STLC3055N [STMICROELECTRONICS]

WLL & ISDN-TA SUBSCRIBER LINE INTERFACE CIRCUIT; WLL和ISDN- TA用户线接口电路
STLC3055N
型号: STLC3055N
厂家: ST    ST
描述:

WLL & ISDN-TA SUBSCRIBER LINE INTERFACE CIRCUIT
WLL和ISDN- TA用户线接口电路

数字传输接口 电池 电信集成电路 电信电路 综合业务数字网 CD WLL
文件: 总25页 (文件大小:316K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STLC3055N  
WLL & ISDN-TA SUBSCRIBER LINE INTERFACE CIRCUIT  
1 FEATURES  
MONOCHIP SLIC OPTIMISED FOR WLL &  
VoIP APPLICATIONS  
Figure 1. Package  
IMPLEMENT ALL KEY FEATURES OF THE  
BORSHT FUNCTION  
SINGLE SUPPLY (5.5 TO 12V)  
TQFP44  
BUILT IN DC/DC CONVERTER CONTROLLER  
Table 1. Order Codes  
SOFT BATTERY REVERSAL WITH  
PROGRAMMABLE TRANSITION TIME.  
ON-HOOK TRANSMISSION.  
PROGRAMMABLE OFF-HOOK DETECTOR  
THRESHOLD  
Part Number  
Package  
TQFP44  
TQFP44  
STLC3055N  
E-STLC3055N (*)  
METERING PULSE GENERATION AND  
(*) ECOPACK® (see Section 9)  
FILTER  
INTEGRATED RINGING  
2 DESCRIPTION  
INTEGRATED RING TRIP  
PARALLEL CONTROL INTERFACE (3.3V  
LOGIC LEVEL)  
The STLC3055N is a SLIC device specifically de-  
signed for WLL (Wireless Local Loop) and ISDN-  
Terminal Adaptors and VoIP applications. One of  
the distinctive characteristic of this device is the  
ability to operate with a single supply voltage (from  
+5.5V to +12V) and self generate the negative bat-  
tery by means of an on chip DC/DC converter con-  
troller that drives an external MOS switch.  
PROGRAMMABLE CONSTANT CURRENT FEED  
SURFACE MOUNT PACKAGE  
INTEGRATED THERMAL PROTECTION  
DUAL GAIN VALUE OPTION  
BCD III S, 90V TECHNOLOGY  
-40 TO +85°C OPERATING RANGE  
Figure 2. Block Diagram  
PD  
D0  
D1  
D2  
DET  
GAIN  
SETTING  
INPUT LOGIC AND DECODER  
OUTPUT LOGIC  
BGND  
Status and functions  
TIP  
TX  
RX  
LINE  
OUTPUT  
STAGE  
SUPERVISION  
DRIVER  
ZAC1  
ZAC  
RING  
AC PROC  
RS  
ZB  
CREV  
CSVR  
DC PROC  
CLK  
RSENSE  
DC/DC  
CONV.  
GATE  
VF  
CKTTX  
CTTX1  
TTX PROC  
Vcc  
CVCC  
VPOS  
REFERENCE  
CTTX2  
FTTX  
Vss  
VOLT.  
REG.  
VBAT  
Agnd  
Vbat  
RTTX CAC ILTF RD IREF RLIM RTH  
AGND  
Rev. 10  
1/25  
February 2006  
STLC3055N  
2 DESCRIPTION (continued)  
The battery level is properly adjusted depending on the operating mode. A useful characteristic for these  
applications is the integrated ringing generator.  
The control interface is a parallel type with open drain output and 3.3V logic levels.  
The metering pulses are generated on chip starting from two logic signals (0, 3.3V) one define the meter-  
ing pulse frequency and the other the metering pulse duration. An on chip circuit then provides the proper  
shaping and filtering. Metering pulse amplitude and shaping (rising and decay time) can be programmed  
by external components. A dedicated cancellation circuit avoid possible CODEC input saturation due to  
Metering pulse echo.  
Constant current feed can be set from 20mA to 40mA. Off-hook detection threshold is programmable from  
5mA to 9mA.  
The device, developed in BCDIIIS technology (90V process), operates in the extended temperature range  
and integrates a thermal protection that sets the device in power down when Tj exceeds 140°C.  
Figure 3. Pin Connection  
44  
43  
42  
41  
40  
39  
38  
3ꢀ  
36  
35  
34  
1
2
3
4
5
6
8
9
D0  
D1  
33  
32  
31  
30  
29  
28  
2ꢀ  
26  
25  
24  
23  
CSVR  
ILTF  
D2  
RD  
PD  
RTH  
GAIN SET  
N.C.  
IREF  
RLIM  
AGND  
CVCC  
VPOS  
RSENSE  
GATE  
N.C.  
DET  
CKTTX  
CTTX1  
CTTX2  
10  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
20  
21  
22  
D00TL488-MOD  
Table 2. Absolute Maximum Ratings  
Symbol  
Vpos  
Parameter  
Value  
Unit  
V
Positive Supply Voltage  
AGND to BGND  
-0.4 to +13  
-1 to +1  
-0.4 to 5.5  
150  
A/BGND  
Vdig  
V
Pin D0, D1, D2, DET, CKTTX  
Max. junction Temperature  
V
Tj  
°C  
V
(1)  
Vbtot=|Vpos|+|Vbat|. (Total voltage applied to the device supply  
pins).  
90  
Vbtot  
ESD  
RATING  
Human Body Model  
1ꢀ50  
500  
V
V
Charged Device Model  
(1) Vbat is self generated by the on chip DC/DC converter and can be programmed via RF1 and RF2.  
RF1 and RF2 shall be selected in order to fulfil the a.m limits (see External Components Table page 10)  
2/25  
STLC3055N  
Table 3. Operating Range  
Symbol  
Parameter  
Value  
Unit  
V
Vpos  
A/BGND  
Vdig  
Positive Supply Voltage  
AGND to BGND  
5.5 to +12  
-100 to +100  
-0.25 to 5.25  
-40 to +85  
-ꢀ4 max.  
mV  
V
Pin D0, D1, D2, DET, CKTTX, PD  
Ambient Operating Temperature Range  
Self Generated Battery Voltage  
Top  
°C  
V
(1)  
Vbat  
(1) Vbat is self generated by the on chip DC/DC converter and can be programmed via RF1 and RF2.  
RF1 and RF2 shall be selected in order to fulfil the a.m limits (see External Components Table page 11)  
Table 4. Thermal Data  
Symbol  
Parameter  
Value  
Unit  
Rth j-amb  
Thermal Resistance Junction to Ambient  
Typ.  
60  
°C/W  
Table 5. Pin Description  
N°  
1
Pin  
D0  
D1  
D2  
PD  
Function  
Control Interface: input bit 0.  
Control Interface: input bit 1.  
Control interface: input bit 2.  
2
3
4
Power Down input. Normally connected to CVCC (or to logic level high).  
5
Gain  
SET  
Control gain interface: 0 Level Rxgain = 0dB Txgain = -6dB  
1 Level Rxgain = +6dB Txgain = -12dB  
6,ꢀ,36,  
NC  
Not connected.  
38,39,40,42  
8
DET  
Logic interface output of the supervision detector (active low).  
9
CKTTX Metering pulse clock input (12 KHz or 16KHz square wave).  
CTTX1 Metering burst shaping external capacitor.  
10  
11  
12  
CTTX2 Metering burst shaping external capacitor.  
RTTX  
Metering pulse cancellation buffer output. TTX filter network should be connected to this  
point. If not used should be left open.  
13  
14  
