VN5E160ASO-E [STMICROELECTRONICS]

Single channel high-side driver with analog for automotive applications;
VN5E160ASO-E
型号: VN5E160ASO-E
厂家: ST    ST
描述:

Single channel high-side driver with analog for automotive applications

文件: 总37页 (文件大小:739K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VN5E160ASO-E  
Single channel high-side driver with analog  
for automotive applications  
Datasheet  
production data  
Features  
Max supply voltage  
VCC  
41 V  
SO-16L  
Operating voltage range  
VCC 4.5 V to 28 V  
("1($'5ꢀꢀꢁꢀꢀ  
Max on-state resistance (per ch.) RON  
160 mΩ  
10 A  
– Overtemperature shutdown with  
autorestart (thermal shutdown)  
Current limitation (typ)  
Off-state supply current  
ILIMH  
IS  
2 µA(1)  
– Reverse battery protected  
– Electrostatic discharge protection  
1. Typical value with all loads connected.  
Application  
General  
All types of resistive, inductive and capacitive  
loads  
– Inrush current active management by  
power limitation  
– Very low standby current  
Suitable as LED driver  
– 3.0 V CMOS compatible inputs  
– Optimized electromagnetic emission  
– Very low electromagnetic susceptibility  
Description  
The VN5E160ASO-E is a single channel high-  
side driver manufactured using ST proprietary  
VIPower® M0-5 technology and housed in  
SO-16L package. The device is designed to drive  
12 V automotive grounded loads, and to provide  
protection and diagnostics. It also implements a  
3 V and 5 V CMOS-compatible interface for the  
use with any microcontroller.  
– Compliant with European directive  
2002/95/EC  
– Very low current sense leakage  
– AEC-Q100 qualified  
Diagnostic functions  
– Proportional load current sense  
– High-precision current sense for  
wide-range currents  
The device integrates advanced protective  
functions such as load current limitation, inrush  
and overload active management by power  
limitation, overtemperature shut-off with  
– Current sense disable  
– OFF-state open-load detection  
– Output short to VCC detection  
auto-restart and overvoltage active clamp. A  
dedicated analog current sense pin is associated  
with every output channel providing ehnanced  
diagnostic functions including fast detection of  
overload and short-circuit to ground through  
power limitation indication, overtemperature  
indication, short-circuit to VCC diagnosis and ON-  
state and off-state open-load detection. The  
current sensing and diagnostic feedback of the  
whole device can be disabled by pulling the  
CS_DIS pin high to share the external sense  
resistor with similar devices.  
– Overload and short to ground  
(power limitation) indication  
Protections  
– Undervoltage shutdown  
– Overvoltage clamp  
– Load current limitation  
– Self-limiting of fast thermal transients  
– Protection against loss of ground and loss  
of VCC  
September 2013  
Doc ID 022475 Rev. 5  
1/37  
This is information on a product in full production.  
www.st.com  
1
Contents  
VN5E160ASO-E  
Contents  
1
2
Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.1  
GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 24  
3.1.1  
3.1.2  
Solution 1: resistor in the ground line (RGND only) . . . . . . . . . . . . . . . . 24  
Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . 25  
3.2  
3.3  
3.4  
Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.4.1  
Short to VCC and OFF-state open-load detection . . . . . . . . . . . . . . . . . 27  
3.5  
Maximum demagnetization energy (VCC = 13.5 V) . . . . . . . . . . . . . . . . . 28  
4
5
Package and PC board thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.1  
SO-16L thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
®
5.1  
5.2  
5.3  
ECOPACK packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6
7
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Pin function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Switching (VCC = 13 V; Tj = 25 °C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Protection and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Current sense (8 V < VCC < 18 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Open-load detection (8 V < VCC < 18 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical transient requirements (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical transient requirements (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical transient requirements (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SO-16L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Doc ID 022475 Rev. 5  
3/37  
List of figures  
VN5E160ASO-E  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Current sense delay characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
OFF-state open-load delay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Delay response time between rising edge of output current and rising edge of current  
sense (CS enabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output voltage drop limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 8.  
Figure 9.  
I
OUT/ISENSE vs IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 10. Maximum current sense ratio drift vs load current(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 11. Normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 12. Overload or short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 13. Intermittent overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14. OFF-state open-load with external circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 15. Short to VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 16. Tj evolution in overload or short to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 17. OFF-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 18. High-level input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 19. Input voltage clamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 20. Low-level input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 21. High-level input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 22. Hysteresis input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 23. ON-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 24. ON-state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 25. Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 26. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 27.  
ILIMH vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 28. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 29. High-level CS_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 30. CS_DIS voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 31. Low-level CS_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 32. Application schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 33. Current sense and diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 34. Maximum turn-off current versus inductance (for each channel)(1) . . . . . . . . . . . . . . . . . . 28  
Figure 35. SO-16L PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 36. Rthj-amb vs PCB copper area in open box free air condition. . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 37. SO-16L thermal impedance junction ambient single pulse. . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 38. Thermal fitting model of a single channel HSD in SO-16L . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 39. SO-16L package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 40. SO-16L tube shipment (no suffix). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 41. SO-16L tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Block diagram and pin configuration  
1
Block diagram and pin configuration  
Figure 1.  
Block diagram  
6&&  
6LJQDOꢀ&ODPS  
8QGHUYROWDJH  
&RQWUROꢀꢁꢀ'LDJQRVWLF  
3RZHUꢀ  
&ODPS  
,1  
'5,9(5  
921  
/LPLWDWLRQ  
2YHUꢀ  
WHPSHUDWXUH  
&XUUHQWꢀ  
/LPLWDWLRQ  
2))ꢀ6WDWHꢀ  
2SHQꢀORDG  
&6B  
',6  
96(16(+  
&6  
&XUUHQW  
6HQVH  
287  
29(5/2$'ꢀ3527(&7,21  
ꢂ$&7,9(ꢀ32:(5ꢀ/,0,7$7 ,21ꢃ  
/2*,&  
*1'  
*$3*&)7ꢄꢄꢅꢆꢇ  
Table 1.  
Pin function  
Name  
Function  
VCC  
Battery connection.  
Power output.  
OUT  
Ground connection. Must be reverse battery protected by an external  
diode/resistor network.  
GND  
IN  
Voltage-controlled input pin with hysteresis, CMOS compatible; it controls output  
switch state.  
CS  
Analog current sense pin; it delivers a current proportional to the load current.  
Active high CMOS compatible pin, to disable the current sense pin.  
CS_DIS  
Doc ID 022475 Rev. 5  
5/37  
Block diagram and pin configuration  
VN5E160ASO-E  
Figure 2.  
Configuration diagram (top view)  
9FF  
*1'  
ꢆꢊ  
9FF  
1&  
1&  
1&  
1&  
,1387ꢀ  
&ꢀ6(16(ꢀ  
287387ꢀ  
287387ꢀ  
287387ꢀ  
1&  
&6ꢀ',6  
9FF  
9FF  
("1($'5ꢀꢀꢁꢂꢃ  
Table 2.  
Suggested connections for unused and not connected pins  
Connection / pin  
Current sense  
N.C.  
Output  
Input  
CS_DIS  
Floating  
Not allowed  
X(1)  
X
X
X
Through 1 kΩ  
Through 10 kΩ Through 10 kΩ  
resistor resistor  
To ground  
X
Not allowed  
resistor  
1. X: do not care.  
6/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Electrical specifications  
2
Electrical specifications  
Figure 3.  
Current and voltage conventions  
)
6
9&&  
9)  
9&&  
,
287  
,
&6'  
287  
&6  
&6B',6  
,1  
9287  
9&6'  
,
,1  
,
6(16(  
96(16(  
9,1  
*1'  
,
*1'  
*$3*&)7ꢄꢄꢅꢈꢋ  
1.  
V
= V  
- V during reverse battery condition.  
OUT CC  
F
2.1  
Absolute maximum ratings  
Stressing the device above the ratings listed in Table 3 may cause permanent damage to  
the device. These are stress ratings only and operation of the device at these or any other  
conditions above those indicated in the operating sections of this specification is not implied.  
Exposure to the conditions in the “absolute maximum ratings” table for extended periods  
may affect device reliability.  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
DC supply voltage  
41  
V
V
-VCC  
Reverse DC supply voltage  
0.3  
200  
-IGND DC reverse ground pin current  
IOUT DC output current  
-IOUT Reverse DC output current  
mA  
A
Internally limited  
6
A
IIN  
DC input current  
-1 to 10  
-1 to 10  
200  
mA  
mA  
mA  
ICSD  
DC current sense disable input current  
-ICSENSE DC reverse CS pin current  
VCSENSE Current sense maximum voltage  
Maximum switching energy (single pulse)  
VCC - 41  
+VCC  
V
V
EMAX  
36  
mJ  
(L = 8 mH; RL = 0 Ω; Vbat = 13.5 V; Tjstart = 150°C;  
IOUT = IlimL(Typ.) )  
Doc ID 022475 Rev. 5  
7/37  
 
