TSA1041IF [STMICROELECTRONICS]

4-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, TQFP-48;
TSA1041IF
型号: TSA1041IF
厂家: ST    ST
描述:

4-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, TQFP-48

转换器
文件: 总14页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSA1041  
OPTIMWATTTM 4-CHANNEL 10-BIT 50MSPS A/D CONVERTER  
PRELIMINARY DATA  
FEATURES  
ORDER CODE  
TM  
1
OPTIMWATT features  
Temperature  
Range  
- Power down device  
Part Number  
Package  
Conditioning  
Marking  
- Adjustable consumption versus speed.  
TSA1041IF  
-40°C to +85°C  
-40°C to +85C  
TQFP48  
TQFP48  
Tray  
SA1041I  
SA1041I  
- Ultra low power consumption:  
TSA1041IFT  
EVAL1041/AA  
Tape & Reel  
440mW@50Msps,  
380mW @40Msps.  
Evaluation board  
4 differential analog inputs  
Input voltage range: typ 2Vpp differential  
69dBFS SFDR at Fin=10MHz  
9.5 ENOB at Fin=10MHz  
PIN DESCRIPTION  
Serial Data Outputs, LVDS Ouputs  
Mode Pattern for test/synchronisation  
Built-in reference voltage with external bias  
capability  
index  
corner  
37  
48 47 46 45 44 43 42 41 40 39 38  
1
36 AVDD  
AVDD  
REFP  
REFM  
INCM  
AGND  
AVDD  
35  
2
AGND  
Single supply voltage: 2.5V  
3
4
5
PDD  
34  
33  
32  
1) OPTIMWATT(TM) is a ST deposited trademark for products features allowing  
optimization of power efficiency at chip/application level.  
SPEED  
DVDD  
DESCRIPTION  
31  
30  
29  
28  
6
7
DGND  
CLK  
TSA1041  
TQFP48  
REFMODE  
The TSA1041 uses a high density advanced deep  
submicron CMOS process, to integrate four High  
Speed A/D converters in one circuit. It achieves  
simultaneous conversion of four differential inputs  
with a resolution of 10 bits at 50MHz maximum  
sampling frequency.  
SYNCMODE  
8
LOCK  
DGND  
DVDD  
VSS  
VSS  
VDD  
9
10  
11  
12  
27  
26  
VSS  
VDD  
25  
VDD  
13 14 15 16 17 18 19 20 21 22 23 24  
The device has an internal PLL to generate 10  
times the sampling frequency, used for the  
serialization of the 10 bits wide data per channel.  
Thus it delivers 40 data on only 8 wires  
corresponding to four serialized data LVDS  
outputs. The number of pins is limited and the four  
ADCs of the TSA1041 fit in a small TQFP48,  
reducing board size and simplifying PCB layout.  
Moreover the use of LVDS outputs reduces the  
noise.  
PACKAGE  
7 x 7 mm TQFP48  
Special care is given to minimize power  
consumption at the application by selecting the  
proper consumption for  
frequency.  
a
given sampling  
The TSA1041 is available in extended (-40 to  
+85°C) temperature range.  
APPLICATIONS  
Medical imaging and ultrasound  
Portable instrumentation  
Cable Modem Receivers  
High resolution fax and scanners  
High speed DSP interface  
Particle detector  
High-end cameras  
December 2003  
1/14  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
TSA1041  
BLOCK DIAGRAM  
2/14  
TSA1041  
PIN DIAGRAM  
index  
corner  
37  
48 47 46 45 44 43 42 41 40 39 38  
1
36 AVDD  
AVDD  
REFP  
REFM  
INCM  
AGND  
AVDD  
35  
AGND  
2
3
PDD  
34  
33  
32  
4
5
SPEED  
DVDD  
TSA1041  
TQFP48  
31  
30  
29  
28  
6
7
DGND  
CLK  
REFMODE  
SYNCMODE  
8
9
LOCK  
DGND  
DVDD  
VSS  
VSS  
VDD  
10  
11  
12  
27  
26  
VSS  
VDD  
25  
VDD  
13 14 15 16 17 18 19 20 21 22 23 24  
TSA1041 PINS DESCRIPTION  
Pin Name  
I/O  
No  
Pin Description  
IN1+  
IN1-  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
47  
Analog Input Channel 1  
48  
Inverted Analog Input Channel 1  
Analog Input Channel 2  
IN2+  
44  
IN2-  
45  
40  
Inverted Analog Input Channel 2  
Analog Input Channel 3  
IN3+  
IN3-  
41  
Inverted Analog Input Channel 3  
Analog Input Channel 4  
IN4+  
37  
IN4-  
38  
Inverted Analog Input Channel 4  
Analog Power Supply (2.5V).  