FTTX  
RX  
Metering pulse buffer input this signal is sent to the line and used to perform TTX filtering.  
4 wire input port (RX input). A 100kexternal resistor must be connected to AGND to bias  
the input stage. This signal is referred to AGND. If connected to single supply CODEC  
output it must be DC decoupled with proper capacitor.  
15  
16  
1ꢀ  
18  
ZAC1  
ZAC  
RS  
RX buffer output, (the AC impedance is connected from this node to ZAC).  
AC impedance synthesis.  
Protection resistors image (the image resistor is connected from this node to ZAC).  
ZB  
Balance Network for 2 to 4 wire conversion (the balance impedance ZB is connected from  
this node to AGND. ZA impedance is connected from this node to ZAC1).  
19  
20  
CAC  
TX  
AC feedback input, AC/DC split capacitor (CAC).  
4 wire output port (TX output). The signal is referred to AGND. If connected to single supply  
CODEC input it must be DC decoupled with proper capacitor.  
21  
VF  
Feedback input for DC/DC converter controller.  
3/25  
STLC3055N  
Table 5. (continued)  
N°  
Pin  
Function  
22  
CLK  
Power Switch Controller Clock (typ. 125KHz). This pin can also be connected to CVCC or  
AGND. When the CLK pin is connected to CVCC an auto-oscillation is internally generated  
and it is used instead of the external clock. When the CLK pin is connected to AGND, the  
GATE output is disabled.  
23  
24  
GATE  
Driver for external Power MOS transistor (P-channel).  
RSENSE Voltage input for current sensing. RSENSE should be connected close to this pin and  
VPOS pin. The PCB layout should minimize the extra resistance introduced by the copper  
tracks.  
25  
26  
2ꢀ  
28  
VPOS  
Positive supply  
CVCC Internal positive voltage supply filter.  
AGND Analog Ground, must be shorted with BGND.  
RLIM  
IREF  
RTH  
RD  
Constant current feed programming pin (via RLIM). RLIM should be connected close to this  
pin and AGND pin to avoid noise injection.  
29  
30  
31  
Internal bias current setting pin. RREF should be connected close to this pin and AGND pin  
to avoid noise injection.  
Off-hook threshold programming pin (via RTH). RTH should be connected close to this pin  
and AGND pin to avoid noise injection.  
DC feedback and ring trip input. RD should be connected close to this pin and AGND pin to  
avoid noise injection.  
32  
33  
34  
35  
ILTF  
Transversal line current image output.  
CSVR Battery supply filter capacitor.  
BGND Battery Ground, must be shorted with AGND.  
VBAT  
Regulated battery voltage self generated by the device via DC/DC converter. Must be  
shorted to VBAT1.  
3ꢀ  
41  
43  
RING  
TIP  
2 wire port; RING wire (Ib is the current sunk into this pin).  
2 wire port; TIP wire (Ia is the current sourced from this pin).  
CREV Reverse polarity transition time control. One proper capacitor connected between this pin  
and AGND is setting the reverse polarity transition time. This is the same transition time  
used to shape the "trapezoidal ringing" during ringing injection.  
44  
VBAT1 Frame connection. Must be shorted to VBAT.  
3 FUNCTIONAL DESCRIPTION  
The STLC3055N is a device specifically developed for WLL VoIP and ISDN-TA applications.  
It is based on a SLIC core, on purpose optimised for these applications, with the addition of a DC/DC con-  
verter controller to fulfil the WLL and ISDN-TA design requirements.  
The SLIC performs the standard feeding, signalling and transmission functions.  
It can be set in four different operating modes via the D0, D1, D2 pins of the control logic interface (0 to  
3.3V logic levels). The loop status is carried out on the DET pin (active low).  
The DET pin is an open drain output to allow easy interfacing with both 3.3V and 5V logic levels.  
The four possible SLIC’s operating modes are:  
Power Down  
High Impedance Feeding (HI-Z)  
Active  
Ringing  
4/25  
STLC3055N  
Table 6 shows how to set the different SLIC operating modes.  
Table 6. SLIC Operating Modes.  
PD  
0
D0  
0
D1  
0
D2  
X
Operating Mode  
Power Down  
1
0
0
X
H.I. Feeding (HI-Z)  
1
0
1
0
Active Normal Polarity  
Active Reverse Polarity  
Active TTX injection (N.P.)  
Active TTX injection (R.P.)  
Ring (D2 bit toggles @ fring)  
1
0
1
1
1
1
1
0
1
1
1
1
1
1
0
0/1  
3.1 DC/DC Converter  
The DC/DC converter controller is driving an external power MOS transistor (P-Channel) in order to gen-  
erate the negative battery voltage needed for device operation.  
The DC/DC converter controller is synchronised with an external CLK (125KHz typ.)or with an internal  
clock generated when the pin CLK is connected to CVCC. One sensing resistor in series to Vpos supply  
allows to fix the maximum allowed input peak current. This feature is implemented in order to avoid over-  
load on Vpos supply in case of line transient (ex. ring trip detection).  
The typical value is obtained for a sensing resistor equal to 110mthat will guarantee an average current  
consumption from Vpos < ꢀ00mA. When in on-hook the self generated battery voltage is set to a pre-  
defined value.  
This value can be adjusted via one external resistor (RF1) and it is typical -50V. When RING mode is se-  
lected this value is increased to -ꢀ0V typ.  
Once the line goes in off-hook condition, the DC/DC converter automatically adjust the generated battery  
voltage in order to feed the line with a fixed DC current (programmable via RLIM) optimising in this way  
the power dissipation.  
3.2 OPERATING MODES  
3.2.1 Power Down  
When this mode is selected the SLIC is switched off and the TIP and RING pins are in high impedance.  
Also the line detectors are disabled therefore the off-hook condition cannot be detected.  
This mode can be selected in emergency condition when it is necessary to cut any current delivered to the  
line.  
This mode is also forced by STLC3055N in case of thermal overload (Tj > 140°C).  
In this case the device goes back to the previous status as soon as the junction temperature decrease  
under the hysteresis threshold.  
No AC transmission is possible in this mode.  
3.2.2 High Impedance Feeding (HI-Z)  
This operating mode is normally selected when the telephone is in on-hook in order to monitor the line  
status keeping the power consumption at the minimum.  
The output voltage in on-hook condition is equal to the self generated battery voltage (-50V typ).  
When off-hook occurs the DET becomes active (low logic level).  
5/25  
STLC3055N  
The off-hook threshold in HI-Z mode is the same value as programmed in ACTIVE mode.  
The DC characteristic in HI-Z mode is just equal to the self generated battery with 2x(1600+Rp) in series  
(see fig. 4), where Rp is the external protection resistance.  
No AC transmission is possible in this mode.  
Figure 4. DC Characteristic in HI-Z Mode.  
IL  
Vbat  
2x(R1+Rp)  
Slope: 2x(R1+Rp)  
(R1=1600ohm)  
VL  
Vbat (-50V)  
3.2.3 Active  
3.2.3.1 DC Characteristics & Supervision  
When this mode is selected the STLC3055N provides both DC feeding and AC transmission.  
The STLC3055N feeds the line with a constant current fixed by RLIM (20mA to 40mA range). The on-hook  
voltage is typically 40V allowing on-hook transmission; the self generated Vbat is -50V typ.  
If the loop resistance is very high and the line current cannot reach the programmed constant current feed  
value, the STLC3055N behaves like a 40V voltage source with a series impedance equal to the protection  
resistors 2xRp (typ. 2x50). Fig. 5 shows the typical DC characteristic in ACTIVE mode.  
Figure 5. DC Characteristic in ACTIVE Mode  
IL  
Ilim  
(20 to  
40mA)  
2Rp  
VL  
10V  
Vbat (-50V)  
The line status (on/off hook) is monitored by the SLIC’S supervision circuit. The off-hook threshold can  
be programmed via the external resistor RTH in the range from 5mA to 9mA.  
Independently on the programmed constant current value, the TIP and RING buffers have a current  
source capability limited to 80mA typ. Moreover the power available at Vbat is controlled by the DC/DC  
converter that limits the peak current drawn from the Vpos supply. The maximum allowed current peak is  
set by RSENSE resistor.  
3.2.3.2 AC Characteristics  
The SLIC provides the standard SLIC transmission functions:  
Once in active mode the SLIC can operate with two different Tx, Rx Gain. Setting properly by the Gain set  
6/25  
STLC3055N  
control bit (see table ꢀ).  
Table 7. Gain Set in Active Mode  
Gain set  
4 to 2 wire Gain  
2 to 4 wire Gain  
-6dB  
Impedance Synthesis Scale Factor  
0
1
0dB  
x 50  
x 25  
+6dB  
-12dB  
Input impedance synthesis: can be real or complex and is set by a scaled (x50 or x25) external ZAC  
impedance.  
Transmit and receive: The AC signal present on the 2W port (TIP/RING) is transferred to the TX output  
with a -6dB or -12dB gain and from the RX input to the 2W port with a 0dB or +6dB gain.  
2 to 4 wire conversion: The balance impedance can be real or complex, the proper cancellation is  
obtained by means of two external impedance ZA and ZB  
Once in Active mode (D1=1) the SLIC can operate in different states setting properly D0 and D2 control  
bits (see also Table 8).  
Table 8. SLIC states in ACTIVE mode  
D0  
0
D1  
1
D2  
0
Operating Mode  
Active Normal Polarity  
Active Reverse Polarity  
Active TTX injection (N.P.)  
Active TTX injection (R.P.)  
0
1
1
1
1
0
1
1
1
3.2.3.3 Polarity Reversal  
The D2 bit controls the line polarity, the transition between the two polarities is performed in a "soft" way.  
This means that the TIP and RING wire exchange their polarities following a ramp transition (see fig.6).  
The transition time is controlled by an external capacitor CREV. This capacitor is also setting the shape  
of the ringing trapezoidal waveform. When the control pins set battery reversal the line polarity is reversed  
with a proper transition time set via an external capacitor (CREV).  
Figure 6. TIP/RING Typical Transition from Direct to Reverse Polarity  
GND  
TIP  
4V typ.  
40V typ  
ON-HOOK  
dV/dT set  
by CREV  
RING  
3.2.3.4 Metering Pulse Injection (Ttx)  
The metering pulses circuit consists of a burst shaping generator that gives a square wave shaped and a  
low pass filter to reduce the harmonic distortion of the output signal.  
The metering pulse is obtained starting from two logic signals:  
CKTTX: is a square wave at the TTX frequency (12 or 16KHz) and should be permanently applied to  
ꢀ/25  
STLC3055N  
the CKTTX pin or at least for all the duration of the TTX pulse (including rising and decay phases).  
D0: enable the TTX generation circuit and define the TTX pulse duration.  
These two signals are processed by a dedicated circuitry integrated on chip that generate the metering  
pulse as an amplitude modulated shaped squarewave (SQTTX) (see fig.ꢀ).  
Both the amplitude and the envelope of the squarewave (SQTTX) can be programmed by means of ex-  
ternal components. In particular the amplitude is set by the two resistors RLV and the shaping by the ca-  
pacitor CS.  
Figure 7. Metering Pulse Generation Circuit.  
Low Pass Filter  
C1  
-
CTTX1  
RLV  
RTTX  
R2  
BURST  
OP1  
FTTX  
R1  
SQTTX  
CS  
+
SHAPING  
GENERATOR  
CFL  
C2  
RLV  
Sinusoidal wave  
pulse metering  
Required external components vs. filter order.  
CTTX2  
Order CFL  
R1  
C1  
R2  
C2  
THD  
13%  
6%  
D0  
1
2
3
X
CKTTX  
X
X
X
X
X
X
X
X
X
3%  
Square wave pulse metering  
The waveform so generated is then filtered and injected on the line.  
The low pass filter can be obtained using the integrated buffer OP1 connected between pin FTTX (OP1  
non inverting input) and RTTX (OP1 output) (see fig.ꢀ) and implementing a "Sallen and Key" configuration.  
Depending on the external components count it is possible to build an optimised application depending  
on the distortion level required. In particular harmonic distortion levels equal to 13%, 6% and 3% can be  
obtained respectively with first, second and third order filters (see fig.ꢀ).  
The circuit showed in the "Application diagram" is related to the simple first order filter.  
Once the shaped and filtered signal is obtained at RTTX buffer output it is injected on the TIP/RING pins  
with a +6dB gain or +12dB gain.  
It should be noted that this is the nominal condition obtained in presence of ideal TTX echo cancellation  
(obtained via proper setting of RTTX and CTTX).  
In addition the effective level obtained on the line will depend on the line impedance and the protection re-  
sistors value. In the typical application (TTX line impedance =200, RP = 50, and ideal TTX echo cancel-  
lation) the metering pulse level on the line will be 1.33 or 2.66 times the level applied to the RTTX pin.  
As already mentioned the metering pulse echo cancellation is obtained by means of two external compo-  
nents (RTTX and CTTX) that should match the line impedance at the TTX frequency. This simple network  
has a double effect:  
Synthesize a low output impedance at the TIP/RING pins at the TTX frequency.  
Cut the eventual TTX echo that will be transferred from the line to the TX output.  
8/25  
STLC3055N  
3.2.4 Ringing  
When this mode is selected STLC3055N self generate an higher negative battery (-ꢀ0V typ.) in order to  
allow a balanced ringing signal of typically 65Vpeak.  
In this condition both the DC and AC feedback are disabled and the SLIC line drivers operate as voltage  
buffers. The ring waveform is obtained toggling the D2 control bit at the desired ring frequency. This bit in  
fact controls the line polarity (0=direct; 1=reverse). As in the ACTIVE mode the line voltage transition is  
performed with a ramp transition, obtaining in this way a trapezoidal balanced ring waveform (see fig.8).  
The shaping is defined by the CREV external capacitor.  
Selecting the proper capacitor value it is possible to get different crest factor values.  
The following table shows the crest factor values obtained with a 20Hz and 25Hz ring frequency and with  
1REN. These value are valid either with European or USA specification  
Figure 8. TIP/RING Typical Ringing Waveform  
GND  
TIP  
2.5V typ.  
65V  
typ.  
dV/dT set  
by CREV  
RING  
2.5V typ.  
VBAT  
Table 9. :  
CREV  
CREST FACTOR @20Hz  
CREST FACTOR @25Hz  
22nF  
1.2  
1.26  
1.32  
2ꢀnF  
33nF  
1.25  
1.33  
Not significant (*)  
(*) Distorsion already less than 10%.  
The ring trip detection is performed sensing the variation of the AC line impedance from on hook (relatively  
high) to off-hook (low). This particular ring trip method allows to operate without DC offset superimposed  
on the ring signal and therefore obtaining the maximum possible ring level on the load starting from a given  
negative battery. It should be noted that such a method is optimised for operation on short loop applica-  
tions and may not operate properly in presence of long loop applications (> 500). Once ring trip is de-  
tected, the DET output is activated (logic level low), at this point the card controller or a simple logic circuit  
should stop the D2 toggling in order to effectively disconnect the ring signal and then set the STLC3055N  
in the proper operating mode (normally ACTIVE).  
3.2.4.1 Ring Level in Presence of More Telephone in Parallel  
As already mentioned above the maximum current that can be drawn from the Vpos supply is controlled  
and limited via the external RSENSE. This will limit also the power available at the self generated negative  
battery.  
If for any reason the ringer load will be too low the self generated battery will drop in order to keep the  
power consumption to the fixed limit and therefore also the ring voltage level will be reduced.  
In the typical application with RSENSE = 110mthe peak current from Vpos is limited to about 900mA,  
which correspond to an average current of ꢀ00mA max. In this condition the STLC3055N can drive up to  
9/25  
STLC3055N  
3REN with a ring frequency fr=25Hz (1REN = 1800+ 1.0µF, European standard).  
In order to drive up to 5REN (1REN= 6930+ 8µF, US standard) it is necessary to modify the external  
components as follows:  
CREV = 15nF  
RD = 2.2KΩ  
Rsense = 100mΩ  
3.3 Layout Recommendation  
A properly designed PCB layout is a basic issue to guarantee a correct behaviour and good noise perfor-  
mances. Noise sources can be identified in not enough good grounds, not enough low impedance sup-  
plies and parasitic coupling between PCB tracks and high impedance pins of the device.  
Particular care must be taken on the ground connection and in this case the star configuration allows sure-  
ly to avoid possible problems (see Application Diagram Figg. 9 and 10).  
The ground of the power supply (VPOS) has to be connected to the center of the star, let’s call this point  
Supply GND. This point should show a resistance as low as possible, that means it should be a ground  
plane.  
In particular to avoid noise problems the layout should prevent any coupling between the DC/DC convert-  
er components that are referred to PGND (CVPOS, CD, L) and analog pins that are referred to AGND (ex:  