Electrical specifications  
VN5E160ASO-E  
Table 3.  
Symbol  
Absolute maximum ratings (continued)  
Parameter  
Value  
Unit  
Electrostatic discharge  
(human body model: R = 1.5 KΩ; C = 100 pF)  
V
V
V
V
V
– IN  
4000  
2000  
4000  
5000  
5000  
VESD – CS  
– CS_DIS  
– OUT  
– VCC  
VESD Charge device model (CDM-AEC-Q100-011)  
750  
V
Tj  
Junction operating temperature  
Storage temperature  
-40 to 150  
-55 to 150  
°C  
°C  
Tstg  
2.2  
Thermal data  
Table 4.  
Symbol  
Thermal data  
Parameter  
Typical value  
Unit  
Rthj-pcb Thermal resistance junction-pcb(1)  
18.5  
See Figure 36  
38  
°C/W  
°C/W  
°C/W  
Rthj-amb Thermal resistance junction - ambient on two layers pcb  
Rthj-amb Thermal resistance junction - ambient on two layers pcb(2)  
1. The measure is done in accordance with the JESD 51-8.  
2. Four Layers PCB characteristics:  
- Cu thickness: 70 um outer layers, 35 um inner layers  
- Board finish thickness 1.6 mm +/- 10%  
- Thermal vias separation 1.2 mm  
- Thermal via diameter 0.3 mm +/- 0.08 mm  
- Cu thickness on vias 0.025 mm  
- Device soldered at about 2cm from the PCB edge with two sqcm of exposed copper.  
8/37  
Doc ID 022475 Rev. 5  
 
VN5E160ASO-E  
Electrical specifications  
2.3  
Electrical characteristics  
Values specified in this section are for 8 V < VCC < 28 V; -40°C < Tj < 150°C, unless  
otherwise stated.  
Table 5.  
Symbol  
Power section  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
VCC  
Operating supply voltage  
4.5 13  
28  
V
V
VUSD Undervoltage shut-down  
3.5 4.5  
0.5  
Undervoltage shut-down  
hysteresis  
VUSDhyst  
V
IOUT = 1 A; Tj = 25°C  
160  
RON  
ON-state resistance  
I
I
OUT = 1 A; Tj = 150°C  
320 mΩ  
OUT = 1 A; VCC = 5 V; Tj = 25°C  
210  
Vclamp Voltage clamp  
IS = 20 mA  
41  
46  
52  
V
OFF-state: VCC = 13 V;  
VIN = VOUT = 0 V; Tj = 25°C  
2(1) 5(1)  
µA  
IS  
Supply current  
ON-state: VIN = 5 V; VCC = 13 V;  
IOUT = 0 A  
1.9 3.5  
mA  
µA  
V
V
IN = VOUT = 0 V; VCC = 13 V;  
0
0
0.01  
3
5
Tj = 25°C  
IL(off1) OFF-state output current  
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 125°C  
Output - VCC diode  
voltage  
VF  
-IOUT = 1 A; Tj = 150°C  
0.7  
1. PowerMOS leakage included.  
Table 6.  
Symbol  
Switching (VCC = 13 V; Tj = 25 °C)  
Parameter  
Test conditions  
Min.  
Typ.  
Max. Unit  
RL = 13 Ω  
td(on)  
td(off)  
Turn-on delay time  
10  
µs  
µs  
(see Figure 6)  
RL = 13 Ω  
(see Figure 6)  
Turn-off delay time  
10  
dVOUT/dt(on) Turn-on voltage slope RL = 13 Ω  
dVOUT/dt(off) Turn-off voltage slope RL = 13 Ω  
See Figure 26  
See Figure 28  
V/µs  
V/µs  
Switching energy  
losses during twon  
RL = 13 Ω  
WON  
0.05  
0.03  
mJ  
mJ  
(see Figure 6)  
Switching energy  
losses during twoff  
RL = 13 Ω  
(see Figure 6)  
WOFF  
Doc ID 022475 Rev. 5  
9/37  
 
Electrical specifications  
VN5E160ASO-E  
Typ. Max. Unit  
Table 7.  
Symbol  
Logic inputs  
Parameter  
Test conditions  
Min.  
VIL  
IIL  
Low-level input voltage  
Low-level input current  
High-level input voltage  
High-level input current  
Hysteresis input voltage  
0.9  
V
µA  
V
VIN = 0.9 V  
1
VIH  
2.1  
IIH  
VIN = 2.1 V  
10  
7
µA  
V
VI(hyst)  
0.25  
5.5  
I
IN = 1 mA  
VICL  
Input voltage clamp  
V
IIN = -1 mA  
-0.7  
VCSDL  
ICSDL  
VCSDH  
ICSDH  
Low-level CS_DIS voltage  
0.9  
V
µA  
V
Low-level CS_DIS current VCSD = 0.9 V  
High-level CS_DIS voltage  
1
2.1  
High-level CS_DIS current VCSD = 2.1 V  
10  
7
µA  
V
VCSD(hyst) Hysteresis CS_DIS voltage  
0.25  
5.5  
I
CSD = 1 mA  
VCSCL  
CS_DIS voltage clamp  
V
ICSD = -1 mA  
-0.7  
Table 8.  
Symbol  
Protection and diagnostics(1)  
Parameter  
Test conditions  
Min.  
Typ.  
Max. Unit  
VCC = 13 V  
7
10  
14  
14  
A
A
DC short-circuit  
current  
IlimH  
5 V < VCC < 28 V  
Short-circuit current  
during thermal cycling  
IlimL  
TTSD  
TR  
V
CC = 13 V; TR < Tj < TTSD  
2.5  
A
Shutdown  
temperature  
150  
175  
200  
°C  
°C  
°C  
Reset temperature  
TRS + 1 TRS + 5  
135  
Thermal reset of  
STATUS  
TRS  
Thermal hysteresis  
(TTSD - TR)  
THYST  
VDEMAG  
VON  
7
°C  
V
Turn-off output  
voltage clamp  
IOUT = 1 A; VIN = 0,  
L = 20 mH  
V
CC - 41 VCC - 46 VCC - 52  
25  
Output voltage drop  
limitation  
IOUT = 0.03 A (see Figure 8)  
Tj = -40 °C to +150 °C  
mV  
1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related  
diagnostic signals must be used together with a proper software strategy. If the device is subjected to  
abnormal conditions, this software must limit the duration and number of activation cycles.  
10/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Electrical specifications  
Min. Typ. Max. Unit  
Table 9.  
Current sense (8 V < VCC < 18 V)  
Parameter Test conditions  
Symbol  
IOUT = 0.025 A;  
SENSE = 0.5 V  
K0  
IOUT SENSE  
/I  
V
265  
490  
715  
Tj = -40°C to 150°C  
IOUT = 0.35 A; VSENSE = 0.5 V  
Tj = -40°C to 150°C  
K1  
IOUT SENSE  
/I  
355  
385  
465  
465  
575  
545  
Tj = 25°C to 150°C  
IOUT =0.35 A; VSENSE = 0.5 V  
Tj = -40°C to 150°C  
(1)  
dK1/K1  
Current sense ratio drift  
-11  
+11  
%
%
%
IOUT = 0.5 A; VSENSE = 4 V  
Tj = -40°C to 150°C  
K2  
IOUT SENSE  
/I  
380  
400  
455  
455  
530  
510  
Tj = 25°C to 150°C  
I
OUT = 0.5 A;  
(1)  
dK2/K2  
Current sense ratio drift  
-8  
+8  
Tj = -40°C to 150°C  
IOUT = 1.5 A; VSENSE = 4 V  
Tj = -40°C to 150°C  
K3  
IOUT SENSE  
/I  
420  
420  
455  
455  
490  
480  
Tj = 25°C to 150°C  
IOUT = 1.5 A;  
Tj = -40°C to 150°C  
(1)  
dK3/K3  
Current sense ratio drift  
-4  
0
+4  
1
I
V
OUT = 0 A; VSENSE = 0 V;  
CSD = 5 V; VIN = 0 V;  
Tj = -40°C to 150°C  
I
V
OUT = 0 A; VSENSE = 0 V;  
CSD = 0 V; VIN = 5 V;  
Tj = -40°C to 150°C  
Analog sense leakage  
current  
ISENSE0  
0
2
1
µA  
I
V
OUT = 1 A; VSENSE = 0 V;  
CSD = 5 V; VIN = 5 V;  
0
5
Tj = -40°C to 150°C  
Max analog sense  
output voltage  
RSENSE = 10 KΩ  
I
VSENSE  
V
V
OUT = 1 A;  
Analog sense output  
voltage in fault condition  
(2)  
VSENSEH  
VCC = 13 V; RSENSE = 3.9 KΩ  
8
9
Analog sense output  
current in fault condition  
(2)  
ISENSEH  
VCC = 13 V; VSENSE = 5 V  
mA  
VSENSE < 4 V;  
Delay response time  
tDSENSE1H from falling edge of  
CS_DIS pin  
0.025 A < IOUT < 1.5 A  
ISENSE = 90% of ISENSE max  
(see Figure 4)  
40  
5
100  
20  
µs  
µs  
VSENSE < 4 V;  
Delay response time  
tDSENSE1L from rising edge of  
CS_DIS pin  
0.025 A < IOUT < 1.5 A  
ISENSE = 10% of ISENSE max  
(see Figure 4)  
Doc ID 022475 Rev. 5  
11/37  
 
Electrical specifications  
VN5E160ASO-E  
Table 9.  
Symbol  
Current sense (8 V < VCC < 18 V) (continued)  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
V
SENSE < 4 V;  
Delay response time  
from rising edge of IN pin ISENSE=90% of ISENSE max  
0.025 A < IOUT < 1.5 A  
tDSENSE2H  
30  
160  
110  
250  
µs  
µs  
µs  
(see Figure 4)  
VSENSE < 4 V;  
Delay response time  
between rising edge of  
output current and rising  
edge of current sense  
I
SENSE = 90% of ISENSEMAX,  
ΔtDSEN  
SE2H  
IOUT = 90% of IOUTMAX  
IOUTMAX=1.5A (see Figure 7)  
VSENSE < 4 V;  
0.025 A < IOUT < 1.5 A  
Delay response time  
tDSENSE2L from falling edge of IN  
pin  
80  
I
SENSE=10% of ISENSE max  
(see Figure 4)  
1. Parameter guaranteed by design; it is not tested.  
2. Fault condition includes: power limitation, overtemperature and open load OFF-state detection.  
Table 10. Open-load detection (8 V < VCC < 18 V)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
OFF-state open-load  
voltage detection threshold  
VOL  
VIN = 0 V; 8 V < VCC < 18 V  
VIN = 5V; 8 V < VCC < 18 V  
2
4
5
V
ON-state open-load  
current detection threshold ISENSE = 5 µA  
IOL  
0.5  
mA  
µs  
Output short-circuit to VCC  
See Figure 5  
tDSTKON  
IL(off2)r  
180  
-120  
1200  
0
detection delay at turn-off  
OFF-state output current at VIN = 0 V; VSENSE = 0 V  
V
OUT = 4 V  
V
OUT rising from 0 V to 4 V  
µA  
µs  
V
IN = 0 V;  
OFF-state output current at  
IL(off2)f  
VSENSE = VSENSEH  
VOUT falling from VCC to 2 V  
-50  
90  
20  
V
OUT = 2 V  
Delay response from  
output rising edge to  
VOUT = 4 V; VIN = 0 V  
VSENSE= 90% of VSENSEH  
td_vol  
VSENSE rising edge in  
open-load  
12/37  
Doc ID 022475 Rev. 5  
 
VN5E160ASO-E  
Electrical specifications  
Figure 4.  
Current sense delay characteristics  
,1387  
&6B',6  
/2$'ꢀ&855(17  
6(16(ꢀ&855(17  
W'6(16(ꢅ+  
W'6(16(ꢆ/  
W'6(16(ꢆ+  
W'6(16(ꢅ/  
$*ꢄꢄꢄꢌꢄ9ꢆ  
Figure 5.  
OFF-state open-load delay timing  
2XWSXWꢀVWXFNꢀDWꢀ9&&  
9287ꢀ!ꢀ92/  
9,1  
96(16(+  
9&6  
W'67.21  
*$3*&)7ꢄꢄꢄꢆꢆꢋ  
Figure 6.  
Switching characteristics  
9287  
W:RQ  
W:RII  
ꢉꢄꢎ  
ꢈꢄꢎ  
G9287ꢍGWꢂRIIꢃ  
G9287ꢍGWꢂRQꢃ  
ꢆꢄꢎ  
WI  
WU  
W
,1387  
WGꢂRQꢃ  
WGꢂRIIꢃ  
W
*$3*&)7ꢄꢄꢄꢆꢆꢇ  
Doc ID 022475 Rev. 5  
13/37  
Electrical specifications  
Figure 7.  
VN5E160ASO-E  
Delay response time between rising edge of output current and rising  
edge of current sense (CS enabled)  
9,1  
ǻW'6(16(ꢅ+  
W
,
287  
,
2870$;  
ꢉꢄꢎꢀ,2870$;  
W
,
6(16(  
,
6(16(0$;  
ꢉꢄꢎꢀ,6(16(0$;  
W
$*ꢄꢄꢄꢌꢋ9ꢆ  
Figure 8.  
Output voltage drop limitation  
9&&ꢀꢐ9287  
7Mꢀ ꢀꢆꢏꢄꢀƒ&  
7Mꢀ ꢀꢅꢏꢀƒ&  
7Mꢀ ꢀꢐꢇꢄꢀƒ&  
921  
,
287  
921ꢍ521ꢂ7ꢃ  
$*ꢄꢄꢄꢌꢇ9ꢆ  
14/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Electrical specifications  
Figure 9.  
IOUT SENSE  
IOUT/ISENSE  
620  
/I  
vs IOUT  
590  
560  
530  
500  
470  
440  
410  
380  
350  
320  
A
B
C
D
E
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
IOUT (A)  
A: Max, Tj = -40°C to 150°C  
B: Max, Tj = 25°C to 150°C  
C: Typical, Tj = -40°C to 150°C  
D: Min, Tj = 25°C to 150°C  
E: Min, Tj = -40°C to 150°C  
Figure 10. Maximum current sense ratio drift vs load current(1)  
dK/K (%)  
15  
12  
9
A
6
3
0
-3  
-6  
B
-9  
-12  
-15  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
IOUT (A)  
A: Max, Tj = -40°C to 150°C  
B: Min, Tj = 25°C to 150°C  
1. Parameter guaranteed by design; it is not tested.  
Doc ID 022475 Rev. 5  
15/37  
Electrical specifications  
Table 11.  
VN5E160ASO-E  
Truth table  
Conditions  
IN  
OUT  
SENSE (VCSD = 0 V)(1)  
L
L
0
Normal operation  
Overtemperature  
Undervoltage  
H
H
Nominal  
L
L
L
0
H
VSENSEH  
L
L
L
0
0
H
H
X
Nominal  
(no power limitation)  
Cycling  
Overload  
H
VSENSEH  
(power limitation)  
Short circuit to GND  
(Power limitation)  
L
L
L
0
H
VSENSEH  
OFF-state open-load  
(with external pull-up)  
L
H
VSENSEH  
1. If the V  
is high, the SENSE output is at high impedance, its potential depends on leakage currents and  
CSD  
external circuit.  
16/37  
Doc ID 022475 Rev. 5  
 
VN5E160ASO-E  
Electrical specifications  
Table 12. Electrical transient requirements (part 1)  
ISO 7637-2:  
2004(E)  
Test levels(1)  
Number of  
pulses or  
test times  
Burst cycle/pulse  
repetition time  
Delays and  
Impedance  
III  
IV  
Test pulse  
5000  
pulses  
1
-75 V  
-100 V  
0.5 s  
5 s  
5 s  
2 ms, 10 Ω  
50 µs, 2 Ω  
5000  
pulses  
2a  
+37 V  
+50 V  
0.2 s  
3a  
3b  
-100 V  
+75 V  
-150 V  
+100 V  
1h  
1h  
90 ms  
90 ms  
100 ms  
100 ms  
0.1 µs, 50 Ω  
0.1 µs, 50 Ω  
100 ms,  
4
-6 V  
-7 V  
1 pulse  
1 pulse  
0.01 Ω  
5b(2)  
+65 V  
+87 V  
400 ms, 2 Ω  
Table 13. Electrical transient requirements (part 2)  
ISO 7637-2:  
2004(E)  
Test level results(1)  
III  
IV  
Test pulse  
1
2a  
3a  
3b  
4
C
C
C
C
C
C
C
C
C
C
C
C
5b(2)  
1. The above test levels must be considered referred to V = 13.5 V except for pulse 5b  
CC  
2. Valid in case of external load dump clamp: 40 V maximum referred to ground.  
Table 14. Electrical transient requirements (part 3)  
Class  
Contents  
C
All functions of the device are performed as designed after exposure to disturbance.  
One or more functions of the device are not performed as designed after exposure to  
disturbance and cannot be returned to proper operation without replacing the device.  
E
Doc ID 022475 Rev. 5  
17/37  
Electrical specifications  
VN5E160ASO-E  
2.4  
Waveforms  
Figure 11. Normal operation  
1RUPDOꢀRSHUDWLRQ  
,1387  
1RPLQDOꢀORDG  
1RPLQDOꢀORDG  
,
287  
96(16(  
9&6B',6  
$*ꢄꢄꢄꢌꢌ9ꢆ  
Figure 12. Overload or short to GND  
2YHUORDGꢀRUꢀ6KRUWꢀWRꢀ*1'  
,1387  
3RZHUꢀ/LPLWDWLRQ  
,
!
/LP+ꢀꢀ  
7KHUPDOꢀF\FOLQJ  
,
!
/LP/ꢀꢀ  
,
287  
96(16(  
9&6B',6  
$*ꢄꢄꢄꢌꢈ9ꢆ  
18/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Electrical specifications  
Figure 13. Intermittent overload  
,QWHUPLWWHQWꢀ2YHUORDG  
,1387  
2YHUORDG  
,
/LP+ !  
1RPLQDOꢀORDG  
,
/LP/  
!
,
287  
96(16(+  
!
96(16(  
9&6B',6  
$*ꢄꢄꢄꢌꢉ9ꢆ  
Figure 14. OFF-state open-load with external circuitry  
2))6WDWHꢀ2SHQꢀ/RDGꢀꢀ  
ZLWKꢀH[WHUQDOꢀFLUFXWU\  
,1387  
287ꢀꢀ!ꢀ92/ꢀ  
9
92/  
9287  
,
287  
96(16(+  
W'67.ꢂRQꢃ  
!
96(16(  
9&6B',6  
$*ꢄꢄꢄꢈꢄ9ꢆ  
Doc ID 022475 Rev. 5  
19/37  
Electrical specifications  
VN5E160ASO-E  
Figure 15. Short to VCC  
6KRUWꢀWRꢀ9&&  
5HVLVWLYHꢀꢀ  
6KRUWꢀWRꢀ9  
+DUG  
6KRUWꢀWRꢀ9  
&&  
&&  
9287ꢀ!ꢀ92/  
92/  
9287  
,
287  
W'67.ꢂRQꢃ  
W'67.ꢂRQꢃ  
9&6B',6  
$*ꢄꢄꢄꢈꢆ9ꢆ  
Figure 16. Tj evolution in overload or short to GND  
7- HYROXWLRQꢀLQ  
2YHUORDGꢀRUꢀ6KRUWꢀWRꢀ*1'  
,1387  
6HOIꢁOLPLWDWLRQꢀRIꢀꢀIDVWꢀWKHUPDOꢀWUDQVLHQWV  
776'  
7+<67  
75  
7-B67$57  
7-  
3RZHUꢀ/LPLWDWLRQ  
,
!
/LP+  
ꢄꢀ,/LP/  
,
287  
$*ꢄꢄꢄꢈꢅ9ꢆ  
20/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Electrical specifications  
2.5  
Electrical characteristics curves  
Figure 17. OFF-state output current  
Figure 18. High-level input current  
,ORII>Q$@  
,LK>X$@  
ꢇꢑꢏ  
ꢋꢏꢄ  
ꢋꢄꢄ  
ꢅꢏꢄ  
ꢅꢄꢄ  
ꢆꢏꢄ  
ꢆꢄꢄ  
ꢏꢄ  
7JOꢄꢅꢄꢂꢆꢇꢄ7  
ꢋꢑꢏ  
ꢅꢑꢏ  
ꢆꢑꢏ  
ꢄꢑꢏ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
7F>ƒ&@  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
7F>ƒ&@  
*$3*&)7ꢄꢄꢅꢈꢇ  
*$3*&)7ꢄꢄꢅꢈꢏ  
Figure 19. Input voltage clamp  
Figure 20. Low-level input voltage  
9LFOꢀ>9@  
9LOꢀ>9@  
ꢆꢑꢈ  
ꢆꢑꢊ  
ꢆꢑꢇ  
ꢆꢑꢅ  
ꢊꢑꢈ  
ꢊꢑꢊ  
*JOꢄꢅꢄꢇꢄN"  
ꢊꢑꢇ  
ꢊꢑꢅ  
ꢏꢑꢈ  
ꢏꢑꢊ  
ꢏꢑꢇ  
ꢏꢑꢅ  
ꢄꢑꢈ  
ꢄꢑꢊ  
ꢄꢑꢇ  
ꢄꢑꢅ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
7F>ƒ&@  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
7F>ƒ&@  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
*$3*&)7ꢄꢄꢅꢈꢊ  
*$3*&)7ꢄꢄꢅꢈꢌ  
Figure 21. High-level input voltage  
Figure 22. Hysteresis input voltage  
9LK\VW>9@  
9LK>9@  
ꢄꢑꢉ  
ꢄꢑꢈ  
ꢄꢑꢌ  
ꢄꢑꢊ  
ꢄꢑꢏ  
ꢄꢑꢇ  
ꢄꢑꢋ  
ꢄꢑꢅ  
ꢄꢑꢆ  
ꢋꢑꢏ  
ꢅꢑꢏ  
ꢆꢑꢏ  
ꢄꢑꢏ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
7F>ƒ&@  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
7F>ƒ&@  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
*$3*&)7ꢄꢄꢅꢈꢉ  
*$3*&)7ꢄꢄꢅꢈꢈ  
Doc ID 022475 Rev. 5  
21/37  
Electrical specifications  
VN5E160ASO-E  
Figure 23. ON-state resistance vs Tcase Figure 24. ON-state resistance vs VCC  
5RQ>P2KP@  
5RQ>P2KP@  
ꢏꢄꢄ  
ꢇꢏꢄ  
ꢇꢄꢄ  
ꢋꢏꢄ  
ꢋꢄꢄ  
ꢅꢏꢄ  
ꢅꢄꢄ  
ꢆꢏꢄ  
ꢆꢄꢄ  
ꢏꢄ  
ꢏꢄꢄ  
ꢇꢏꢄ  
ꢇꢄꢄ  
ꢋꢏꢄ  
ꢋꢄꢄ  
ꢅꢏꢄ  
ꢅꢄꢄ  
ꢆꢏꢄ  
ꢆꢄꢄ  
ꢏꢄ  
,RXW ꢆ$  
9FF ꢀꢆꢋ9  
5Dꢄꢅꢄꢇꢁꢀꢄ¡$  
5Dꢄꢅꢄꢇꢂꢁꢄ¡$  
5Dꢄꢅꢄꢂꢁꢄ¡$  
5Dꢄꢅꢄꢈꢉꢀꢄ¡$  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
ꢆꢄ  
ꢆꢏ  
ꢅꢄ  
ꢅꢏ  
ꢋꢄ  
ꢋꢏ  
ꢇꢄ  
7F>ƒ&@  
9FFꢀ>9@  
*$3*&)7ꢄꢄꢅꢉꢆ  
*$3*&)7ꢄꢄꢅꢉꢄ  
Figure 25. Undervoltage shutdown  
Figure 26. Turn-on voltage slope  
9XVG>9@  
ꢂG9RXWꢍGWꢃ2Q>9ꢍPV@  
ꢆꢊ  
ꢆꢇ  
ꢆꢅ  
ꢆꢄ  
ꢆꢄꢄꢄ  
ꢉꢄꢄ  
9FF ꢀꢆꢋ9  
5O ꢀꢆꢋȍ  
ꢈꢄꢄ  
ꢌꢄꢄ  
ꢊꢄꢄ  
ꢏꢄꢄ  
ꢇꢄꢄ  
ꢋꢄꢄ  
ꢅꢄꢄ  
ꢆꢄꢄ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
7F>ƒ&@  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
7F>ƒ&@  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
*$3*&)7ꢄꢄꢅꢉꢅ  
*$3*&)7ꢄꢄꢅꢉꢋ  
Figure 27. ILIMH vs Tcase  
Figure 28. Turn-off voltage slope  
,OLPK>$@  
ꢂG9RXWꢍGWꢃ2II>9ꢍPV@  
ꢅꢆ  
ꢆꢈ  
ꢆꢏ  
ꢆꢅ  
ꢆꢅꢄꢄ  
ꢆꢆꢄꢄ  
ꢆꢄꢄꢄ  
9FF  ꢆꢋ9  
9FF ꢀꢆꢋ9  
5O ꢀꢆꢋȍ  
ꢉꢄꢄ  
ꢈꢄꢄ  
ꢌꢄꢄ  
ꢊꢄꢄ  
ꢏꢄꢄ  
ꢇꢄꢄ  
ꢋꢄꢄ  
ꢅꢄꢄ  
ꢆꢄꢄ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
7F>ƒ&@  
7F>ƒ&@  
*$3*&)7ꢄꢄꢅꢉꢏ  
*$3*&)7ꢄꢄꢅꢉꢇ  
22/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Electrical specifications  
Figure 29. High-level CS_DIS voltage  
Figure 30. CS_DIS voltage clamp  
9FVGFOꢀ>9@  
9FVGK>9@  
ꢆꢄ  
ꢋꢑꢏ  
*JOꢄꢅꢄꢇꢄN"  
ꢅꢑꢏ  
ꢆꢑꢏ  
ꢄꢑꢏ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
7F>ƒ&@  
7F>ƒ&@  
*$3*&)7ꢄꢄꢅꢉꢊ  
*$3*&)7ꢄꢄꢅꢉꢌ  
Figure 31. Low-level CS_DIS voltage  
9FVGOꢀ>9@  
ꢋꢑꢏ  
ꢅꢑꢏ  
ꢆꢑꢏ  
ꢄꢑꢏ  
ꢐꢏꢄ  
ꢐꢅꢏ  
ꢅꢏ  
ꢏꢄ  
ꢌꢏ  
ꢆꢄꢄ  
ꢆꢅꢏ  
ꢆꢏꢄ  
ꢆꢌꢏ  
7F>ƒ&@  
*$3*&)7ꢄꢄꢅꢉꢈ  
Doc ID 022475 Rev. 5  
23/37  
Application information  
VN5E160ASO-E  
3
Application information  
Figure 32. Application schematic  
ꢒꢏ9  
6&&  
5SURW  
&6B',6  
,1  
'
OG  
5SURW  
P&  
287  
5SURW  
&6  
*1'  
5*1'  
56(16(  
9*1'  
'
*1'  
&
H[W  
*$3*&)7ꢄꢄꢅꢉꢉ  
3.1  
GND protection network against reverse battery  
3.1.1  
Solution 1: resistor in the ground line (R  
only)  
GND  
This can be used with any type of load.  
The following is an indication on how to resize the RGND resistor.  
1. RGND 600 mV / (IS(on)max).  
2. RGND ≥ (−VCC) / (-IGND  
)
where -IGND is the DC reverse ground pin current and can be found in the absolute  
maximum rating section of the device datasheet.  
Power dissipation in RGND (when VCC < 0: during reverse battery situations) is:  
Equation 1  
PD = (-VCC)2 / RGND  
This resistor can be shared amongst several different HSDs. Please note that the value of  
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the  
maximum ON-state currents of the different devices.  
Please note that if the microprocessor ground is not shared by the device ground then the  
R
GND produces a shift (IS(on)max * RGND) in the input thresholds and the status output  
24/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Application information  
values. This shift varies depending on how many devices are ON in case of several high-  
side drivers sharing the same RGND  
.
If the calculated power dissipation leads to a large resistor or several devices have to share  
the same resistor then ST suggests to utilize Solution 2 (see Section 3.1.2: Solution 2: a  
diode (DGND) in the ground line).  
3.1.2  
Solution 2: a diode (D  
) in the ground line  
GND  
A resistor (RGND = 1 kΩ) should be inserted in parallel to DGND if the device drives an  
inductive load.  
This small signal diode can be safely shared amongst several different HSDs. Also in this  
case, the presence of the ground network produces a shift (600 mV) in the input threshold  
and in the status output values if the microprocessor ground is not common to the device  
ground. This shift does not vary if more than one HSD shares the same diode/resistor  
network.  
3.2  
3.3  
Load dump protection  
Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the  
V
CC maximux DC rating. The same applies if the device is subject to transients on the VCC  
line that are greater than the ones shown in the ISO T/R 7637/1 table.  
MCU I/Os protection  
If a ground protection network is used and negative transients are present on the VCC line,  
the control pins are pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent  
the microcontroller I/O pins from latching-up.  
The value of these resistors is a compromise between the leakage current of microcontroller  
and the current required by the HSD I/Os (input levels compatibility) with the latch-up limit of  
microcontroller I/Os.  
Equation 2  
-VCCpeak / Ilatchup Rprot (VOHμC - VIH - VGND) / IIHmax  
Calculation example:  
For VCCpeak = - 100 V, Ilatchup 20 mA, VOHμC 4.5 V  
5 kΩ ≤ Rprot 180 kΩ.  
Recommended values: Rprot =10 kΩ, CEXT = 10 nF.  
Doc ID 022475 Rev. 5  
25/37  
 
