ITG-3400 [TDK]

Triple-axis MEMS gyroscope;
ITG-3400
型号: ITG-3400
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

Triple-axis MEMS gyroscope

文件: 总41页 (文件大小:1319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
InvenSense Inc.  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
1745 Technology Drive, San Jose, CA 95110 U.S.A.  
Tel: +1 (408) 988-7339 Fax: +1 (408) 988-8104  
Website: www.invensense.com  
ITG-3400  
Product Specification  
Revision 1.0  
1 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
TABLE OF CONTENTS  
TABLE OF FIGURES.........................................................................................................................................4  
TABLE OF TABLES ..........................................................................................................................................5  
1
DOCUMENT INFORMATION......................................................................................................................6  
1.1  
REVISION HISTORY ..............................................................................................................................6  
PURPOSE AND SCOPE..........................................................................................................................7  
PRODUCT OVERVIEW...........................................................................................................................7  
APPLICATIONS .....................................................................................................................................7  
1.2  
1.3  
1.4  
2
3
FEATURES..................................................................................................................................................8  
2.1  
2.2  
GYROSCOPE FEATURES.......................................................................................................................8  
ADDITIONAL FEATURES ........................................................................................................................8  
ELECTRICAL CHARACTERISTICS...........................................................................................................9  
3.1  
GYROSCOPE SPECIFICATIONS..............................................................................................................9  
ELECTRICAL SPECIFICATIONS.............................................................................................................10  
I2C TIMING CHARACTERIZATION.........................................................................................................13  
SPI TIMING CHARACTERIZATION.........................................................................................................14  
ABSOLUTE MAXIMUM RATINGS ...........................................................................................................15  
3.2  
3.3  
3.4  
3.5  
4
APPLICATIONS INFORMATION..............................................................................................................16  
4.1  
PIN OUT DIAGRAM AND SIGNAL DESCRIPTION.....................................................................................16  
TYPICAL OPERATING CIRCUIT.............................................................................................................17  
BILL OF MATERIALS FOR EXTERNAL COMPONENTS..............................................................................17  
BLOCK DIAGRAM ...............................................................................................................................18  
OVERVIEW ........................................................................................................................................18  
THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING................................18  
I2C AND SPI SERIAL COMMUNICATIONS INTERFACES ..........................................................................19  
CLOCKING.........................................................................................................................................20  
SENSOR DATA REGISTERS.................................................................................................................20  
FIFO ................................................................................................................................................21  
INTERRUPTS......................................................................................................................................21  
DIGITAL-OUTPUT TEMPERATURE SENSOR ..........................................................................................21  
BIAS AND LDOS ................................................................................................................................21  
CHARGE PUMP ..................................................................................................................................21  
STANDARD POWER MODES................................................................................................................21  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
4.11  
4.12  
4.13  
4.14  
4.15  
5
PROGRAMMABLE INTERRUPTS............................................................................................................23  
2 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
6
DIGITAL INTERFACE ...............................................................................................................................24  
6.1  
I2C AND SPI SERIAL INTERFACES ......................................................................................................24  
I2C INTERFACE..................................................................................................................................24  
I2C COMMUNICATIONS PROTOCOL .....................................................................................................24  
I2C TERMS ........................................................................................................................................27  
SPI INTERFACE .................................................................................................................................28  
6.2  
6.3  
6.4  
6.5  
7
8
SERIAL INTERFACE CONSIDERATIONS...............................................................................................29  
7.1  
ITG-3400 SUPPORTED INTERFACES...................................................................................................29  
ASSEMBLY ...............................................................................................................................................30  
8.1  
ORIENTATION OF AXES ......................................................................................................................30  
PACKAGE DIMENSIONS ......................................................................................................................31  
PCB DESIGN GUIDELINES..................................................................................................................32  
ASSEMBLY PRECAUTIONS ..................................................................................................................33  
STORAGE SPECIFICATIONS.................................................................................................................36  
PACKAGE MARKING SPECIFICATION....................................................................................................36  
TAPE & REEL SPECIFICATION.............................................................................................................37  
LABEL ...............................................................................................................................................38  
PACKAGING.......................................................................................................................................39  
REPRESENTATIVE SHIPPING CARTON LABEL .......................................................................................40  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
8.10  
9
ENVIRONMENTAL COMPLIANCE...........................................................................................................41  
3 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
Table of Figures  
Figure 1 I2C Bus Timing Diagram ....................................................................................................................13  
Figure 2 SPI Bus Timing Diagram ....................................................................................................................14  
Figure 3 Pin out Diagram for ITG-3400 3.0x3.0x0.9mm QFN..........................................................................16  
Figure 4 ITG-3400 QFN Application Schematic. (a) I2C operation, (b) SPI operation....................................17  
Figure 5 ITG-3400 Block Diagram....................................................................................................................18  
Figure 6 ITG-3400 Solution Using I2C Interface...............................................................................................19  
Figure 7 ITG-3400 Solution Using SPI Interface ..............................................................................................20  
4 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
Table of Tables  
Table 1 Gyroscope Specifications ......................................................................................................................9  
Table 2 D.C. Electrical Characteristics.............................................................................................................10  
Table 3 A.C. Electrical Characteristics .............................................................................................................12  
Table 4 I2C Timing Characteristics ...................................................................................................................13  
Table 5 SPI Timing Characteristics ..................................................................................................................14  
Table 6 fCLK = 20MHz .....................................................................................................................................15  
Table 7 Absolute Maximum Ratings.................................................................................................................15  
Table 8 Signal Descriptions..............................................................................................................................16  
Table 9 Bill of Materials ....................................................................................................................................17  
Table 10 Standard Power Modes for ITG-3400................................................................................................22  
Table 11 Table of Interrupt Sources .................................................................................................................23  
Table 12 Serial Interface...................................................................................................................................24  
Table 13 I2C Terms...........................................................................................................................................27  
5 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
1
Document Information  
1.1 Revision History  
Revision  
Revision Description  
Date  
12/24/2013  
1.0  
Initial Release  
6 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
1.2 Purpose and Scope  
This document is a preliminary product specification, providing a description, specifications, and design  
related information on the ITG-3400gyroscope device. The device is housed in a small 3x3x0.9mm 24-pin  
QFN package.  
Specifications are subject to change without notice. Final specifications will be updated based upon  
characterization of production silicon. For references to register map and descriptions of individual registers,  
please refer to the ITG-3400 Register Map and Register Descriptions document.  
1.3 Product Overview  
The ITG-3400 is a 3-axis gyroscope that is housed in a small 3x3x0.9mm (24-pin QFN) package. It also  
features a 4096-byte FIFO that can lower the traffic on the serial bus interface, and reduce power  
consumption by allowing the system processor to burst read sensor data and then go into a low-power  
mode. With its dedicated I2C sensor bus, the ITG-3400 directly accepts inputs from external I2C devices.  
The gyroscope has a programmable full-scale range of ±250, ±500, ±1000, and ±2000 degrees/sec. Factory-  
calibrated initial sensitivity of the sensor reduces production-line calibration requirements.  
Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, a precision clock  
with 1% drift from -40°C to 85°C, an embedded temperature sensor, and programmable interrupts. The  
device features I2C and SPI serial interfaces, a VDD operating range of 1.71 to 3.6V, and a separate digital  
IO supply, VDDIO from 1.71V to 3.6V.  
Communication with all registers of the device is performed using either I2C at 400kHz or SPI at 1MHz. For  
applications requiring faster communications, the sensor and interrupt registers may be read using SPI at  
20MHz.  
By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS  
wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the package  
size down to a footprint and thickness of 3x3x0.9mm (24-pin QFN), to provide a very small yet high  
performance low cost package. The device provides high robustness by supporting 10,000g shock reliability.  
1.4 Applications  
Motion UI  
Handset gaming  
Location based services, points of interest, and dead reckoning  
Health and sports monitoring  
Power management  
7 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
2
Features  
2.1 Gyroscope Features  
The triple-axis MEMS gyroscope in the ITG-3400 includes a wide range of features:  
Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-  
scale range of ±250, ±500, ±1000, and ±2000°/sec and integrated 16-bit ADCs  
Digitally-programmable low-pass filter  
Gyroscope operating current: 3.2mA  
Factory calibrated sensitivity scale factor  
2.2 Additional Features  
The ITG-3400 includes the following additional features:  
VDD supply voltage range of 1.8 3.3V ± 5%  
Smallest and thinnest QFN package for portable devices: 3x3x0.9mm (24-pin QFN)  
4096 byte FIFO buffer enables the applications processor to read the data in bursts  
Digital-output temperature sensor  
User-programmable digital filters for gyroscope and temp sensor  
10,000 g shock tolerant  
400kHz Fast Mode I2C for communicating with all registers  
1MHz SPI serial interface for communicating with all registers  
20MHz SPI serial interface for reading sensor and interrupt registers  
MEMS structure hermetically sealed and bonded at wafer level  
RoHS and Green compliant  
8 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
3
Electrical Characteristics  
3.1 Gyroscope Specifications  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
GYROSCOPE SENSITIVITY  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Full-Scale Range  
FS_SEL=0  
FS_SEL=1  
FS_SEL=2  
FS_SEL=3  
±250  
±500  
±1000  
±2000  
16  
º/s  
º/s  
º/s  
º/s  
Gyroscope ADC Word Length  
Sensitivity Scale Factor  
bits  
FS_SEL=0  
FS_SEL=1  
FS_SEL=2  
FS_SEL=3  
25°C  
131  
LSB/(º/s)  
LSB/(º/s)  
LSB/(º/s)  
LSB/(º/s)  
%
65.5  
32.8  
16.4  
±4  
Sensitivity Scale Factor Tolerance  
1
1
Sensitivity Scale Factor Variation Over  
Temperature  
0°C to +55°C  
±10  
%
Nonlinearity  
Best fit straight line; 25°C  
0.2  
±2  
%
%
1
Cross-Axis Sensitivity  
ZERO-RATE OUTPUT (ZRO)  
Initial ZRO Tolerance  
25°C  
±60  
±60  
º/s  
º/s  
1
ZRO Variation Over Temperature  
0°C to +55°C  
GYROSCOPE NOISE PERFORMANCE (FS_SEL=0)  
Total RMS Noise  
DLPFCFG=2 (92 Hz)  
25  
0.7  
27  
º/s-rms  
KHz  
1
1
GYROSCOPE MECHANICAL FREQUENCIES  
LOW PASS FILTER RESPONSE  
29  
Programmable Range  
From Sleep mode  
5
250  
Hz  
1
1
GYROSCOPE START-UP TIME  
OUTPUT DATA RATE  
35  
ms  
Hz  
Programmable, Normal (Filtered)  
mode  
4
8000  
Table 1 Gyroscope Specifications  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
9 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
3.2 Electrical Specifications  
3.2.1 D.C. Electrical Characteristics  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
Units  
Notes  
SUPPLY VOLTAGES  
VDD  
1.71  
1.71  
1.8  
1.8  
3.45  
3.45  
V
V
VDDIO  
SUPPLY CURRENTS  
Normal Mode  
3-axis Gyroscope  
3.2  
mA  
1
Standby Mode  
1.6  
6
mA  
µA  
1
1
Full-Chip Sleep Mode  
TEMPERATURE RANGE  
Specified Temperature Range  
Performance parameters are not applicable  
beyond Specified Temperature Range  
-40  
+85  
°C  
Table 2 D.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
10 of 41  
 
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
3.2.2 A.C. Electrical Characteristics  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
Parameter  
Conditions  
MIN  
TYP  
MAX  
Units  
NOTES  
SUPPLIES  
Monotonic ramp. Ramp rate  
is 10% to 90% of the final  
value  
Supply Ramp Time  
0.1  
100  
ms  
1
TEMPERATURE SENSOR  
Operating Range  
Sensitivity  
Ambient  
Untrimmed  
21°C  
-40  
85  
°C  
1
LSB/°C  
LSB  
333.87  
Room Temp Offset  
0
Power-On RESET  
Supply Ramp Time (TRAMP  
)
Valid power-on RESET  
0.01  
20  
11  
100  
100  
ms  
ms  
1
1
Start-up time for register read/write  
From power-up  
AD0 = 0  
AD0 = 1  
1101000  
1101001  
I2C ADDRESS  
DIGITAL INPUTS (SYNC, AD0, SCLK, SDI, CS)  
VIH, High Level Input Voltage  
VIL, Low Level Input Voltage  
CI, Input Capacitance  
0.7*VDDIO  
V
V
0.3*VDDIO  
1
1
< 10  
pF  
DIGITAL OUTPUT (SDO, INT)  
VOH, High Level Output Voltage  
VOL1, LOW-Level Output Voltage  
VOL.INT1, INT Low-Level Output Voltage  
RLOAD=1MΩ;  
RLOAD=1MΩ;  
0.9*VDDIO  
V
V
V
0.1*VDDIO  
0.1  
OPEN=1, 0.3mA sink  
Current  
Output Leakage Current  
tINT, INT Pulse Width  
OPEN=1  
100  
50  
nA  
µs  
LATCH_INT_EN=0  
I2C I/O (SCL, SDA)  
VIL, LOW Level Input Voltage  
VIH, HIGH-Level Input Voltage  
-0.5V  
0.3*VDDIO  
V
V
0.7*VDDIO  
VDDIO +  
0.5V  
Vhys, Hysteresis  
0.1*VDDIO  
V
V
VOL, LOW-Level Output Voltage  
IOL, LOW-Level Output Current  
3mA sink current  
1
0
0.4  
VOL=0.4V  
VOL=0.6V  
3
6
mA  
mA  
Output Leakage Current  
100  
nA  
ns  
tof, Output Fall Time from VIHmax to VILmax  
Cb bus capacitance in pf  
20+0.1Cb  
250  
INTERNAL CLOCK SOURCE  
Fchoice=0,1,2  
SMPLRT_DIV=0  
Fchoice=3;  
DLPFCFG=0 or 7  
SMPLRT_DIV=0  
32  
8
kHz  
kHz  
Sample Rate  
11 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
Parameter  
Conditions  
MIN  
TYP  
MAX  
Units  
NOTES  
Fchoice=3;  
DLPFCFG=1,2,3,4,5,6;  
SMPLRT_DIV=0  
1
kHz  
1
1
1
1
CLK_SEL=0, 6; 25°C  
CLK_SEL=1,2,3,4,5; 25°C  
CLK_SEL=0,6  
-5  
-1  
+5  
+1  
%
%
%
%
Clock Frequency Initial Tolerance  
-10  
+10  
Frequency Variation over Temperature  
CLK_SEL=1,2,3,4,5  
±1  
SERIAL INTERFACE  
Low Speed Characterization  
SPI Operating Frequency, All Registers  
Read/Write  
100 ±10%  
1 ±10%  
kHz  
MHz  
MHz  
High Speed Characterization  
SPI Operating Frequency, Sensor and  
Interrupt Registers Read Only  
I2C Operating Frequency  
20 ±10%  
All registers, Fast-mode  
400  
100  
kHz  
kHz  
All registers, Standard-mode  
Table 3 A.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
12 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
3.3  
I2C Timing Characterization  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
Parameters  
I2C TIMING  
Conditions  
I2C FAST-MODE  
Min  
Typical  
Max  
Units  
Notes  
fSCL, SCL Clock Frequency  
400  
kHz  
µs  
tHD.STA, (Repeated) START Condition Hold  
Time  
0.6  
tLOW, SCL Low Period  
tHIGH, SCL High Period  
1.3  
0.6  
0.6  
µs  
µs  
µs  
tSU.STA, Repeated START Condition Setup  
Time  
tHD.DAT, SDA Data Hold Time  
tSU.DAT, SDA Data Setup Time  
tr, SDA and SCL Rise Time  
tf, SDA and SCL Fall Time  
0
µs  
ns  
ns  
ns  
µs  
100  
Cb bus cap. from 10 to 400pF  
Cb bus cap. from 10 to 400pF  
20+0.1Cb  
20+0.1Cb  
0.6  
300  
300  
tSU.STO, STOP Condition Setup Time  
tBUF, Bus Free Time Between STOP and  
START Condition  
1.3  
µs  
Cb, Capacitive Load for each Bus Line  
tVD.DAT, Data Valid Time  
< 400  
pF  
µs  
µs  
0.9  
0.9  
tVD.ACK, Data Valid Acknowledge Time  
Table 4 I2C Timing Characteristics  
Notes:  
1. Timing Characteristics apply to both Primary and Auxiliary I2C Bus  
2. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets  
Figure 1 I2C Bus Timing Diagram  
13 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
3.4 SPI Timing Characterization  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
Notes  
Parameters  
Conditions  
Min  
Typical  
Max  
Units  
SPI TIMING  
fSCLK, SCLK Clock Frequency  
tLOW, SCLK Low Period  
tHIGH, SCLK High Period  
tSU.CS, CS Setup Time  
tHD.CS, CS Hold Time  
tSU.SDI, SDI Setup Time  
tHD.SDI, SDI Hold Time  
tVD.SDO, SDO Valid Time  
1
MHz  
ns  
400  
400  
8
ns  
ns  
500  
11  
7
ns  
ns  
ns  
Cload = 20pF  
Cload = 20pF  
100  
50  
ns  
tHD.SDO, SDO Hold Time  
4
ns  
ns  
tDIS.SDO, SDO Output Disable Time  
Table 5 SPI Timing Characteristics  
Notes:  
3. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets  
Figure 2 SPI Bus Timing Diagram  
3.4.1 fSCLK = 20MHz  
Parameters  
Conditions  
Min  
Typical  
Max  
Units  
SPI TIMING  
fSCLK, SCLK Clock Frequency  
tLOW, SCLK Low Period  
tHIGH, SCLK High Period  
tSU.CS, CS Setup Time  
tHD.CS, CS Hold Time  
0.9  
-
20  
-
MHz  
ns  
-
-
ns  
1
ns  
1
ns  
14 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
tSU.SDI, SDI Setup Time  
0
ns  
ns  
tHD.SDI, SDI Hold Time  
1
tVD.SDO, SDO Valid Time  
tDIS.SDO, SDO Output Disable Time  
Cload = 20pF  
25  
ns  
ns  
25  
Table 6 fCLK = 20MHz  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets  
3.5 Absolute Maximum Ratings  
Stress above those listed as “Absolute Maximum Ratings” may cause permanent damage to the device.  
These are stress ratings only and functional operation of the device at these conditions is not implied.  
Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.  
Parameter  
Rating  
-0.5V to +4V  
Supply Voltage, VDD  
Supply Voltage, VDDIO  
PLLFILT  
-0.5V to +4V  
-0.5V to 2V  
Input Voltage Level (AD0, SYNC, INT, SCL, SDA)  
Operating Temperature Range  
Storage Temperature Range  
-0.5V to VDD + 0.5V  
-40°C to +85°C  
-40°C to +125°C  
2kV (HBM);  
250V (MM)  
Electrostatic Discharge (ESD) Protection  
Latch-up  
JEDEC Class II (2),125°C  
±100mA  
Table 7 Absolute Maximum Ratings  
15 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
4
Applications Information  
4.1 Pin Out Diagram and Signal Description  
Pin Number  
Pin Name  
VDDIO  
AD0 / SDO  
REGOUT  
FSYNC  
INT  
Pin Description  
8
Digital I/O supply voltage  
9
I2C Slave Address LSB (AD0); SPI serial data output (SDO)  
10  
Regulator filter capacitor connection  
11  
Frame synchronization digital input. Connect to GND if unused.  
Interrupt digital output (totem pole or open-drain)  
Power supply voltage and Digital I/O supply voltage  
Power supply ground  
12  
13  
VDD  
18  
GND  
19  
RESV  
Reserved. Do not connect.  
20  
RESV  
Reserved. Connect to GND.  
22  
nCS  
Chip select (SPI mode only)  
23  
24  
SCL / SCLK  
SDA / SDI  
NC  
I2C serial clock (SCL); SPI serial clock (SCLK)  
I2C serial data (SDA); SPI serial data input (SDI)  
No Connect pins. Do not connect.  
1 7, 14 17, 21  
Table 8 Signal Descriptions  
GND  
NC  
1
2
3
4
5
6
18  
17  
16  
15  
14  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
ITG-3400  
13 VDD  
Figure 3 Pin out Diagram for ITG-3400 3.0x3.0x0.9mm QFN  
16 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
4.2 Typical Operating Circuit  
nCS  
VDDIO  
SCL  
SCLK  
SDI  
SDA  
GND  
GND  
18  
NC  
NC  
1
2
3
4
5
6
NC  
NC  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
17  
16  
15  
14  
13  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
ITG-3400  
ITG-3400  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VDD  
VDD  
1.8 3.3VDC  
C2, 0.1 mF  
1.8 3.3VDC  
C2, 0.1 mF  
1.8 3.3VDC  
1.8 3.3VDC  
C1, 0.1 mF  
C1, 0.1 mF  
C3, 10 nF  
C3, 10 nF  
AD0  
SD0  
(a)  
(b)  
Figure 4 ITG-3400 QFN Application Schematic. (a) I2C operation, (b) SPI operation.  
4.3 Bill of Materials for External Components  
Component  
Label  
C1  
Specification  
Quantity  
PLL Filter Capacitor  
VDD Bypass Capacitor  
VDDIO Bypass Capacitor  
Ceramic, X7R, 0.1µF ±10%, 2V  
Ceramic, X7R, 0.1µF ±10%, 4V  
Ceramic, X7R, 10nF ±10%, 4V  
1
1
1
C2  
C3  
Table 9 Bill of Materials  
17 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
4.4 Block Diagram  
ITG-3400  
INT  
/CS  
Interrupt  
Status  
Register  
Self  
test  
X Gyro  
Y Gyro  
Z Gyro  
ADC  
ADC  
ADC  
Slave I2C and  
SPI Serial  
Interface  
AD0 / SDO  
SCL / SCLK  
SDA / SDI  
Self  
test  
FIFO  
User & Config  
Registers  
Self  
test  
FSYNC  
Sensor  
Registers  
Temp Sensor  
ADC  
Charge  
Pump  
Bias & LDOs  
VDD  
GND  
PLLFILT  
Figure 5 ITG-3400 Block Diagram  
4.5 Overview  
The ITG-3400 is comprised of the following key blocks and functions:  
Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning  
Primary I2C and SPI serial communications interfaces  
Clocking  
Sensor Data Registers  
FIFO  
Interrupts  
Digital-Output Temperature Sensor  
Bias and LDOs  
Charge Pump  
Standard Power Modes  
4.6 Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning  
The ITG-3400 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about  
the X-, Y-, and Z- Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes  
a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered  
18 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip  
16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors  
may be digitally programmed to ±250, ±500, ±1000, or ±2000 degrees per second (dps). The ADC sample  
rate is programmable from 8,000 samples per second, down to 3.9 samples per second, and user-selectable  
low-pass filters enable a wide range of cut-off frequencies.  
4.7 I2C and SPI Serial Communications Interfaces  
The ITG-3400 communicates to a system processor using either a SPI or an I2C serial interface. The ITG-  
3400 always acts as a slave when communicating to the system processor. The LSB of the of the I2C slave  
address is set by pin 4 (AD0).  
4.7.1 ITG-3400 Solution Using I2C Interface  
In the figure below, the system processor is an I2C master to the ITG-3400.  
Interrupt  
Status  
Register  
I2C Processor Bus: for reading all  
sensor data from MPU  
INT  
ITG-3400  
AD0  
SCL  
VDD or GND  
Slave I2C  
or SPI  
SCL  
SDA  
System  
Processor  
Serial  
Interface  
SDA/SDI  
FIFO  
User & Config  
Registers  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
PLLFILT  
Figure 6 ITG-3400 Solution Using I2C Interface  
19 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
4.7.2 ITG-3400 Solution Using SPI Interface  
In the figure below, the system processor is an SPI master to the ITG-3400. Pins 2, 3, 4, and 5 are used to  
support the SCLK, SDI, SDO, and CS signals for SPI communications.  
Processor SPI Bus: for reading all  
data from MPU and for configuring  
MPU  
Interrupt  
INT  
Status  
Register  
nCS  
/CS  
ITG-3400  
SDO  
SDI  
Slave I2C  
or SPI  
Serial  
Interface  
System  
Processor  
SCLK  
SDI  
SCLK  
SDO  
FIFO  
Config  
Register  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
PLLFILT  
Figure 7 ITG-3400 Solution Using SPI Interface  
4.8 Clocking  
The ITG-3400 has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the  
internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and  
various control circuits and registers. An on-chip PLL provides flexibility in the allowable inputs for  
generating this clock.  
Allowable internal sources for generating the internal clock are:  
An internal relaxation oscillator  
Any of the X, Y, or Z gyros (MEMS oscillators with a variation of ±1% over temperature)  
Selection of the source for generating the internal synchronous clock depends on the requirements for power  
consumption and clock accuracy. These requirements will most likely vary by mode of operation.  
There are also start-up conditions to consider. When the ITG-3400 first starts up, the device uses its internal  
clock until programmed to operate from another source. This allows the user, for example, to wait for the  
MEMS oscillators to stabilize before they are selected as the clock source.  
4.9 Sensor Data Registers  
The sensor data registers contain the latest gyro, auxiliary sensor, and temperature measurement data.  
They are read-only registers, and are accessed via the serial interface. Data from these registers may be  
read anytime.  
20 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
4.10 FIFO  
The ITG-3400 contains a 4096-byte FIFO register that is accessible via the Serial Interface. The FIFO  
configuration register determines which data is written into the FIFO. Possible choices include gyro data,  
temperature readings, auxiliary sensor readings, and SYNC input. A FIFO counter keeps track of how many  
bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function  
may be used to determine when new data is available.  
For further information regarding the FIFO, please refer to the ITG-3400 Register Map and Register  
Descriptions document.  
4.11 Interrupts  
Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include  
the INT pin configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that  
can trigger an interrupt are (1) Clock generator locked to new reference oscillator (used when switching clock  
sources); and (2) new data is available to be read (from the FIFO and Data registers). The interrupt status  
can be read from the Interrupt Status register.  
For further information regarding interrupts, please refer to the ITG-3400 Register Map and Register  
Descriptions document.  
4.12 Digital-Output Temperature Sensor  
An on-chip temperature sensor and ADC are used to measure the ITG-3400 die temperature. The readings  
from the ADC can be read from the FIFO or the Sensor Data registers.  
4.13 Bias and LDOs  
The bias and LDO section generates the internal supply and the reference voltages and currents required by  
the ITG-3400. Its two inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO  
output is bypassed by a capacitor at PLLFILT. For further details on the capacitor, please refer to the Bill of  
Materials for External Components.  
4.14 Charge Pump  
An on-chip charge pump generates the high voltage required for the MEMS oscillators.  
4.15 Standard Power Modes  
The following table lists the user-accessible power modes for ITG-3400.  
Mode  
Name  
Gyro  
Off  
1
2
5
Sleep Mode  
Standby Mode  
Gyroscope Mode  
Drive On  
On  
21 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
Table 10 Standard Power Modes for ITG-3400  
Notes:  
1. Power consumption for individual modes can be found in section 3.2.1.  
22 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
5
Programmable Interrupts  
The ITG-3400 has a programmable interrupt system which can generate an interrupt signal on the INT pin.  
Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually.  
Interrupt Name  
Module  
FIFO Overflow  
FIFO  
Data Ready  
Sensor Registers  
I2C Master  
I2C Master  
I2C Master errors: Lost Arbitration, NACKs  
I2C Slave 4  
Table 11 Table of Interrupt Sources  
For information regarding the interrupt enable/disable registers and flag registers, please refer to the ITG-  
3400 Register Map and Register Descriptions document. Some interrupt sources are explained below.  
23 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
6
Digital Interface  
6.1 I2C and SPI Serial Interfaces  
The internal registers and memory of the ITG-3400 can be accessed using either I2C at 400 kHz or SPI at  
1MHz. SPI operates in four-wire mode.  
Pin Number  
Pin Name  
VDDIO  
Pin Description  
8
9
Digital I/O supply voltage.  
AD0 / SDO  
SCL / SCLK  
SDA / SDI  
I2C Slave Address LSB (AD0); SPI serial data output (SDO)  
I2C serial clock (SCL); SPI serial clock (SCLK)  
I2C serial data (SDA); SPI serial data input (SDI)  
23  
24  
Table 12 Serial Interface  
Note:  
To prevent switching into I2C mode when using SPI, the I2C interface should be disabled by setting the  
I2C_IF_DIS configuration bit. Setting this bit should be performed immediately after waiting for the time  
specified by the “Start-Up Time for Register Read/Write” in Section 6.3.  
For further information regarding the I2C_IF_DIS bit, please refer to the ITG-3400 Register Map and Register  
Descriptions document.  
6.2 I2C Interface  
I2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the  
lines are open-drain and bi-directional. In a generalized I2C interface implementation, attached devices can  
be a master or a slave. The master device puts the slave address on the bus, and the slave device with the  
matching address acknowledges the master.  
The ITG-3400 always operates as a slave device when communicating to the system processor, which thus  
acts as the master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is  
400 kHz.  
The slave address of the ITG-3400 is b110111X which is 7 bits long. The LSB bit of the 7 bit address is  
determined by the logic level on pin AD0. This allows two ITG-3400s to be connected to the same I2C bus.  
When used in this configuration, the address of the one of the devices should be b1101110 (pin AD0 is logic  
low) and the address of the other should be b1101111 (pin AD0 is logic high).  
6.3 I2C Communications Protocol  
START (S) and STOP (P) Conditions  
Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is  
defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is  
considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to  
HIGH transition on the SDA line while SCL is HIGH (see figure below).  
Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.  
24 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
SDA  
SCL  
S
P
START condition  
STOP condition  
Figure 9 START and STOP Conditions  
Data Format / Acknowledge  
I2C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per  
data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the  
acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal  
by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.  
If a slave is busy and cannot transmit or receive another byte of data until some other task has been  
performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes  
when the slave is ready, and releases the clock line (refer to the following figure).  
DATA OUTPUT BY  
TRANSMITTER (SDA)  
not acknowledge  
DATA OUTPUT BY  
RECEIVER (SDA)  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
clock pulse for  
acknowledgement  
START  
condition  
Figure 10 Acknowledge on the I2C Bus  
25 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
Communications  
After beginning communications with the START condition (S), the master sends a 7-bit slave address  
followed by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from  
or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge  
signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To  
acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line.  
Data transmission is always terminated by the master with a STOP condition (P), thus freeing the  
communications line. However, the master can generate a repeated START condition (Sr), and address  
another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while  
SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the  
exception of start and stop conditions.  
SDA  
SCL  
1 7  
8
9
1 7  
8
9
1 7  
8
9
S
P
START  
STOP  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
condition  
condition  
Figure 11 Complete I2C Data Transfer  
To write the internal ITG-3400 registers, the master transmits the start condition (S), followed by the I2C  
address and the write bit (0). At the 9th clock cycle (when the clock is high), the ITG-3400 acknowledges the  
transfer. Then the master puts the register address (RA) on the bus. After the ITG-3400 acknowledges the  
reception of the register address, the master puts the register data onto the bus. This is followed by the ACK  
signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last  
ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the  
ITG-3400 automatically increments the register address and loads the data to the appropriate register. The  
following figures show single and two-byte write sequences.  
Single-Byte Write Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
Burst Write Sequence  
Master  
Slave  
S
AD+W  
DATA  
P
ACK  
26 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
To read the internal ITG-3400 registers, the master sends a start condition, followed by the I2C address and  
a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the  
ITG-3400, the master transmits a start signal followed by the slave address and read bit. As a result, the  
ITG-3400 sends an ACK signal and the data. The communication ends with a not acknowledge (NACK)  
signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the  
9th clock cycle. The following figures show single and two-byte read sequences.  
Single-Byte Read Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
S
S
AD+R  
AD+R  
NACK  
ACK  
P
ACK  
ACK  
ACK  
ACK  
ACK DATA  
ACK DATA  
Burst Read Sequence  
Master  
Slave  
S
AD+W  
NACK  
P
DATA  
6.4 I2C Terms  
Signal Description  
S
AD  
W
Start Condition: SDA goes from high to low while SCL is high  
Slave I2C address  
Write bit (0)  
R
Read bit (1)  
ACK  
Acknowledge: SDA line is low while the SCL line is high at the  
9th clock cycle  
NACK Not-Acknowledge: SDA line stays high at the 9th clock cycle  
RA  
DATA  
P
ITG-3400 internal register address  
Transmit or received data  
Stop condition: SDA going from low to high while SCL is high  
Table 13 I2C Terms  
27 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
6.5 SPI Interface  
SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The ITG-3400  
always operates as a Slave device during standard Master-Slave SPI operation.  
With respect to the Master, the Serial Clock output (SCLK), the Serial Data Output (SDO) and the Serial  
Data Input (SDI) are shared among the Slave devices. Each SPI slave device requires its own Chip Select  
(CS) line from the master.  
CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line  
is active at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-  
selected slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state  
so that they do not interfere with any active devices.  
SPI Operational Features  
1. Data is delivered MSB first and LSB last  
2. Data is latched on the rising edge of SCLK  
3. Data should be transitioned on the falling edge of SCLK  
4. The maximum frequency of SCLK is 1MHz  
5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The  
first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first  
bit of the first byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation.  
The following 7 bits contain the Register Address. In cases of multiple-byte Read/Writes, data is  
two or more bytes:  
SPI Address format  
MSB  
LSB  
R/W A6 A5 A4 A3 A2 A1  
A0  
SPI Data format  
MSB  
LSB  
D7  
D6 D5 D4 D3 D2 D1  
D0  
6. Supports Single or Burst Read/Writes.  
SCLK  
SDI  
SPI Master  
SPI Slave 1  
SDO  
/CS  
/CS1  
/CS2  
SCLK  
SDI  
SDO  
/CS  
SPI Slave 2  
Figure 12 Typical SPI Master / Slave Configuration  
28 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
7
Serial Interface Considerations  
7.1 ITG-3400 Supported Interfaces  
The ITG-3400 supports I2C communications on its serial interface.  
The ITG-3400’s I/O logic levels are set to be VDDIO.  
The figure below depicts a sample circuit of ITG-3400. It shows the relevant logic levels and voltage  
connections.  
VDDIO  
VDD_IO  
(0V - VDDIO)  
SYSTEM BUS  
System  
Processor IO  
VDD  
VDDIO  
(0V - VDDIO)  
VDD  
INT  
(0V - VDDIO)  
(0V - VDDIO)  
SDA  
SCL  
(0V - VDDIO)  
FSYNC  
VDDIO  
ITG-3400  
VDDIO  
(0V, VDDIO)  
AD0  
Figure 13 I/O Levels and Connections  
29 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
8
Assembly  
This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems  
(MEMS) gyros packaged in QFN package.  
8.1  
Orientation of Axes  
The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1  
identifier () in the figure.  
+Z  
+Y  
+Z  
I
T
+Y  
G
-
3
4
0
0
+X  
+X  
Figure 14 Orientation of Axes of Sensitivity and Polarity of Rotation  
30 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
8.2  
Package Dimensions  
24 Lead QFN (3x3x0.9) mm NiPdAu Lead-frame finish  
DIMENSIONS IN  
MILLIMETERS  
SYMBOLS  
DESCRIPTION  
MIN  
NOM  
MAX  
A
A1  
b
c
D
D2  
E
E2  
e
f (e-b)  
K
L
R
R’  
R’’  
s
Package thickness  
0.85  
0.00  
0.15  
---  
2.90  
1.65  
2.90  
1.49  
---  
0.90  
0.02  
0.20  
0.95  
0.05  
0.25  
---  
3.10  
1.75  
3.10  
1.59  
---  
0.25  
---  
0.35  
---  
Lead finger (pad) seating height  
Lead finger (pad) width  
Lead frame (pad) height  
Package width  
0.20 REF  
3.00  
Exposed pad width  
Package length  
1.70  
3.00  
1.54  
0.40  
Exposed pad length  
Lead finger-finger (pad-pad) pitch  
Lead-lead (Pad-Pad) space  
Lead (pad) to Exposed Pad Space  
Lead (pad) length  
0.15  
---  
0.20  
0.35 REF  
0.30  
0.25  
0.075  
0.10  
0.10  
---  
Lead (pad) corner radius  
REF  
0.11  
0.11  
Corner lead (pad) outer radius  
Corner lead (pad) inner radius  
Corner lead-lead (pad-pad) spacing  
Lead conformality  
0.12  
0.12  
---  
0.25 REF  
---  
y
0.00  
0.075  
31 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
8.3 PCB Design Guidelines  
The PCB Diagram using a JEDEC type extension with solder rising on the outer edge is shown below. The  
PCB Dimensions Table shows pad sizing (nominal dimensions) recommended for the ITG-3400 product.  
JEDEC type extension with solder rising on outer edge  
SYMBOLS  
DIMENSIONS IN MILLIMETERS  
Nominal Package I/O Pad (Land) Dimensions  
Lead (pad) pitch, land pitch  
Lead (pad) width  
NOM  
e
b
0.40  
0.20  
0.30  
3.00  
3.00  
1.70  
1.54  
L
Lead (pad) length  
D
Package width  
E
Package length  
D2  
E2  
Exposed pad finger width  
Exposed pad finger length  
I/O Land Design Dimensions (Guidelines)  
I/O land finger extent width  
I/O land finger extent length  
Land width  
D3  
E3  
c
3.80  
3.80  
0.30  
0.40  
0.05  
0.70  
0.15  
0.30  
Tout  
Tin  
L1  
s
Outward extension (land beyond pad)  
Inward extension (land beyond pad)  
Land length  
Corner land spacing  
x
Silkscreen corner marker length  
PCB Dimensions Table (for PCB Lay-out Diagram)  
Note: The symbols used in the two tables above do not necessarily refer to the same physical dimension. For example the symbols “c”  
and “s” represent different parameters in the two tables.  
32 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
8.4  
Assembly Precautions  
8.4.1 Gyroscope Surface Mount Guidelines  
InvenSense MEMS Gyros sense rate of rotation. In addition, gyroscopes sense mechanical stress coming  
from the printed circuit board (PCB). This PCB stress can be minimized by adhering to certain design rules:  
When using MEMS gyroscope components in plastic packages, PCB mounting and assembly can cause  
package stress. This package stress in turn can affect the output offset and its value over a wide range of  
temperatures. This stress is caused by the mismatch between the Coefficient of Linear Thermal Expansion  
(CTE) of the package material and the PCB. Care must be taken to avoid package stress due to mounting.  
Traces connected to pads should be as symmetric as possible. Maximizing symmetry and balance for pad  
connection will help component self alignment and will lead to better control of solder paste reduction after  
reflow.  
Any material used in the surface mount assembly process of the MEMS gyroscope should be free of  
restricted RoHS elements or compounds. Pb-free solders should be used for assembly.  
8.4.2 Exposed Die Pad Precautions  
The ITG-3400 has very low active and standby current consumption. There is no electrical connection  
between the exposed die pad and the internal CMOS circuits. The exposed die pad is not required for heat-  
sinking, and should not be soldered to the PCB. Underfill is also not recommended. Soldering or adding  
underfill to the e-pad can induce performance changes due to package thermo-mechanical stress.  
8.4.3 Trace Routing  
Routing traces or vias under the gyro package such that they run under the exposed die pad is prohibited.  
Routed active signals may harmonically couple with the gyro MEMS devices, compromising gyro response.  
The gyro drive frequency is 25 29 KHz. To avoid harmonic coupling don’t route active signals in non-  
shielded signal planes directly below, or above the gyro package. Note: For best performance, design a  
ground plane under the e-pad to reduce PCB signal noise from the board on which the gyro device is  
mounted. If the gyro device is stacked under another PCB board, design a ground plane directly above the  
gyro device to shield active signals from the PCB board mounted above.  
8.4.4 Component Placement  
Do not place large insertion components such as keyboard or similar buttons, connectors, or shielding boxes  
at a distance of less than 6 mm from the MEMS gyro. Maintain generally accepted industry design practices  
for component placement near the ITG-3400 to prevent noise coupling and thermo-mechanical stress.  
8.4.5 PCB Mounting and Cross-Axis Sensitivity  
Orientation errors of the gyroscope mounted to the printed circuit board can cause cross-axis sensitivity in  
which one gyro sense axis responds to rotation about an orthogonal axis. For example, the X-gyro sense  
axis may respond to rotation about the Y or Z axes. The orientation mounting errors are illustrated in the  
figure below.  
33 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
Z
Φ
Y
I
T
G
-
3
4
0
0
X
Θ
Package Gyro & Accel Axes (  
) Relative to PCB Axes (  
) with Orientation Errors (Θ and Φ)  
The table below shows the cross-axis sensitivity as a percentage of the gyroscope’s sensitivity for a given  
orientation error, respectively.  
Cross-Axis Sensitivity vs. Orientation Error  
Orientation Error  
Cross-Axis Sensitivity  
(θ or Φ)  
(sinθ or sinΦ)  
0º  
0.5º  
1º  
0%  
0.87%  
1.75%  
The specifications for cross-axis sensitivity in Section 3.1 includes the effect of the die orientation error with  
respect to the package.  
8.4.6 MEMS Handling Instructions  
MEMS (Micro Electro-Mechanical Systems) are a time-proven, robust technology used in hundreds of  
millions of consumer, automotive and industrial products. MEMS devices consist of microscopic moving  
mechanical structures. They differ from conventional IC products, even though they can be found in similar  
packages. Therefore, MEMS devices require different handling precautions than conventional ICs prior to  
mounting onto printed circuit boards (PCBs).  
The ITG-3400 has been qualified to a shock tolerance of 10,000g. InvenSense packages its gyroscopes as it  
deems proper for protection against normal handling and shipping. It recommends the following handling  
precautions to prevent potential damage.  
Do not drop individually packaged gyroscopes, or trays of gyroscopes onto hard surfaces. Components  
placed in trays could be subject to g-forces in excess of 10,000g if dropped.  
Printed circuit boards that incorporate mounted gyroscopes should not be separated by manually  
snapping apart. This could also create g-forces in excess of 10,000g.  
Do not clean MEMS gyroscopes in ultrasonic baths. Ultrasonic baths can induce MEMS damage if the  
bath energy causes excessive drive motion through resonant frequency coupling.  
34 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
8.4.7 ESD Considerations  
Establish and use ESD-safe handling precautions when unpacking and handling ESD-sensitive devices.  
Store ESD sensitive devices in ESD safe containers until ready for use, such as the original moisture  
sealed bags, until ready for assembly.  
Restrict all device handling to ESD protected work areas that measure less than 200V static charge.  
Ensure that all workstations and personnel are properly grounded to prevent ESD.  
8.4.8 Reflow Specification  
Qualification Reflow: The ITG-3400 was qualified in accordance with IPC/JEDEC J-STD-020D.1. This  
standard classifies proper packaging, storage and handling in order to avoid subsequent thermal and  
mechanical damage during the solder reflow attachment phase of PCB assembly.  
The qualification preconditioning process specifies a sequence consisting of a bake cycle, a moisture soak  
cycle (in a temperature humidity oven), and three consecutive solder reflow cycles, followed by functional  
device testing.  
The peak solder reflow classification temperature requirement for package qualification is (260 +5/-0°C) for  
lead-free soldering of components measuring less than 1.6 mm in thickness. The qualification profile and a  
table explaining the set-points are shown below:  
SOLDER REFLOW PROFILE FOR QUALIFICATION  
LEAD-FREE IR/CONVECTION  
F
TPmax  
TPmin  
E
G
10-30sec  
H
D
TLiquidus  
Tsmax  
C
Liquidus  
60-120sec  
Tramp-up  
( < 3 C/sec)  
B
I
Tramp-down  
( < 4 C/sec)  
Tsmin  
Preheat  
60-120sec  
Troom-Pmax  
(< 480sec)  
A
Time [Seconds]  
35 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
Temperature Set Points Corresponding to Reflow Profile Above  
CONSTRAINTS  
Step Setting  
Temp (°C)  
Time (sec)  
Max. Rate (°C/sec)  
A
B
C
D
Troom  
TSmin  
TSmax  
TLiquidus  
25  
150  
200  
217  
60 < tBC < 120  
r(TLiquidus-TPmax) < 3  
r(TLiquidus-TPmax) < 3  
r(TLiquidus-TPmax) < 3  
r(TPmax-TLiquidus) < 4  
E
TPmin  
255  
[255°C, 260°C]  
F
G
TPmax  
TPmin  
260  
255  
tAF < 480  
10< tEG < 30  
[ 260°C, 265°C]  
[255°C, 260°C]  
H
I
TLiquidus  
Troom  
217  
25  
60 < tDH < 120  
Notes: Customers must never exceed the Classification temperature (TPmax = 260°C).  
All temperatures refer to the topside of the QFN package, as measured on the package body surface.  
Production Reflow: Check the recommendations of your solder manufacturer. For optimum results, use  
lead-free solders that have lower specified temperature profiles (Tpmax ~ 235°C). Also use lower ramp-up and  
ramp-down rates than those used in the qualification profile. Never exceed the maximum conditions that we  
used for qualification, as these represent the maximum tolerable ratings for the device.  
8.5  
Storage Specifications  
The storage specification of the ITG-3400 conforms to IPC/JEDEC J-STD-020D.1 Moisture Sensitivity Level  
(MSL) 3.  
Calculated shelf-life in moisture-sealed bag 12 months -- Storage conditions: <40°C and <90% RH  
After opening moisture-sealed bag  
168hours -- Storage conditions: ambient ≤30°C at 60%RH  
8.6  
Package Marking Specification  
TOP VIEW  
INVENSENSE  
IT34  
Part Number  
XXXXXX-XX  
XYYWWX  
Lot Traceability Code  
Rev Code  
Package Vendor Code  
YY = Year Code  
WW = Work Week  
Package Marking Specification  
36 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
8.7  
Tape & Reel Specification  
Tape Dimensions  
Reel Outline Drawing  
Reel Dimensions and Package Size  
PACKAGE  
REEL (mm)  
SIZE  
3x3  
L
V
W
Z
330  
102  
12.8  
2.3  
37 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
Package Orientation  
User Direction  
of Feed  
Pin 1  
INVENSENSE  
INVENSENSE  
Cover Tape  
(Anti-Static)  
Carrier Tape  
(Anti-Static)  
Reel  
Terminal Tape  
Label  
Tape and Reel Specification  
Reel Specifications  
Quantity Per Reel  
Reels per Box  
5,000  
1
5
Boxes Per Carton (max)  
Pcs/Carton (max)  
25,000  
8.8  
Label  
InvenSense  
Pb-free  
category (e4) HF  
REEL QTY (Q): 5000  
QTY (Q): 615  
ITG-3400  
DEVICE (1P):
PO: HUB  
LOT1 (1T): Q2R994-F1  
LOT2 (1T): Q3X785-G1  
Reel Date: 28/04/12  
D/C (D): 1204  
D/C (D): 1207  
QTY (Q): 4385  
QC STAMP:  
Barcode Label  
Location of Label on Reel  
38 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
8.9  
Packaging  
REEL with Barcode &  
Vacuum-Sealed Moisture  
Barrier Bag with ESD, MSL3,  
Caution, and Barcode Labels  
MSL3 Label  
Caution labels  
Caution Label  
ESD Label  
Inner Bubble Wrap  
Pizza Box  
Pizza Boxes Placed in Foam-  
Lined Shipper Box  
Outer Shipper Label  
39 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
8.10 Representative Shipping Carton Label  
INV. NO:  
111013-99  
From:  
Ship To:  
Customer Name  
Street Address  
InvenSense Taiwan, Ltd.  
1F, 9 Prosperity 1st Road, Hsinchu Science  
Park, HsinChu City, 30078, Taiwan  
TEL: +886 3 6686999  
City, State, Country  
ZIP  
Attn: Buyer Name  
Phone: Buyer Phone Number  
FAX: +886 3 6686777  
SUPP PROD ID:  
ITG  
-
3
4
0
0
LOT#: Q2R994-F1  
QTY: 5615  
LOT#:  
QTY:  
LOT#:  
QTY:  
LOT#:  
QTY:  
LOT#:  
QTY:  
0
0
0
0
LOT#: Q3X785-G1  
QTY: 4385  
LOT#: Q3Y196-02  
QTY: 5000  
LOT#:  
QTY:  
0
Total Quantity/Carton  
15000  
Weight: (KG)  
4.05  
Shipping Carton:  
Pb-free  
Category (e4) HF  
1
3
OF  
40 of 41  
Document Number: PS-ITG-3400A-00  
Revision: 1.0  
Release Date: 12/24/2013  
ITG-3400 Product Specification  
9
Environmental Compliance  
The ITG-3400 is RoHS and Green compliant.  
The ITG-3400 is in full environmental compliance as evidenced in report HS-ITG-3400A, Materials  
Declaration Data Sheet.  
Environmental Declaration Disclaimer:  
InvenSense believes this environmental information to be correct but cannot guarantee accuracy or completeness. Conformity  
documents for the above component constitutes are on file. InvenSense subcontracts manufacturing and the information contained  
herein is based on data received from vendors and suppliers, which has not been validated by InvenSense.  
This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense  
for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to  
change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to  
improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding  
the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising  
from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited  
to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by  
implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information  
previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors  
should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for  
any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment,  
transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime  
prevention equipment.  
©2013 InvenSense, Inc. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion,  
MotionApps, DMP, and the InvenSense logo are trademarks of InvenSense, Inc. Other company and product names may be  
trademarks of the respective companies with which they are associated.  
©2013 InvenSense, Inc. All rights reserved.  
41 of 41  

相关型号:

ITG-3701

陀螺仪
TDK

ITG3205

first single-chip, digital-output, 3-axis MEMS gyro IC optimized for gaming, 3D mice
TDK

ITGG08A18PW

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18PX

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18PY

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18PZ

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18YW

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18YX

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18YY

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18YZ

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A20PW

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A20PX

90° Plug Connector with Accessory Backshell
GLENAIR