Analog Ground  
AVDD  
AGND  
VDD  
1,6,36,42  
5,35,39,43,46  
10,12,25  
9,11,26  
30  
Digital Power supply (2.5V) - I/O LVDS.  
Digital Ground - I/O LVDS  
VSS  
CLK  
CMOS Clock Input  
DVDD  
DGND  
SYNCMODE  
27,32  
28,31  
8
Digital Power Supply (2.5V).  
Digital ground  
High level enables test pattern(1000101010).  
REFMODE=’0’, internal references active.  
REFMODE=‘1’, external references must be applied.  
REFMODE  
I
7
Internal Common Mode - may be used as a voltage generator  
output for input signal common mode (Refmode=0) or used as an  
input to force the internal common mode (Refmode=1)  
INCM  
RefM  
I/O  
I
4
3
Bottom Reference Voltage. Usually connected to GND (may be  
forced to another value to adjust the full scale)  
3/14  
TSA1041  
Top Reference Voltage - may be used as a voltage generator output  
(1V) or used as an input to adjust the input dynamic range  
(VIN-VINB=2x(VREFP-VREFM)).  
RefP  
I/O  
2
PDD  
I
34  
Power-Down Device active when PDD=’1’  
Programming Pin for’Power Adaptation versus Speed’:  
SPEED=’1’ Fs<40MHz, SPEED=’0’ 40MHz<Fs<50MHz  
PLL is locked when ’LOCK’ level is ’high’.  
+ Serial Data Output Channel 1  
SPEED  
I
33  
LOCK  
D1+  
O
O
O
O
O
O
O
O
O
O
O
O
O
29  
13  
14  
15  
16  
21  
22  
24  
23  
17  
18  
19  
20  
D1-  
- Serial Data Output Channel 1  
D2+  
+ Serial Data Output Channel 2  
D2-  
- Serial Data Output Channel 2  
D3+  
+ Serial Data Output Channel 3  
D3-  
- Serial Data Output Channel 3  
D4+  
+ Serial Data Output Channel 4  
D4-  
- Serial Data Output Channel 4  
SCLK+  
SCLK-  
FCLK+  
FCLK-  
+ Serial Clock - 250MHz max  
- Serial Clock - 250MHz max  
+ Frame Clock - 50MHz max  
- Frame Clock - 50MHz max  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Values  
Unit  
1)  
AVDD, DVDD, VDD  
-0.3 to 3.3  
V
Analog, digital, digital buffer Supply voltage  
Electrical Static Discharge  
- HBM  
ESD  
KV  
KV  
- CDM-JEDEC Standard  
2)  
Latch-up  
A
Class  
1) All voltages values, except differential voltage, are with respect to network ground terminal. The magnitude of input and output voltages must never exceed -0.3V or  
VDD  
2) Corporate ST Microelectronics procedure number 0018695  
OPERATING CONDITIONS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
AVDD Analog Supply voltage  
DVDD Digital Supply voltage  
2.25  
2.25  
2.25  
2.5  
2.5  
2.5  
2.7  
2.7  
2.7  
V
V
V
VDD  
Digital buffer Supply voltage  
4/14  
TSA1041  
CONDITIONS  
AVDD = DVDD = VDD = 2.5V, Fs= 50Msps,Fin= 10MHz, VINpp@ -1.0dBFS, VREFM= 0V, Internal  
references  
Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
TIMING CHARACTERISTICS  
CLK  
DC  
Input Frequency  
TBD  
50  
Msps  
%
Clock Duty Cycle  
50  
10  
TC1  
TC2  
Tlock  
Fsfr  
Clock pulse width (high)  
Clock pulse width (low)  
Rising edge of LOCK  
Sweep Frequency Rate  
Fs=50MHz  
Fs=50MHz  
ns  
10  
ns  
1.5  
500  
ns  
Hz/s  
Wake-up  
time  
Power-down-to-active  
20  
ns  
CONVERSION AND SERIALIZATION TIMING CHARACTERISTICS  
Tpd  
Data Pipeline Delay  
5.5  
44  
cycles  
ns  
Fs=50MHz  
Tsd  
Serializer Delay  
(1/Fs)+12*(1/10Fs)  
Rload = 100 ohms  
Cload = 4pF  
LVDS Propagation Delay up to  
up (50% to 50%)  
Tpduu  
530  
ps  
Rload = 100 ohms  
Cload = 4pF  
LVDS Propagation Delay down  
to down  
Tpddd  
Tjit  
530  
150  
ps  
ps  
Jitter PLL and LVDS  
LVDS OUTPUTS TIMING CHARACTERISTICS  
Tsklpd Skew between LVDS buffer  
100  
280  
280  
ps  
ps  
ps  
Tr  
Tf  
Rise time 20%-80%  
Fall time 20%-80%  
Rload = 100 ohms  
Cload = 4pF  
5/14  
TSA1041  
TIMING DIAGRAM: General description  
N+1  
N+4  
N+6  
N+7  
N+3  
N+2  
N
N+8  
N+5  
CLK  
Sample N+1  
Sample N  
Data  
ch1...ch4  
NON VALID DATA  
SCLK  
NON VALID SIGNAL  