Application information  
VN5E160ASO-E  
3.4  
Current sense and diagnostic  
The current sense pin performs a double function (see Figure 33: Current sense and  
diagnostic):  
Current mirror of the load current in normal operation, delivering a current  
proportional to the load current according to a known ratio KX.  
The current ISENSE can be easily converted to a voltage VSENSE by means of an  
external resistor RSENSE. Linearity between IOUT and VSENSE is ensured up to 5 V  
minimum (see parameter VSENSE in Table 9: Current sense (8 V < VCC < 18 V)). The  
current sense accuracy depends on the output current (refer to current sense electrical  
characteristics Table 9: Current sense (8 V < VCC < 18 V)).  
Diagnostic flag in fault conditions, delivering a fixed voltage VSENSEH up to a  
maximum current ISENSEH in case of the following fault conditions (refer to  
Table 11: Truth table):  
Power limitation activation  
Overtemperature  
Short to VCC in OFF-state  
Open-load in OFF-state with additional external components.  
A logic high-level on the CS_DIS pin simultaneously sets all the current sense pins of the  
device in a high impedance state, thus disabling the current monitoring and diagnostic  
detection. This feature allows multiplexing of the microcontroller analog inputs by sharing  
the sense resistance and ADC line among different devices.  
Figure 33. Current sense and diagnostic  
938  
9%$7  
9&&  
-AIN -/3N  
ꢇꢆ9  
38B&0'  
2YHUWHPSHUDWXUH  
,287ꢍ.;  
538  
2/ꢀ2))  
,
6(16(+  
92/  
,
,
/RIIꢅU  
3ZUB/LP  
&6B',6  
287Q  
/RIIꢅI  
,1387Q  
96(16(+  
&855(17ꢀ  
6(16(Q  
*1'  
/RDG  
53527  
7RꢀX&ꢀ$'&  
53'  
56(16(  
96(16(  
*$3*&)7ꢄꢄꢋꢄꢄ  
26/37  
Doc ID 022475 Rev. 5  
 
VN5E160ASO-E  
Application information  
3.4.1  
Short to V and OFF-state open-load detection  
CC  
Short to VCC  
A short-circuit between VCC and output is indicated by the relevant current sense pin set to  
VSENSEH during the device OFF-state. Little or no current is delivered by the current sense  
during the ON-state depending on the nature of the short-circuit.  
OFF-state open-load with external circuitry  
Detection of an open-load in off-mode requires an external pull-up resistor (RPU) connecting  
the output to a positive supply voltage (VPU).  
It is preferable that VPU is switched-off during the module standby mode to avoid an  
increase in overall standby current consumption in normal conditions, that is, when the load  
is connected.  
An external pull-down resistor (RPD) connected between output and GND is mandatory to  
avoid misdetection in case of floating outputs in OFF-state (see Figure 33: Current sense  
and diagnostic).  
R
PD must be selected in order to ensure VOUT < VOLmin unless pulled up by the external  
circuitry:  
Equation 3  
RPD 22 KΩ is recommended.  
For proper open load detection in OFF-state, the external pull-up resistor must be selected  
according to the following formula:  
Equation 4  
For the values of VOLmin ,VOLmax, IL(off2)r and IL(off2)f (see Table 10: Open-load detection (8 V  
< VCC < 18 V).  
Doc ID 022475 Rev. 5  
27/37  
Application information  
VN5E160ASO-E  
3.5  
Maximum demagnetization energy (V = 13.5 V)  
CC  
Figure 34. Maximum turn-off current versus inductance (for each channel)(1)  
ꢆꢄꢄ  
ꢆꢄ  
A
B
C
ꢀꢂꢃ  
ꢄꢑꢆ  
ꢆꢄ  
ꢆꢄꢄ  
/ꢀꢂP+ꢃ  
*$3*&)7ꢄꢄꢋꢄꢆ  
A: Tjstart = 150°C single pulse  
B: Tjstart = 100°C repetitive pulse  
C: Tjstart = 125°C repetitive pulse  
9,1ꢓꢀ,/  
'HPDJQHWL]DWLRQ  
'HPDJQHWL]DWLRQ  
'HPDJQHWL]DWLRQ  
W
*$3*&)7ꢄꢄꢄꢇꢈ  
1. Values are generated with R = 0 Ω.  
L
jstart  
In case of repetitive pulses, T  
(at the beginning of each demagnetization) of every pulse must not  
exceed the temperature specified above for curves A and B.  
28/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Package and PC board thermal data  
4
Package and PC board thermal data  
4.1  
SO-16L thermal data  
Figure 35. SO-16L PC board  
("1($'5ꢀꢀꢃꢁꢀ  
Note:  
Layout condition of Rth and Zth measurements (PCB: Double Layers, Thermal Vias,FR4  
area 77mm x 86 mm, PCB thickness=1.6mm, Cu thickness = 70µm (front and back side),  
Copper area from minimum pad lay- out to 24 cm2 ).  
Figure 36.  
R
thj-amb vs PCB copper area in open box free air condition  
57+MDPE  
ꢊꢏ  
ꢊꢄ  
ꢏꢏ  
ꢏꢄ  
ꢇꢏ  
ꢇꢄ  
ꢋꢏ  
57+MDPE  
ꢋꢄ  
ꢆꢄ  
ꢆꢏ  
ꢅꢄ  
ꢅꢏ  
ꢋꢄ  
'!0'2)ꢀꢀꢃꢄꢅ  
Doc ID 022475 Rev. 5  
29/37  
 
Package and PC board thermal data  
VN5E160ASO-E  
Figure 37. SO-16L thermal impedance junction ambient single pulse  
=7+ꢁƒ&ꢂ:ꢃ  
ꢀꢁꢁ  
&X ꢃꢄꢅFPꢃ  
&X ꢆꢅFPꢃ  
&X IRRWꢅSULQW  
ꢀꢁ  
ꢁꢂꢁꢀ  
ꢁꢂꢀ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
7LPHꢀꢁVꢃ  
'!0'2)ꢀꢀꢃꢁꢀ  
Figure 38. Thermal fitting model of a single channel HSD in SO-16L  
'!0'2)ꢀꢀꢃꢁꢃ  
Equation 5: pulse calculation formula:  
ZTHδ = RTH ⋅ δ + ZTHtp(1 δ)  
δ = tp T  
where  
30/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Package and PC board thermal data  
Table 15. Thermal parameter  
Area/island (cm2)  
Footprint  
2
8
R1 (°C/W)  
1.2  
4.2  
5
R2 (°C/W)  
R3 (°C/W)  
R4 (°C/W)  
8
6
6
R5 (°C/W)  
14  
13  
20  
13  
R6 (°C/W)  
28  
14.5  
C1 (W.s/°C)  
C2 (W.s/°C)  
C3 (W.s/°C)  
C4 (W.s/°C)  
C5 (W.s/°C)  
C6 (W.s/°C)  
0.0008  
0.002  
0.1  
0.5  
1
1.5  
9
1.5  
12  
3
Doc ID 022475 Rev. 5  
31/37  
Package and packing information  
VN5E160ASO-E  
5
Package and packing information  
®
5.1  
ECOPACK packages  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
5.2  
Package mechanical data  
Figure 39. SO-16L package dimensions  
("1($'5ꢀꢀꢉꢊꢋ  
32/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Package and packing information  
Table 16. SO-16L mechanical data  
Millimeters  
Typ  
Symbol  
Min  
2.35  
0.10  
0.33  
0.23  
10.10  
7.40  
Max  
2.65  
0.30  
0.51  
0.32  
10.50  
7.60  
A
A1  
B
C
D
E
e
1.27  
H
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
h
L
k
ddd  
0.10  
Doc ID 022475 Rev. 5  
33/37  
Package and packing information  
VN5E160ASO-E  
5.3  
Packing information  
Figure 40. SO-16L tube shipment (no suffix)  
"ASE 1ꢂTY  
ꢏꢄ  
"UL K 1TY  
4UBE LE NGTH ꢆ› ꢀꢂ ꢁꢇ  
!
ꢆꢄꢄꢄ  
ꢏꢋꢅ  
ꢋꢑꢏ  
#
"
"
ꢆꢋꢑꢈ  
ꢄꢑꢊ  
# ꢆ› ꢀꢂ ꢃꢇ  
!LL DIMENSIO NS ARE IN MMꢂ  
!
("1($'5ꢀꢀꢉꢊꢌ  
Figure 41. SO-16L tape and reel shipment (suffix “TR”)  
34/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Order codes  
6
Order codes  
Table 17. Device summary  
Package  
Order codes  
Tube  
Tape and reel  
VN5E160ASOTR-E  
SO-16L  
VN5E160ASO-E  
Doc ID 022475 Rev. 5  
35/37  
Revision history  
VN5E160ASO-E  
7
Revision history  
Table 18. Document revision history  
Date  
Revision  
Changes  
14-Dec-2011  
1
Initial release.  
Update Table 5: Power section  
03-May-2012  
25-Jun-2012  
2
3
Added Section 4: Package and PC board thermal data  
Table 4: Thermal data:  
– Rthj-pins: removed row  
– Rthj-pcb: added row  
18-Sep-2012  
18-Sep-2013  
4
5
Updated Table 4: Thermal data  
Updated disclaimer.  
36/37  
Doc ID 022475 Rev. 5  
VN5E160ASO-E  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 022475 Rev. 5  
37/37  

相关型号:

VN5E160ASOTR-E

Single channel high-side driver with analog for automotive applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VN5E160ASTR-E

Single channel high side driver with analog for automotive applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VN5E160MS-E

Single-channel high-side driver with analog for automotive applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VN5E160MSTR-E

Single-channel high-side driver with analog for automotive applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VN5E160S-E

Single channel high side driver for automotive applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VN5E160STR-E

Single channel high side driver for automotive applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VN5R003H-E

3 mΩ reverse battery protection switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VN5R003HTR-E

3 mΩ reverse battery protection switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VN5T006ASP-E

for car body applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VN5T016AH-E

for car body applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

VN6035L

N-Channel Enhancement-Mode Vertical DMOS Power FETs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SUPERTEX

VN610

SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR