TS4994EIJT [STMICROELECTRONICS]

1.2 W differential input/output audio power amplifier with selectable standby; 1.2 W差分输入/输出音频功率放大器可选择待机
TS4994EIJT
型号: TS4994EIJT
厂家: ST    ST
描述:

1.2 W differential input/output audio power amplifier with selectable standby
1.2 W差分输入/输出音频功率放大器可选择待机

消费电路 商用集成电路 音频放大器 视频放大器 功率放大器
文件: 总35页 (文件大小:674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4994FC  
1.2 W differential input/output audio power amplifier  
with selectable standby  
Features  
TS4994EIJT - Flip-chip (9 bumps)  
Differential inputs  
Gnd  
Near-zero pop & click  
100dB PSRR @ 217Hz with grounded inputs  
Operating range from VCC = 2.5V to 5.5V  
VO-  
Bypass  
VIN+  
VO+  
7
6
9
5
1.2W rail-to-rail output power @ VCC = 5V,  
THD = 1%, F = 1kHz, with 8Ωload  
Stdby  
VIN-  
4
3
8
1
90dB CMRR @ 217Hz  
2
Ultra-low consumption in standby mode (10nA)  
Selectable standby mode (active low or active  
VCC  
Stdby Mode  
high)  
Ultra fast startup time: 15ms typ.  
The device is equipped with common mode  
feedback circuitry allowing outputs to be always  
Available in 9-bump flip-chip (300mm bump  
diameter)  
biased at V /2 regardless of the input common  
CC  
Lead-free package  
mode voltage.  
The TS4994 is designed for high quality audio  
applications such as mobile phones and requires  
few external components.  
Description  
The TS4994 is an audio power amplifier capable  
of delivering 1W of continuous RMS output power  
into an 8Ωload @ 5V. Due to its differential inputs,  
it exhibits outstanding noise immunity.  
Applications  
Mobile phones (cellular / cordless)  
Laptop / notebook computers  
PDAs  
An external standby mode control reduces the  
supply current to less than 10nA. An STBY  
MODE pin allows the standby to be active HIGH  
or LOW. An internal thermal shutdown protection  
is also provided, making the device capable of  
sustaining short-circuits.  
Portable audio devices  
Order codes  
Part number  
Temperature range  
Package  
Packaging  
Marking  
FC9 with back  
coating  
TS4994EIKJT  
TS4994EIJT  
A94  
A94  
-40°C, +85°C  
Tape & reel  
Lead free flip-chip9  
December 2006  
Rev 2  
1/35  
www.st.com  
35  
Contents  
TS4994FC  
Contents  
1
2
3
4
Application component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Low and high frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Calculating the influence of mismatching on PSRR performance . . . . . . 25  
CMRR performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Wake-up time: tWU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.10 Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.11 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.12 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2/35  
TS4994FC  
Application component information  
1
Application component information  
Components  
Functional description  
Cs  
Cb  
Supply bypass capacitor that provides power supply filtering.  
Bypass capacitor that provides half supply filtering.  
Feedback resistor that sets the closed loop gain in conjunction with Rin  
AV = closed loop gain = Rfeed/Rin.  
Rfeed  
Rin  
Inverting input resistor that sets the closed loop gain in conjunction with Rfeed  
.
Optional input capacitor making a high pass filter together with Rin.  
(FCL = 1/(2πRinCin).  
Cin  
Figure 1.  
Typical application  
VCC  
+
Cs  
1u  
Rfeed1  
20k  
2
GND  
VCC  
Diff. input -  
Cin1  
Rin1  
3
Vin-  
-
Vo+ 5  
20k  
220nF  
Cin2  
Rin2  
Vo-  
7
1
8
Vin+  
GND  
+
20k  
220nF  
8 Ohms  
Diff. Input +  
Bypass  
Bias  
+
Optional  
Cb  
1u  
Standby  
GND  
6
Mode  
9
Stdby  
4
TS4994IJ  
GND  
Rfeed2  
20k  
GND  
GNDVCC GNDVCC  
3/35  
Absolute maximum ratings and operating conditions  
TS4994FC  
2
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Vi  
Supply voltage (1)  
6
GND to VCC  
-40 to + 85  
-65 to +150  
150  
V
V
Input voltage (2)  
Toper  
Tstg  
Tj  
Operating free air temperature range  
Storage temperature  
°C  
°C  
°C  
°C/W  
W
Maximum junction temperature  
Thermal resistance junction to ambient (3)  
Power dissipation  
Rthja  
Pdiss  
250  
internally limited  
2
Human body model  
kV  
V
ESD  
Machine model  
200  
Latch-up immunity  
200  
mA  
°C  
Lead temperature (soldering, 10sec)  
260  
1. All voltage values are measured with respect to the ground pin.  
2. The magnitude of the input signal must never exceed VCC + 0.3V / GND - 0.3V.  
3. The device is protected by a thermal shutdown active at 150°C.  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
Supply voltage  
2.5 to 5.5  
V
Standby mode voltage input:  
VSM  
V
V
Standby active LOW  
Standby active HIGH  
VSM=GND  
VSM=VCC  
Standby voltage input:  
VSTBY  
Device ON (VSM = GND) or device OFF (VSM = VCC  
Device OFF (VSM = GND) or device ON (VSM = VCC  
)
)
1.5 VSTBY VCC  
GND VSTBY0.4 (1)  
TSD  
RL  
Thermal shutdown temperature  
Load resistor  
150  
4  
°C  
Ω
Rthja  
Thermal resistance junction to ambient  
100  
°C/W  
1. The minimum current consumption (ISTBY) is guaranteed when VSTBY = GND or VCC (i.e. supply rails) for the whole  
temperature range.  
4/35  
TS4994FC  
Electrical characteristics  
= 25°C (unless otherwise  
3
Electrical characteristics  
Table 3.  
Electrical characteristics for V = +5V, GND = 0V, T  
CC  
amb  
specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
No input signal, no load  
ICC  
4
7
mA  
Standby current  
ISTBY  
No input signal, VSTBY = VSM = GND, RL = 8Ω  
No input signal, VSTBY = VSM = VCC, RL = 8Ω  
10  
1000  
nA  
Differential output offset voltage  
No input signal, RL = 8Ω  
Voo  
VICM  
0.1  
10  
mV  
V
Input common mode voltage  
CMRR -60dB  
0.6  
0.8  
VCC - 0.9  
Output power  
THD = 1% Max, F= 1kHz, RL = 8Ω  
Pout  
1.2  
0.5  
W
%
Total harmonic distortion + noise  
Pout = 850mW rms, AV = 1, 20Hz F 20kHz, RL = 8Ω  
THD + N  
Power supply rejection ratio with inputs grounded(1)  
PSRRIG F = 217Hz, R = 8Ω, AV = 1, Cin = 4.7μF, Cb =1μF  
100  
90  
dB  
dB  
Vripple = 200mVPP  
Common mode rejection ratio  
CMRR  
F = 217Hz, RL = 8Ω, AV = 1, Cin = 4.7μF, Cb =1μF  
Vic = 200mVPP  
Signal-to-noise ratio (A-weighted filter, AV = 2.5)  
RL = 8Ω, THD +N < 0.7%, 20Hz F 20kHz  
SNR  
GBP  
100  
2
dB  
Gain bandwidth product  
RL = 8Ω  
MHz  
Output voltage noise, 20Hz F 20kHz, RL = 8Ω  
Unweighted, AV = 1  
A-weighted, AV = 1  
Unweighted, AV = 2.5  
A-weighted, AV = 2.5  
Unweighted, AV = 7.5  
A-weighted, AV = 7.5  
Unweighted, Standby  
A-weighted, Standby  
6
5.5  
12  
10.5  
33  
28  
1.5  
1
VN  
μVRMS  
Wake-up time(2)  
Cb =1μF  
tWU  
15  
ms  
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC  
2. Transition time from standby mode to fully operational amplifier.  
.
5/35  
Electrical characteristics  
TS4994FC  
Table 4.  
Electrical characteristics for V = +3.3V (all electrical values are guaranteed with  
CC  
correlation measurements at 2.6V and 5V), GND = 0V, T  
= 25°C (unless otherwise  
amb  
specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
ICC  
Supply current no input signal, no load  
3
7
mA  
Standby current  
ISTBY  
No input signal, VSTBY = VSM = GND, RL = 8Ω  
No input signal, VSTBY = VSM = VCC, RL = 8Ω  
10  
1000  
nA  
Differential output offset voltage  
No input signal, RL = 8Ω  
Voo  
VICM  
0.1  
10  
mV  
V
Input common mode voltage  
CMRR -60dB  
0.6  
VCC - 0.9  
Output power  
THD = 1% max, F= 1kHz, RL = 8Ω  
Pout  
300  
500  
0.5  
mW  
%
Total harmonic distortion + noise  
Pout = 300mW rms, AV = 1, 20Hz F 20kHz, RL = 8Ω  
THD + N  
Power supply rejection ratio with inputs grounded(1)  
PSRRIG F = 217Hz, R = 8Ω, AV = 1, Cin = 4.7μF, Cb =1μF  
100  
90  
dB  
dB  
Vripple = 200mVPP  
Common mode rejection ratio  
CMRR  
F = 217Hz, RL = 8Ω, AV = 1, Cin = 4.7μF, Cb =1μF  
Vic = 200mVPP  
Signal-to-noise ratio (A-weighted filter, AV = 2.5)  
RL = 8Ω, THD +N < 0.7%, 20Hz F 20kHz  
SNR  
GBP  
100  
2
dB  
Gain bandwidth product  
RL = 8Ω  
MHz  
Output voltage noise, 20Hz F 20kHz, RL = 8Ω  
Unweighted, AV = 1  
A-weighted, AV = 1  
Unweighted, AV = 2.5  
A-weighted, AV = 2.5  
Unweighted, AV = 7.5  
A-weighted, AV = 7.5  
Unweighted, Standby  
A-weighted, Standby  
6
5.5  
12  
10.5  
33  
28  
1.5  
1
VN  
μVRMS  
Wake-up time(2)  
Cb =1μF  
tWU  
15  
ms  
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC  
2. Transition time from standby mode to fully operational amplifier.  
.
6/35  
TS4994FC  
Table 5.  
Electrical characteristics  
= 25°C (unless otherwise  
amb  
Electrical characteristics for V = +2.6V, GND = 0V, T  
CC  
specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
No input signal, no load  
ICC  
3
7
mA  
Standby current  
ISTBY  
No input signal, VSTBY = VSM = GND, RL = 8Ω  
No input signal, VSTBY = VSM = VCC, RL = 8Ω  
10  
1000  
nA  
Differential output offset voltage  
No input signal, RL = 8Ω  
Voo  
VICM  
0.1  
10  
mV  
V
Input common mode voltage  
CMRR -60dB  
0.6  
V
CC- 0.9  
Output power  
THD = 1% max, F= 1kHz, RL = 8Ω  
Pout  
200  
300  
0.5  
mW  
%
Total harmonic distortion + noise  
Pout = 225mW rms, AV = 1, 20Hz F 20kHz, RL = 8Ω  
THD + N  
Power supply rejection ratio with inputs grounded(1)  
PSRRIG F = 217Hz, R = 8Ω, AV = 1, Cin = 4.7μF, Cb =1μF  
100  
90  
dB  
dB  
Vripple = 200mVPP  
Common mode rejection ratio  
CMRR  
F = 217Hz, RL = 8Ω, AV = 1, Cin = 4.7μF, Cb =1μF  
Vic = 200mVPP  
Signal-to-noise ratio (A-weighted filter, AV = 2.5)  
RL = 8Ω, THD +N < 0.7%, 20Hz F 20kHz  
SNR  
GBP  
100  
2
dB  
Gain bandwidth product  
RL = 8Ω  
MHz  
Output voltage noise, 20Hz F 20kHz, RL = 8Ω  
Unweighted, AV = 1  
A-weighted, AV = 1  
Unweighted, AV = 2.5  
A-weighted, AV = 2.5  
Unweighted, AV = 7.5  
A-weighted, AV = 7.5  
Unweighted, Standby  
A-weighted, Standby  
6
5.5  
12  
10.5  
33  
28  
1.5  
1
VN  
μVRMS  
Wake-up time(2)  
Cb =1μF  
tWU  
15  
ms  
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC  
2. Transition time from standby mode to fully operational amplifier.  
.
7/35  
Electrical characteristics  
TS4994FC  
Figure 2.  
Current consumption vs. power  
supply voltage  
Figure 3.  
Current consumption vs. standby  
voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
No load  
Tamb=25  
°
C
Standby mode=0V  
Standby mode=5V  
Vcc = 5V  
No load  
Tamb=25°C  
0
1
2
3
4
5
0
1
2
3
4
5
Power Supply Voltage (V)  
Standby Voltage (V)  
Figure 4.  
Current consumption vs. standby Figure 5.  
voltage  
Current consumption vs. standby  
voltage  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Standby mode=0V  
Standby mode=0V  
Standby mode=3.3V  
Standby mode=2.6V  
Vcc = 3.3V  
No load  
Tamb=25  
Vcc = 2.6V  
No load  
Tamb=25  
°C  
°C  
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
0.0  
0.6  
1.2  
1.8  
2.4  
Standby Voltage (V)  
Standby Voltage (V)  
Figure 6.  
Differential DC output voltage vs.  
common mode input voltage  
Figure 7.  
Power dissipation vs. output power  
1000  
100  
10  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Av = 1  
Tamb = 25  
Vcc=5V  
F=1kHz  
THD+N<1%  
°C  
RL=4  
Ω
Vcc=3.3V  
Vcc=5V  
Vcc=2.5V  
1
RL=8Ω  
0.1  
RL=16  
Ω
0.01  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
Output Power (W)  
Common Mode Input Voltage (V)  
8/35  
TS4994FC  
Figure 8.  
Electrical characteristics  
Power dissipation vs. output power Figure 9.  
Power dissipation vs. output power  
0.40  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Vcc=3.3V  
F=1kHz  
THD+N<1%  
Vcc=2.6V  
F=1kHz  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
RL=4Ω  
THD+N<1%  
RL=4Ω  
RL=8Ω  
RL=8  
Ω
RL=16  
Ω
RL=16  
Ω
0.0  
0.0  
0.0  
0.1  
0.2  
Output Power (W)  
0.3  
0.4  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Output Power (W)  
Figure 10. Output power vs. power supply  
voltage  
Figure 11. Output power vs. power supply  
voltage  
2.4  
2.0  
RL = 4  
F = 1kHz  
BW < 125kHz  
Tamb = 25  
Ω
RL = 8Ω  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
THD+N=10%  
°C  
THD+N=10%  
THD+N=1%  
THD+N=1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Vcc (V)  
Vcc (V)  
Figure 12. Output power vs. power supply  
voltage  
Figure 13. Output power vs. power supply  
voltage  
1.2  
0.6  
RL = 16  
Ω
RL = 32  
Ω
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
THD+N=10%  
THD+N=10%  
THD+N=1%  
THD+N=1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
Vcc (V)  
4.5  
5.0  
5.5  
Vcc (V)  
9/35  
Electrical characteristics  
TS4994FC  
Figure 14. Power derating curves  
Figure 15. Open loop gain vs. frequency  
0
1.2  
60  
40  
20  
0
Heat sink surface  
(See demoboard)  
100mm2  
1.0  
Gain  
-40  
-80  
-120  
-160  
-200  
0.8  
0.6  
0.4  
Phase  
Vcc = 5V  
ZL = 8 + 500pF  
-20  
-40  
No Heat sink  
25  
0.2  
0.0  
Ω
Tamb = 25  
°C  
0.1  
1
10  
100  
1000  
10000  
0
50  
75  
100  
125  
Ambiant Temperature ( C)  
Frequency (kHz)  
Figure 16. Open loop gain vs. frequency  
Figure 17. Open loop gain vs. frequency  
0
0
60  
60  
Gain  
Gain  
-40  
-40  
40  
20  
0
40  
20  
0
-80  
-80  
Phase  
Phase  
-120  
-160  
-200  
-120  
-160  
-200  
Vcc = 3.3V  
ZL = 8 + 500pF  
Vcc = 2.6V  
ZL = 8 + 500pF  
-20  
-20  
Ω
Ω
Tamb = 25  
°C  
Tamb = 25  
°C  
-40  
0.1  
-40  
0.1  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Figure 18. Closed loop gain vs. frequency  
Figure 19. Closed loop gain vs. frequency  
10  
0
0
10  
0
0
Phase  
Phase  
Gain  
Gain  
-40  
-80  
-120  
-160  
-200  
-40  
-80  
-120  
-160  
-200  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
Vcc = 5V  
Av = 1  
ZL = 8  
Vcc = 3.3V  
Av = 1  
ZL = 8Ω + 500pF  
Ω
+ 500pF  
Tamb = 25  
°C  
Tamb = 25  
°C  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
10/35  
TS4994FC  
Electrical characteristics  
Figure 20. Closed loop gain vs. frequency  
Figure 21. PSRR vs. frequency  
10  
0
0
0
-10  
-20  
-30  
-40  
Phase  
Vcc = 5V  
Vripple = 200mVpp  
Inputs = Grounded  
Gain  
-40  
-80  
-120  
-160  
-200  
Av = 1, Cin = 4.7  
μF  
RL  
8Ω  
-10  
-20  
-30  
-40  
Cb=0.1μF  
-50 Tamb = 25  
°C  
-60  
-70  
-80  
-90  
Cb=0.47μF  
Cb=1μF  
Vcc = 2.6V  
Av = 1  
ZL = 8  
-100  
Ω
+ 500pF  
°C  
Cb=0  
-110  
-120  
Tamb = 25  
0.1  
1
10  
100  
1000  
10000  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (kHz)  
Figure 22. PSRR vs. frequency  
Figure 23. PSRR vs. frequency  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
Vcc = 3.3V  
Vripple = 200mVpp  
Inputs = Grounded  
Vcc = 2.6V  
Vripple = 200mVpp  
Inputs = Grounded  
Av = 1, Cin = 4.7  
μF  
Av = 1, Cin = 4.7  
μF  
RL  
8Ω  
RL  
8Ω  
Cb=0.1μF  
Cb=0.1μF  
-50 Tamb = 25  
°C  
-50 Tamb = 25  
°C  
-60  
-70  
-80  
-90  
-60  
-70  
-80  
-90  
Cb=0.47  
μF  
Cb=0.47  
μF  
Cb=1μF  
Cb=1μF  
-100  
-100  
Cb=0  
Cb=0  
-110  
-120  
-110  
-120  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
10000 20k  
Figure 24. PSRR vs. frequency  
Figure 25. PSRR vs. frequency  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
Vcc = 5V  
Vripple = 200mVpp  
Inputs = Grounded  
Vcc = 3.3V  
Vripple = 200mVpp  
Inputs = Grounded  
Av = 2.5, Cin = 4.7  
μF  
Av = 2.5, Cin = 4.7  
μF  
RL  
8Ω  
RL  
8Ω  
Cb=0.1μF  
Cb=0.1μF  
-50 Tamb = 25  
°C  
-50 Tamb = 25  
°C  
-60  
-70  
-80  
-90  
Cb=0.47  
μF  
-60  
-70  
-80  
-90  
Cb=0.47  
μF  
Cb=1μF  
Cb=1μF  
Cb=0  
Cb=0  
-100  
-100  
-110  
-120  
-110  
-120  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
10000 20k  
11/35  
Electrical characteristics  
TS4994FC  
Figure 26. PSRR vs. frequency  
Figure 27. PSRR vs. frequency  
0
0
-10  
-10  
-20  
-30  
-40  
Vcc = 5V  
Vripple = 200mVpp  
Inputs = Floating  
Vcc = 2.6V  
Vripple = 200mVpp  
Inputs = Grounded  
-20  
-30  
Rfeed = 20k  
Ω
Av = 2.5, Cin = 4.7  
RL  
Tamb = 25  
μF  
-40  
RL  
8Ω  
8Ω  
Cb=0.1μF  
Cb=0.1μF  
-50  
-50 Tamb = 25  
°C  
°C  
-60  
Cb=0.47  
μF  
-60  
-70  
-80  
-90  
Cb=0.47  
μF  
-70  
Cb=1μF  
Cb=1μF  
-80  
-90  
Cb=0  
-100  
-110  
-120  
-100  
Cb=0  
-110  
-120  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
10000 20k  
Figure 28. PSRR vs. frequency  
Figure 29. PSRR vs. frequency  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
Vcc = 3.3V  
Vripple = 200mVpp  
Inputs = Floating  
Vcc = 2.6V  
Vripple = 200mVpp  
Inputs = Floating  
Rfeed = 20k  
Ω
Rfeed = 20k  
Ω
RL  
8Ω  
RL  
8Ω  
Cb=0.1μF  
Cb=0.1μF  
-50 Tamb = 25  
°C  
-50 Tamb = 25  
°C  
-60  
-70  
-80  
-90  
-60  
-70  
-80  
-90  
Cb=0.47  
μF  
Cb=0.47  
μF  
Cb=1μF  
Cb=1μF  
-100  
-100  
Cb=0  
Cb=0  
-110  
-120  
-110  
-120  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
10000 20k  
Figure 30. PSRR vs. common mode input  
voltage  
Figure 31. PSRR vs. common mode input  
voltage  
0
Vcc = 3.3V  
0
-20  
Vcc = 5V  
Vripple = 200mVpp  
Inputs Grounded  
F = 217Hz  
Vripple = 200mVpp  
Inputs Grounded  
F = 217Hz  
-20  
Av = 1  
Av = 1  
-40  
RL  
8Ω  
-40  
RL  
8Ω  
Cb=1  
Cb=0.47  
Cb=0.1  
μF  
Cb=1  
Cb=0.47  
Cb=0.1  
μF  
Tamb = 25  
°
C
Tamb = 25  
°
C
μ
F
F
μ
F
F
-60  
-80  
μ
-60  
μ
Cb=0  
Cb=0  
-80  
-100  
-100  
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
0
1
2
3
4
5
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
12/35  
TS4994FC  
Electrical characteristics  
Figure 32. PSRR vs. common mode input  
voltage  
Figure 33. CMRR vs. frequency  
0
0
Vcc = 2.5V  
Vripple = 200mVpp  
Inputs Grounded  
F = 217Hz  
-10  
Vcc = 5V  
-20 Vic = 200mVpp  
-20  
Av = 1, Cin = 470μF  
-30  
RL  
8Ω  
Cb=1μF  
Av = 1  
-40  
8Ω  
-40  
-50  
Tamb = 25°C  
Cb=0.47μF  
RL  
Cb=0.1μF  
Tamb = 25°C  
-60  
Cb=0  
-60  
-80  
Cb=1  
Cb=0.47  
Cb=0.1  
μF  
-70  
Cb=0  
μ
F
-80  
μF  
-90  
-100  
-110  
-120  
-100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
10000 20k  
10000 20k  
Common Mode Input Voltage (V)  
Figure 34. CMRR vs. frequency  
Figure 35. CMRR vs. frequency  
0
0
-10  
-10  
-20  
Vcc = 2.6V  
Vic = 200mVpp  
Av = 1, Cin = 470  
Vcc = 3.3V  
-20 Vic = 200mVpp  
μF  
Av = 1, Cin = 470  
RL  
Tamb = 25  
μF  
-30  
-40  
-30  
RL  
8Ω  
8Ω  
Cb=1μF  
Cb=1μF  
-40  
Tamb = 25  
°C  
°
C
Cb=0.47  
μ
F
F
Cb=0.47μF  
Cb=0.1  
Cb=0  
-50  
-50  
Cb=0.1  
μ
μF  
-60  
-60  
Cb=0  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
20  
20  
100  
1000  
10000 20k  
100  
1000  
Frequency (Hz)  
Frequency (Hz)  
Figure 36. CMRR vs. frequency  
Figure 37. CMRR vs. frequency  
0
0
Vcc = 5V  
Vic = 200mVpp  
Av = 2.5, Cin = 470  
Vcc = 3.3V  
Vic = 200mVpp  
Av = 2.5, Cin = 470μF  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
μF  
RL  
8Ω  
RL  
8Ω  
Tamb = 25  
°
C
Tamb = 25°C  
Cb=1  
μF  
Cb=1μF  
Cb=0.47  
μ
F
Cb=0.47μF  
Cb=0.1μF  
Cb=0.1μF  
Cb=0  
Cb=0  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
13/35  
Electrical characteristics  
TS4994FC  
Figure 38. CMRR vs. frequency  
Figure 39. CMRR vs. common mode input  
voltage  
0
0
-20  
Vcc = 2.6V  
Vic = 200mVpp  
Av = 2.5, Cin = 470  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Vcc=3.3V  
Vcc=2.5V  
μ
F
RL  
8Ω  
Tamb = 25  
°C  
Vic = 200mVpp  
F = 217Hz  
-40  
Cb=1  
Cb=0.47  
Cb=0.1  
Cb=0  
μF  
Av = 1, Cb = 1  
RL  
Tamb = 25  
μF  
μ
F
-60  
8Ω  
μF  
°
C
-80  
-100  
Vcc=5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Common Mode Input Voltage (V)  
Figure 40. CMRR vs. common mode input  
voltage  
Figure 41. THD+N vs. output power  
10  
0
RL = 4  
F = 20Hz  
Av = 1  
Cb = 1μF  
BW < 125kHz  
Tamb = 25  
Ω
Vcc=2.6V  
Vcc=3.3V  
Vcc=3.3V  
-20  
-40  
Vcc=2.5V  
1
0.1  
Vic = 200mVpp  
F = 217Hz  
Av = 1, Cb = 0  
Vcc=5V  
°C  
-60  
RL  
8Ω  
Tamb = 25  
°C  
-80  
-100  
0.01  
Vcc=5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
1E-3  
0.01  
0.1  
1
Common Mode Input Voltage (V)  
Output Power (W)  
Figure 42. THD+N vs. output power  
Figure 43. THD+N vs. output power  
10  
10  
RL = 4  
F = 20Hz  
Av = 2.5  
Ω
RL = 4Ω  
F = 20Hz  
Av = 7.5  
Cb = 1μF  
BW < 125kHz  
Tamb = 25  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Cb = 1  
μ
F
1
0.1  
1
0.1  
BW < 125kHz  
Tamb = 25  
Vcc=5V  
°C  
°C  
Vcc=5V  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
14/35  
TS4994FC  
Electrical characteristics  
Figure 44. THD+N vs. output power  
Figure 45. THD+N vs. output power  
10  
10  
1
RL = 8  
F = 20Hz  
Av = 1  
Ω
RL = 8Ω  
F = 20Hz  
Av = 2.5  
Vcc=2.6V  
Vcc=3.3V  
Vcc=5V  
Vcc=2.6V  
Vcc=3.3V  
Vcc=5V  
1
0.1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μ
F
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
°C  
°C  
0.1  
0.01  
0.01  
1E-3  
1E-3  
1E-3  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 46. THD+N vs. output power  
Figure 47. THD+N vs. output power  
10  
10  
RL = 8  
F = 20Hz  
Av = 7.5  
Cb = 1μF  
BW < 125kHz  
Tamb = 25  
Ω
RL = 16  
F = 20Hz  
Av = 1  
Ω
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Vcc=5V  
1
0.1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
1
0.1  
°C  
°C  
Vcc=5V  
0.01  
0.01  
1E-3  
1E-3  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 48. THD+N vs. output power  
Figure 49. THD+N vs. output power  
10  
10  
Vcc=2.6V  
RL = 16  
F = 20Hz  
Av = 2.5  
Ω
RL = 16Ω  
F = 20Hz  
Av = 7.5  
Vcc=2.6V  
Vcc=3.3V  
Vcc=3.3V  
1
0.1  
1
0.1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
Vcc=5V  
°C  
°C  
Vcc=5V  
0.01  
1E-3  
0.01  
1E-3  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
15/35  
Electrical characteristics  
TS4994FC  
Figure 50. THD+N vs. output power  
Figure 51. THD+N vs. output power  
10  
10  
RL = 4  
F = 1kHz  
Av = 1  
Cb = 1μF  
BW < 125kHz  
Tamb = 25  
Ω
RL = 4  
F = 1kHz  
Av = 2.5  
Cb = 1μF  
BW < 125kHz  
Ω
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
1
0.1  
1
0.1  
Vcc=5V  
°C  
Tamb = 25  
°C  
Vcc=5V  
0.01  
0.01  
1E-3  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 52. THD+N vs. output power  
Figure 53. THD+N vs. output power  
10  
10  
RL = 4  
F = 1kHz  
Av = 7.5  
Ω
RL = 8Ω  
F = 1kHz  
Av = 1  
Cb = 1μF  
BW < 125kHz  
Tamb = 25  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Cb = 1  
μ
F
1
0.1  
BW < 125kHz  
Tamb = 25  
Vcc=5V  
1
°C  
°C  
Vcc=5V  
0.1  
0.01  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 54. THD+N vs. output power  
Figure 55. THD+N vs. output power  
10  
10  
RL = 8  
Ω
RL = 8Ω  
F = 1kHz  
Av = 2.5  
F = 1kHz  
Av = 7.5  
Cb = 1μF  
BW < 125kHz  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Cb = 1μF  
1
0.1  
1
0.1  
BW < 125kHz  
Tamb = 25  
°C  
Tamb = 25  
°C  
Vcc=5V  
Vcc=5V  
0.01  
0.01  
1E-3  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
16/35  
TS4994FC  
Electrical characteristics  
Figure 56. THD+N vs. output power  
Figure 57. THD+N vs. output power  
10  
10  
1
Vcc=2.6V  
Vcc=3.3V  
RL = 16  
F = 1kHz  
Av = 1  
Ω
RL = 16Ω  
F = 1kHz  
Av = 2.5  
Vcc=2.6V  
Vcc=3.3V  
1
0.1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
Vcc=5V  
°C  
°C  
Vcc=5V  
0.1  
0.01  
0.01  
1E-3  
1E-3  
1E-3  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 58. THD+N vs. output power  
Figure 59. THD+N vs. output power  
10  
10  
RL = 4  
F = 20kHz  
Av = 1  
Cb = 1μF  
BW < 125kHz  
Tamb = 25  
Ω
RL = 16  
F = 1kHz  
Av = 7.5  
Cb = 1μF  
BW < 125kHz  
Tamb = 25  
Ω
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
1
0.1  
1
0.1  
Vcc=5V  
°C  
°C  
Vcc=5V  
0.01  
0.01  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 60. THD+N vs. output power  
Figure 61. THD+N vs. output power  
10  
10  
Vcc=2.6V  
RL = 4  
F = 20kHz  
Av = 2.5  
Ω
RL = 4Ω  
F = 20kHz  
Av = 7.5  
Vcc=2.6V  
Vcc=3.3V  
Vcc=5V  
Vcc=3.3V  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μ
F
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
Vcc=5V  
°C  
°C  
1
1
0.1  
1E-3  
0.1  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
17/35  
Electrical characteristics  
TS4994FC  
Figure 62. THD+N vs. output power  
Figure 63. THD+N vs. output power  
10  
10  
RL = 8  
F = 20kHz  
Ω
RL = 8Ω  
F = 20kHz  
Vcc=2.6V  
Av = 1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
Av = 2.5  
Vcc=2.6V  
Vcc=3.3V  
Vcc=3.3V  
Vcc=5V  
μF  
Cb = 1μF  
BW < 125kHz  
Tamb = 25°C  
1
1
°C  
Vcc=5V  
0.1  
0.1  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 64. THD+N vs. output power  
Figure 65. THD+N vs. output power  
10  
10  
RL = 8  
F = 20kHz  
Av = 7.5  
Ω
RL = 16  
F = 20kHz  
Av = 1  
Cb = 1μF  
BW < 125kHz  
Tamb = 25  
Ω
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
1
0.1  
°C  
°C  
1
Vcc=5V  
Vcc=5V  
0.1  
0.01  
1E-3  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 66. THD+N vs. output power  
Figure 67. THD+N vs. output power  
10  
10  
RL = 16  
F = 20kHz  
Av = 2.5  
Ω
RL = 16Ω  
F = 20kHz  
Av = 7.5  
Vcc=2.6V  
Vcc=2.6V  
Vcc=3.3V  
Vcc=5V  
Vcc=3.3V  
Vcc=5V  
Cb = 1μF  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
1
0.1  
BW < 125kHz  
Tamb = 25  
°C  
°C  
1
0.1  
0.01  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
18/35  
TS4994FC  
Electrical characteristics  
Figure 68. THD+N vs. frequency  
Figure 69. THD+N vs. frequency  
10  
10  
RL = 4  
Av = 1  
Cb = 1  
Bw < 125kHz  
Tamb = 25  
Ω
RL = 4  
Av = 7.5  
Cb = 1  
Bw < 125kHz  
Tamb = 25  
Ω
μF  
μF  
1
0.1  
1
Vcc=2.6V, Po=350mW  
°C  
°C  
0.1  
0.01  
Vcc=2.6V, Po=350mW  
0.01  
1E-3  
Vcc=5V, Po=1W  
100  
Vcc=5V, Po=1W  
100  
20  
1000  
10000 20k  
20  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 70. THD+N vs. frequency  
Figure 71. THD+N vs. frequency  
10  
10  
RL = 8  
Av = 1  
Cb = 1  
Bw < 125kHz  
Tamb = 25  
Ω
RL = 8  
Av = 7.5  
Cb = 1  
Bw < 125kHz  
Ω
μF  
μF  
1
0.1  
1
0.1  
°C  
Tamb = 25°C  
Vcc=2.6V, Po=225mW  
Vcc=5V, Po=850mW  
Vcc=5V, Po=850mW  
0.01  
1E-3  
Vcc=2.6V, Po=225mW  
0.01  
20  
100  
1000  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (Hz)  
Figure 72. THD+N vs. frequency  
Figure 73. THD+N vs. frequency  
10  
10  
RL = 16  
Av = 1  
Ω
RL = 16  
Av = 7.5  
Cb = 1μF  
Bw < 125kHz  
Tamb = 25  
Ω
Cb = 1μF  
1
0.1  
1
0.1  
Bw < 125kHz  
Tamb = 25  
°C  
°C  
Vcc=5V, Po=600mW  
Vcc=2.6V, Po=155mW  
0.01  
1E-3  
0.01  
1E-3  
Vcc=5V, Po=600mW  
Vcc=2.6V, Po=155mW  
20  
100  
1000  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (Hz)  
19/35  
Electrical characteristics  
TS4994FC  
Figure 74. THD+N vs. output power  
Figure 75. THD+N vs. output power  
10  
10  
RL = 4  
Ω
RL = 4Ω  
Vcc = 5V  
Av = 1  
Cb = 0  
BW < 125kHz  
Tamb = 25°C  
Vcc = 5V  
Av = 7.5, Cb = 0  
BW < 125kHz  
F=20kHz  
F=1kHz  
F=20kHz  
F=1kHz  
1
0.1  
Tamb = 25°C  
1
F=20Hz  
F=20Hz  
0.1  
0.01  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 76. THD+N vs. output power  
Figure 77. THD+N vs. output power  
10  
10  
RL = 4  
Ω
RL = 4Ω  
Vcc = 2.6V  
Vcc = 2.6V  
Av = 1, Cb = 0  
BW < 125kHz  
F=20kHz  
Av = 7.5, Cb = 0  
BW < 125kHz  
Tamb = 25°C  
1
0.1  
Tamb = 25  
°C  
1
F=20kHz  
F=20Hz  
F=1kHz  
F=1kHz  
0.1  
0.01  
F=20Hz  
1E-3  
1E-3  
0.01  
Output Power (W)  
0.1  
1E-3  
0.01  
Output Power (W)  
0.1  
Figure 78. THD+N vs. output power  
Figure 79. THD+N vs. output power  
10  
10  
RL = 8  
Ω
RL = 8Ω  
Vcc = 5V  
Av = 1  
Cb = 0  
BW < 125kHz  
Tamb = 25°C  
Vcc = 5V  
Av = 7.5, Cb = 0  
BW < 125kHz  
F=20kHz  
F=1kHz  
F=20kHz  
F=1kHz  
1
0.1  
1
0.1  
Tamb = 25°C  
F=20Hz  
0.01  
F=20Hz  
0.01  
0.01  
1E-3  
1E-3  
0.01  
0.1  
1
0.1  
1
Output Power (W)  
Output Power (W)  
20/35  
TS4994FC  
Electrical characteristics  
Figure 80. THD+N vs. output power  
Figure 81. THD+N vs. output power  
10  
10  
RL = 8  
Ω
RL = 8Ω  
Vcc = 2.6V  
Vcc = 2.6V  
Av = 1, Cb = 0  
BW < 125kHz  
Av = 7.5, Cb = 0  
BW < 125kHz  
Tamb = 25°C  
1
0.1  
F=20kHz  
1
Tamb = 25  
°C  
F=20kHz  
F=1kHz  
F=1kHz  
0.1  
0.01  
0.01  
F=20Hz  
F=20Hz  
1E-3  
1E-3  
0.01  
Output Power (W)  
0.1  
1E-3  
0.01  
Output Power (W)  
0.1  
Figure 82. THD+N vs. output power  
Figure 83. THD+N vs. output power  
10  
10  
RL = 16  
Ω
RL = 16Ω  
Vcc = 5V  
Vcc = 5V  
Av = 1, Cb = 0  
BW < 125kHz  
Av = 7.5, Cb = 0  
BW < 125kHz  
Tamb = 25°C  
1
0.1  
F=20kHz  
F=1kHz  
1
0.1  
F=20kHz  
F=1kHz  
Tamb = 25  
°C  
0.01  
F=20Hz  
F=20Hz  
0.01  
1E-3  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 84. THD+N vs. output power  
Figure 85. THD+N vs. output power  
10  
10  
RL = 16  
Ω
RL = 16Ω  
Vcc = 2.6V  
Vcc = 2.6V  
Av = 1, Cb = 0  
BW < 125kHz  
Av = 7.5, Cb = 0  
BW < 125kHz  
Tamb = 25°C  
1
0.1  
F=20kHz  
F=1kHz  
1
0.1  
Tamb = 25  
°C  
F=20kHz  
F=20Hz  
F=1kHz  
0.01  
1E-3  
F=20Hz  
0.01  
1E-3  
0.01  
Output Power (W)  
0.1  
1E-3  
0.01  
Output Power (W)  
0.1  
21/35  
Electrical characteristics  
TS4994FC  
Figure 86. SNR vs. power supply voltage with Figure 87. SNR vs. power supply voltage with  
unweighted filter A-weighted filter  
110  
105  
100  
95  
110  
105  
100  
95  
RL=16  
Ω
RL=16  
Ω
RL=8Ω  
RL=4Ω  
RL=8Ω  
RL=4Ω  
90  
90  
Av = 2.5  
Cb = 1  
THD+N < 0.7%  
Av = 2.5  
Cb = 1μF  
THD+N < 0.7%  
Tamb = 25  
μ
F
85  
85  
Tamb = 25  
°
C
°C  
80  
80  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Figure 88. Startup time vs. bypass capacitor  
20  
Tamb=25°C  
Vcc=5V  
15  
10  
5
Vcc=3.3V  
Vcc=2.6V  
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
Bypass Capacitor Cb ( F)  
22/35  
TS4994FC  
Application information  
4
Application information  
4.1  
Differential configuration principle  
The TS4994 is a monolithic full-differential input/output power amplifier. The TS4994 also  
includes a common mode feedback loop that controls the output bias value to average it at  
V
/2 for any DC common mode input voltage. This allows the device to always have a  
CC  
maximum output voltage swing, and by consequence, maximize the output power.  
Moreover, as the load is connected differentially, compared to a single-ended topology, the  
output is four times higher for the same power supply voltage.  
The advantages of a full-differential amplifier are:  
Very high PSRR (power supply rejection ratio).  
High common mode noise rejection.  
Virtually zero pop without additional circuitry, giving a faster start-up time compared  
with conventional single-ended input amplifiers.  
Easier interfacing with differential output audio DAC.  
No input coupling capacitors required due to common mode feedback loop.  
In theory, the filtering of the internal bias by an external bypass capacitor is not  
necessary. But, to reach maximum performance in all tolerance situations, it is better to  
keep this option.  
The main disadvantage is:  
As the differential function is directly linked to the mismatch between external resistors,  
paying particular attention to this mismatch is mandatory in order to get the best  
performance from the amplifier.  
4.2  
Gain in typical application schematic  
A typical differential application is shown in Figure 1 on page 3.  
In the flat region of the frequency-response curve (no C effect), the differential gain is  
in  
expressed by the relation:  
V
O+ VO  
Rfeed  
Rin  
AV = ------------------------------------------------------ = --------------  
diff  
Diffinput+ Diffinput-  
where R = R = R and R  
= R  
= R  
.
in  
in1  
in2  
feed  
feed1  
feed2  
Note:  
For the rest of this section, Av will be called A to simplify the expression.  
diff V  
4.3  
Common mode feedback loop limitations  
As explained previously, the common mode feedback loop allows the output DC bias voltage  
to be averaged at V /2 for any DC common mode bias input voltage.  
CC  
However, due to V  
limitation of the input stage (see Table 3 on page 5), the common  
ICM  
mode feedback loop can play its role only within a defined range. This range depends upon  
23/35  
Application information  
TS4994FC  
the values of V , R and R  
(AV). To have a good estimation of the V value, use the  
ICM  
CC  
in  
feed  
following formula:  
VCC × Rin + 2 × Vic × Rfeed  
-------------------------------------------------------------------------  
VICM  
=
(V)  
2 × (Rin + Rfeed  
)
with  
Diffinput+ + Diffinput-  
------------------------------------------------------  
2
Vic  
=
(V)  
The result of the calculation must be in the range:  
0.6V VICMVCC 0.9V  
If the result of the V  
used.  
calculation is not in this range, an input coupling capacitor must be  
ICM  
Example: With V =2.5V, R = R  
= 20k and V = 2V, we find V  
= 1.63V. This is  
ICM  
CC  
in  
feed  
ic  
higher than 2.5V - 0.9V = 1.6V, so input coupling capacitors are required. Alternatively, you  
can change the V value.  
ic  
4.4  
Low and high frequency response  
In the low frequency region, C starts to have an effect. C forms, with R , a high-pass filter  
in  
in  
in  
with a -3dB cut-off frequency. F is in Hz.  
CL  
1
FCL  
=
(Hz)  
2× π×Rin ×Cin  
In the high-frequency region, you can limit the bandwidth by adding a capacitor (C  
) in  
feed  
parallel with R  
. It forms a low-pass filter with a -3dB cut-off frequency. F is in Hz.  
feed  
CH  
1
FCH  
=
(Hz)  
2× π×Rfeed ×Cfeed  
While these bandwidth limitations are in theory attractive, in practice, because of low  
performance in terms of capacitor precision (and by consequence in terms of mismatching),  
they deteriorate the values of PSRR and CMRR.  
The influence of mismatching on PSRR and CMRR performance is discussed in more detail  
in the following sections.  
Example: A typical application with input coupling and feedback capacitor with F = 50Hz  
CL  
and F = 8kHz. We assume that the mismatching between R  
and C  
can be  
CH  
in1,2  
feed1,2  
neglected. If we sweep the frequency from DC to 20kHz we observe the following with  
respect to the PSRR value:  
From DC to 200Hz, the C impedance decreases from infinite to a finite value and the  
in  
C
impedance is high enough to be neglected. Due to the tolerance of C  
, we  
feed  
in1,2  
24/35  
TS4994FC  
Application information  
must introduce a mismatch factor (R x C R x C ) that will decrease the PSRR  
in1  
in  
in2  
in2  
performance.  
From 200Hz to 5kHz, the C impedance is low enough to be neglected when  
in  
compared with R and the C  
impedance is high enough to be neglected as well. In  
in,  
feed  
this range, we can reach the PSRR performance of the TS4994 itself.  
From 5kHz to 20kHz, the C impedance is low to be neglected when compared to R  
in  
in,  
and the C  
impedance decreases to a finite value. Due to tolerance of C  
, we  
feed  
feed1,2  
introduce a mismatching factor (R  
PSRR performance.  
x C  
R  
x C  
) that will decrease the  
feed1  
feed1  
feed2  
feed2  
4.5  
Calculating the influence of mismatching on PSRR  
performance  
For calculating PSRR performance, we consider that C and C  
have no influence. We  
feed  
in  
use the same kind of resistor (same tolerance) and ΔR is the tolerance value in %.  
The following PSRR equation is valid for frequencies ranging from DC to about 1kHz.  
The PSRR equation is (ΔR in %):  
ΔR×100  
(10000 − ΔR2)  
PSRR 20 ×Log  
(dB)  
This equation doesn't include the additional performance provided by bypass capacitor  
filtering. If a bypass capacitor is added, it acts, together with the internal high output  
impedance bias, as a low-pass filter, and the result is a quite important PSRR improvement  
with a relatively small bypass capacitor.  
The complete PSRR equation (ΔR in %, C in microFarad and F in Hz) is:  
b
ΔR × 100  
--------------------------------------------------------------------------------------------------------  
PSRR 20 × log  
(dB)  
2
2
2
(1000 ΔR ) × 1 + F × C × 22.2  
b
Example: With ΔR = 0.1% and C = 0, the minimum PSRR is -60dB. With a 100nF bypass  
b
capacitor, at 100Hz the new PSRR would be -93dB.  
This example is a worst case scenario, where each resistor has extreme tolerance. It  
illustrates the fact that with only a small bypass capacitor, the TS4994 provides high PSRR  
performance.  
Note also that this is a theoretical formula. Because the TS4994 has self-generated noise,  
you should consider that the highest practical PSRR reachable is about -110dB. It is  
therefore unreasonable to target a -120dB PSRR.  
25/35  
Application information  
TS4994FC  
The three following graphs show PSRR versus frequency and versus bypass capacitor C in  
b
worst-case conditions (ΔR = 0.1%).  
Figure 89. PSRR vs. frequency (worst case  
Figure 90. PSRR vs. frequency (worst case  
conditions)  
conditions)  
0
-10  
-20  
0
-10  
-20  
Vcc = 3.3V, Vripple = 200mVpp  
Av = 1, Cin = 4.7  
Vcc = 5V, Vripple = 200mVpp  
Av = 1, Cin = 4.7μF  
μF  
-30  
-30  
ΔR/R = 0.1%, RL 8Ω  
ΔR/R = 0.1%, RL 8Ω  
Tamb = 25°C, Inputs = Grounded  
-40  
-40  
Tamb = 25°C, Inputs = Grounded  
Cb=0  
Cb=0  
-50  
-50  
-60  
-60  
-70  
-70  
Cb=0.1μF  
Cb=0.1μF  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
Cb=1  
μF  
Cb=0.47  
μ
F
Cb=1  
μF  
Cb=0.47μF  
20  
20  
100  
1000  
10000 20k  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 91. PSRR vs. frequency (worst case  
conditions)  
0
-10  
-20  
Vcc = 2.5V, Vripple = 200mVpp  
Av = 1, Cin = 4.7  
μF  
-30  
ΔR/R = 0.1%, RL 8Ω  
Tamb = 25°C, Inputs = Grounded  
-40  
Cb=0  
-50  
-60  
-70  
Cb=0.1μF  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
Cb=1  
μF  
Cb=0.47μF  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
26/35  
TS4994FC  
Application information  
The two following graphs show typical applications of the TS4994 with a random selection of  
four ΔR/R values with a 0.1% tolerance.  
Figure 92. PSRR vs. frequency with random  
choice condition  
Figure 93. PSRR vs. frequency with random  
choice condition  
0
0
-10  
-20  
-10  
-20  
Vcc = 5V, Vripple = 200mVpp  
Av = 1, Cin = 4.7  
R/R 0.1%, RL  
Tamb = 25 C, Inputs = Grounded  
Vcc = 2.5V, Vripple = 200mVpp  
Av = 1, Cin = 4.7  
R/R 0.1%, RL  
Tamb = 25 C, Inputs = Grounded  
μ
F
8
μF  
8Ω  
Δ
Ω
Δ
-30  
-30  
°
°
-40  
-40  
-50  
-50  
-60  
-60  
Cb=0  
Cb=0  
Cb=0.1μF  
Cb=0.1μF  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
Cb=1  
μF  
Cb=0.47  
μ
F
Cb=1  
μF  
Cb=0.47μF  
20  
20  
100  
1000  
10000 20k  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
4.6  
CMRR performance  
For calculating CMRR performance, we consider that C and C  
have no influence. C  
b
in  
feed  
has no influence in the calculation of the CMRR.  
We use the same kind of resistor (same tolerance) and ΔR is the tolerance value in %.  
The following CMRR equation is valid for frequencies ranging from DC to about 1kHz.  
The CMRR equation is (ΔR in %):  
ΔR × 200  
(10000 − ΔR2 )  
CMRR 20 × Log  
(dB)  
Example: With ΔR = 1%, the minimum CMRR is -34dB.  
This example is a worst case scenario where each resistor has extreme tolerance. Ut  
illustrates the fact that for CMRR, good matching is essential.  
As with the PSRR, due to self-generated noise, the TS4994 CMRR limitation is about  
-110dB.  
Figure 94 and Figure 95 show CMRR versus frequency and versus bypass capacitor C in  
b
worst-case conditions (ΔR=0.1%).  
27/35  
Application information  
TS4994FC  
Figure 94. CMRR vs. frequency (worst case  
conditions)  
Figure 95. CMRR vs. frequency (worst case  
conditions)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
Vcc = 2.5V  
Vic = 200mVpp  
Av = 1, Cin = 470μF  
Vcc = 5V  
-10 Vic = 200mVpp  
Av = 1, Cin = 470  
R/R = 0.1%, RL  
Tamb = 25  
μF  
8Ω  
ΔR/R = 0.1%, RL  
8Ω  
Δ
-20  
-30  
-40  
-50  
-60  
Tamb = 25  
°C  
°
C
Cb=1  
Cb=0  
μ
F
Cb=1μF  
Cb=0  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
10000 20k  
Figure 96 and Figure 97 show CMRR versus frequency for a typical application with a  
random selection of four ΔR/R values with a 0.1% tolerance.  
Figure 96. CMRR vs. frequency with random Figure 97. CMRR vs. frequency with random  
selection condition selection condition  
0
0
Vcc = 5V  
Vic = 200mVpp  
Vcc = 2.5V  
Vic = 200mVpp  
-10  
-10  
-20 Av = 1, Cin = 470  
R/R 0.1%, RL  
Tamb = 25  
μ
F
8
-20 Av = 1, Cin = 470  
R/R 0.1%, RL  
Tamb = 25  
μF  
8Ω  
Δ
Ω
Δ
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
°C  
°C  
Cb=1  
Cb=0  
μF  
Cb=1  
Cb=0  
μF  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
10000 20k  
4.7  
Power dissipation and efficiency  
Assumptions:  
Load voltage and current are sinusoidal (V and I  
)
out  
out  
Supply voltage is a pure DC source (V  
)
CC  
The output voltage is:  
Vout = V  
sinωt (V)  
peak  
and  
Vout  
------------  
Iout  
=
(A)  
RL  
28/35  
TS4994FC  
Application information  
and  
2
Vpeak  
--------------------  
(W)  
Pout  
=
2RL  
Therefore, the average current delivered by the supply voltage is:  
Equation 1  
Vpeak  
----------------  
(A)  
ICC  
= 2  
AVG  
The power delivered by the supply voltage is:  
Psupply = VCC ICC  
πRL  
(W)  
AVG  
Therefore, the power dissipated by each amplifier is:  
Pdiss = Psupply Pout (W)  
Equation 2  
2 2VCC  
----------------------  
PoutPout  
Pdiss  
=
π RL  
and the maximum value is obtained when:  
Pdiss  
----------------- = 0  
Pout  
and its value is:  
Equation 3  
2Vcc2  
π2RL  
Pdissmax =  
(W)  
Note:  
This maximum value is only dependent on the power supply voltage and load values.  
The efficiency is the ratio between the output power and the power supply:  
Equation 4  
Pout  
πVpeak  
4VCC  
------------------ --------------------  
η=  
=
Psupply  
The maximum theoretical value is reached when V  
= V , so:  
CC  
peak  
π
----  
η=  
= 78.5%  
4
The maximum die temperature allowable for the TS4994 is 125°C. However, in case of  
overheating, a thermal shutdown set to 150°C, puts the TS4994 in standby until the  
temperature of the die is reduced by about 5°C.  
29/35  
Application information  
TS4994FC  
To calculate the maximum ambient temperature T  
allowable, you need to know:  
amb  
The value of the power supply voltage, V  
CC  
The value of the load resistor, R  
L
The R  
value for the package type  
thja  
Example: V = 5V, R = 8Ω, R  
= 100°C/W (100mm² copper heatsink)  
CC  
L
thja-flipchip  
Using the power dissipation formula given above in Equation 3 this gives a result of:  
= 633mW  
P
dissmax  
T
is calculated as follows:  
amb  
Equation 5  
T
amb= 125° C RTJHA × Pdissmax  
Therefore, the maximum allowable value for T is:  
amb  
T
= 125-80x0.633=62°C  
amb  
4.8  
Decoupling of the circuit  
Two capacitors are needed to correctly bypass the TS4994. A power supply bypass  
capacitor C and a bias voltage bypass capacitor Cb.  
s
C has particular influence on the THD+N in the high frequency region (above 7kHz) and an  
s
indirect influence on power supply disturbances. With a value for C of 1µF, you can expect  
s
similar THD+N performance to that shown in the datasheet.  
In the high frequency region, if C is lower than 1µF, it increases THD+N, and disturbances  
s
on the power supply rail are less filtered.  
On the other hand, if C is higher than 1µF, the disturbances on the power supply rail are  
s
more filtered.  
C has an influence on THD+N at lower frequencies, but its function is critical to the final  
b
result of PSRR (with input grounded and in the lower frequency region).  
4.9  
Wake-up time: tWU  
When the standby is released to put the device ON, the bypass capacitor C is not charged  
b
immediately. As C is directly linked to the bias of the amplifier, the bias will not work  
b
properly until the C voltage is correct. The time to reach this voltage is called the wake-up  
b
time or t  
and is specified in Table 3 on page 5, with C =1µF. During the wake-up time, the  
WU  
b
TS4994 gain is close to zero. After the wake-up time, the gain is released and set to its  
nominal value.  
If C has a value other than 1µF, refer to the graph in Figure 88 on page 22 to establish the  
b
wake-up time.  
30/35  
TS4994FC  
Application information  
4.10  
Shutdown time  
When the standby command is set, the time required to put the two output stages in high  
impedance and the internal circuitry in shutdown mode is a few microseconds.  
Note:  
In shutdown mode, the Bypass pin and Vin+, Vin- pins are short-circuited to ground by  
internal switches. This allows a quick discharge of the C and C capacitors.  
b
in  
4.11  
Pop performance  
Due to its fully differential structure, the pop performance of the TS4994 is close to perfect.  
However, due to mismatching between internal resistors R , R , and external input  
in  
feed  
capacitors C , some noise might remain at startup. To eliminate the effect of mismatched  
in  
components, the TS4994 includes pop reduction circuitry. With this circuitry, the TS4994 is  
close to zero pop for all possible common applications.  
In addition, when the TS4994 is in standby mode, due to the high impedance output stage in  
this configuration, no pop is heard.  
4.12  
Single-ended input configuration  
It is possible to use the TS4994 in a single-ended input configuration. However, input  
coupling capacitors are needed in this configuration. The schematic in Figure 98 shows an  
example of this configuration.  
Figure 98. Single-ended input typical application  
VCC  
+
Cs  
1u  
Rfeed1  
20k  
2
GND  
VCC  
Ve  
Cin1  
Rin1  
3
Vin-  
-
Vo+  
Vo-  
5
7
20k  
220nF  
Cin2  
Rin2  
1
8
Vin+  
+
20k  
+
220nF  
8 Ohms  
GND  
Bypass  
Bias  
Cb  
1u  
Standby  
GND  
6
Mode  
9
Stdby  
4
TS4994IJ  
GND  
Rfeed2  
20k  
GND  
GNDVCC GND VCC  
The component calculations remain the same, except for the gain. In single-ended input  
configuration, the formula is:  
VO+ VORfeed  
AvSE  
=
=
Ve  
Rin  
31/35  
Package information  
TS4994FC  
5
Package information  
In order to meet environmental requirements, STMicroelectronics offers these devices in  
®
ECOPACK packages. These packages have a Lead-free second level interconnect. The  
category of second level interconnect is marked on the package and on the inner box label,  
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics  
trademark. ECOPACK specifications are available at: www.st.com.  
Flip-chip package (9 bumps)  
Dimensions in millimeters unless otherwise indicated.  
Figure 99. Pinout (top view)  
Gnd  
VO-  
Bypass  
VIN+  
VO+  
7
6
9
5
Stdby  
VIN-  
4
3
8
1
2
VCC  
Stdby Mode  
* Balls are underneath  
Figure 100. Marking (top view)  
E
A94  
YWW  
32/35  
TS4994FC  
Package information  
Figure 101. Dimensions  
Die size: 1.63mm x 1.63mm ± 30µm  
1.63 mm  
Die height (including bumps): 600µm  
Bumps diameter: 315µm ±50µm  
Bump diameter before reflow: 300µm  
±10µm  
1.63 mm  
Bump height: 250µm ±40µm  
Back coating height: 40µm ±10µm  
Die height: 350µm ±20µm  
Pitch: 500µm ±50µm  
0.5mm  
0.5mm  
Coplanarity: 60µm max  
0.25mm  
100µm  
600µm  
Figure 102. Tape & reel dimensions  
1.5  
4
1
1
A
A
8
Die size X + 70µm  
4
All dimensions are in mm  
User direction of feed  
33/35  
Revision history  
TS4994FC  
6
Revision history  
Table 6.  
Date  
Document revision history  
Revision  
Changes  
17-Mar-2005  
12-Dec-2006  
1
2
Initial release.  
Template update.  
34/35  
TS4994FC  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
35/35  

相关型号:

TS4994EIKJT

1.2 W differential input/output audio power amplifier with selectable standby
STMICROELECTR

TS4994FC

1.2 W differential input/output audio power amplifier with selectable standby
STMICROELECTR

TS4994IJT

暂无描述
STMICROELECTR

TS4994IQT

1W Differential Input/Output Audio Power Amplifier with Selectable Standby
STMICROELECTR

TS4994IQT

1W differential input/output audio power amplifier with selectable standby
TI

TS4994IST

1W Differential Input/Output Audio Power Amplifier with Selectable Standby
STMICROELECTR

TS4994IST

1W differential input/output audio power amplifier with selectable standby
TI

TS4994_06

1W differential input/output audio power amplifier with selectable standby
TI

TS4995

1.2 W fully differential audio power amplifier with selectable standby and 6 dB fixed gain
STMICROELECTR

TS4995EIJT

1.2 W fully differential audio power amplifier with selectable standby and 6 dB fixed gain
STMICROELECTR

TS4997

2 x 1W differential input stereo audio amplifier with programmable 3D effects
STMICROELECTR

TS4997IQT

2 x 1W differential input stereo audio amplifier with programmable 3D effects
STMICROELECTR