NON VALID SIGNAL  
FCLK  
LOCK  
DETAILED TIMING: data, clock positioning  
FCLK  
SCLK  
DATA  
LSB MSB  
D8  
D1  
D7  
LSB  
6/14  
TSA1041  
CONDITIONS  
AVDD = DVDD = VDD = 2.5V, Fs= 50Msps,Fin= 10MHz, VINpp@ -1.0dBFS, VREFM= 0V  
Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
ANALOG INPUTS  
VINpp  
Zin  
Differential analog input signal  
Equivalent input resistance  
Input capacitance  
2
Vpp  
kΩ  
Fs=50Msps  
10.6  
5.0  
Cin  
pF  
BW  
Analog Input Bandwidth  
Effective Resolution Bandwidth  
VINpp@ Full scale, Fs=50Msps  
1000  
60  
MHz  
MHz  
ERB  
INTERNAL REFERENCE VOLTAGE  
INREFP Top internal reference voltage  
1
V
V
INCM  
Internal common mode voltage  
0.5  
EXTERNAL REFERENCE VOLTAGE  
VREFP Forced top reference voltage  
VREFM Forced bottom reference voltage  
1
0
V
V
Forced internal common mode volt-  
VINCM  
age  
0.5  
V
DIGITAL INPUTS AND OUTPUTS  
2.5V CMOS Inputs/Outputs  
VIL  
VIH  
Logic "0" voltage  
Logic "1" voltage  
Logic "0" voltage  
Logic "1" voltage  
0.8  
V
V
V
V
2.0  
VOL  
VOH  
Iol=10µA  
0.4  
Ioh=-10µA  
2.4  
2.5V LVDS Outputs  
VOD  
Differential Output Voltage  
330  
mV  
mV  
RL=100Ω  
VOD  
Output Differential Voltage Unbal-  
ance  
15  
15  
VOS  
Output Offset Voltage  
1.22  
V
VOS  
Offset Voltage Unbalance  
mV  
POWER CONSUMPTION  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
PDD = 0  
Power consumption in normal  
operation mode and power  
down mode  
- Fs= 50Msps  
- Fs=40Msps  
440  
380  
20  
460  
400  
100  
mW  
mW  
µW  
Pd  
PDD = 1  
Junction-ambient thermal resis-  
tor (TQFP48)  
Rthja  
80  
°C/W  
7/14  
TSA1041  
CONDITIONS  
AVDD = DVDD = VDD = 2.5V, Fs= 50Msps,Fin= 10MHz, VINpp@ -1.0dBFS, internal references,  
VREFM= 0V  
Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
ACCURACY  
Fin= 10MHz, VINpp@+1dBFS  
Fin= 10MHz, VINpp@+1dBFS  
Fin= 10MHz, VINpp@+1dBFS  
Fin= 10MHz, VINpp@+1dBFS  
OE  
GE  
Offset Error  
Gain error  
-1.5  
±0.3  
±0.6  
tbd  
LSB  
%
DNL  
INL  
Differential Non Linearity  
Integral Non Linearity  
LSB  
LSB  
Monotonicity and no missing  
codes  
-
Guaranteed  
DYNAMIC CHARACTERISTICS  
SFDR Spurious Free Dynamic Range  
69.5  
58.9  
67.5  
dBFS  
dBc  
SNR  
THD  
Signal to Noise Ratio  
Total Harmonics Distortion  
dBc  
Signal to Noise and Distortion  
Ratio  
SINAD  
58.4  
9.6  
dBc  
bits  
ENOB Effective Number of Bits  
MATCHING BETWEEN CHANNELS  
GM  
OM  
Gain match  
0.04  
0.5  
%
Channels Offset mismatch  
Crosstalk  
LSB  
Xtalk  
-80  
dBFS  
Equivalents circuits:  
LVDS outputs  
VDD  
ADC inputs:  
3.5mA  
AVcc  
V-  
V+  
Zin=1/(2ΠCs.Fs)=3.3k(Fs=20MHz)  
Di- SCLK-,FCLK-  
Di+, SCLK+,FCLK+  
VIN  
Cin=4pF  
INCM  
V-  
V+  
AGND  
3.5mA  
VCC  
8/14  
TSA1041  
Figure 1 : Static parameter: Differential Non Linearity  
Fs=50MSPS; Fin=10MHz; N=131072pts  
1
0 . 8  
D
D
N
N
L
L
m
m
i n  
a
=
=
- 0 . 4 5 0 l s b  
0 . 2 7 4 l s b  
x
0 . 6  
0 . 4  
0 . 2  
0
- 0 . 2  
- 0 . 4  
- 0 . 6  
- 0 . 8  
- 1  
0
1 0 0  
2 0 0  
3 0 0  
4 0 0  
5 0 0  
6 0 0  
7 0 0  
8 0 0  
9 0 0  
1 0 0 0  
Figure 2 : Static parameter: Integral Non Linearity  
Fs=50MSPS; Fin=10MHz; N=131072pts  
1 . 5  
I N L  
I N L  
m
m
i n  
a x  
=
=
-1 . 2 5 4 l s b  
1 . 2 2 7 l s b  
1
0 . 5  
0
-0 . 5  
- 1  
-1 . 5  
0
1 0 0  
2 0 0  
3 0 0  
4 0 0  
5 0 0  
6 0 0  
7 0 0  
8 0 0  
9 0 0  
1 0 0 0  
9/14  
TSA1041  
Figure 3 : Single-tone 16K FFT at Fs=50 Msps, Internal references  
Fin=10MHz, Vin@-1dBFS, SFDR=-70.7dBc, THD=-69.32dBc, SNR=59.6dB, SINAD=59.2dB, ENOB=9.7 bits  
0
-10  
-20  
SFSR = -0.95dBFS  
ENOB = 9.697 Bits  
SINAD = 59.18dBc  
SNR = 59.62dBc  
THD = -69.32dBc  
SFDR = -70.70dBFS  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
2.5  
5
7.5  
10  
12.5  
15  
17.5  
20  
22.5  
25  
10/14  
TSA1041 APPLICATION NOTE  
Detailed information:  
Test Pattern (SYNCMODE):  
An internal register in the TSA1041 delivers a  
Synchronization pattern (1000101010) to secure  
the data transmission between the 4-channels.  
When the CMOS input SYNCMODE is high, the  
Synchronization pattern is delivered at the output  
of the TSA1041.  
The TSA1041 contains four High Speed Analog to  
Digital converters, able to convert simultaneously  
four differential inputs. Each of the single ADC is  
based on a pipeline architecture implemented in a  
submicron CMOS process to achieve the best  
performances in terms of linearity and power  
consumption.  
Data Synchronization (SCLK, FCLK):  
To ease the application, the TSA1041 provides  
common internal references and a common  
mode, related to all channels. External references  
can also be applied to adjust the input scale  
according application needs and improve dynamic  
performances.  
The TSA1041 delivers the Serial-Clock (5 times  
the sampling frequency Fs, edges on middle of  
data) and the Frame-Clock (same frequency as  
the sampling clock, edges aligned with data) for  
deserialization (see figure.’Detailed timing’ p6).  
A PLL and one serializer per channel are  
integrated in the design of the TSA1041 to allow  
the serialization of the 10-bits wide data output  
per channel. At these high data bits rate  
(500Mbits/s for a sampling frequency at 50Msps),  
the data transmission is done through single  
differential LVDS buses. The use of LVDS output  
buffers allows to reduce I/O noise and optimize  
the ratio’number of channels/consumption’,  
compared to CMOS parallel output buses.  
Moreover it allows to reduce board size and  
simplify PCB layout.  
The serial clock SCLK can be used with DDR  
(double data registers) to deserialize on both  
rising and falling edge of the SCLK. The first bit is  
detected by using the FCLK or the  
synchronization pattern.  
For  
systems  
integrating  
SERDES,  
the  
deserialisation is done by using the frame clock  
FCLK.  
Data Serialization (LOCK):  
An internal PLL and a serializer serialize the 10-bit  
wide output data.  
At 50Msps sampling frequency the overall  
consumption of the four-channels TSA1041 is  
only 440mW  
Before the internal PLL of the TSA1041 is locked  
on the sampling frequencyx10, the CMOS output  
LOCK remains low. When the internal PLL is  
locked, the output LOCK goes high.  
Operating modes:  
For a proper use of the LOCK and if the sampling  
frequency varies during operation it is strongly  
advised to put the device on power-down before  
increasing/cdecreasing the sampling frequency.  
Mode Ref ext/int (REFMODE):  
When REFMODE is let to 0, the TSA1041 uses  
the internal reference voltages to set up the  
dynamic range for the four channels. When  
REFMODE is set to 1, external references  
VREFP and VINCM must be applied to adjust the  
dynamic range.  
If the sampling frequency is 50MHz, the  
transmitted data bit rate is 500Mbps. The  
serialization provides first MSB(D9), D8...D1, and  
at the end LSB(D0).  
Power Down Device (PDD):  
Power adaptation vs Fs (SPEED):  
When PDD is set to low level, the device is active.  
When set to high level the circuit is inactive.  
The power consumption of the device may be  
optimized versus the sampling frequency with one  
11/14  
TSA1041  
programming digit, pin SPEED as shown in Table  
1:.  
- the differential impedance between the 2 traces  
must be 100 ohms to avoid reflection. The surface  
mounted termination resistor must be 100 ohms  
(1%) as close as possible to the receiver inputs  
Fs (Msps)  
SPEED  
Pd (mW)  
- to avoid crosstalk, LVDS pairs should not be  
placed too closed from each other.  
<40  
1
0
380  
440  
- Same lengths between LVDS traces and as  
short as possible (driver-receiver) to limit the skew  
between channels and clocks.  
40-50  
- Isolation of LVDS lines with ground plane.  
Table 1 : : Programming for power  
optimization versus speed  
- Minimization of discontinuities on LVDS traces.  
LVDS outputs:  
The LVDS (Low-voltage differential signaling)  
specifications of the TSA1041 are based on the  
ANSI/TIA/EIA-644 LVDS standard. The low  
voltage swing (300mV) of LVDS reduces noise  
generation. Moreover well-balanced and close  
data transmission lines, such as twisted pairs  
obtain the maximum common mode rejection.  
A termination resistor of 100 ohms must be  
added.  
Layout precautions:  
Grounding and bypassing:  
To obtain the best performances from the  
TSA1041, a proper grounding and bypassing of  
all power supplies and references is very  
important. Bypass capacitors (470nF and 10nF  
surface mounted capacitors) must be placed as  
close as possible to the ADC pins in order to  
improve high frequency bypassing and reduce  
harmonic distortion (see figure 4). It will prevent  
the high frequency transient current and noise  
from going through power supplies and  
references lines.  
It is recommended to use a four-layer PCB board  
with top and bottom layers for signals, a ground  
and a power layer. The use of multiple via to  
connect power and ground traces to appropriate  
planes will increase noise immunity.  
Analog Channel matching:  
The Differential analog input lines should be as  
short as possible and be of equal lengths. The  
length of each pair addressing the four A/D  
converters should be very close. To minimize  
crosstalk between channels, each analog pair  
must respect a certain distance from other pair.  
LVDS outputs and channels matching:  
For these high data throughput (up to 500Mb/s),  
the layout of LVDS traces must follow some rules:  
12/14  
TSA1041  
Figure 4 : TSA1041 Evaluation board schematic  
13/14  
TSA1041  
PACKAGE MECHANICAL DATA  
TQFP48 MECHANICAL DATA  
mm.  
inch  
TYP.  
DIM.  
MIN.  
TYP  
MAX.  
1.6  
MIN.  
MAX.  
0.063  
0.006  
0.057  
0.011  
0.0079  
A
A1  
A2  
B
0.05  
1.35  
0.17  
0.09  
0.15  
1.45  
0.27  
0.20  
0.002  
0.053  
0.007  
0.0035  
1.40  
0.22  
0.055  
0.009  
C
D
9.00  
7.00  
5.50  
0.50  
9.00  
7.00  
5.50  
0.60  
1.00  
3.5˚  
0.354  
0.276  
0.216  
0.020  
0.354  
0.276  
0.216  
0.024  
0.039  
3.5˚  
D1  
D3  
e
E
E1  
E3  
L
0.45  
0˚  
0.75  
7˚  
0.018  
0˚  
0.030  
7˚  
L1  
K
0110596/C  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
All other names are the property of their respective owners.  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Repubic - Finland - France - Germany  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain  
Sweden - Switzerland - United Kingdom - United States  
http://www.st.com  
14/14  

相关型号:

TSA1041IFT

4-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, TQFP-48
STMICROELECTR

TSA10A

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA11

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA110

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA110A

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA110C

Trans Voltage Suppressor Diode, 400W, Bidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA114ENND03

Transistor
JCST

TSA114TNND03

Transistor
JCST

TSA11A

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA11C

Trans Voltage Suppressor Diode, 400W, Bidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA12

EURO TERMINAL BLOCKS
ETC

TSA120

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE