ITG3205 [TDK]

first single-chip, digital-output, 3-axis MEMS gyro IC optimized for gaming, 3D mice;
ITG3205
型号: ITG3205
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

first single-chip, digital-output, 3-axis MEMS gyro IC optimized for gaming, 3D mice

文件: 总38页 (文件大小:1131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
InvenSense Inc.  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
1197 Borregas Ave, Sunnyvale, CA 94089 U.S.A.  
Tel: +1 (408) 988-7339 Fax: +1 (408) 988-8104  
Website: www.invensense.com  
ITG-3205  
Product Specification  
Revision 1.0  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
CONTENTS  
1
DOCUMENT INFORMATION.............................................................................................................................. 4  
1.1  
REVISION HISTORY ............................................................................................................................................. 4  
PURPOSE AND SCOPE........................................................................................................................................... 5  
PRODUCT OVERVIEW .......................................................................................................................................... 5  
APPLICATIONS..................................................................................................................................................... 5  
1.2  
1.3  
1.4  
2
3
FEATURES............................................................................................................................................................... 6  
ELECTRICAL CHARACTERISTICS.................................................................................................................. 7  
3.1  
SENSOR SPECIFICATIONS..................................................................................................................................... 7  
ELECTRICAL SPECIFICATIONS.............................................................................................................................. 8  
ELECTRICAL SPECIFICATIONS, CONTINUED ......................................................................................................... 9  
ELECTRICAL SPECIFICATIONS, CONTINUED ....................................................................................................... 10  
I2C TIMING CHARACTERIZATION ...................................................................................................................... 11  
ABSOLUTE MAXIMUM RATINGS........................................................................................................................ 12  
3.2  
3.3  
3.4  
3.5  
3.6  
4
5
APPLICATIONS INFORMATION ..................................................................................................................... 13  
4.1  
PIN OUT AND SIGNAL DESCRIPTION.................................................................................................................. 13  
TYPICAL OPERATING CIRCUIT........................................................................................................................... 14  
BILL OF MATERIALS FOR EXTERNAL COMPONENTS .......................................................................................... 14  
RECOMMENDED POWER-ON PROCEDURE.......................................................................................................... 15  
4.2  
4.3  
4.4  
FUNCTIONAL OVERVIEW................................................................................................................................ 16  
5.1  
BLOCK DIAGRAM .............................................................................................................................................. 16  
OVERVIEW ........................................................................................................................................................ 16  
THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING......................................... 16  
I2C SERIAL COMMUNICATIONS INTERFACE ....................................................................................................... 17  
CLOCKING ......................................................................................................................................................... 17  
SENSOR DATA REGISTERS................................................................................................................................. 17  
INTERRUPTS ...................................................................................................................................................... 17  
DIGITAL-OUTPUT TEMPERATURE SENSOR ........................................................................................................ 17  
BIAS AND LDO.................................................................................................................................................. 17  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.10 CHARGE PUMP .................................................................................................................................................. 17  
6
DIGITAL INTERFACE ........................................................................................................................................ 18  
6.1  
I2C SERIAL INTERFACE...................................................................................................................................... 18  
7
8
REGISTER MAP ................................................................................................................................................... 22  
REGISTER DESCRIPTION................................................................................................................................. 23  
8.1  
REGISTER 0 – WHO AM I................................................................................................................................... 23  
REGISTER 21 – SAMPLE RATE DIVIDER............................................................................................................. 23  
REGISTER 22 – DLPF, FULL SCALE................................................................................................................... 24  
REGISTER 23 – INTERRUPT CONFIGURATION..................................................................................................... 26  
REGISTER 26 – INTERRUPT STATUS................................................................................................................... 26  
REGISTERS 27 TO 34 – SENSOR REGISTERS ....................................................................................................... 27  
REGISTER 62 – POWER MANAGEMENT.............................................................................................................. 27  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
9
ASSEMBLY............................................................................................................................................................ 29  
9.1  
ORIENTATION.................................................................................................................................................... 29  
PACKAGE DIMENSIONS...................................................................................................................................... 30  
PACKAGE MARKING SPECIFICATION ................................................................................................................. 31  
TAPE & REEL SPECIFICATION............................................................................................................................ 31  
9.2  
9.3  
9.4  
2 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
9.5  
9.6  
9.7  
9.8  
9.9  
LABEL ............................................................................................................................................................... 33  
PACKAGING....................................................................................................................................................... 33  
SOLDERING EXPOSED DIE PAD.......................................................................................................................... 34  
COMPONENT PLACEMENT ................................................................................................................................. 34  
PCB MOUNTING AND CROSS-AXIS SENSITIVITY............................................................................................... 34  
9.10 MEMS HANDLING INSTRUCTIONS .................................................................................................................... 35  
9.11 GYROSCOPE SURFACE MOUNT GUIDELINES...................................................................................................... 35  
9.12 REFLOW SPECIFICATION.................................................................................................................................... 35  
9.13 STORAGE SPECIFICATIONS ................................................................................................................................ 36  
10  
RELIABILITY ................................................................................................................................................... 37  
10.1 QUALIFICATION TEST POLICY ........................................................................................................................... 37  
10.2 QUALIFICATION TEST PLAN .............................................................................................................................. 37  
3 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
1
Document Information  
1.1 Revision History  
Revision Date  
Revision Description  
1.0 Initial Release  
08/16/10  
4 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
1.2 Purpose and Scope  
This document is a preliminary product specification, providing a description, specifications, and design related  
information for the ITG-3205TM  
Electrical characteristics are based upon simulation results and limited  
.
characterization data of advanced samples only. Specifications are subject to change without notice. Final  
specifications will be updated based upon characterization of final silicon.  
1.3 Product Overview  
The ITG-3205 is the world’s first single-chip, digital-output, 3-axis MEMS gyro IC optimized for gaming, 3D mice,  
and 3D remote control applications. The part features enhanced bias and sensitivity temperature stability, reducing the  
need for user calibration. Low frequency noise is lower than previous generation devices, simplifying application  
development and making for more-responsive remote controls.  
The ITG-3205 features three 16-bit analog-to-digital converters (ADCs) for digitizing the gyro outputs, a user-selectable  
internal low-pass filter bandwidth, and a Fast-Mode I2C (400kHz) interface. Additional features include an embedded  
temperature sensor and a 2% accurate internal oscillator. This breakthrough in gyroscope technology provides a  
dramatic 67% package size reduction, delivers a 50% power reduction, and has inherent cost advantages compared to  
competing multi-chip gyro solutions.  
By leveraging its patented and volume-proven Nasiri-Fabrication platform, which integrates MEMS wafers with  
companion CMOS electronics through wafer-level bonding, InvenSense has driven the ITG-3205 package size down to  
a revolutionary footprint of 4x4x0.9mm (QFN), while providing the highest performance, lowest noise, and the lowest  
cost semiconductor packaging required for handheld consumer electronic devices. The part features a robust 10,000g  
shock tolerance, as required by portable consumer equipment.  
For power supply flexibility, the ITG-3205 has a separate VLOGIC reference pin, in addition to its analog supply pin,  
VDD, which sets the logic levels of its I2C interface. The VLOGIC voltage may be anywhere from 1.71V min to VDD  
max.  
1.4 Applications  
Motion-enabled game controllers  
Motion-based portable gaming  
Motion-based 3D mice and 3D remote controls  
“No Touch” UI  
Health and sports monitoring  
5 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
2
Features  
The ITG-3205 triple-axis MEMS gyroscope includes a wide range of features:  
Digital-output X-, Y-, and Z-Axis angular rate sensors (gyros) on one integrated circuit with a sensitivity of  
14.375 LSBs per °/sec and a full-scale range of ±2000°/sec  
Three integrated 16-bit ADCs provide simultaneous sampling of gyros while requiring no external multiplexer  
Enhanced bias and sensitivity temperature stability reduces the need for user calibration  
Low frequency noise lower than previous generation devices, simplifying application development and making  
for more-responsive motion processing  
Digitally-programmable low-pass filter  
Low 6.5mA operating current consumption for long battery life  
Wide VDD supply voltage range of 2.1V to 3.6V  
Flexible VLOGIC reference voltage allows for I2C interface voltages from 1.71V to VDD  
Standby current: 5µA  
Smallest and thinnest package for portable devices (4x4x0.9mm QFN)  
No high pass filter needed  
Turn on time: 50ms  
Digital-output temperature sensor  
Factory calibrated scale factor  
10,000 g shock tolerant  
Fast Mode I2C (400kHz) serial interface  
On-chip timing generator clock frequency is accurate to +/-2% over full temperature range  
Optional external clock inputs of 32.768kHz or 19.2MHz to synchronize with system clock  
MEMS structure hermetically sealed and bonded at wafer level  
RoHS and Green compliant  
6 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
3
Electrical Characteristics  
3.1 Sensor Specifications  
Typical Operating Circuit of Section 4.2, VDD = 2.5V, VLOGIC = 1.71V to VDD, TA=25°C.  
Parameter  
Conditions  
Min  
Typical  
Max  
Unit  
Note  
GYRO SENSITIVITY  
Full-Scale Range  
FS_SEL=3  
±2000  
16  
º/s  
Bits  
4
3
3
1
2
Gyro ADC Word Length  
Sensitivity Scale Factor  
Sensitivity Scale Factor Tolerance  
FS_SEL=3  
25°C  
14.375  
LSB/(º/s)  
%
-6  
+6  
Sensitivity Scale Factor Variation Over  
Temperature  
0°C to 55°C  
±10  
%
Nonlinearity  
Best fit straight line; 25°C  
0.2  
2
%
%
6
6
Cross-Axis Sensitivity  
GYRO ZERO-RATE OUTPUT (ZRO)  
Initial ZRO Tolerance  
ZRO Variation Over Temperature  
±60  
±40  
0.2  
0.2  
4
º/s  
º/s  
1
2
5
5
5
6
0°C to 55°C  
Power-Supply Sensitivity (1-10Hz)  
Power-Supply Sensitivity (10 - 250Hz)  
Power-Supply Sensitivity (250Hz - 100kHz)  
Linear Acceleration Sensitivity  
Sine wave, 100mVpp; VDD=2.2V  
Sine wave, 100mVpp; VDD=2.2V  
Sine wave, 100mVpp; VDD=2.2V  
Static  
º/s  
º/s  
º/s  
0.1  
º/s/g  
GYRO NOISE PERFORMANCE  
FS_SEL=3  
1
Total RMS noise  
100Hz LPF (DLPFCFG=2)  
0.7  
º/s-rms  
GYRO MECHANICAL FREQUENCIES  
X-Axis  
30  
27  
24  
1.7  
33  
30  
27  
36  
33  
30  
kHz  
kHz  
kHz  
kHz  
1
1
1
1
Y-Axis  
Z-Axis  
Frequency Separation  
Between any two axes  
GYRO START-UP TIME  
ZRO Settling  
DLPFCFG=0  
to ±1º/s of Final  
50  
ms  
ºC  
6
2
TEMPERATURE SENSOR  
Range  
-30 to  
+5585  
Sensitivity  
280  
-13,200  
TBD  
±1  
LSB/ºC  
LSB  
°C  
2
1
Temperature Offset  
Initial Accuracy  
Linearity  
35oC  
35oC  
Best fit straight line (-30°C to  
+585°C)  
°C  
2, 5  
TEMPERATURE RANGE  
Specified Temperature Range  
0-40  
585  
ºC  
Notes:  
1. Tested in production  
2. Based on characterization of 30 pieces over temperature on evaluation board or in socket  
3. Based on design, through modeling and simulation across PVT  
4. Typical. Randomly selected part measured at room temperature on evaluation board or in socket  
5. Based on characterization of 5 pieces over temperature  
6. Tested on 5 parts at room temperature  
7 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
3.2 Electrical Specifications  
Typical Operating Circuit of Section 4.2, VDD = 2.5V, VLOGIC = 1.71V to VDD, TA=25°C.  
Parameters  
Conditions  
Min  
Typical  
Max  
Units  
Notes  
VDD POWER SUPPLY  
Operating Voltage Range  
Power-Supply Ramp Rate  
2.1  
0
3.6  
5
V
2
2
Monotonic ramp. Ramp rate  
is 10% to 90% of the final  
value (see Figure in Section  
4.4)  
ms  
Normal Operating Current  
Sleep Mode Current  
6.5  
5
mA  
µA  
1
5
VLOGIC REFERENCE  
VOLTAGE  
Voltage Range  
VLOGIC must be VDD at all  
times  
1.71  
VDD  
1
V
VLOGIC Ramp Rate  
Monotonic ramp. Ramp rate is  
10% to 90% of the final value  
(see Figure in Section 4.4)  
ms  
6
5
Normal Operating Current  
100  
20  
µA  
ms  
START-UP TIME FOR  
REGISTER READ/WRITE  
I2C ADDRESS  
AD0 = 0  
AD0 = 1  
1101000  
1101001  
6
6
DIGITAL INPUTS (AD0,  
CLKIN)  
VIH, High Level Input Voltage  
VIL, Low Level Input Voltage  
CI, Input Capacitance  
0.9*VLOGIC  
0.9*VLOGIC  
V
V
5
5
7
0.1*VLOGIC  
5
pF  
DIGITAL OUTPUT (INT)  
VOH, High Level Output Voltage  
VOL, Low Level Output Voltage  
OPEN=0, Rload=1M  
OPEN=0, Rload=1MΩ  
V
V
2
2
0.1*VLOGIC  
0.1  
VOL.INT1, INT Low-Level Output  
Voltage  
OPEN=1, 0.3mA sink current  
V
2
Output Leakage Current  
tINT, INT Pulse Width  
OPEN=1  
100  
50  
nA  
µs  
4
4
LATCH_INT_EN=0  
Notes:  
1. Tested in production  
2. Based on characterization of 30 pieces over temperature on evaluation board or in socket  
4. Typical. Randomly selected part measured at room temperature on evaluation board or in socket  
5. Based on characterization of 5 pieces over temperature  
6. Guaranteed by design  
8 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
3.3 Electrical Specifications, continued  
Typical Operating Circuit of Section 4.2, VDD = 2.5V, VLOGIC = 1.71V to VDD, TA=25°C.  
Parameters  
Conditions  
Typical  
Units  
Notes  
I2C I/O (SCL, SDA)  
VIL, LOW-Level Input Voltage  
VIH, HIGH-Level Input Voltage  
Vhys, Hysteresis  
-0.5 to 0.3*VLOGIC  
0.7*VLOGIC to VLOGIC + 0.5V  
0.1*VLOGIC  
V
V
V
V
2
2
2
2
2
2
4
VOL1, LOW-Level Output Voltage  
IOL, LOW-Level Output Current  
3mA sink current  
0 to 0.4  
VOL = 0.4V  
VOL = 0.6V  
3
6
mA  
mA  
Output Leakage Current  
100  
20+0.1Cb to 250  
10  
nA  
tof, Output Fall Time from VIHmax to  
VILmax  
Cb bus cap. in pF  
ns  
2
5
CI, Capacitance for Each I/O pin  
pF  
Notes:  
2. Based on characterization of 5 pieces over temperature.  
4. Typical. Randomly selected part measured at room temperature on evaluation board or in socket  
5. Guaranteed by design  
9 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
3.4 Electrical Specifications, continued  
Typical Operating Circuit of Section 4.2, VDD = 2.5V, VLOGIC = 1.71V to VDD, TA=25°C.  
Parameters  
Conditions  
Min  
Typical  
Max  
Units  
Notes  
INTERNAL CLOCK SOURCE  
CLKSEL=0, 1, 2, or 3  
Sample Rate, Fast  
DLPFCFG=0  
SAMPLERATEDIV = 0  
8
1
kHz  
kHz  
4
4
Sample Rate, Slow  
DLPFCFG=1,2,3,4,5, or 6  
SAMPLERATEDIV = 0  
Clock Frequency Initial Tolerance  
Frequency Variation over Temperature  
PLL Settling Time  
CLKSEL=0, 25°C  
CLKSEL=1,2,3; 25°C  
CLKSEL=0  
-5  
-1  
+5  
+1  
%
%
1
1
2
2
3
-15 to +10  
%
CLKSEL=1,2,3  
CLKSEL=1,2,3  
+/-1  
1
%
ms  
EXTERNAL 32.768kHz CLOCK  
External Clock Frequency  
External Clock Jitter  
CLKSEL=4  
32.768  
1 to 2  
8.192  
kHz  
µs  
3
3
3
Cycle-to-cycle rms  
Sample Rate, Fast  
DLPFCFG=0  
kHz  
SAMPLERATEDIV = 0  
Sample Rate, Slow  
DLPFCFG=1,2,3,4,5, or 6  
SAMPLERATEDIV = 0  
1.024  
1
kHz  
ms  
3
3
PLL Settling Time  
EXTERNAL 19.2MHz CLOCK  
External Clock Frequency  
Sample Rate, Fast  
CLKSEL=5  
19.2  
8
MHz  
kHz  
3
3
DLPFCFG=0  
SAMPLERATEDIV = 0  
Sample Rate, Slow  
PLL Settling Time  
DLPFCFG=1,2,3,4,5, or 6  
SAMPLERATEDIV = 0  
1
1
kHz  
ms  
3
3
Charge Pump Clock Frequency  
Frequency  
1st Stage, 25°C  
2nd Stage, 25°C  
Over temperature  
8.5  
68  
MHz  
MHz  
%
5
5
5
+/-15  
Notes:  
1. Tested in production  
2. Based on characterization of 30 pieces over temperature on evaluation board or in socket  
3. Based on design, through modeling and simulation across PVT  
4. Typical. Randomly selected part measured at room temperature on evaluation board or in socket  
5. Based on characterization of 5 pieces over temperature.  
10 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
3.5 I2C Timing Characterization  
Typical Operating Circuit of Section 4.2, VDD = 2.5V, VLOGIC = 1.8V±5%, 2.5V±5%, 3.0V±5%, or 3.3V±5%,  
TA=25°C.  
Parameters  
I2C TIMING  
Conditions  
I2C FAST-MODE  
Min  
Typical  
Max  
Units  
Notes  
fSCL, SCL Clock Frequency  
0
400  
kHz  
us  
1
1
tHD.STA, (Repeated) START Condition Hold Time  
0.6  
tLOW, SCL Low Period  
1.3  
0.6  
0.6  
us  
us  
us  
1
1
1
tHIGH, SCL High Period  
tSU.STA, Repeated START Condition Setup Time  
tHD.DAT, SDA Data Hold Time  
tSU.DAT, SDA Data Setup Time  
tr, SDA and SCL Rise Time  
tf, SDA and SCL Fall Time  
0
us  
ns  
ns  
ns  
us  
1
1
1
1
1
100  
Cb bus cap. from 10 to 400pF  
Cb bus cap. from 10 to 400pF  
20+0.1Cb  
20+0.1Cb  
0.6  
300  
300  
tSU.STO, STOP Condition Setup Time  
tBUF, Bus Free Time Between STOP and START  
Condition  
1.3  
us  
1
Cb, Capacitive Load for each Bus Line  
tVD.DAT, Data Valid Time  
400  
0.9  
0.9  
pF  
us  
us  
2
1
1
tVD.ACK, Data Valid Acknowledge Time  
Notes:  
1. Based on characterization of 5 pieces over temperature on evaluation board or in socket  
2. Guaranteed by design  
I2C Bus Timing Diagram  
11 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
3.6 Absolute Maximum Ratings  
Stresses above those listed as “Absolute Maximum Ratings” may cause permanent damage to the device. These are  
stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute  
maximum ratings conditions for extended periods may affect device reliability.  
Absolute Maximum Ratings  
Parameter  
Rating  
Supply Voltage, VDD  
-0.5V to +6V  
VLOGIC Input Voltage Level  
REGOUT  
-0.5V to VDD + 0.5V  
-0.5V to 2V  
Input Voltage Level (CLKIN, AD0)  
SCL, SDA, INT  
-0.5V to VDD + 0.5V  
-0.5V to VLOGIC + 0.5V  
-0.5V to 30V  
CPOUT (2.1V VDD 3.6V )  
Acceleration (Any Axis, unpowered)  
Operating Temperature Range  
Storage Temperature Range  
10,000g for 0.3ms  
0°C to +55°C  
-40°C to +125°C  
1.5kV (HBM);  
200V (MM)  
Electrostatic Discharge (ESD) Protection  
Latch-up  
±60mA @ 125°C  
JEDEC Condition “B”  
12 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
4
Applications Information  
4.1 Pin Out and Signal Description  
Number  
Pin  
CLKIN  
VLOGIC  
AD0  
Pin Description  
1
Optional external reference clock input. Connect to GND if unused.  
Digital IO supply voltage. VLOGIC must be VDD at all times.  
I2C Slave Address LSB  
8
9
10  
REGOUT  
INT  
Regulator filter capacitor connection  
Interrupt digital output (totem pole or open-drain)  
Power supply voltage  
12  
13  
VDD  
18  
GND  
Power supply ground  
11  
RESV-G  
RESV  
CPOUT  
SCL  
Reserved - Connect to ground.  
6, 7, 19, 21, 22  
Reserved. Do not connect.  
20  
Charge pump capacitor connection  
I2C serial clock  
23  
24  
SDA  
I2C serial data  
2, 3, 4, 5, 14, 15, 16, 17  
NC  
Not internally connected. May be used for PCB trace routing.  
Top View  
24 23 22 21 20 19  
CLKIN  
NC  
1
2
3
4
5
6
18 GND  
17 NC  
16 NC  
15 NC  
14 NC  
13 VDD  
+Z  
+Y  
NC  
ITG-3205  
NC  
NC  
+X  
RESV  
7
8
9
10 11 12  
QFN Package  
24-pin, 4mm x 4mm x 0.9mm  
Orientation of Axes of Sensitivity  
and Polarity of Rotation  
13 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
4.2 Typical Operating Circuit  
4.3 Bill of Materials for External Components  
Component  
Label Specification  
Quantity  
Charge Pump Capacitor  
VDD Bypass Capacitor  
Regulator Filter Capacitor  
VLOGIC Bypass Capacitor  
C1  
C2  
C3  
C4  
Ceramic, X7R, 2.2nF ±10%, 50V  
1
1
1
1
Ceramic, X7R, 0.1µF ±10%, 4V  
Ceramic, X7R, 0.1µF ±10%, 2V  
Ceramic, X7R, 10nF ±10%, 4V  
14 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
4.4 Recommended Power-On Procedure  
Power-Up Sequencing  
1. TVDDR is VDD rise time: Time for VDD to  
rise from 10% to 90% of its final value  
TVDDR  
10%  
2. TVDDR is 5msec  
90%  
10%  
3. TVLGR is VLOGIC rise time: Time for  
VLOGIC to rise from 10% to 90% of its  
final value  
VDD  
TVLGR  
90%  
4. TVLGR is 1msec  
5. TVLG-VDD is the delay from the start of  
VDD ramp to the start of VLOGIC rise  
6. TVLG-VDD is 0 to 20msec but VLOGIC  
amplitude must always be VDD  
amplitude  
VLOGIC  
TVLG - VDD  
7. VDD and VLOGIC must be monotonic  
ramps  
15 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
5
Functional Overview  
5.1 Block Diagram  
Optional  
ITG-3205  
1
Clock  
ADC  
ADC  
CLKIN  
CLOCK  
X Gyro  
Y Gyro  
Interrupt  
Status  
Register  
12  
Interrupt  
INT  
Signal  
Conditioning  
9
23  
24  
Config  
Register  
AD0  
SCL  
SDA  
I2C Serial  
Interface  
Signal  
Conditioning  
Sensor  
Register  
Signal  
Conditioning  
Z Gyro  
ADC  
FIFO  
Temp  
Sensor  
ADC  
Factory Cal  
Charge  
Pump  
Bias & LDO  
18  
VLOGIC GND  
20  
13  
VDD  
8
10  
CPOUT  
REGOUT  
5.2 Overview  
The ITG-3205 consists of the following key blocks and functions:  
Three-axis MEMS rate gyroscope sensors with individual 16-bit ADCs and signal conditioning  
I2C serial communications interface  
Clocking  
Sensor Data Registers  
Interrupts  
Digital-Output Temperature Sensor  
Bias and LDO  
Charge Pump  
5.3 Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning  
The ITG-3205 consists of three independent vibratory MEMS gyroscopes, which detect rotational rate about the X  
(roll), Y (pitch), and Z (yaw) axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a  
deflection that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to  
produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16-bit  
Analog-to-Digital Converters (ADCs) to sample each axis.  
The full-scale range of the gyro sensors is preset to ±2000 degrees per second (°/s). The ADC output rate is  
programmable up to a maximum of 8,000 samples per second down to 3.9 samples per second, and user-selectable low-  
pass filters enable a wide range of cut-off frequencies.  
16 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
5.4 I2C Serial Communications Interface  
The ITG-3205 communicates to a system processor using the I2C serial interface, and the device always acts as a slave  
when communicating to the system processor. The logic level for communications to the master is set by the  
voltage on the VLOGIC pin. The LSB of the of the I2C slave address is set by pin 9 (AD0).  
5.5 Clocking  
The ITG-3205 has a flexible clocking scheme, allowing for a variety of internal or external clock sources for the  
internal synchronous circuitry. This synchronous circuitry includes the signal conditioning, ADCs, and various control  
circuits and registers. An on-chip PLL provides flexibility in the allowable inputs for generating this clock.  
Allowable internal sources for generating the internal clock are:  
An internal relaxation oscillator (less accurate)  
Any of the X, Y, or Z gyros’ MEMS oscillators (with an accuracy of ±2% over temperature)  
Allowable external clocking sources are:  
32.768kHz square wave  
19.2MHz square wave  
Which source to select for generating the internal synchronous clock depends on the availability of external sources and  
the requirements for clock accuracy. There are also start-up conditions to consider. When the ITG-3205 first starts up,  
the device operates off of its internal clock until programmed to operate from another source. This allows the user, for  
example, to wait for the MEMS oscillators to stabilize before they are selected as the clock source.  
5.6 Sensor Data Registers  
The sensor data registers contain the latest gyro and temperature data. They are read-only registers, and are accessed  
via the Serial Interface. Data from these registers may be read at any time, however, the interrupt function may be used  
to determine when new data is available.  
5.7 Interrupts  
Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT  
pin configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an  
interrupt are (1) Clock generator locked to new reference oscillator (used when switching clock sources); and (2) new  
data is available to be read from the Data registers. The interrupt status can be read from the Interrupt Status register.  
5.8 Digital-Output Temperature Sensor  
An on-chip temperature sensor and ADC are used to measure the ITG-3205 die temperature. The readings from the  
ADC can be read from the Sensor Data registers.  
5.9 Bias and LDO  
The bias and LDO sections take in an unregulated VDD supply from 2.1V to 3.6V and generate the internal supply and  
the references voltages and currents required by the ITG-3205. The LDO output is bypassed by a capacitor at  
REGOUT. Additionally, the part has a VLOGIC reference voltage which sets the logic levels for its I2C interface.  
5.10 Charge Pump  
An on-board charge pump generates the high voltage (25V) required to drive the MEMS oscillators. Its output is  
bypassed by a capacitor at CPOUT.  
17 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
6
Digital Interface  
6.1 I2C Serial Interface  
The internal registers and memory of the ITG-3205 can be accessed using I2C at up to 400kHz.  
Serial Interface  
Pin Number  
Pin Name  
VLOGIC  
AD0  
Pin Description  
8
9
Digital IO supply voltage. VLOGIC must be VDD at all times.  
I2C Slave Address LSB  
I2C serial clock  
I2C serial data  
23  
24  
SCL  
SDA  
6.1.1 I2C Interface  
I2C is a two wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are  
open-drain and bi-directional. In a generalized I2C interface implementation, attached devices can be a master or a  
slave. The master device puts the slave address on the bus, and the slave device with the matching address  
acknowledges the master.  
The ITG-3205 always operates as a slave device when communicating to the system processor, which thus acts as the  
master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400kHz.  
The slave address of the ITG-3205 devices is b110100X which is 7 bits long. The LSB bit of the 7 bit address is  
determined by the logic level on pin 9. This allows two ITG-3205 devices to be connected to the same I2C bus. When  
used in this configuration, the address of the one of the devices should be b1101000 (pin 9 is logic low) and the address  
of the other should be b1101001 (pin 9 is logic high). The I2C address is stored in register 0 (WHO_AM_I register).  
I2C Communications Protocol  
START (S) and STOP (P) Conditions  
Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is defined as a  
HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy  
until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line  
while SCL is HIGH (see figure below).  
Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.  
START and STOP Conditions  
18 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
Data Format / Acknowledge  
I2C data bytes are defined to be 8 bits long. There is no restriction to the number of bytes transmitted per data transfer.  
Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is  
generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding  
it low during the HIGH portion of the acknowledge clock pulse.  
If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can  
hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and  
releases the clock line (see figure below).  
Acknowledge on the I2C Bus  
Communications  
After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an  
8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave  
device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device.  
Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line  
LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with  
a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START  
condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on  
the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with  
the exception of start and stop conditions.  
Complete I2C Data Transfer  
19 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
To write the internal ITG-3205 device registers, the master transmits the start condition (S), followed by the I2C address  
and the write bit (0). At the 9th clock cycle (when the clock is high), the ITG-3205 device acknowledges the transfer.  
Then the master puts the register address (RA) on the bus. After the ITG-3205 acknowledges the reception of the  
register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer  
may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue  
outputting data rather than transmitting a stop signal. In this case, the ITG-3205 device automatically increments the  
register address and loads the data to the appropriate register. The following figures show single and two-byte write  
sequences.  
Single-Byte Write Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
Burst Write Sequence  
Master  
Slave  
S
AD+W  
DATA  
P
ACK  
ACK  
ACK  
ACK  
To read the internal ITG-3205 device registers, the master first transmits the start condition (S), followed by the I2C  
address and the write bit (0). At the 9th clock cycle (when clock is high), the ITG acknowledges the transfer. The master  
then writes the register address that is going to be read. Upon receiving the ACK signal from the ITG-3205, the master  
transmits a start signal followed by the slave address and read bit. As a result, the ITG-3205 sends an ACK signal and  
the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK  
condition is defined such that the SDA line remains high at the 9th clock cycle. To read multiple bytes of data, the  
master can output an acknowledge signal (ACK) instead of a not acknowledge (NACK) signal. In this case, the ITG-  
3205 automatically increments the register address and outputs data from the appropriate register. The following  
figures show single and two-byte read sequences.  
Single-Byte Read Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
S
S
AD+R  
AD+R  
NACK  
ACK  
P
ACK  
ACK  
ACK  
ACK DATA  
ACK DATA  
Burst Read Sequence  
Master  
Slave  
S
AD+W  
NACK  
P
ACK  
DATA  
20 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
I2C Terms  
Signal  
S
Description  
Start Condition: SDA goes from high to low while SCL is high  
AD  
Slave I2C address  
W
Write bit (0)  
R
Read bit (1)  
ACK  
NACK  
RA  
Acknowledge: SDA line is low while the SCL line is high at the 9th clock cycle  
Not-Acknowledge: SDA line stays high at the 9th clock cycle  
ITG-3205 internal register address  
DATA  
P
Transmit or received data  
Stop condition: SDA going from low to high while SCL is high  
21 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
7
Register Map  
Addr  
Hex  
Addr  
Decimal  
Register Name  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0
0
WHO_AM_I  
R/W  
0
ID  
-
15  
16  
21  
22  
SMPLRT_DIV  
DLPF_FS  
R/W  
R/W  
SMPLRT_DIV  
FS_SEL  
-
-
-
DLPF_CFG  
-
INT_  
LATCH_  
INT_EN  
ITG_RDY  
_EN  
RAW_  
RDY_ EN  
17  
23  
26  
INT_CFG  
R/W  
R
ACTL  
OPEN  
ANYRD_  
2CLEAR  
-
-
RAW_  
DATA_  
RDY  
1A  
INT_STATUS  
-
-
-
-
-
ITG_RDY  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
27  
28  
29  
30  
31  
32  
33  
34  
TEMP_OUT_H  
TEMP_OUT_L  
R
R
R
R
R
R
R
R
TEMP_OUT_H  
TEMP_OUT_L  
GYRO_XOUT_H  
GYRO_XOUT_L  
GYRO_YOUT_H  
GYRO_YOUT_L  
GYRO_ZOUT_H  
GYRO_ZOUT_L  
GYRO_XOUT_H  
GYRO_XOUT_L  
GYRO_YOUT_H  
GYRO_YOUT_L  
GYRO_ZOUT_H  
GYRO_ZOUT_L  
3E  
62  
PWR_MGM  
R/W  
H_RESET  
SLEEP  
STBY_XG STBY_YG  
STBY_ZG  
CLK_SEL  
22 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
8
Register Description  
This section details each register within the InvenSense ITG-3205 gyroscope. Note that any bit that is not defined  
should be set to zero in order to be compatible with future InvenSense devices.  
The register space allows single-byte reads and writes, as well as burst reads and writes. When performing burst reads  
or writes, the memory pointer will increment until either (1) reading or writing is terminated by the master, or (2) the  
memory pointer reaches certain reserved registers between registers 33 and 60.  
8.1 Register 0 – Who Am I  
Type: Read/Write  
Register  
(Hex)  
Register  
(Decimal)  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0
0
0
ID  
-
Description:  
This register is used to verify the identity of the device.  
Parameters:  
ID  
Contains the I2C address of the device, which can also be changed by writing to this register.  
The Bit7 should always be set to “0”.  
The Power-On-Reset value of Bit6: Bit1 is 110 100.  
8.2 Register 21 – Sample Rate Divider  
Type: Read/Write  
Register  
(Hex)  
Register  
Default  
Value  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
(Decimal)  
15  
21  
SMPLRT_DIV  
00h  
Description:  
This register determines the sample rate of the ITG-3205 gyros. The gyros outputs are sampled internally at  
either 1kHz or 8kHz, determined by the DLPF_CFG setting (see register 22). This sampling is then filtered  
digitally and delivered into the sensor registers after the number of cycles determined by this register. The  
sample rate is given by the following formula:  
F
sample = Finternal / (divider+1), where Finternal is either 1kHz or 8kHz  
As an example, if the internal sampling is at 1kHz, then setting this register to 7 would give the following:  
sample = 1kHz / (7 + 1) = 125Hz, or 8ms per sample  
F
Parameters:  
SMPLRT_DIV Sample rate divider: 0 to 255  
23 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
8.3 Register 22 – DLPF, Full Scale  
Type: Read/Write  
Register  
(Hex)  
Register  
Default  
Value  
00h  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
FS_SEL  
Bit2  
Bit1  
Bit0  
(Decimal)  
16  
22  
-
DLPF_CFG  
Description:  
This register configures several parameters related to the sensor acquisition.  
The FS_SEL parameter allows setting the full-scale range of the gyro sensors, as described in the table below.  
The power-on-reset value of FS_SEL is 00h. Set to 03h for proper operation.  
FS_SEL  
FS_SEL  
Gyro Full-Scale Range  
0
1
2
3
Reserved  
Reserved  
Reserved  
±2000°/sec  
The DLPF_CFG parameter sets the digital low pass filter configuration. It also determines the internal  
sampling rate used by the device as shown in the table below.  
DLPF_CFG  
DLPF_CFG  
Low Pass Filter Bandwidth  
Internal Sample Rate  
0
1
2
3
4
5
6
7
256Hz  
188Hz  
98Hz  
8kHz  
1kHz  
1kHz  
42Hz  
1kHz  
20Hz  
1kHz  
10Hz  
1kHz  
5Hz  
1kHz  
Reserved  
Reserved  
Parameters:  
FS_SEL  
DLPF_CFG  
Full scale selection for gyro sensor data  
Digital low pass filter configuration and internal sampling rate configuration  
24 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
DLPF Characteristics: The gain and phase responses of the digital low pass filter settings (DLPF_CFG) are  
shown below:  
Bode Diagram  
0
-10  
6
5
4
3 2 1 0  
-20  
-30  
-40  
-50  
0
-45  
-90  
6
5
4
3
2
1
0
100  
101  
102  
Frequency (Hz)  
103  
Gain and Phase vs. Digital Filter Setting  
Bode Diagram  
2
0
-2  
-4  
6
5
4
3
2
1 0  
-6  
0
-5  
-10  
-15  
6
5
4
3
2
1
0
100  
101  
102  
Frequency (Hz)  
103  
Gain and Phase vs. Digital Filter Setting, Showing Passband Details  
25 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
8.4 Register 23 – Interrupt Configuration  
Type: Read/Write  
Register  
(Hex)  
Register  
(Decimal)  
Default  
Value  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
INT_  
ANYRD_  
2CLEAR  
LATCH_  
INT_EN  
ITG_RDY_  
EN  
RAW_  
RDY_ EN  
17  
23  
ACTL  
OPEN  
0
0
00h  
Description:  
This register configures the interrupt operation of the device. The interrupt output pin (INT) configuration can  
be set, the interrupt latching/clearing method can be set, and the triggers for the interrupt can be set.  
Note that if the application requires reading every sample of data from the ITG-3205 part, it is best to enable  
the raw data ready interrupt (RAW_RDY_EN). This allows the application to know when new sample data is  
available.  
Parameters:  
ACTL  
OPEN  
LATCH_INT_EN  
Logic level for INT output pin – 1=active low, 0=active high  
Drive type for INT output pin – 1=open drain, 0=push-pull  
Latch mode – 1=latch until interrupt is cleared, 0=50us pulse  
INT_ANYRD_2CLEAR Latch clear method – 1=any register read, 0=status register read only  
ITG_RDY_EN  
RAW_RDY_EN  
0
Enable interrupt when device is ready (PLL ready after changing clock source)  
Enable interrupt when data is available  
Load zeros into Bits 1 and 3 of the Interrupt Configuration register.  
8.5 Register 26 – Interrupt Status  
Type: Read only  
Register  
(Hex)  
Register  
Default  
Value  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
(Decimal)  
RAW_  
DATA_  
RDY  
-
1A  
26  
-
-
-
-
ITG_RDY  
-
00h  
Description:  
This register is used to determine the status of the ITG-3205 interrupts. Whenever one of the interrupt sources  
is triggered, the corresponding bit will be set. The polarity of the interrupt pin (active high/low) and the latch  
type (pulse or latch) has no affect on these status bits.  
Use the Interrupt Configuration register (23) to enable the interrupt triggers. If the interrupt is not enabled, the  
associated status bit will not get set.  
In normal use, the RAW_DATA_RDY interrupt is used to determine when new sensor data is available in either  
the sensor registers (27 to 32).  
Interrupt Status bits get cleared as determined by INT_ANYRD_2CLEAR in the interrupt configuration  
register (23).  
Parameters:  
ITG_RDY  
PLL ready  
RAW_DATA_RDY  
Raw data is ready  
26 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
8.6 Registers 27 to 34 – Sensor Registers  
Type: Read only  
Register  
(Hex)  
Register  
(Decimal)  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
27  
28  
29  
30  
31  
32  
33  
34  
TEMP_OUT_H  
TEMP_OUT_L  
GYRO_XOUT_H  
GYRO_XOUT_L  
GYRO_YOUT_H  
GYRO_YOUT_L  
GYRO_ZOUT_H  
GYRO_ZOUT_L  
Description:  
These registers contain the gyro and temperature sensor data for the ITG-3205 parts. At any time, these values  
can be read from the device; however it is best to use the interrupt function to determine when new data is  
available.  
Parameters:  
TEMP_OUT_H/L  
16-bit temperature data (2’s complement format)  
GYRO_XOUT_H/L 16-bit X gyro output data (2’s complement format)  
GYRO_YOUT_H/L 16-bit Y gyro output data (2’s complement format)  
GYRO_ZOUT_H/L 16-bit Y gyro output data (2’s complement format)  
8.7 Register 62 – Power Management  
Type: Read/Write  
Register  
(Hex)  
Register  
Default  
Value  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
(Decimal)  
STBY  
_XG  
STBY  
_YG  
STBY  
_ZG  
3E  
62  
H_RESET  
SLEEP  
CLK_SEL  
00h  
Description:  
This register is used to manage the power control, select the clock source, and to issue a master reset to the  
device.  
Setting the SLEEP bit in the register puts the device into very low power sleep mode. In this mode, only the  
serial interface and internal registers remain active, allowing for a very low standby current. Clearing this bit  
puts the device back into normal mode. To save power, the individual standby selections for each of the gyros  
should be used if any gyro axis is not used by the application.  
The CLK_SEL setting determines the device clock source as follows:  
CLK_SEL  
CLK_SEL  
Clock Source  
0
1
2
3
4
5
6
7
Internal oscillator  
PLL with X Gyro reference  
PLL with Y Gyro reference  
PLL with Z Gyro reference  
PLL with external 32.768kHz reference  
PLL with external 19.2MHz reference  
Reserved  
Reserved  
On power up, the ITG-3205 defaults to the internal oscillator. It is highly recommended that the device is  
configured to use one of the gyros (or an external clock) as the clock reference, due to the improved stability.  
27 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
Parameters:  
H_RESET  
SLEEP  
Reset device and internal registers to the power-up-default settings  
Enable low power sleep mode  
STBY_XG  
STBY_YG  
STBY_ZG  
CLK_SEL  
Put gyro X in standby mode (1=standby, 0=normal)  
Put gyro Y in standby mode (1=standby, 0=normal)  
Put gyro Z in standby mode (1=standby, 0=normal)  
Select device clock source  
28 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
9
Assembly  
9.1 Orientation  
The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation.  
29 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
9.2 Package Dimensions  
Top View  
Bottom View  
Package Dimensions  
30 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
9.3 Package Marking Specification  
TOP VIEW  
InvenSense  
ITG3205  
Part number  
Lot traceability code  
XXXXXX-XX  
XX YYWW X  
Foundry code  
Package Vendor Code  
Rev Code  
YY = Year Code  
WW = Work Week  
Package Marking Specification  
9.4 Tape & Reel Specification  
Tape Dimensions  
31 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
Reel Outline Drawing  
Reel Dimensions and Package Size  
REEL (mm)  
PKG  
SIZE  
L
V
W
Z
4x4  
330  
100  
13.2  
2.2  
User Direction of  
Feed  
Package Orientation  
Cover Tape  
(Anti-Static)  
Carrier Tape  
(Anti-Static)  
Label  
Pin 1  
Terminal Tape  
Reel  
Tape and Reel Specification  
Reel Specifications  
Quantity Per Reel  
5,000  
1
Reels per Box  
Boxes Per Carton (max)  
3 full pizza boxes packed in the center of the carton,  
buffered by two empty pizza boxes (front and back).  
Pcs/Carton (max)  
15,000  
32 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
9.5 Label  
9.6 Packaging  
Anti-static Label  
Moisture-Sensitive  
Caution Label  
Tape & Reel Label  
Moisture Barrier Bag  
With Labels  
Moisture-Sensitive Caution Label  
Reel in Box  
Box with Tape & Reel Label  
33 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
9.7 Soldering Exposed Die Pad  
The ITG-3205 has very low active and standby current consumption. The exposed die pad is not required for heat  
sinking, and should not be soldered to the PCB since soldering to it contributes to performance changes due to package  
thermo-mechanical stress.  
9.8 Component Placement  
Testing indicates that there are no specific design considerations other than generally accepted industry design practices  
for component placement near the ITG-3205 multi-axis gyroscope to prevent noise coupling, and thermo-mechanical  
stress.  
9.9 PCB Mounting and Cross-Axis Sensitivity  
Orientation errors of the gyroscope mounted to the printed circuit board can cause cross-axis sensitivity in which one  
gyro responds to rotation about another axis, for example, the X-axis gyroscope responding to rotation about the Y or Z  
axes. The orientation mounting errors are illustrated in the figure below.  
The table below shows the cross-axis sensitivity as a percentage of the specified gyroscope’s sensitivity for a given  
orientation error.  
Cross-Axis Sensitivity vs. Orientation Error  
Orientation Error  
Cross-Axis Sensitivity  
(θ or Φ)  
(sinθ or sinΦ)  
0º  
0.5º  
1º  
0%  
0.87%  
1.75%  
The specification for cross-axis sensitivity in Section 3 includes the effect of the die orientation error with respect to the  
package.  
34 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
9.10 MEMS Handling Instructions  
MEMS (Micro Electro-Mechanical Systems) are a time-proven, robust technology used in hundreds of millions of  
consumer, automotive and industrial products. MEMS devices consist of microscopic moving mechanical structures.  
They differ from conventional IC products even though they can be found in similar packages. Therefore, MEMS  
devices require different handling precautions than conventional ICs prior to mounting onto printed circuit boards  
(PCBs).  
The ITG-3205 gyroscope has a shock tolerance of 10,000g. InvenSense packages its gyroscopes as it deems proper for  
protection against normal handling and shipping. It recommends the following handling precautions to prevent potential  
damage.  
Individually packaged or trays of gyroscopes should not be dropped onto hard surfaces. Components placed in trays  
could be subject to g-forces in excess of 10,000g if dropped.  
Printed circuit boards that incorporate mounted gyroscopes should not be separated by manually snapping apart.  
This could also create g-forces in excess of 10,000g.  
9.11 Gyroscope Surface Mount Guidelines  
Any material used in the surface mount assembly process of the MEMS gyroscope should be free of restricted RoHS  
elements or compounds. Pb-free solders should be used for assembly.  
In order to assure gyroscope performance, several industry standard guidelines need to be considered for surface  
mounting. These guidelines are for both printed circuit board (PCB) design and surface mount assembly and are  
available from packaging and assembly houses.  
When using MEMS gyroscope components in plastic packages, package stress due to PCB mounting and assembly  
could affect the output offset and its value over a wide range of temperatures. This is caused by the mismatch between  
the Coefficient of Linear Temperature Expansion (CTE) of the package material and the PCB. Care must be taken to  
avoid package stress due to mounting.  
9.12 Reflow Specification  
The ITG-3205 gyroscope was qualified in accordance with IPC/JEDEC J-STD-020C. This standard classifies proper  
packaging, storage and handling to avoid subsequent thermal and mechanical damage during assembly solder reflow  
attachment. Classification specifies a bake cycle, moisture soak cycle in a temperature humidity oven, followed by three  
solder reflow cycles and functional testing for qualification. All temperatures refer to the topside of the QFN package,  
as measured on the package body surface. The peak solder reflow classification temperature requirement is specified as  
(260 +5/-0°C) for lead-free soldering of components less than 1.6 mm thick.  
Lower Production solder-reflow temperatures are recommended for production assembly. Check the recommendations  
of your solder manufacturer. For optimum results, production solder reflow processes should use lower temperatures to  
reduce exposure to high temperatures, and use lower ramp-up and ramp-down rates than those listed in the qualification  
profile shown below.  
Production reflow should never exceed the maximum constraints listed in the table and figure (shown below) that were  
used for the qualification profile, as these represent the maximum tolerable ratings for the device.  
35 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
Maximum Temperature IR / Convection Solder Reflow Curve Used for Qualification  
Temperature Set Points for IR / Convection Reflow Corresponding to Figure Above  
CONSTRAINTS  
Step Setting  
Temp (°C) Time (sec)  
Rate (°C/sec)  
A
B
C
D
Troom  
TSmin  
TSmax  
TLiquidus  
25  
150  
200  
217  
255  
60 < tBC < 120  
r(TLiquidus-TPmax) < 3  
r(TLiquidus-TPmax) < 3  
r(TLiquidus-TPmax) < 3  
r(TPmax-TLiquidus) < 4  
E
F
TPmin  
[255°C, 260°C]  
TPmax [ 260°C, 265°C] 260  
tAF < 480  
G
H
I
TPmin  
TLiquidus  
Troom  
255  
217  
25  
10< tEG < 30  
60 < tDH < 120  
[255°C, 260°C]  
Note: For users TPmax must not exceed the Classification temperature (260°C). For suppliers TPmax  
must equal or exceed the Classification temperature.  
9.13 Storage Specifications  
The storage specification of the ITG-3205 gyroscope conforms to IPC/JEDEC J-STD-020C Moisture Sensitivity Level  
(MSL) 3.  
Storage Specifications for ITG-3205  
Calculated shelf-life in moisture-sealed bag  
After opening moisture-sealed bag  
12 months -- Storage conditions: <40°C and <90% RH  
168 hours -- Storage conditions: ambient 30°C at 60% RH  
36 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
10 Reliability  
10.1 Qualification Test Policy  
InvenSense’s products complete a Qualification Test Plan before being released to production. The Qualification Test  
Plan for the ITG-3205 gyroscope followed the JEDEC 47G.01, “Stress-Test-Driven Qualification of Integrated  
Circuits,” with the individual tests described below.  
10.2 Qualification Test Plan  
Accelerated Life Tests  
Acc /  
Method/Condition  
Lot  
Sample  
TEST  
Reject  
Criteria  
Quantity / Lot  
JEDEC JESD22-A108C, Dynamic, 3.63V biased, Tj>125°C  
[read-points 168, 500, 1000 hours]  
JEDEC JESD22-A101C, 85°C/85%RH  
[read-points 168, 500 hours], Information Only 1000 hours]  
JEDEC JESD22-A103C, Cond. A, 125°C Non-Bias Bake  
[read-points 168, 500, 1000 hours]  
High Temperature  
Operating Life (HTOL/LFR)  
3
77  
77  
77  
(0/1)  
(0/1)  
(0/1)  
Steady-State Temperature  
3
3
Humidity Bias Life (1)  
High Temperature Storage  
Life  
Device Component Level Tests  
Method/Condition  
Acc /  
Reject  
Criteria  
Lot  
Sample  
TEST  
Quantity / Lot  
JEDEC JESD22-A114F, Class 2 (1500V)  
JEDEC JESD22-A115-A, Class B (200V)  
JEDEC JESD78B Level 2, 125C, ± 60mA  
1
1
3
3
(0/1)  
(0/1)  
ESD-HBM  
ESD-MM  
1
3
6
5
(0/1)  
(0/1)  
Latch Up  
JEDEC JESD22-B104C, Mil-Std-883, method 2002, Cond. D,  
10,000g’s, 0.3ms, ±X,Y,Z – 6 directions, 5 times/direction  
JEDEC JESD22-B103B, Variable Frequency (random),  
Cond. B, 5-500Hz, X,Y,Z – 4 times/direction  
JEDEC JESD22-A104D Condition N, -40°C to +85°C,  
Soak Mode 2, 100 cycles  
Mechanical Shock  
Vibration  
3
3
5
(0/1)  
(0/1)  
Temperature Cycling (1)  
77  
Board Level Tests  
Method/Condition/  
Acc /  
Reject  
Criteria  
Lot  
Sample  
TEST  
Quantity / Lot  
JEDEC JESD22-B104C,Mil-Std-883, method 2002, Cond. D,  
10,000g’s, 0.3ms, +-X,Y,Z – 6 directions, 5 times/direction  
JEDEC JESD22-A104D Condition N, -40°C to +85°C,  
Soak Mode 2, 100 cycles  
1
1
5
Board Mechanical Shock  
(0/1)  
(0/1)  
40  
Board T/C  
(1) – Tests are preceded by MSL3 Preconditioning in accordance with JEDEC JESD22-A113  
11 Environmental Compliance  
The ITG-3205 is RoHS and Green compliant. Further information on compliance is available separately in report HS-  
ITG-3205A.  
37 of 38  
Document Number: PS-ITG-3205A-00  
Revision: 1.0  
Release Date: 08/16/2010  
ITG-3205 Product Specification  
This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or  
for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice.  
InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance,  
without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this  
document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of  
products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask  
work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or  
otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks  
that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development,  
storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as  
in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant  
equipment, disaster prevention and crime prevention equipment.  
InvenSense, InvenSense logo, ITG, and ITG-3205 are trademarks of InvenSense, Inc.  
©2010 InvenSense, Inc. All rights reserved.  
38 of 38  

相关型号:

ITGG08A18PW

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18PX

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18PY

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18PZ

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18YW

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18YX

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18YY

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A18YZ

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A20PW

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A20PX

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A20PY

90° Plug Connector with Accessory Backshell
GLENAIR

ITGG08A20PZ

90° Plug Connector with Accessory Backshell
GLENAIR