO)M  
4(4)  
td(SPCL-  
Delay time, SPISIMO valid before SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M – 3  
SIMO)M  
tv(SPCL-  
Valid time, SPISIMO data valid after SPICLK low, (clock  
polarity = 0)  
0.5tc(SPC)M  
10.5  
SIMO)M  
5(4)  
ns  
tv(SPCH-  
Valid time, SPISIMO data valid after SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M  
10.5  
SIMO)M  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
English Data Sheet: SWRS203  
 
 
AWR1642  
www.ti.com.cn  
MAX UNIT  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
NO.  
PARAMETER  
MIN  
TYP  
CSHOLD = 0  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
(C2TDELAY+2)*  
tc(VCLK) – 7.5  
(C2TDELAY+2)  
Setup time CS active until SPICLK  
high  
(clock polarity = 0)  
* tc(VCLK) + 7  
(C2TDELAY +3)  
* tc(VCLK) – 7.5  
(C2TDELAY+3)  
* tc(VCLK) + 7  
6(5)  
tC2TDELAY  
ns  
(C2TDELAY+2)*  
tc(VCLK) – 7.5  
(C2TDELAY+2)  
* tc(VCLK) + 7  
Setup time CS active until SPICLK low  
(clock polarity = 1)  
(C2TDELAY +3)  
* tc(VCLK) – 7.5  
(C2TDELAY+3)  
* tc(VCLK) + 7  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
0.5*tc(SPC)M  
(T2CDELAY +  
1) *tc(VCLK) – 7  
+
0.5*tc(SPC)M  
(T2CDELAY +  
1) * tc(VCLK)  
7.5  
+
+
7(5)  
tT2CDELAY  
ns  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M  
+
(T2CDELAY +  
1) *tc(VCLK) – 7  
(T2CDELAY +  
1) * tc(VCLK)  
+
7.5  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
5
5
3
3
SPCL)M  
8(4)  
ns  
ns  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
SPCH)M  
th(SPCL-  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
SOMI)M  
9(4)  
th(SPCH-  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
SOMI)M  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared (where x= 0 or 1).  
(2) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Controller mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
11  
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1  
4
5
Master Out Data Is Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
8-4. SPI Controller Mode External Timing (CLOCK PHASE = 0)  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
English Data Sheet: SWRS203  
 
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
8-5. SPI Controller Mode Chip Select Timing (CLOCK PHASE = 0)  
8.10.3.2.3 SPI Controller Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1) (2) (3)  
NO.  
PARAMETER  
Cycle time, SPICLK(4)  
MIN  
25  
TYP  
MAX UNIT  
1
tc(SPC)M  
256tc(VCLK)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
ns  
3(4)  
ns  
ns  
td(SPCH-  
Delay time, SPISIMO valid before SPICLK low, (clock polarity 0.5tc(SPC)M – 3  
= 0)  
SIMO)M  
4(4)  
td(SPCL-  
Delay time, SPISIMO valid before SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M – 3  
SIMO)M  
tv(SPCL-  
Valid time, SPISIMO data valid after SPICLK low, (clock  
polarity = 0)  
0.5tc(SPC)M  
10.5  
SIMO)M  
5(4)  
ns  
tv(SPCH-  
Valid time, SPISIMO data valid after SPICLK high, (clock  
polarity = 1)  
0.5tc(SPC)M  
10.5  
SIMO)M  
tC2TDELAY  
Setup time CS active until SPICLK  
high  
(clock polarity = 0)  
CSHOLD = 0  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
0.5*tc(SPC)M  
+
(C2TDELAY +  
2)*tc(VCLK) – 7  
0.5*tc(SPC)M  
(C2TDELAY+2  
) * tc(VCLK)  
7.5  
+
+
0.5*tc(SPC)M  
(C2TDELAY +  
2)*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
+
(C2TDELAY+2  
) * tc(VCLK)  
+
7.5  
6(5)  
ns  
0.5*tc(SPC)M  
(C2TDELAY+2  
)*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
+
(C2TDELAY+2  
) * tc(VCLK)  
+
Setup time CS active until SPICLK  
low  
(clock polarity = 1)  
7.5  
0.5*tc(SPC)M  
(C2TDELAY+3  
)*tc(VCLK) – 7  
+
0.5*tc(SPC)M  
+
(C2TDELAY+3  
) * tc(VCLK)  
+
7.5  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
(T2CDELAY +  
(T2CDELAY +  
1) *tc(VCLK) + 7  
1) *tc(VCLK)  
7.5  
7(5)  
tT2CDELAY  
ns  
(T2CDELAY +  
(T2CDELAY +  
1) *tc(VCLK) + 7  
1) *tc(VCLK)  
7.5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
MAX UNIT  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
NO.  
PARAMETER  
MIN  
TYP  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
5
SPCL)M  
8(4)  
ns  
ns  
tsu(SOMI-  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
5
3
3
SPCH)M  
th(SPCL-  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
SOMI)M  
9(4)  
th(SPCH-  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
SOMI)M  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set ( where x = 0 or 1 ).  
(2) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Controller mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) ≥ 25 ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
40  
Submit Document Feedback  
 
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
8-6. SPI Controller Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
8-7. SPI Controller Mode Chip Select Timing (CLOCK PHASE = 1)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.3.3 SPI Peripheral Mode I/O Timings  
8.10.3.3.1 SPI Peripheral Mode Switching Parameters (SPICLK = input, SPISIMO = input,  
and SPISOMI = output)(1) (2) (3)  
NO.  
PARAMETER  
MIN  
25  
TYP  
MAX  
UNIT  
1
tc(SPC)S  
Cycle time, SPICLK(4)  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
td(SPCH-SOMI)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
10  
2(5)  
ns  
ns  
10  
10  
3(5)  
10  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0)  
10  
10  
4(5)  
ns  
ns  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
td(SPCH-SOMI)S  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0)  
2
2
5(5)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
10  
10  
4(5)  
5(5)  
6(5)  
7(5)  
ns  
ns  
ns  
ns  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1; clock phase = 0) OR (clock polarity =  
0; clock phase = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
2
2
3
3
1
1
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
Setup time, SPISIMO before SPICLK low (clock  
polarity = 0; clock phase = 0) OR (clock polarity =  
1; clock phase = 1)  
tsu(SIMO-SPCL)S  
Setup time, SPISIMO before SPICLK high (clock  
tsu(SIMO-SPCH)S polarity = 1; clock phase = 0) OR (clock polarity =  
0; clock phase = 1)  
Hold time, SPISIMO data valid after SPICLK low  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
th(SPCL-SIMO)S  
Hold time, SPISIMO data valid after SPICLK high  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
th(SPCL-SIMO)S  
(1) The MASTER bit (SPIGCRx.0) is cleared ( where x = 0 or 1 ).  
(2) The CLOCK PHASE bit (SPIFMTx.16) is either cleared or set for CLOCK PHASE = 0 or CLOCK PHASE = 1 respectively.  
(3) tc(MSS_VCLK) = main subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(4) When the SPI is in peripheral mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(MSS_VCLK) ≥ 25 ns,  
where PS is the prescale value set in the SPIFMTx.[15:8] register bits.For PS values of 0: tc(SPC)S = 2tc(MSS_VCLK) ≥ 25 ns.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
42  
Submit Document Feedback  
 
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
8-8. SPI peripheral Mode External Timing (CLOCK PHASE = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
8-9. SPI peripheral Mode External Timing (CLOCK PHASE = 1)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.3.4 Typical Interface Protocol Diagram (Peripheral Mode)  
1. Host should ensure that there is a delay of two SPI clocks between CS going low and start of SPI clock.  
2. Host should ensure that CS is toggled for every 16 bits of transfer through SPI.  
8-10 shows the SPI communication timing of the typical interface protocol.  
2 SPI clocks  
CS  
CLK  
0x4321  
0x1234  
CRC  
0x5678  
0x8765  
MOSI  
MISO  
IRQ  
0xDCBA  
0xABCD  
CRC  
16 bytes  
8-10. SPI Communication  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
44  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.4 LVDS Interface Configuration  
The supported AWR1642 LVDS lane configuration is two Data lanes (LVDS_TXP/M), one Bit Clock lane  
(LVDS_CLKP/M) and one Frame clock lane (LVDS_FRCLKP/M). The LVDS interface is used for debugging.  
The LVDS interface supports the following data rates:  
900 Mbps (450 MHz DDR Clock)  
600 Mbps (300 MHz DDR Clock)  
450 Mbps (225 MHz DDR Clock)  
400 Mbps (200 MHz DDR Clock)  
300 Mbps (150 MHz DDR Clock)  
225 Mbps (112.5 MHz DDR Clock)  
150 Mbps (75 MHz DDR Clock)  
Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to data.  
LVDS_TXP/M  
LVDS_FRCLKP/M  
Data bitwidth  
LVDS_CLKP/M  
8-11. LVDS Interface Lane Configuration And Relative Timings  
8.10.4.1 LVDS Interface Timings  
8-7. LVDS Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Duty Cycle Requirements  
max 1 pF lumped capacitive load on  
LVDS lanes  
48%  
52%  
Output Differential Voltage  
peak-to-peak single-ended with 100 Ω  
resistive load between differential pairs  
250  
450  
mV  
Output Offset Voltage  
Trise and Tfall  
1125  
1275  
mV  
ps  
20%-80%, 900 Mbps  
900 Mbps  
330  
80  
Jitter (pk-pk)  
ps  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
Trise  
LVDS_CLK  
Clock Jitter = 6sigma  
LVDS_TXP/M  
LVDS_FRCLKP/M  
1100 ps  
8-12. Timing Parameters  
8.10.5 General-Purpose Input/Output  
8.10.5.1 lists the switching characteristics of output timing relative to load capacitance.  
8.10.5.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)  
PARAMETER(1) (2)  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.3  
6.7  
9.6  
3.1  
6.6  
9.6  
3.0  
6.9  
10.2  
2.8  
6.6  
9.8  
3.3  
7.2  
10.5  
3.1  
6.6  
9.6  
tr  
tf  
tr  
tf  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
Slew control = 0  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
Max fall time  
Max rise time  
Max fall time  
ns  
ns  
ns  
Slew control = 1  
(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).  
(2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
46  
Submit Document Feedback  
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.6 Controller Area Network Interface (DCAN)  
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multi-commander communication  
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 Mbps.  
The DCAN is ideal for applications operating in noisy and harsh environments that require reliable serial  
communication or multiplexed wiring.  
The DCAN has the following features:  
Supports CAN protocol version 2.0 part A, B  
Bit rates up to 1 Mbps  
Configurable Message objects  
Individual identifier masks for each message object  
Programmable FIFO mode for message objects  
Suspend mode for debug support  
Programmable loop-back modes for self-test operation  
Direct access to Message RAM in test mode  
Supports two interrupt lines - Level 0 and Level 1  
Automatic Message RAM initialization  
8.10.6.1 Dynamic Characteristics for the DCANx TX and RX Pins  
PARAMETER  
MIN  
TYP  
MAX  
15  
UNIT  
ns  
td(CAN_tx)  
td(CAN_rx)  
Delay time, transmit shift register to CAN_tx pin(1)  
Delay time, CAN_rx pin to receive shift register(1)  
10  
ns  
(1) These values do not include rise/fall times of the output buffer.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.7 Controller Area Network - Flexible Data-rate (CAN-FD)  
The CAN-FD module supports both classic CAN and CAN FD (CAN with Flexible Data-Rate) specifications.  
CAN FD feature allows high throughput and increased payload per data frame. The classic CAN and CAN FD  
devices can coexist on the same network without any conflict.  
The CAN-FD has the following features:  
Conforms with CAN Protocol 2.0 A, B and ISO 11898-1  
Full CAN FD support (up to 64 data bytes per frame)  
AUTOSAR and SAE J1939 support  
Up to 32 dedicated Transmit Buffers  
Configurable Transmit FIFO, up to 32 elements  
Configurable Transmit Queue, up to 32 elements  
Configurable Transmit Event FIFO, up to 32 elements  
Up to 64 dedicated Receive Buffers  
Two configurable Receive FIFOs, up to 64 elements each  
Up to 128 11-bit filter elements  
Internal Loopback mode for self-test  
Mask-able interrupts, two interrupt lines  
Two clock domains (CAN clock / Host clock)  
Parity / ECC support - Message RAM single error correction and double error detection (SECDED)  
mechanism  
Full Message Memory capacity (4352 words).  
8.10.7.1 Dynamic Characteristics for the CANx TX and RX Pins  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
td(CAN_FD_tx)  
td(CAN_FD_rx)  
Delay time, transmit shift register to CAN_FD_tx  
pin(1)  
15  
ns  
Delay time, CAN_FD_rx pin to receive shift  
register(1)  
10  
ns  
(1) These values do not include rise/fall times of the output buffer.  
8.10.8 Serial Communication Interface (SCI)  
The SCI has the following features:  
Standard universal asynchronous receiver-transmitter (UART) communication  
Standard non-return to zero (NRZ) format  
Double-buffered receive and transmit functions  
Asynchronous or iso-synchronous communication modes with no CLK pin  
Capability to use Direct Memory Access (DMA) for transmit and receive data  
Two external pins: RS232_RX and RS232_TX  
8.10.8.1 SCI Timing Requirements  
MIN  
TYP  
921.6  
MAX  
UNIT  
f(baud)  
Supported baud rate at 20 pF  
kHz  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
48  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.9 Inter-Integrated Circuit Interface (I2C)  
The inter-integrated circuit (I2C) module is a multicontroller communication module providing an interface  
between devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an  
I2C-bus™. This module will support any target or controller I2C compatible device.  
The I2C has the following features:  
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398  
393 40011)  
– Bit/Byte format transfer  
– 7-bit and 10-bit device addressing modes  
– General call  
– START byte  
– Multi-controller transmitter/ target receiver mode  
– Multi-controller receiver/ target transmitter mode  
– Combined controller transmit/receive and receive/transmit mode  
– Transfer rates of 100 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
备注  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the target address second byte every  
time it sends the target address first byte)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
UNIT  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.9.1 I2C Timing Requirements(1)  
STANDARD MODE  
FAST MODE  
MIN  
10  
MAX  
MIN  
2.5  
MAX  
tc(SCL)  
Cycle time, SCL  
μs  
μs  
tsu(SCLH-SDAL)  
Setup time, SCL high before SDA low  
(for a repeated START condition)  
4.7  
0.6  
th(SCLL-SDAL)  
Hold time, SCL low after SDA low  
4
0.6  
μs  
(for a START and a repeated START condition)  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
μs  
μs  
μs  
μs  
μs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
tw(SDAH)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
3.45(1)  
0.9  
Pulse duration, SDA high between STOP and START  
conditions  
4.7  
1.3  
tsu(SCLH-SDAH)  
tw(SP)  
Setup time, SCL high before SDA high  
(for STOP condition)  
4
0.6  
0
μs  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(2) (3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the  
SCL signal.  
(3) Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
8-13. I2C Timing Diagram  
备注  
A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the  
VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW  
period (tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-  
mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will  
automatically be the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line tr max + tsu(SDA-SCLH)  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
50  
Submit Document Feedback  
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.10 Quad Serial Peripheral Interface (QSPI)  
The quad serial peripheral interface (QSPI) module is a kind of SPI module that allows single, dual, or quad read  
access to external SPI devices. This module has a memory mapped register interface, which provides a direct  
interface for accessing data from external SPI devices and thus simplifying software requirements. The QSPI  
works as a controller only. The QSPI in the device is primarily intended for fast booting from quad-SPI flash  
memories.  
The QSPI supports the following features:  
Programmable clock divider  
Six-pin interface  
Programmable length (from 1 to 128 bits) of the words transferred  
Programmable number (from 1 to 4096) of the words transferred  
Support for 3-, 4-, or 6-pin SPI interface  
Optional interrupt generation on word or frame (number of words) completion  
Programmable delay between chip select activation and output data from 0 to 3 QSPI clock cycles  
8.10.10.2 and 8.10.10.3 assume the operating conditions stated in 8.10.10.1.  
8.10.10.1 QSPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
8.10.10.2 Timing Requirements for QSPI Input (Read) Timings(1) (2)  
MIN  
7.3  
TYP  
MAX  
UNIT  
ns  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
th(SCLK-D)  
Setup time, d[3:0] valid before falling sclk edge  
Hold time, d[3:0] valid after falling sclk edge  
1.5  
ns  
Setup time, final d[3:0] bit valid before final falling sclk edge  
Hold time, final d[3:0] bit valid after final falling sclk edge  
7.3 – P(3)  
1.5 + P(3)  
ns  
ns  
(1) Clock Mode 0 (clk polarity = 0 ; clk phase = 0 ) is the mode of operation.  
(2) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although  
non-standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that  
launch data on the falling edge in Clock Mode 0.  
(3) P = SCLK period in ns.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
English Data Sheet: SWRS203  
 
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.10.3 QSPI Switching Characteristics  
NO.  
Q1  
Q2  
Q3  
PARAMETER  
Cycle time, sclk  
MIN  
25  
TYP  
MAX  
UNIT  
ns  
tc(SCLK)  
tw(SCLKL)  
tw(SCLKH)  
td(CS-SCLK)  
Pulse duration, sclk low  
Y*P – 3(1) (2)  
Y*P – 3(1)  
ns  
Pulse duration, sclk high  
ns  
Delay time, sclk falling edge to cs active edge  
–M*P + 2.5(1)  
ns  
Q4  
Q5  
–M*P – 1(1) (3)  
N*P – 1(1) (3)  
(3)  
td(SCLK-CS)  
Delay time, sclk falling edge to cs inactive edge  
N*P + 2.5(1)  
ns  
(3)  
Q6  
Q7  
Q8  
td(SCLK-D1)  
tena(CS-D1LZ)  
tdis(CS-D1Z)  
td(SCLK-D1)  
Delay time, sclk falling edge to d[1] transition  
Enable time, cs active edge to d[1] driven (lo-z)  
Disable time, cs active edge to d[1] tri-stated (hi-z)  
–3.5  
–P – 4(3)  
–P – 4(3)  
7
–P +1(3)  
–P +1(3)  
ns  
ns  
ns  
ns  
Delay time, sclk first falling edge to first d[1] transition  
(for PHA = 0 only)  
Q9  
–3.5 – P(3)  
7 – P(3)  
Q12  
Q13  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
Setup time, d[3:0] valid before falling sclk edge  
Hold time, d[3:0] valid after falling sclk edge  
7.3  
1.5  
ns  
ns  
ns  
Setup time, final d[3:0] bit valid before final falling  
sclk edge  
Q14  
Q15  
7.3 — P(3)  
1.5 + P(3)  
th(SCLK-D)  
Hold time, final d[3:0] bit valid after final falling sclk  
edge  
ns  
(1) The Y parameter is defined as follows: If DCLK_DIV is 0 or ODD then, Y equals 0.5. If DCLK_DIV is EVEN then, Y equals  
(DCLK_DIV/2) / (DCLK_DIV+1). For best performance, it is recommended to use a DCLK_DIV of 0 or ODD to minimize the duty  
cycle distortion. The HSDIVIDER on CLKOUTX2_H13 output of DPLL_PER can be used to achieve the desired clock divider ratio. All  
required details about clock division factor DCLK_DIV can be found in the device-specific Technical Reference Manual.  
(2) P = SCLK period in ns.  
(3) M = QSPI_SPI_DC_REG.DDx + 1, N = 2  
8-14. QSPI Read (Clock Mode 0)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
52  
Submit Document Feedback  
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q8  
Q6  
Q6  
Q7  
Q9  
Q6  
Command  
Bit n-1  
Command  
Bit n-2  
Write Data  
Bit 1  
Write Data  
Bit 0  
d[0]  
d[3:1]  
SPRS85v_TIMING_OSPI1_04  
8-15. QSPI Write (Clock Mode 0)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.11 ETM Trace Interface  
8.10.11.2 and 1 assume the recommended operating conditions stated in 8.10.11.1.  
8.10.11.1 ETMTRACE Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Output Conditions  
CLOAD  
Output load capacitance  
2
20  
pF  
8.10.11.2 ETM TRACE Switching Characteristics  
NO.  
1
PARAMETER  
Cycle time, TRACECLK period  
Pulse Duration, TRACECLK High  
Pulse Duration, TRACECLK Low  
Clock and data rise time  
MIN  
TYP  
MAX  
UNIT  
ns  
tcyc(ETM)  
th(ETM)  
tl(ETM)  
20  
9
2
ns  
3
9
ns  
4
tr(ETM)  
tf(ETM)  
3.3  
3.3  
7
ns  
5
Clock and data fall time  
ns  
td(ETMTRACE Delay time, ETM trace clock high to ETM data valid  
1
1
ns  
6
7
CLKH-  
ETMDATAV)  
td(ETMTRACE Delay time, ETM trace clock low to ETM data valid  
7
ns  
CLKl-  
ETMDATAV)  
tl(ETM)  
th(ETM)  
tr(ETM)  
tf(ETM)  
tcyc(ETM)  
8-16. ETMTRACECLKOUT Timing  
8-17. ETMDATA Timing  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
54  
Submit Document Feedback  
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.12 Data Modification Module (DMM)  
A Data Modification Module (DMM) gives the ability to write external data into the device memory.  
The DMM has the following features:  
Acts as a bus controller, thus enabling direct writes to the 4GB address space without CPU intervention  
Writes to memory locations specified in the received packet (leverages packets defined by trace mode of the  
RAM trace port [RTP] module)  
Writes received data to consecutive addresses, which are specified by the DMM (leverages packets defined  
by direct data mode of RTP module)  
Configurable port width (1, 2, 4, 8, 16 pins)  
Up to 65 Mbit/s pin data rate  
8.10.12.1 DMM Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
ns  
tcyc(DMM)  
tR  
Clock period  
15.4  
1
Clock rise time  
3
3
ns  
tF  
Clock fall time  
1
ns  
th(DMM)  
tl(DMM)  
tssu(DMM)  
tsh(DMM)  
tdsu(DMM)  
tdh(DMM)  
High pulse width  
6
ns  
Low pulse width  
6
ns  
SYNC active to clk falling edge setup time  
DMM clk falling edge to SYNC deactive hold time  
DATA to DMM clk falling edge setup time  
DMM clk falling edge to DATA hold time  
2
ns  
3
ns  
2
ns  
3
ns  
tl(DMM)  
th(DMM)  
tf  
tr  
tcyc(DMM)  
8-18. DMMCLK Timing  
tssu(DMM)  
tsh(DMM)  
DMMSYNC  
DMMCLK  
DMMDATA  
tdsu(DMM)  
tdh(DMM)  
8-19. DMMDATA Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
8.10.13 JTAG Interface  
8.10.13.2 and 8.10.13.3 assume the operating conditions stated in 8.10.13.1.  
8.10.13.1 JTAG Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
8.10.13.2 Timing Requirements for IEEE 1149.1 JTAG  
NO.  
MIN  
TYP  
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time TCK  
66.66  
26.67  
26.67  
2.5  
1a  
1b  
tw(TCKH)  
Pulse duration TCK high (40% of tc)  
Pulse duration TCK low(40% of tc)  
Input setup time TDI valid to TCK high  
Input setup time TMS valid to TCK high  
Input hold time TDI valid from TCK high  
Input hold time TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
ns  
3
4
2.5  
ns  
18  
ns  
18  
ns  
8.10.13.3 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
2
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
0
25  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
SPRS91v_JTAG_01  
8-20. JTAG Timing  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
56  
Submit Document Feedback  
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
9 Detailed Description  
9.1 Overview  
The AWR1642 device includes the entire Millimeter Wave blocks and analog baseband signal chain for two  
transmitters and four receivers, as well as a customer-programmable MCU. This device is applicable as  
a radar-on-a-chip in use-cases with modest requirements for memory, processing capacity and application  
code size. These could be cost-sensitive automotive applications that are evolving from 24 GHz narrowband  
implementation and some emerging simple ultra-short-range radar applications. Typical application examples for  
this device include basic Blind Spot Detect, Parking Assist, and so forth.  
In terms of scalability, the AWR1642 device could be paired with a low-end external MCU, to address more  
complex applications that might require additional memory for larger application software footprint and faster  
interfaces. Because the AWR1642 device also provides high speed data interfaces like Serial-  
LVDS, it is suitable for interfacing with more capable external processing blocks. Here system designers can  
choose the AWR1642 to provide raw ADC data.  
9.2 Functional Block Diagram  
Serial Flash  
interface  
QSPI  
Cortex R4F  
@ 200 MHz  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
RX1  
RX2  
RX3  
RX4  
Optional  
External MCU  
interface  
SPI  
(User programmable)  
SPI / I2C  
DCAN  
PMIC control  
Digital Front  
End  
Prog  
RAM  
(256kB*)  
Data  
RAM  
(192kB*)  
Boot  
ROM  
Primary  
communication  
interfaces (automotive)  
(Decimation  
filter chain)  
CAN-FD  
UARTs  
DMA  
Main subsystem  
(Customer programmed)  
JTAG for debug/  
development  
Test/  
Debug  
TX1  
TX2  
PA  
Mailbox  
High-speed ADC  
output interface  
(for recording)  
High-speed input for  
hardware-in-loop  
verification  
LVDS  
HIL  
Synth  
(20 GHz)  
Ramp  
Generator  
PA  
x4  
C674x DSP  
@600 MHz  
ADC  
Buffer  
6
GPADC  
Osc.  
RF Control/  
BIST  
L1P  
(32KB)  
L1D  
(32KB)  
L2  
(256KB)  
VMON  
Temp  
DMA  
CRC  
Radar Data Memory  
(L3)  
768 KB*  
DSP subsystem  
(Customer programmed)  
RF/Analog subsystem  
* Up to 512 KB of Data Memory can be switched to the Main R4F if required  
Copyright © 2018, Texas Instruments Incorporated  
9-1. Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
English Data Sheet: SWRS203  
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
9.3 Subsystems  
9.3.1 RF and Analog Subsystem  
The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA, mixer,  
IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The three transmit  
channels can be operated up to a maximum of two at a time (simultaneously) for transmit beamforming purpose  
as required; whereas the four receive channels can all be operated simultaneously.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
58  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
9.3.1.1 Clock Subsystem  
The AWR1642 clock subsystem generates 76 to 81 GHz from an input reference of 40-MHz crystal. It has  
a built-in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF  
synthesizer is then processed by an X4 multiplier to create the required frequency in the 76 to 81 GHz spectrum.  
The RF synthesizer output is modulated by the timing engine block to create the required waveforms for effective  
sensor operation.  
The clean-up PLL also provides a reference clock for the host processor after system wakeup.  
The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring the  
quality of the generated clock.  
9-2 describes the clock subsystem.  
Self Test  
RF SYNTH  
Timing  
SYNC_OUT  
Engine  
Lock Detect  
SoC Clock  
Clean-  
Up PLL  
x4  
MULT  
XO/  
Slicer  
CLK Detect  
40 MHz  
9-2. Clock Subsystem  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
9.3.1.2 Transmit Subsystem  
The AWR1642 transmit subsystem consists of two parallel transmit chains, each with independent binary phase  
and amplitude control. The device supports binary phase modulation for MIMO radar and interference mitigation.  
Each transmit chain can deliver a maximum of 12 dBm at the antenna port on the PCB. The transmit chains also  
support programmable backoff for system optimization.  
9-3 describes the transmit subsystem.  
Loopback Path  
Fine Phase Shifter Control  
PCB  
6 bits  
12dBm  
@ 50 Ω  
û-  
LO  
0/180°  
(from Timing Engine)  
Self Test  
9-3. Transmit Subsystem (Per Channel)  
9.3.1.3 Receive Subsystem  
The AWR1642 receive subsystem consists of four parallel channels. A single receive channel consists of an  
LNA, mixer, IF filtering, ADC conversion, and decimation. All four receive channels can be operational at the  
same time an individual power-down option is also available for system optimization.  
Unlike conventional real-only receivers, the AWR1642 device supports a complex baseband architecture, which  
uses quadrature mixer and dual IF and ADC chains to provide complex I and Q outputs for each receiver  
channel. The AWR1642 is targeted for fast chirp systems. The band-pass IF chain has configurable lower cutoff  
frequencies above 175 kHz and can support bandwidths up to 5 MHz.  
9-4 describes the receive subsystem.  
Self Test  
DAC  
Loopback  
Path  
DSM  
PCB  
I
RSSI  
50 W  
GSG  
LO  
Q
DSM  
DAC  
9-4. Receive Subsystem (Per Channel)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
60  
Submit Document Feedback  
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
9.3.2 Processor Subsystem  
Unified  
128KB x 2  
ROM  
L2  
Cache/  
RAM  
TCM A 256KB  
Main  
R4F  
L1P  
32KB  
32KB  
EDMA  
DSP  
HIL  
JTAG  
CRC  
HIL  
TCM B 192KB  
L1d  
DSP Interconnect œ 128 bit @ 200 MHz  
Main Interconnect  
BSS Interconnect  
Mail  
Box  
Data  
Handshake  
Memory  
CRC  
ADC Buffer  
MSS  
DMA  
L3  
32KB  
32KB Ping-Pong  
768KB  
(static sharing  
with R4F Space)  
Interconnect  
LVDS  
PWM,  
CAN  
I2C  
QSPI  
PMIC  
CLK  
UART  
CAN  
FD  
SPI  
9-5. Processor Subsystem  
9-5 shows the block diagram for customer programmable processor subsystems in the AWR1642 device.  
At a high level there are two customer programmable subsystems, as shown separated by a dotted line in  
the diagram. Left hand side shows the DSP Subsystem which contains TI's high-performance C674x DSP, a  
high-bandwidth interconnect for high performance (128-bit, 200MHz), and associated peripherals – four DMAs  
for data transfer. LVDS interface for Measurement data output, L3 Radar data cube memory, ADC buffers, CRC  
engine, and data handshake memory (additional memory provided on interconnect).  
The right side of the diagram shows the Main subsystem. Main subsystem as name suggests is the brain of  
the device and controls all the device peripherals and house-keeping activities of the device. Main subsystem  
contains Cortex-R4F (Main R4F) processor and associated peripherals and house-keeping components such as  
DMAs, CRC and Peripherals (I2C, UART, SPIs, CAN, PMIC clocking module, PWM, and others) connected to  
Main Interconnect through Peripheral Central Resource (PCR interconnect).  
Details of the DSP CPU core can be found at https://www.ti.com/product/TMS320C6748.  
HIL module is shown in both the subsystems and can be used to perform the radar operations feeding the  
captured data from outside into the device without involving the RF subsystem. HIL on Main SS is for controlling  
the configuration and HIL on DSPSS for high speed ADC data input to the device. Both HIL modules uses the  
same IOs on the device, one additional IO (DMM_MUX_IN) allows selecting either of the two.  
9.3.3 Automotive Interface  
The AWR1642 communicates with the automotive network over the following main interfaces:  
CAN and CAN-FD  
9.3.4 Main Subsystem Cortex-R4F Memory Map  
9-1 shows the main subsystem, Cortex-R4F memory map.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
备注  
There are separate Cortex-R4F addresses and DMA MSS addresses for the main subsystem. See the  
Technical Reference Manual for a complete list.  
9-1. Main Subsystem, Cortex-R4F Memory Map  
FRAME ADDRESS (HEX)  
NAME  
SIZE  
DESCRIPTION  
START  
END  
CPU Tightly-Coupled Memories  
TCMA ROM  
TCM RAM-A  
TCM RAM-B  
0x0000_0000  
0x0020_0000  
0x0800_0000  
0x0001_FFFF  
0x0023_FFFF  
0x0802_FFFF  
128 KiB  
Program ROM  
Data RAM  
256 KiB  
192 KB  
Data RAM  
S/W Scratch Pad Memory  
SW_ Buffer  
0x0C20_0000  
0x0C20_1FFF  
8 KB  
2 KB  
188 B  
2 KB  
188 B  
2 KB  
188 B  
S/W Scratchpad memory  
System Peripherals  
Mail Box  
MSS<->RADARSS  
0xF060_1000  
0xF060_2000  
0xF060_8000  
0xF060_8060  
0xF060_4000  
0xF060_5000  
0xF060_8400  
0xF060_8300  
0xF060_6000  
0xF060_7000  
0xF060_8200  
0xF060_17FF  
0xF060_27FF  
0xF060_80FF  
0xF060_86FF  
0xF060_47FF  
0xF060_57FF  
0xF060_84FF  
0xF060_83FF  
0xF060_67FF  
0xF060_7FFF  
0xF060_82FF  
RADARSS to MSS mailbox memory space  
MSS to RADARSS mailbox memory space  
MSS to RADARSS mailbox Configuration registers  
RADARSS to MSS mailbox Configuration registers  
DSPSS to MSS mailbox memory space  
Mail Box  
MSS<->DSPSS  
MSS to DSPSS mailbox memory space  
MSS to DSPSS mailbox Configuration registers  
DSPSS to MSS mailbox Configuration registers  
RADARSS to DSPSS mailbox memory space  
DSPSS to RADARSS mailbox memory space  
Mail Box  
RADARSS<-  
>DSPSS  
RADARSS to DSPSS mailbox Configuration  
registers  
0xF060_8100  
0xF060_81FF  
DSPSS to RADARSS mailbox Configuration  
registers  
PRCM and Control  
Module  
0xFFFF_E100  
0xFFFF_FF00  
0xFFFF_EA00  
0xFFFF_F800  
0xFFF7_BC00  
0xFFFF_F000  
0xFCFF_F800  
0xFCFF_F700  
0xFCFF_F600  
0xFFFF_FD00  
0xFFFF_FC00  
0xFFFF_EE00  
0xFFFF_E2FF  
0xFFFF_FFFF  
0xFFFF_EBFF  
0xFFFF_FBFF  
0xFFF7_BDFF  
0xFFFF_F3FF  
0xFCFF_FBFF  
0xFCFF_F7FF  
0xFCFF_F6FF  
0xFFFF_FEFF  
0xFFFF_FCFF  
0xFFFF_EEFF  
756 B  
256 B  
512 KB  
352 B  
180 B  
1 KB  
TOP Level Reset, Clock management registers  
MSS Reset, Clock management registers  
IO Mux module registers  
General-purpose control registers  
GIO module configuration registers  
DMA-1 module configuration registers  
DMA-2 module configuration registers  
DMM-1 module configuration registers  
DMM-2 module configuration registers  
VIM module configuration registers  
RTI-A module configuration registers  
RTI-B module configuration registers  
GIO  
DMA-1  
DMA-2  
DMM-1  
DMM-2  
VIM  
1 KB  
472 B  
472 B  
512 B  
192 B  
192 B  
RTI-A/WD  
RTI-B  
Serial Interfaces and Connectivity  
QSPI  
0xC000_0000  
0xC080_0000  
0xFFF7_F400  
0xFFF7_F600  
0xFFF7_E500  
0xFFF7_E700  
0xC07F_FFFF  
0xC0FF_FFFF  
0xFFF7_F5FF  
0xFFF7_F7FF  
0xFFF7_E5FF  
0xFFF7_E7FF  
8 MB  
116 B  
512 B  
512 B  
148 B  
148 B  
QSPI –flash memory space  
QSPI module configuration registers  
MIBSPI-A module configuration registers  
MIBSPI-B module configuration registers  
SCI-A module configuration registers  
SCI-B module configuration registers  
MIBSPI-A  
MIBSPI-B  
SCI-A  
SCI-B  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
62  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
NAME  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
9-1. Main Subsystem, Cortex-R4F Memory Map (continued)  
FRAME ADDRESS (HEX)  
SIZE  
DESCRIPTION  
START END  
CAN  
0xFFF7_DC00  
0xFFF7_C800  
0xFFF7_A000  
0xFFF7_D400  
0xFFF7_DDFF  
0xFFF7_CFFF  
0xFFF7_A1FF  
0xFFF7_D4FF  
512 B  
CAN module configuration registers  
CAN-FD module configuration registers  
MCAN ECC module registers  
CAN_FD(MCAN)  
768 B  
452 B  
112 B  
I2C  
I2C module configuration registers  
Interconnects  
PCR-1  
0xFFF7_8000  
0xFCFF_1000  
0xFFF7_87FF  
0xFCFF_17FF  
1 KiB  
1 KiB  
PCR-1 interconnect configuration port  
PCR-2 interconnect configuration port  
PCR-2  
Safety Modules  
CRC  
0xFE00_0000  
0xFFFF_E400  
0xFFFF_E600  
0xFFFF_EC00  
0xFFFF_F400  
0xFFFF_F500  
0xFFFF_F600  
0xFEFF_FFFF  
0xFFFF_E5FF  
0xFFFF_E7FF  
0xFFFF_ECFF  
0xFFFF_F4FF  
0xFFFF_F5FF  
0xFFFF_F6FF  
16 KiB  
464 B  
284 B  
44 B  
CRC module configuration registers  
PBIST module configuration registers  
STC module configuration registers  
DCC-A module configuration registers  
DCC-B module configuration registers  
ESM module configuration registers  
CCMR4 module configuration registers  
PBIST  
STC  
DCC-A  
DCC-B  
44 B  
ESM  
156 B  
136 B  
CCMR4  
Security Modules  
Crypto  
0xFD00_0000  
0XFDFF_FFFF  
3 KiB  
Crypto module configuration registers  
Other Subsystems  
DSS_TPTC0  
DSS_REG  
DSS_TPTC1  
DSS_REG2  
DSS_TPCC0  
DSS_RTIA/WDT  
DSS_SCI  
0x5000 0000  
0x5000 0400  
0x5000 0800  
0x5000 0C00  
0x5001 0000  
0x5002 0000  
0x5003 0000  
0x5004 0000  
0x5007 0000  
0x5009 0000  
0x5009 0400  
0x500A 0000  
0x500D 0000  
0x500F 0000  
0x5000 0317  
0x5000 075F  
0x5000 0B17  
0x5000 0EA3  
0x5001 3FFF  
0x5002 00BF  
0x5003 0093  
0x5004 011B  
0x5007 0233  
0x5009 0317  
0x5009 0717  
0x500A 3FFF  
0x500D 005B  
0x500F 00BF  
0x511F FFFF  
792 B  
864 B  
792 B  
676 B  
16 KB  
192 B  
148 B  
284 B  
564 B  
792 B  
792 B  
16 KB  
92 B  
TPTC0 module configuration space  
DSPSS control module registers  
TPTC1 module configuration space  
DSPSS control module registers  
TPCC0 module configuration space  
DSS_RTIA/WDT configuration space  
SCI memory space  
DSS_STC  
DSS_CBUFF  
DSS_TPTC2  
DSS_TPTC3  
DSS_TPCC1  
DSS_ESM  
DSS_RTIB  
STC module configuration space  
Common Buffer module configuration registers  
TPTC2 module configuration space  
TPTC3 module configuration space  
TPCC1 module configuration space  
ESM module configuration registers  
RTI-B module configuration registers  
L3 shared memory space  
192 B  
2 MB(1)  
DSS_L3RAM Shared 0x5100 0000  
memory  
DSS_ADCBUF Buffer 0x5200 0000  
DSS_CBUFF_FIFO 0x5202 0000  
0x5200 7FFF  
0x5202 3FFF  
0x5208 7FFF  
0x577F FFFF  
32 KB  
16 KB  
32 KB  
128 KB  
ADC buffer memory space  
Common buffer FIFO space  
Handshake memory space  
L2 RAM space  
DSS_HSRAM1  
0x5208 0000  
DSS_DSP_L2_UMA 0x577E 0000  
P1  
DSS_DSP_L2_UMA 0x5780 0000  
P0  
0x5781 FFFF  
128 KB  
L2 RAM space  
DSS_DSP_L1P  
DSS_DSP_L1D  
0x57E0 0000  
0x57F0 0000  
0x57E0 7FFF  
0x57F0 7FFF  
32 KB  
32 KB  
L1 program memory space  
L1 data memory space  
Peripheral Memories (System and Nonsystem)  
CAN RAM 0xFF1E_0000 0xFF1F_FFFF  
128 KB  
CAN RAM memory space  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
9-1. Main Subsystem, Cortex-R4F Memory Map (continued)  
FRAME ADDRESS (HEX)  
NAME  
SIZE  
DESCRIPTION  
START END  
CAN-FD RAM  
0xFF50_0000  
0xFFF8_0000  
0xFCF8 1000  
0xFFF8_2000  
0xFF0C_0000  
0xFF0C_0200  
0xFF0E_0000  
0xFF0E_0200  
0xFF51_FFFF  
0xFFF8_0FFF  
0xFCF8_0FFF  
0xFFF8_2FFF  
0xFF0C_01FF  
0xFF0C_03FF  
0xFF0E_01FF  
0xFF0E_03FF  
68 KB  
CAN-FD RAM memory space  
DMA1 RAM memory space  
DMA1 RAM  
4 KB  
DMA2 RAM  
4 KB  
DMA2 RAM memory space  
VIM RAM  
2 KB  
VIM RAM memory space  
MIBSPIB-TX RAM  
MIBSPIB-RX RAM  
MIBSPIA-TX RAM  
MIBSPIA- RX RAM  
Debug Modules  
Debug subsystem  
0.5 KB  
0.5 KB  
0.5 KB  
0.5 KB  
MIBSPIB-TX RAM memory space  
MIBSPIB-RX RAM memory space  
MIBSPIA-TX RAM memory space  
MIBSPIA- RX RAM memory space  
0xFFA0_0000  
0xFFAF_FFFF  
244 KB  
Debug subsystem memory space and registers  
(1) 768 KB memory within 2 MB memory space  
9.3.5 DSP Subsystem Memory Map  
9-2 shows the DSP C674x memory map.  
9-2. DSP C674x Memory Map  
Name  
Frame Address (Hex)  
Size  
Description  
Start  
End  
DSP Memories  
DSP_L1D  
0x00F0_0000  
0x00E0_0000  
0x00F0_7FFF  
0x00E0_7FFF  
32 KiB  
32 KiB  
L1 data memory space  
DSP_L1P  
L1 program memory  
space  
DSP_L2_UMAP0  
DSP_L2_UMAP1  
EDMA  
0x0080_0000  
0x007E_0000  
0x0081_FFFF  
0x007F_FFFF  
128 KiB  
128 KiB  
L2 RAM space  
L2 RAM space  
TPCC0  
0x0201_0000  
0x020A_0000  
0x0200 0000  
0x0200 0800  
0x0209_0000  
0x0209_0400  
0x0201_3FFF  
0x020A_3FFF  
0x0200 03FF  
0x0200 0BFF  
0x0209_03FF  
0x0209_07FF  
16 KiB  
16 KiB  
1 KiB  
1 KiB  
1 KiB  
1 KiB  
TPCC0 module  
configuration space  
TPCC1  
TPTC0  
TPTC1  
TPTC2  
TPTC3  
TPCC1 module  
configuration space  
TPTC0 module  
configuration space  
TPTC1 module  
configuration space  
TPTC2 module  
configuration space  
TPTC3 module  
configuration space  
Control Registers  
DSS_REG  
0x0200_0400  
0x0200_0C00  
0x0200_07FF  
0x0200_0FFF  
864 B  
624 B  
DSPSS control module  
registers  
DSS_REG2  
DSPSS control module  
registers  
System Memories  
ADC Buffer  
0x2100_0000  
0x2102_0000  
0x2100_7FFC  
0x2102_3FFC  
32 KiB  
16 KiB  
ADC buffer memory space  
CBUFF-FIFO  
Common buffer FIFO  
space  
L3-Shared memory(1)  
HS-RAM  
0x2000_0000  
0x2108_0000  
0x201F_FFFF  
0x2108_7FFC  
2 MB  
L3 shared memory space  
Handshake memory space  
32 KiB  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
64  
Submit Document Feedback  
 
 
 
AWR1642  
www.ti.com.cn  
Name  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
9-2. DSP C674x Memory Map (continued)  
Frame Address (Hex)  
Size  
Description  
Start  
End  
System Peripherals  
RTI-A/WD  
0x0202_0000  
0x020F_0000  
0x0207_0000  
0x5060_1000  
0x5060_2000  
0x0460_8000  
0x0202_00FF  
0x020F_00FF  
0x0207_03FF  
0x5060_17FF  
0x5060_27FF  
0x0460_80FF  
192 B  
192 B  
564 B  
2 KiB  
RTI-A module  
configuration registers  
RTI-B  
RTI-B module  
configuration registers  
CBUFF  
Common Buffer module  
Configuration registers  
Mail Box  
MSS<->RADARSS  
RADARSS to MSS  
mailbox memory space  
MSS to RADARSS  
mailbox memory space  
188 B  
MSS to RADARSS  
mailbox Configuration  
registers  
0x0460_8060  
0x0460_86FF  
RADARSS to MSS  
mailbox Configuration  
registers  
Mail Box  
MSS<->DSPSS  
0x5060_4000  
0x5060_5000  
0x0460_8400  
0x0460_8300  
0x5060_6000  
0x5060_7000  
0x0460_8200  
0x5060_47FF  
0x5060_57FF  
0x0460_84FF  
0x0460_83FF  
0x5060_67FF  
0x5060_7FFF  
0x0460_82FF  
2 KiB  
188 B  
2 KiB  
188 B  
DSPSS to MSS mailbox  
memory space  
MSS to DSPSS mailbox  
memory space  
MSS to DSPSS mailbox  
Configuration registers  
DSPSS to MSS mailbox  
Configuration registers  
Mail Box  
RADARSS<->DSPSS  
RADARSS to DSPSS  
mailbox memory space  
DSPSS to RADARSS  
mailbox memory space  
RADARSS to DSPSS  
mailbox Configuration  
registers  
0x0460_8100  
0x0460_81FF  
DSPSS to RADARSS  
mailbox Configuration  
registers  
Safety Modules  
ESM  
0x020D_0000  
0x2200_0000  
0x0204_0000  
92 B  
ESM module  
Configuration registers  
CRC  
STC  
0x2200_03FF  
0x0204_01FF  
1 KiB  
284 B  
CRC module  
Configuration registers  
STC module Configuration  
registers  
Nonsystem Peripherals  
SCI  
0x0203_0000  
0x0203_00FF  
148 B  
SCI module Configuration  
registers  
(1) 768 KB memory within 2 MB memory space  
9.4 Other Subsystems  
9.4.1 ADC Channels (Service) for User Application  
The AWR1642 device includes provision for an ADC service for user application, where the  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
English Data Sheet: SWRS203  
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
GPADC engine present inside the device can be used to measure up to six external voltages. The ADC1, ADC2,  
ADC3, ADC4, ADC5, and ADC6 pins are used for this purpose.  
ADC itself is controlled by TI firmware running inside the BIST subsystem and access to it for customer’s  
external voltage monitoring purpose is via ‘monitoring API’ calls routed to the BIST subsystem. This API  
could be linked with the user application running on MSS R4F.  
BIST subsystem firmware will internally schedule these measurements along with other RF and Analog  
monitoring operations. The API allows configuring the settling time (number of ADC samples to skip) and  
number of consecutive samples to take. At the end of a frame, the minimum, maximum and average of the  
readings will be reported for each of the monitored voltages.  
GPADC Specifications:  
625 Ksps SAR ADC  
0 to 1.8V input range  
10-bit resolution  
For 5 out of the 6 inputs, an optional internal buffer is available. Without the buffer, the ADC has a switched  
capacitor input load modeled with 5pF of sampling capacitance and 12pF parasitic capacitance (GPADC  
channel 6, the internal buffer is not available).  
5
ANALOG TEST 1-4,  
GPADC  
ANAMUX  
5
VSENSE  
A. GPADC structures are used for measuring the output of internal temperature sensors. The accuracy of these measurements is ±7°C.  
9-6. ADC Path  
9.4.1.1 GP-ADC Parameter  
PARAMETER  
TYP  
1.8  
UNIT  
V
ADC supply  
ADC unbuffered input voltage range  
ADC buffered input voltage range(1)  
ADC resolution  
0 – 1.8  
0.4 – 1.3  
10  
V
V
bits  
LSB  
LSB  
LSB  
LSB  
Ksps  
ns  
ADC offset error  
±5  
ADC gain error  
±5  
ADC DNL  
–1/+2.5  
±2.5  
625  
400  
10  
ADC INL  
ADC sample rate(2)  
ADC sampling time(2)  
ADC internal cap  
pF  
ADC buffer input capacitance  
ADC input leakage current  
2
pF  
3
uA  
(1) Outside of given range, the buffer output will become nonlinear.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
66  
Submit Document Feedback  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
(2) ADC itself is controlled by TI firmware running inside the BIST subsystem. For more details please refer to the API calls.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
English Data Sheet: SWRS203  
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
10 Monitoring and Diagnostics  
10.1 Monitoring and Diagnostic Mechanisms  
10-1 is a list of the main monitoring and diagnostic mechanisms available in the Functional Safety-Compliant  
devices  
10-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Devices  
NO  
FEATURE  
DESCRIPTION  
AWR1642 architecture supports hardware logic BIST (LBIST) engine self-test Controller  
(STC). This logic is used to provide a very high diagnostic coverage (>90%) on the MSS  
R4F CPU core and Vectored Interrupt Module (VIM) at a transistor level.  
LBIST for the CPU and VIM need to be triggered by application code before starting the  
functional safety application. CPU stays there in while loop and does not proceed further if a  
fault is identified.  
Boot time LBIST For MSS  
R4F Core and associated  
VIM  
1
MSS R4F has three Tightly coupled Memories (TCM) memories TCMA, TCMB0 and  
TCMB1. AWR1642 architecture supports a hardware programmable memory BIST (PBIST)  
engine. This logic is used to provide a very high diagnostic coverage (March-13n) on the  
implemented MSS R4F TCMs at a transistor level.  
PBIST for TCM memories is triggered by Bootloader at the boot time before starting  
download of application from Flash or peripheral interface. CPU stays there in while loop  
and does not proceed further if a fault is identified.  
Boot time PBIST for MSS  
R4F TCM Memories  
2
3
TCMs diagnostic is supported by Single error correction double error detection (SECDED)  
ECC diagnostic. An 8-bit code word is used to store the ECC data as calculated over the  
64-bit data bus. ECC evaluation is done by the ECC control logic inside the CPU. This  
scheme provides end-to-end diagnostics on the transmissions between CPU and TCM. CPU  
can be configured to have predetermined response (Ignore or Abort generation) to single  
and double bit error conditions.  
End to End ECC for MSS  
R4F TCM Memories  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode failures  
in the physical SRAM banks. Faults in the bank addressing are detected by the CPU as an  
ECC fault.  
Further, bit multiplexing scheme implemented such that the bits accessed to generate a  
logical (CPU) word are not physically adjacent. This scheme helps to reduce the probability  
of physical multi-bit faults resulting in logical multi-bit faults; rather they manifest as multiple  
single bit faults. As the SECDED TCM ECC can correct a single bit fault in a logical word,  
this scheme improves the usefulness of the TCM ECC diagnostic.  
MSS R4F TCM bit  
multiplexing  
4
Both these features are hardware features and cannot be enabled or disabled by application  
software.  
AWR1642 architecture supports Three Digital Clock Comparators (DCCs) and an internal  
RCOSC. Dual functionality is provided by these modules – Clock detection and Clock  
Monitoring.  
DCCint is used to check the availability/range of Reference clock at boot otherwise the  
device is moved into limp mode (Device still boots but on 10MHz RCOSC clock source.  
This provides debug capability). DCCint is only used by boot loader during boot time. It is  
disabled once the APLL is enabled and locked.  
DCC1 is dedicated for APLL lock detection monitoring, comparing the APLL output divided  
version with the Reference input clock of the device. Initially (before configuring APLL),  
DCC1 is used by bootloader to identify the precise frequency of reference input clock  
against the internal RCOSC clock source. Failure detection for DCC1 would cause the  
device to go into limp mode.  
5
Clock Monitor  
DCC2 module is one which is available for user software . From the list of clock options  
given in detailed spec, any two clocks can be compared. One example usage is to compare  
the CPU clock with the Reference or internal RCOSC clock source. Failure detection is  
indicated to the MSS R4F CPU via Error Signaling Module (ESM).  
AWR1642 architecture supports the use of an internal watchdog that is implemented in the  
real-time interrupt (RTI) module. The internal watchdog has two modes of operation: digital  
watchdog (DWD) and digital windowed watchdog (DWWD). The modes of operation are  
mutually exclusive; the designer can elect to use one mode or the other but not both at the  
same time.  
7
RTI/WD for MSS R4F  
Watchdog can issue either an internal (warm) system reset or a CPU non-mask able  
interrupt upon detection of a failure.  
The Watchdog is enabled by the bootloader in DWD mode at boot time to track the boot  
process. Once the application code takes up the control, Watchdog can be configured again  
for mode and timings based on specific customer requirements.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
68  
Submit Document Feedback  
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
10-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Devices (continued)  
NO  
FEATURE  
DESCRIPTION  
Cortex-R4F CPU includes an MPU. The MPU logic can be used to provide spatial  
separation of software tasks in the device memory. Cortex-R4F MPU supports 12 regions.  
It is expected that the operating system controls the MPU and changes the MPU settings  
based on the needs of each task. A violation of a configured memory protection policy  
results in a CPU abort.  
8
MPU for MSS R4F  
AWR1642 architecture supports a hardware programmable memory BIST (PBIST) engine  
for Peripheral SRAMs as well.  
PBIST for peripheral SRAM memories can be triggered by the application. User can elect  
PBIST for Peripheral interface to run the PBIST on one SRAM or on groups of SRAMs based on the execution time,  
9
SRAMs - SPIs, CANs  
which can be allocated to the PBIST diagnostic. The PBIST tests are destructive to memory  
contents, and as such are typically run only at boot time. However, the user has the freedom  
to initiate the tests at any time if peripheral communication can be hindered.  
Any fault detected by the PBIST results in an error indicated in PBIST status registers.  
Peripheral interface SRAMs diagnostic is supported by Single error correction double error  
detection (SECDED) ECC diagnostic. When a single or double bit error is detected the  
ECC for Peripheral interface MSS R4F is notified via ESM (Error Signaling Module). This feature is disabled after reset.  
10  
SRAMs – SPIs, CANs  
Software must configure and enable this feature in the peripheral and ESM module. ECC  
failure (both single bit corrected and double bit uncorrectable error conditions) is reported to  
the MSS R4F as an interrupt via ESM module.  
All the Main SS peripherals (SPIs, CANs, I2C, DMAs, RTI/WD, DCCs, IOMUX etc.)  
are connected to interconnect via Peripheral Central resource (PCR). This provides two  
diagnostic mechanisms that can limit access to peripherals. Peripherals can be clock gated  
per peripheral chip select in the PCR. This can be utilized to disable unused features such  
that they cannot interfere. In addition, each peripheral chip select can be programmed to  
limit access based on privilege level of transaction. This feature can be used to limit access  
to entire peripherals to privileged operating system code only.  
Configuration registers  
protection for Main SS  
peripherals  
11  
These diagnostic mechanisms are disabled after reset. Software must configure and enable  
these mechanisms. Protection violation also generates an ‘error’ that result in abort to MSS  
R4F or error response to other peripherals such as DMAs.  
AWR1642 architecture supports hardware CRC engine on Main SS implementing the below  
polynomials.  
CRC16 CCITT – 0x10  
CRC32 Ethernet – 0x04C11DB7  
CRC64  
CRC 32C – CASTAGNOLI – 0x1EDC6F4  
CRC32P4 – E2E Profile4 – 0xF4ACFB1  
CRC-8 – H2F Autosar – 0x2F  
CRC-8 – VDA CAN – 0x1D  
Cyclic Redundancy Check –  
Main SS  
12  
The read operation of the SRAM contents to the CRC can be done by CPU or by DMA.  
The comparison of results, indication of fault, and fault response are the responsibility of the  
software managing the test.  
AWR1642 architecture supports MPUs on Main SS DMAs. Failure detection by MPU is  
reported to the MSS R4F CPU core as an interrupt via ESM.  
13  
14  
15  
MPU for DMAs  
DSPSS’s high performance EDMAs also includes MPUs on both read and writes ports.  
EDMA MPUs supports 8 regions. Failure detection by MPU is reported to the DSP core as  
an interrupt via local ESM.  
AWR1642 architecture supports hardware logic BIST (LBIST) even for BIST R4F core and  
associated VIM module. This logic provides very high diagnostic coverage (>90%) on the  
BIST R4F CPU core and VIM.  
This is triggered by MSS R4F boot loader at boot time and it does not proceed further if the  
fault is detected.  
Boot time LBIST For BIST  
R4F Core and associated  
VIM  
AWR1642 architecture supports a hardware programmable memory BIST (PBIST) engine  
for BIST R4F TCMs which provide a very high diagnostic coverage (March-13n) on the BIST  
R4F TCMs.  
PBIST is triggered by MSS R4F Bootloader at the boot time and it does not proceed further  
if the fault is detected.  
Boot time PBIST for BIST  
R4F TCM Memories  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
10-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Devices (continued)  
NO  
FEATURE  
DESCRIPTION  
BIST R4F TCMs diagnostic is supported by Single error correction double error detection  
(SECDED) ECC diagnostic. Single bit error is communicated to the BIST R4FCPU while  
double bit error is communicated to MSS R4F as an interrupt so that application code  
becomes aware of this and takes appropriate action.  
End to End ECC for BIST  
R4F TCM Memories  
16  
Logical TCM word and its associated ECC code is split and stored in two physical SRAM  
banks. This scheme provides an inherent diagnostic mechanism for address decode failures  
in the physical SRAM banks and helps to reduce the probability of physical multi-bit faults  
resulting in logical multi-bit faults.  
BIST R4F TCM bit  
multiplexing  
17  
18  
AWR1642 architecture supports an internal watchdog for BIST R4F. Timeout condition is  
reported via an interrupt to MSS R4F and rest is left to application code to either go for SW  
reset for BIST SS or warm reset for the AWR1642 device to come out of faulty condition.  
RTI/WD for BIST R4F  
AWR1642 architecture supports a hardware programmable memory BIST (PBIST) engine  
for DSPSS’s L1P, L1D, L2 and L3 memories which provide a very high diagnostic coverage  
(March-13n).  
PBIST is triggered by MSS R4F Bootloader at the boot time and it does not proceed further  
if the fault is detected.  
Boot time PBIST for L1P,  
L1D, L2 and L3 Memories  
19  
20  
AWR1642 architecture supports Parity diagnostic on DSP’s L1P memory. Parity error is  
reported to the CPU as an interrupt.  
Note:- L1D memory is not covered by parity or ECC and need to be covered by application  
level diagnostics.  
Parity on L1P  
AWR1642 architecture supports both Parity Single error correction double error detection  
(SECDED) ECC diagnostic on DSP’s L2 memory. L2 Memory is a unified 256KB of memory  
used to store program and Data sections for the DSP. A 12-bit code word is used to store the  
ECC data as calculated over the 256-bit data bus (logical instruction fetch size). The ECC  
logic for the L2 access is located in the DSP and evaluation is done by the ECC control logic  
inside the DSP. This scheme provides end-to-end diagnostics on the transmissions between  
DSP and L2. Byte aligned Parity mechanism is also available on L2 to take care of data  
section.  
21  
ECC on DSP’s L2 Memory  
L3 memory is used as Radar data section in AWR1642. AWR1642 architecture supports  
Single error correction double error detection (SECDED) ECC diagnostic on L3 memory. An  
8-bit code word is used to store the ECC data as calculated over the 64-bit data bus.  
Failure detection by ECC logic is reported to the MSS R4F CPU core as an interrupt via  
ESM.  
ECC on Radar Data Cube  
(L3) Memory  
22  
23  
AWR1642 architecture supports the use of an internal watchdog for BIST R4F that is  
implemented in the real-time interrupt (RTI) module – replication of same module as used in  
Main SS. This module supports same features as that of RTI/WD for MSS/BIST R4F.  
This watchdog is enabled by customer application code and Timeout condition is reported  
via an interrupt to MSS R4F and rest is left to application code in MSS R4F to either go for  
SW reset for DSP SS or warm reset for the AWR1642 device to come out of faulty condition.  
RTI/WD for DSP Core  
AWR1642 architecture supports dedicated hardware CRC on DSPSS implementing the  
below polynomials.  
CRC16 CCITT - 0x10  
CRC32 Ethernet - 0x04C11DB7  
CRC64  
24  
25  
CRC for DSP Sub-System  
The read of SRAM contents to the CRC can be done by DSP CPU or by DMA. The  
comparison of results, indication of fault, and fault response are the responsibility of the  
software managing the test.  
AWR1642 architecture supports MPUs for DSP memory accesses (L1D, L1P, and L2). L2  
memory supports 64 regions and 16 regions for L1P and L1D each. Failure detection by  
MPU is reported to the DSP core as an abort.  
MPU for DSP  
AWR1642 architecture supports various temperature sensors all across the device (next to  
power hungry modules such as PAs, DSP etc) which is monitored during the inter-frame  
period.(1)  
26  
27  
Temperature Sensors  
Tx Power Monitors  
AWR1642 architecture supports power detectors at the Tx output.(2)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
70  
Submit Document Feedback  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
10-1. Monitoring and Diagnostic Mechanisms for Functional Safety-Compliant Devices (continued)  
NO  
FEATURE  
DESCRIPTION  
When a diagnostic detects a fault, the error must be indicated. The AWR1642 architecture  
provides aggregation of fault indication from internal monitoring/diagnostic mechanisms  
using a peripheral logic known as the Error Signaling Module (ESM). The ESM provides  
mechanisms to classify errors by severity and to provide programmable error response.  
ESM module is configured by customer application code and specific error signals can be  
enabled or masked to generate an interrupt (Low/High priority) for the MSS R4F CPU.  
AWR1642 supports Nerror output signal (IO) which can be monitored externally to identify  
any kind of high severity faults in the design which could not be handled by the R4F.  
Error Signaling  
Error Output  
28  
Monitors Synthesizer’s frequency ramp by counting (divided-down) clock cycles and  
comparing to ideal frequency ramp. Excess frequency errors above a certain threshold, if  
any, are detected and reported.  
Synthesizer (Chirp) frequency  
monitor  
29  
30  
AWR1642 architecture supports a ball break detection mechanism based on Impedance  
measurement at the TX output(s) to detect and report any large deviations that can indicate  
a ball break.  
Monitoring is done by TIs code running on BIST R4F and failure is reported to the MSS R4F  
via Mailbox.  
Ball break detection for TX  
ports (TX Ball break monitor)  
It is completely up to customer SW to decide on the appropriate action based on the  
message from BIST R4F.  
Built-in TX to RX loopback to enable detection of failures in the RX path(s), including Gain,  
inter-RX balance, etc.  
31  
32  
33  
34  
RX loopback test  
Built-in IF (square wave) test tone input to monitor IF filter’s frequency response and detect  
failure.  
IF loopback test  
Provision to detect ADC saturation due to excessive incoming signal level and/or  
interference.  
RX saturation detect  
Boot time LBIST for DSP core  
AWR1642 device supports boot time LBIST for the DSP Core. LBIST can be triggered by the  
MSS R4F application code during boot time.  
(1) Monitoring is done by TI's code running on BIST R4F.  
There are two modes in which it could be configured to report the temperature sensed via API by customer application.  
a. Report the temperature sensed after every N frames  
b. Report the condition once the temperature crosses programmed threshold.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4Fvia Mailbox.  
(2) Monitoring is done by the TI's code running on BIST R4F.  
There are two modes in which it could be configured to report the detected output power via API by customer application.  
a. Report the power detected after every N frames  
b. Report the condition once the output power degrades by more than configured threshold from the configured.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4F.  
备注  
Refer to the Device Safety Manual or other relevant collaterals for more details on applicability of all  
diagnostics mechanisms. For Certification details, refer to the Device product folder.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
English Data Sheet: SWRS203  
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
10.1.1 Error Signaling Module  
When a diagnostic detects a fault, the error must be indicated. AWR1642 architecture provides aggregation of  
fault indication from internal diagnostic mechanisms using a peripheral logic known as the error signaling module  
(ESM). The ESM provides mechanisms to classify faults by severity and allows programmable error response.  
Below is the high level block diagram for ESM module.  
Low Priority  
Low Priority  
Interrupt  
Interrupy  
Handing  
Error Group 1  
Interrupt Enable  
High Priority  
Interrupt  
Handing  
High Priority  
Interrupy  
Interrupt Priority  
Error Group 2  
Error Group 3  
Nerror Enable  
Error Signal  
Handling  
Device Output  
Pin  
10-1. ESM Module Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
72  
Submit Document Feedback  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
11 Applications, Implementation, and Layout  
备注  
Information in the following Applications section is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
11.1 Application Information  
Key device features driving the following applications are:  
Integration of Radar Front End and Programmable MCU  
Flexible boot modes: Autonomous Application boot using a serial flash or external boot over SPI.  
11.2 Short-Range Radar  
40-MHz  
Crystal  
Serial  
Flash  
Power Management  
QSPI  
Integrated MCU  
ARM Cortex-R4F  
DCAN  
PHY  
Automotive  
Network  
CAN  
Antenna  
Structure  
RX1  
RX2  
RX3  
RX4  
MCAN  
PHY  
Automotive  
Network  
CAN FD  
Radar  
Front End  
TX1  
TX2  
Integrated DSP  
TI C674x  
AWR1642  
11-1. Short-Range Radar  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
English Data Sheet: SWRS203  
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
11.3 Reference Schematic  
The reference schematic and power supply information can be found in the AWR1642 EVM Documentation.  
Listed for convenience are: Design Files, Schematics, Layouts, and Stack up for PCB.  
Altium AWR1642 EVM Design Files  
AWR1642 EVM Schematic Drawing, Assembly Drawing, and Bill of Materials  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
74  
Submit Document Feedback  
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions follow.  
12.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, AWR1642). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package  
type (for example, ABL0161 ALB0161), the temperature range (for example, blank is the default commercial  
temperature range). 12-1 provides a legend for reading the complete device name for any AWR1642 device.  
For orderable part numbers of AWR1642 devices in the ABL0161 package types, see the Package Option  
Addendum of this document , the TI website (www.ti.com), or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the AWR1642 Device Errata.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
English Data Sheet: SWRS203  
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
1
6
42  
B
I
AWR  
G
ABL  
Q1  
Qualification  
Q1 = AEC-Q100  
Blank = no special Qual  
Prefix  
AWR = Production  
Tray or Tape & Reel  
Generation  
1 = 76 œ 81 GHz  
R = Big Reel  
Blank = Tray  
Variant  
Package  
ABL = BGA  
2 = FE  
4 = FE + FFT + MCU  
6 = FE + MCU + DSP  
Security  
Num RX/TX Channels  
RX = 1,2,3,4  
TX = 1,2,3  
G = General  
S = Secure  
D = Development Secure  
Silicon PG Revision  
Blank = Rev 1.0  
A = Rev 2.0  
Temperature (Tj)  
C = 0°C to 70°C  
K = œ40°C to 85°C  
A = œ40°C to 105°C  
I = œ40°C to 125°C  
Features  
Blank = Baseline  
Safety  
B = Functional Safety-Complain, ASIL B  
12-1. Device Nomenclature  
12.2 Tools and Software  
Models  
AWR1642 BSDL model  
AWR1642 IBIS model  
Boundary scan database of testable input and output pins for IEEE 1149.1 of the  
specific device.  
IO buffer information model for the IO buffers of the device. For simulation on a  
circuit board, see IBIS Open Forum.  
AWR1642 checklist for  
schematic review, layout  
review, bringup/wakeup  
A set of steps in spreadsheet form to select system functions and pinmux options.  
Specific EVM schematic and layout notes to apply to customer engineering. A  
bringup checklist is suggested for customers.  
12.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The current documentation that describes the DSP, related peripherals, and other technical collateral follows.  
Errata  
AWR1642 device errata Describes known advisories, limitations, and cautions on silicon and provides  
workarounds.  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
76  
Submit Document Feedback  
 
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
®, Arm®, and Cortex® are registered trademarks of ARM Limited.  
所有商标均为其各自所有者的财产。  
12.6 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序,可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
English Data Sheet: SWRS203  
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
13 Mechanical, Packaging, and Orderable Information  
13.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
78  
Submit Document Feedback  
 
 
 
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
PACKAGE OUTLINE  
ABL0161B  
FCBGA - 1.17 mm max height  
SCALE 1.400  
PLASTIC BALL GRID ARRAY  
10.5  
10.3  
B
A
BALL A1 CORNER  
10.5  
10.3  
1.17 MAX  
C
SEATING PLANE  
0.1 C  
BALL TYP  
0.37  
0.27  
TYP  
9.1 TYP  
PKG  
(0.65) TYP  
(0.65) TYP  
R
P
N
M
L
K
J
PKG  
H
G
F
9.1  
TYP  
E
D
C
0.45  
161X  
0.35  
0.15  
0.08  
C A B  
C
B
A
0.65 TYP  
BALL A1 CORNER  
1
2
3
4
5
6
7
8
9 10 11  
12 13 14 15  
0.65 TYP  
4223365/A 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
EXAMPLE BOARD LAYOUT  
ABL0161B  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
(0.65) TYP  
161X ( 0.32)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
(0.65) TYP  
D
E
F
G
H
J
PKG  
K
L
M
N
P
R
PKG  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
( 0.32)  
METAL  
(
0.32)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223365/A 10/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
80  
Submit Document Feedback  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
EXAMPLE STENCIL DESIGN  
ABL0161B  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
(0.65) TYP  
161X ( 0.32)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
(0.65) TYP  
D
E
F
G
H
J
PKG  
K
L
M
N
P
R
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4223365/A 10/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
English Data Sheet: SWRS203  
AWR1642  
www.ti.com.cn  
ZHCSHS3C – MAY 2017 – REVISED DECEMBER 2021  
13.2 Tray Information for  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SWRS203  
82  
Submit Document Feedback  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AWR1642ABIGABLQ1  
ACTIVE  
FCCSP  
FCCSP  
FCCSP  
FCCSP  
ABL  
161  
161  
161  
161  
176  
RoHS & Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
AWR1642  
IG  
502A  
C
Samples  
502AC ABL  
AWR1642ABIGABLRQ1  
AWR1642ABISABLQ1  
AWR1642ABISABLRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ABL  
ABL  
ABL  
1000 RoHS & Green  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
AWR1642  
IG  
502A  
C
Samples  
Samples  
Samples  
502AC ABL  
176  
RoHS & Green  
AWR1642  
IS  
502AC  
C
502AC ABL  
1000 RoHS & Green  
AWR1642  
IS  
502A  
C
502AC ABL  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jun-2023  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
AWR1642ABIGABLQ1  
ABL  
FCCSP  
161  
176  
8 x 22  
150  
315 135.9 7620 13.4  
16.8  
17.2  
Pack Materials-Page 1  
GENERIC PACKAGE VIEW  
ABL 161  
10.4 x 10.4, 0.65 mm pitch  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225978/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

AWR1642ABISABLRQ1

集成 DSP 和 MCU 的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器
TI

AWR1843ABGABLQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843ABGABLRQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843ABSABLQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843ABSABLRQ1

集成 DSP、MCU 和雷达加速器的单芯片 76GHz 至 81GHz 汽车雷达传感器 | ABL | 161 | -40 to 125
TI

AWR1843AOP

AWR1843AOP Single-chip 77- and 79-GHz FMCW radar sensor
TI

AWR1843AOP_V01

AWR1843AOP Single-chip 77- and 79-GHz FMCW radar sensor
TI

AWR1843ARBGALPQ1

AWR1843AOP Single-chip 77- and 79-GHz FMCW radar sensor
TI

AWR1843ARBGALPRQ1

AWR1843AOP Single-chip 77- and 79-GHz FMCW radar sensor
TI

AWR1843ARBSALPQ1

AWR1843AOP Single-chip 77- and 79-GHz FMCW radar sensor
TI

AWR1843ARBSALPRQ1

AWR1843AOP Single-chip 77- and 79-GHz FMCW radar sensor
TI