RD, IREF, RTH, RLIM, VF). AGND and BGND must be shorter together. The GND connection of protec-  
tion components have to be connected to the Supply GDND.  
As a first reccomendation the components CV, L, D1, CVPOS, RSENSE should be kept as close as pos-  
sible to each other and isolated from the other components.  
Additional improvements can be obtained:  
decoupling the center of the star from the analog ground of STLC3055N using small chokes.  
adding a capacitor in the range of 100nF between VPOS and AGND in order to filter the switch  
frequency on VPOS.  
3.4 External Components List  
In order to properly define the external components value the following system parameters have to be de-  
fined:  
The AC input impedance shown by the SLIC at the line terminals "Zs" to which the return loss  
measurement is referred. It can be real (typ. 600) or complex.  
The AC balance impedance, it is the equivalent impedance of the line "Zl" used for evaluation of the  
trans-hybrid loss performances (2/4 wire conversion). It is usually a complex impedance.  
The value of the two protection resistors Rp in series with the line termination. The line impedance at  
the TTX frequency "Zlttx".  
The metering pulse level amplitude measured at line termination "VLOTTX". In case of low order  
filtering, VLOTTX represents the amplitude (Vrms) of the fundamental frequency component. (typ 12 or  
16KHz).  
Pulse metering envelope rise and decay time constant "  
τ".  
The slope of the ringing waveform " VTR T ".  
/∆  
The value of the constant current limit current "Ilim".  
The value of the off-hook current threshold "ITH".  
The value of the ring trip rectified average threshold current "IRTH".  
The value of the required self generated negative battery "VBATR" in ring mode (max value is ꢀ0V).  
This value can be obtained from the desired ring peak level + 5V.  
The value of the maximum current peak sunk from Vpos "IPK".  
10/25  
STLC3055N  
Table 10. External Components  
Name  
RRX  
Function  
Rx input bias resistor  
Bias setting current  
Formula  
RREF = 1.3/Ibias  
Typ. Value  
100k5%  
26k1%  
RREF  
Ibias = 50µA  
CSVR  
RD  
Negative Battery Filter  
CSVR = 1/(2π ⋅ fp 1.8M)  
1.5nF 10%  
100V  
fp = 50Hz  
Ring Trip threshold setting  
resistor  
RD = 100/IRTH  
2K< RD < 5KΩ  
4.12k1%  
@ IRTH = 24mA  
CAC  
AC/DC split capacitance  
22µF 20% 15V  
@ RD = 4.12kΩ  
RP  
Line protection resistor  
Rp > 30Ω  
501%  
RLIM  
Current limiting programming  
RLIM = 1300/Ilim  
32.5k< RLIM < 65kΩ  
52.3k1%  
@ Ilim = 25mA  
RTH  
Off-hook threshold programming RTH = 290/ITH  
32.4k1%  
@ITH = 9mA  
(ACTIVE mode)  
2ꢀk< RTH < 52kΩ  
CREV  
Reverse polarity transition time  
programming  
CREV = ((1/3ꢀ50) · T/VTR  
)
22nF 10% 10V  
@ 12V/ms  
RDD  
Pull up resistors  
100kΩ  
100nF 20% 10V  
100µF(4)  
CVCC  
Internally supply filter capacitor  
CVpos Positive supply filter capacitor  
with low impedance for switch  
mode power supply  
CV  
Battery supply filter capacitor with  
low impedance for switch mode  
power supply  
100µF 20% 100V (5)  
CVB  
High frequency noise filter  
4ꢀ0nF 20% 100V  
100nF 10% 15V  
CRD (6) High frequency noise filter  
Q1  
DC/DC converter switch P ch.  
MOS transistor  
RDS(ON)1.2,VDS = -100V  
Total gate charge=20nC max.  
with VGS=4.5V and VDS=1V  
ID>500mA  
Possible choiches:  
IRF9510 or IRF9520 or  
IRF9120 or equivalent  
D1  
DC/DC converter series diode  
Vr > 100V, tRR 50ns  
RSENSE = 100mV/IPK  
250K<RF1<300K(ꢀ)  
SMBYW01-200  
or equivalent  
RSENSE DC/DC converter peak current  
limiting  
110mΩ  
@IPK = 900mA  
RF1  
Negative battery programming  
level  
300k1%  
@ VBATR = -ꢀ0V  
RF2  
L
Negative battery programming leve  
l
9.1k1%  
DC/DC converter inductor  
DC resistance 0.1(8)  
L=100µH  
SUMIDA CDRH125 or equivalent  
Table 11. External Components @Gain Set = 0  
Name  
RS  
Function  
Formula  
RS = 50 (2Rp)  
Typ. Value  
Protection resistance image  
Two wire AC impedance  
5k@ Rp = 50Ω  
ZAC  
ZAC = 50 (Zs - 2Rp)  
ZA = 50 Zs  
25k1% @ Zs = 600Ω  
30k1% @ Zs = 600Ω  
ZA (1)  
SLIC impedance balancing  
network  
ZB (1)  
Line impedance balancing  
network  
ZB = 50 Zl  
30k1% @ Zl = 600Ω  
11/25  
STLC3055N  
Table 11. External Components @Gain Set = 0 (continued)  
Name  
Function  
Formula  
Typ. Value  
CCOMP AC feedback loop compensation fo = 250kHz  
CCOMP = 1/(2π⋅fo100(RP))  
120pF 10% 10V @ Rp = 50Ω  
CH  
Trans-Hybrid Loss frequency  
compensation  
CH = CCOMP  
120pF 10% 10V  
RTTX (3) Pulse metering cancellation resistor  
RTTX = 50Re (Zlttx+2Rp)  
15k@Zlttx = 200real  
CTTX (3) Pulse metering cancellation  
capacitor  
CTTX = 1/{502π⋅fttx[-lm(Zlttx)]}  
100nF 10% 10V (2)  
@ Zlttx = 200real  
RLV = 63.3·10·α·VLOTTX  
α = (|Zlttx + 2Rp|/|Zlttx|)  
RLV  
Pulse metering level resistor  
16.2k@ VLOTTX = 1ꢀ0mVrms  
CS  
Pulse metering shaping capacitor CS = τ/(2RLV)  
100nF 10% 10V  
@ τ = 3.2ms, RLV = 16.2kΩ  
CFL  
Pulse metering filter capacitor CFL = 2/(2π⋅fttxRLV)  
1.5nF 10% 10V  
@fttx = 12kHz RLV = 16.2kΩ  
Table 12. External Components @Gain Set = 1  
Name  
RS  
Function  
Formula  
RS = 25 (2Rp)  
Typ. Value  
Protection resistance image  
Two wire AC impedance  
2.55k@ Rp = 50Ω  
12.5k1% @ Zs = 600Ω  
15k1% @ Zs = 600Ω  
ZAC  
ZAC = 25 (Zs - 2Rp)  
ZA = 25 Zs  
ZA (1)  
SLIC impedance balancing  
network  
ZB (1)  
Line impedance balancing  
network  
ZB = 25 Zl  
15k1% @ ZI = 600Ω  
CCOMP AC feedback loop compensation fo = 250kHz  
CCOMP = 2/(2π⋅fo100(RP))  
220pF 10% 10VL @ Rp = 50  
220pF 10% 10V  
CH  
Trans-Hybrid Loss frequency  
compensation  
CH = CCOMP  
RTTX (3) Pulse metering cancellation  
resistor  
RTTX = 25Re (Zlttx+2Rp)  
ꢀ.5k@Zlttx = 200real  
CTTX (3) Pulse metering cancellation  
capacitor  
CTTX = 1/252π⋅fttx[-lm(Zlttx)]  
100nF 10% 10V (2)  
@ Zlttx = 200real  
RLV = 31.ꢀ·10·α·VLOTTX  
α = (|Zlttx + 2Rp|/|Zlttx|)  
RLV  
Pulse metering level resistor  
16.2k@ VLOTTX = 340mVrms  
CS  
Pulse metering shaping capacitor CS = τ/(2RLV)  
100nF 10% 10V  
@ τ = 3.2ms, RLV = 16.2kΩ  
CFL  
Pulse metering filter capacitor CFL = 2/(2π⋅fttxRLV)  
1.5nF 10% 10V  
@fttx = 12kHz RLV = 16.2kΩ  
(1) In case Zs=Zl, ZA and ZB can be replaced by two resistors of same value: RA=RB=|Zs|.  
(2) In this case CTTX is just operating as a DC decoupling capacitor (fp=100Hz).  
(3) Defining ZTTX as the impedance of RTTX in series with CTTX, RTTX and CTTX can also be calculated from the following formula:  
ZTTX=50*(Zlttx+2Rp).  
(4) CVpos should be defined depending on the power supply current capability and maximum allowable ripple.  
(5) For low ripple application use 2x4ꢀµ F in parallel.  
(6) Can be saved if proper PCB layout avoid noise coupling on RD pin (high impedance input).  
(ꢀ) RF1 sets the self generated battery voltage in RING and ACTIVE(Il=0) mode as follows:  
26ꢀkΩ  
-46V  
280kΩ  
-48V  
294kΩ  
-49V  
300kΩ  
-50V  
V
V
BAT(ACTIVE)  
-62V  
-65V  
-68V  
-ꢀ0V  
BATR(RING)  
V
should be defined considering the ring peak level required (Vringpeak=VBATR-6V typ.).  
BATR  
The above relation is valid provided that the Vpos power supply current capability and the RSENSE programming allow to source all the  
current requested by the particular ringer load configuration.  
(8) For high efficiency in HI-Z mode coil resistance @125kHz must be < 3Ω  
12/25  
STLC3055N  
Figure 9. Application Diagram.  
VPOS  
CVPOS  
CVCC  
RSENSE  
RX TX  
RRX  
RX TX AGND BGND  
RS  
CVCC  
VPOS  
RS  
RSENSE  
GATE  
Q1  
ZAC  
P-ch  
CCOMP  
D1  
ZAC1  
VBAT  
ZAC  
ZA  
CVB  
RF1  
RF2  
ZB  
L
VF  
CV  
CH  
VDD  
ZB  
CLK  
TIP  
CLK  
GAIN SET  
RDD  
RP  
RP  
TIP  
STLC3055N  
RING  
RING  
DET  
D0  
DET  
D0  
CONTROL  
INTERFACE  
CSVR  
CREV  
D1  
D1  
D2  
D2  
CREV  
CSVR  
PD  
PD  
TTX CLOCK  
CKTTX  
RTH  
RLIM  
IREF  
RLV  
RLV  
CTTX1  
CS  
CTTX2  
FTTX  
RREF  
RLIM  
RTH  
RTTX  
CAC  
ILTF  
RD  
CFL  
RTTX  
RD  
CRD  
D00TL489A  
AGND  
BGND  
CTTX  
CAC  
SYSTEM GND  
SUGGESTED GROUND LAY-OUT  
PGND  
Figure 10. Application Diagram without Metering Pulse Generation.  
VPOS  
CVCC  
CVPOS  
RSENSE  
RX TX  
RRX  
RX TX AGND BGND  
RS  
CVCC  
VPOS  
RS  
RSENSE  
GATE  
Q1  
ZAC  
P-ch  
CCOMP  
D1  
ZAC1  
VBAT  
ZAC  
ZA  
CVB  
RF1  
ZB  
L
VF  
CV  
CH  
VDD  
RDD  
ZB  
RF2  
CLK  
TIP  
CLK  
GAIN SET  
RP  
RP  
TIP  
STLC3055N  
RING  
RING  
DET  
D0  
DET  
D0  
CONTROL  
INTERFACE  
CSVR  
CREV  
D1  
D1  
D2  
D2  
CREV  
CSVR  
PD  
PD  
CKTTX  
CTTX1  
CTTX2  
FTTX  
RTH  
RLIM  
IREF  
RREF  
RLIM  
RTH  
RTTX  
CAC  
ILTF  
RD  
RD  
CRD  
D00TL490/B  
AGND  
BGND  
CAC  
SYSTEM GND  
SUGGESTED GROUND LAY-OUT  
PGND  
13/25  
STLC3055N  
4 ELECTRICAL CHARACTERISTICS  
Test conditions: Vpos = 6.0V, AGND = BGND, Normal Polarity, Tamb = 25°C.  
External components as listed in the "Typical Values" column of EXTERNAL COMPONENTS Table.  
Note: Testing of all parameter is performed at 25°C. Characterisation as well as design rules used allow  
correlation of tested performances at other temperatures. All parameters listed here are met in the oper-  
ating range: -40 to +85°C.  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
DC CHARACTERISTICS  
Vlohi  
Line voltage  
Line voltage  
Il = 0, HI-Z  
(High impedance feeding)  
amb = 0 to 85°C  
44  
50  
V
T
Vlohi  
Il = 0, HI-Z  
42  
48  
V
(High impedance feeding)  
T
amb = -40 to 85°C  
Vloa  
Vloa  
Ilim  
Line voltage  
Line voltage  
Il = 0, ACTIVE  
33  
31  
40  
3ꢀ  
V
V
T
amb = 0 to 85°C  
Il = 0, ACTIVE  
T
amb = -40 to 85°C  
Lim. current programming  
range  
ACTIVE mode  
20  
40  
10  
mA  
%
Ilima  
Lim. current accuracy  
ACTIVE mode.  
-10  
Rel. to programmed value  
20mA to 40mA  
Rfeed HI Feeding resistance  
HI-Z (High Impedance feeding)  
2.4  
50  
3.6  
kΩ  
AC CHARACTERISTICS  
L/T  
T/L  
T/L  
Long. to transv.  
(see Appendix for test circuit)  
Rp = 50, 1% tol.,  
ACTIVE N. P., RL = 600(*)  
f = 300 to 3400Hz  
58  
45  
53  
26  
dB  
Transv. to long.  
(see Appendix for test circuit)  
Rp = 50, 1% tol.,  
ACTIVE N. P., RL = 600(*)  
f = 300 to 3400Hz  
40  
48  
dB  
dB  
Transv. to long.  
(see Appendix for test circuit)  
Rp = 50, 1% tol.,  
ACTIVE N. P., RL = 600(*)  
f = 1kHz  
2WRL  
THL  
2W return loss  
300 to 3400Hz,  
ACTIVE N. P., RL = 600(*)  
22  
30  
dB  
dB  
Trans-hybrid loss  
300 to 3400Hz,  
20Log|VRX/VTX|,  
ACTIVE N. P., RL = 600(*)  
Ovl  
2W overload level  
at line terminals on ref. imped.  
ACTIVE N. P., RL = 600(*)  
3.2  
dBm  
TXoff  
G24  
TX output offset  
ACTIVE N. P., RL = 600(*)  
-250  
-6.4  
250  
-5.6  
mV  
dB  
Transmit gain abs.  
0dBm @ 1020Hz,  
ACTIVE N. P., RL = 600(*)  
G42  
Receive gain abs.  
0dBm @ 1020Hz,  
ACTIVE N. P., RL = 600(*)  
-0.4  
0.4  
dB  
14/25  
STLC3055N  
4 ELECTRICAL CHARACTERISTICS  
Test conditions: Vpos = 6.0V, AGND = BGND, Normal Polarity, Tamb = 25°C.  
External components as listed in the "Typical Values" column of EXTERNAL COMPONENTS Table.  
Note: Testing of all parameter is performed at 25°C. Characterisation as well as design rules used allow  
correlation of tested performances at other temperatures. All parameters listed here are met in the oper-  
ating range: -40 to +85°C.  
Symbol  
Parameter  
Test Condition  
rel. 1020Hz; 0dBm,  
Min.  
Typ.  
Max.  
Unit  
G24f  
TX gain variation vs. freq.  
-0.12  
0.12  
dB  
300 to 3400Hz,  
ACTIVE N. P., RL = 600(*)  
G24f  
V2Wp  
V2Wp  
V4Wp  
V4Wp  
RX gain variation vs. freq.  
rel. 1020Hz; 0dBm,  
300 to 3400Hz,  
ACTIVE N. P., RL = 600(*)  
-0.12  
0.12  
-68  
dB  
Idle channel noise at line 0dB  
gainset  
psophometric filtered  
ACTIVE N. P., RL = 600(*)  
Tamb = 0 to +85°C  
-ꢀ3  
-68  
-ꢀ5  
-ꢀ5  
dBmp  
dBmp  
dBmp  
dBmp  
Idle channel noise at line 0dB  
gainset  
psophometric filtered  
ACTIVE N. P., RL = 600(*)  
Tamb = -40 to +85°C  
Idle channel noise at line 0dB  
gainset  
psophometric filtered  
-ꢀ0  
ACTIVE N. P., RL = 600(*)  
T
amb = 0 to +85°C  
Idle channel noise at line 0dB  
gainset  
psophometric filtered  
ACTIVE N. P., RL = 600(*)  
T
amb = -40 to +85°C  
Thd  
Total Harmonic Distortion  
Metering pulse level on line  
ACTIVE N. P., RL = 600(*)  
-44  
dB  
VTTX  
ACTIVE - TTX; Gain Set = 1  
Zl = 200fttx = 12kHz;  
260  
340  
125  
mVrms  
CLKfreq  
CLK operating range  
-10%  
10%  
kHz  
(*) R : Line Resistance  
L
RING  
Vring  
Line voltage  
RING D2 toggling @ fr = 25Hz  
Load = 3REN;  
Crest Factor = 1.25  
45  
44  
49  
48  
Vrms  
1REN = 1800+ 1.0µF  
T
amb = 0 to +85°C  
Vring  
Line voltage  
RING D2 toggling @ fr = 25Hz  
Load = 3REN;  
Vrms  
Crest Factor = 1.25  
1REN = 1800+ 1.0µF  
T
amb = -40 to +85°C  
DETECTORS  
IOFFTHA Off/hook current threshold  
ACT. mode, RTH = 32.4k1%  
10.5  
mA  
kΩ  
(Prog. ITH = 9mA)  
ROFTHA Off/hook loop resistance  
threshold  
ACT. mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
3.4  
6
IONTHA On/hook current threshold  
ACT. mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
mA  
15/25  
STLC3055N  
4 ELECTRICAL CHARACTERISTICS  
Test conditions: Vpos = 6.0V, AGND = BGND, Normal Polarity, Tamb = 25°C.  
External components as listed in the "Typical Values" column of EXTERNAL COMPONENTS Table.  
Note: Testing of all parameter is performed at 25°C. Characterisation as well as design rules used allow  
correlation of tested performances at other temperatures. All parameters listed here are met in the oper-  
ating range: -40 to +85°C.  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
RONTHA On/hook loop resistance  
threshold  
ACT. mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
8
kΩ  
IOFFTHI Off/hook current threshold  
Hi Z mode, RTH = 32.4k1%  
10.5  
mA  
(Prog. ITH = 9mA)  
ROFFTHI Off/hook loop resistance  
threshold  
Hi Z mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
800  
6
IONTHI  
On/hook current threshold  
Hi Z mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
mA  
kΩ  
mA  
%
RONTHI On/hook loop resistance  
threshold  
Hi Z mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
8
Irt  
Ring Trip detector threshold  
range  
RING  
RING  
20  
-15  
50  
15  
Irta  
Ring Trip detector threshold  
accuracy  
Trtd  
Td  
Ring trip detection time  
Dialling distortion  
Loop resistance  
RING  
TBD  
160  
ms  
ms  
ACTIVE  
-1  
1
Rlrt (1)  
ThAl  
500  
Tj for th. alarm activation  
°C  
(1) Rlrt = Maximum loop resistance (incl. telephone) for correct ring trip detection.  
DIGITAL INTERFACE  
INPUTS: D0, D1, D2, PD, CLK  
OUTPUTS: DET  
Vih  
Vil  
Iih  
Iil  
In put high voltage  
Input low voltage  
Input high current  
Input low current  
Output low voltage  
2
V
V
0.8  
10  
-10  
-10  
µA  
µA  
V
10  
Vol  
Iol = 1mA  
0.45  
PSRR AND POWER CONSUMPTION  
PSERRC Power supply rejection Vpos to Vripple = 100mVrms  
26  
36  
dB  
2W port  
50 to 4000Hz  
Ivpos  
Ipk  
Vpos supply current @ ii = 0  
HI-Z On-Hook  
ACTIVE On-Hook,  
RING (line open)  
13  
50  
55  
25  
80  
90  
mA  
mA  
mA  
Peak current limiting accuracy  
RING Off-Hook  
RSENSE = 110mΩ  
-20%  
950  
+20% mApk  
16/25  
STLC3055N  
5 APPENDIX A  
5.1 STLC3055N Test Circuits  
Referring to the application diagram shown in fig. 9 of the STLC3055N datasheet and using as external  
components the Typ. Values specified in the "External Components" Tables 10 and 11 (pages 11, 12) find  
below the proper configuration for each measurement.  
All measurements requiring DC current termination should be performed using "Wandel & Goltermann  
DC Loop Holding Circuit GH-1" or equivalent.  
Figure 11. 2W Return Loss  
2WRL = 20Log(|Zref + Zs|/|Zref-Zs|) = 20Log(E/2Vs)  
W&G GH1  
Zref  
TX  
TIP  
600ohm  
µ
100 F  
Vs  
STLC3055N  
application  
circuit  
100mA  
DC max  
1Kohm  
E
Zin = 100K  
200 to 6kHz  
100µF  
1Kohm  
RX  
RING  
Figure 12. THL Trans Hybrid Loss  
THL = 20Log|Vrx/Vtx|  
W&G GH1  
TIP  
TX  
100 F  
µ
Vtx  
STLC3055N  
application  
circuit  
100mA  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
100µF  
RX  
RING  
Vrx  
1ꢀ/25  
STLC3055N  
Figure 13. G24 Transmit Gain  
G24 = 20Log|2Vtx/E|  
W&G GH1  
TIP  
TX  
100 F  
µ
Vtx  
STLC3055N  
application  
circuit  
100mA  
DC max  
600ohm  
E
Zin = 100K  
200 to 6kHz  
100µF  
RX  
RING  
Figure 14. G42 Receive Gain  
G42 = 20Log|VI/Vrx|  
W&G GH1  
TIP  
TX  
µ
100 F  
STLC3055N  
100mA  
Vl  
DC max  
application  
circuit  
600ohm  
Zin = 100K  
200 to 6kHz  
µ
100 F  
RX  
RING  
Vrx  
Figure 15. PSRRC Power supply rejection Vpos to 2W port  
PSSRC = 20Log|Vn/Vl|  
W&G GH1  
TIP  
TX  
100µF  
STLC3055N  
application  
circuit  
100mA  
DC max  
Vl  
600ohm  
Zin = 100K  
200 to 6kHz  
100µF  
RX  
RING  
VPOS  
Vn  
~
18/25  
STLC3055N  
Figure 16. L/T Longitudinal to Transversal Conversion  
L/T = 20Log|Vcm/Vl|  
W&G GH1  
300ohm  
µ
100 F  
TIP  
TX  
µ
100 F  
STLC3055N  
application  
circuit  
100mA  
DC max  
Vl  
Impedance matching  
better than 0.1%  
Zin = 100K  
200 to 6kHz  
Vcm  
µ
100 F  
RX  
RING  
300ohm  
µ
100 F  
Figure 17. T/L Transversal to Longitudinal Conversion  
T/L = 20Log|Vrx/Vcm|  
W&G GH1  
µ
100 F  
300ohm  
TIP  
TX  
µ
100 F  
STLC3055N  
100mA  
DC max  
application  
circuit  
Impedance matching  
better than 0.1%  
Zin = 100K  
200 to 6kHz  
Vcm  
600ohm  
µ
100 F  
RX  
RING  
Vrx  
300ohm  
100µF  
Figure 18. VTTX Metering Pulse Level on Line  
TIP  
TX  
STLC3055N  
Vlttx  
application  
circuit  
200ohm  
RX  
RING  
CKTTX  
fttx (12 or 16kHz)  
19/25  
STLC3055N  
Figure 19. V2Wp and W4Wp: Idle Channel Psophometric Noise at Line and TX.  
V2Wp = 20Log|Vl/0.774l|; V4Wp = 20Log|Vtx/0.774l|  
W&G GH1  
TIP  
TX  
100µF  
100mA  
Vtx  
psophometric  
filtered  
STLC3055N  
application  
circuit  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
Vl  
psophometric  
filtered  
100µF  
RX  
RING  
6 APPENDIX B  
6.1 STLC3055N Overvoltage Protection  
Figure 20. Simplified Configuration for Indoor Overvoltage Protection  
STPR120A  
BGND  
STLC3055N  
RP1  
RP1  
RP2  
RP2  
TIP  
TIP  
RING  
RING  
VBAT  
STPR120A  
RP1 = 30ohm:  
RP2 =Fuse or PTC > 18ohm  
Figure 21. Standard Overvoltage Protection Configuration for K20 Compliance  
BGND  
STLC3055N  
RP1  
RP1  
RP2  
RP2  
TIP  
TIP  
LCP1521  
RING  
RING  
VBAT  
RP1 = 30ohm:  
RP2 =Fuse or PTC > 18ohm  
20/25  
STLC3055N  
7 APPENDIX C  
7.1 TYPICAL STATE DIAGRAM FOR STLC3055N OPERATION  
Figure 22.  
Normally used for  
On Hook Transmission  
Tj>Tth  
PD=0, D0=D1=0  
Active  
On Hook  
Power  
Down  
Ring Pause  
Ring Burst  
D0=0, D1=1,  
D2=0  
Ring Burst  
Ringing  
D0=1, D1=0,  
D2=0/1  
PD=1,  
D0=D1=0  
On Hook Detection for T>Tref  
HI-Z  
Feeding  
Ring Trip  
Detection  
Active  
On Hook Condition  
Off Hook  
Off Hook Detection  
D0=0, D1=1,  
D2=0  
Off Hook Detection  
Note: all state transitions are under the microprocessor control.  
21/25  
STLC3055N  
8 APPENDIX D  
8.1 STLC3055Q STLC3055N compatibility.  
STLC3055N is pin to pin compatible with the old STLC3055Q but offer a better performance in term of  
Power consumption and can be set in a new gain configuration in order to be compatible with the 3.3V  
codec.  
8.1.1 Typical power consumption comparison  
Table 13.  
Operative mode  
STLC3055Q  
52 - 60mA  
STLC3055N  
13 - 25mA  
50 - 80mA  
55 - 90mA  
HI-Z  
Active on hook  
Ring (no REN)  
93 - 115mA  
120 - 140mA  
To meet this result some differences, with a minimum impact on the application, has been introduced in  
STLC3055N.  
8.1.2 Hardware difference:  
RX input. In STLC3055N it is necessary a 100kexternal resistor between RX input and  
AGND to bias the input stage.  
Rp. The STLC3055N required a Rp value of 50instead of 41.  
TTX filter. To optimize the ttx signal dynamic we have change the values of RLV and CFL;  
Table 14.  
Component  
STLC3055Q  
STLC3055N  
100kΩ  
RRX  
Rp  
41Ω  
2ꢀkΩ  
1nF  
50Ω  
RLV  
CFL  
16.2kΩ  
1.5nF  
8.1.3 Parameter differences:  
Table 15.  
Parameter  
Absolute Max. Rating  
STLC3055Q  
1ꢀV  
STLC3055N  
13V  
Operating Range  
15.8V  
12V  
Typ Metering pulse level (Gs 1)  
Typ Metering pulse level (Gs 0)  
340mVrms  
1ꢀ0mVrms  
200mVrms  
22/25  
STLC3055N  
9 PACKAGE INFORMATION  
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These  
packages have a Lead-free second level interconnect. The category of second Level Interconnect is  
marked on the package and on the inner box label, in compliance with JEDEC Standard JESD9ꢀ.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 23. TQFP44 (10 x 10) Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.063  
A
A1  
A2  
B
1.60  
0.05  
1.35  
0.30  
0.09  
0.15 0.002  
0.006  
1.40  
0.3ꢀ  
1.45 0.053 0.055 0.05ꢀ  
0.45 0.012 0.015 0.018  
C
0.20 0.004  
0.008  
D
11.80 12.00 12.20 0.464 0.4ꢀ2 0.480  
9.80 10.00 10.20 0.386 0.394 0.401  
D1  
D3  
E
8.00  
0.315  
11.80 12.00 12.20 0.464 0.4ꢀ2 0.480  
9.80 10.00 10.20 0.386 0.394 0.401  
E1  
E3  
e
8.00  
0.80  
0.60  
1.00  
0.315  
0.031  
0.ꢀ5 0.018 0.024 0.030  
0.039  
L
0.45  
TQFP44 (10 x 10 x 1.4mm)  
L1  
k
0˚(min.), 3.5˚(typ.), ꢀ˚(max.)  
D
D1  
A
A2  
A1  
33  
23  
34  
22  
0.10mm  
.004  
Seating Plane  
12  
44  
11  
1
C
e
K
TQFP4410  
00ꢀ6922 D  
23/25  
STLC3055N  
Table 16. Revision History  
Date  
Revision  
Description of Changes  
September 2003  
October 2004  
4
5
First Issue  
Update Functional Description and Electrical Characteristics. Aligned  
the graphic style to be compliant with the new “Corporate Technical  
Pubblications Design Guide”  
October 2004  
6
Modified the application diagrams and some typo errors.  
November 2004  
Removed all max. values of the ‘Line Voltage’ parameter on the page  
14/24.  
Changed the unit from mA to % of the ‘Ilima’ parameter on the page 14/  
24.  
January 2005  
8
Add pin 4 PD in Applications and Block Diagram  
Add in Table 2 ‘ESD Rating’  
July 2005  
9
Changed VTTX value  
February 2006  
10  
Added part number “E-STLC3055N” (ECOPACK).  
Added RRX resistance in the figures 9 and 10.  
Added Appendix D.  
24/25  
STLC3055N  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
25/25  

相关型号:

STLC3055N_09

WLL and ISDN-TA subscriber line interface circuit
STMICROELECTR

STLC3055Q

WLL & ISDN-TA SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3055QTR

WLL & ISDN-TA SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3065

WLL SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3065Q

WLL SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3065QTR

WLL SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3075

INTEGRATED POTS INTERFACE FOR HOME ACCESS GATEWAY AND WLL
STMICROELECTR

STLC3075_09

Integrated POTS interface for home access gateway and WLL
STMICROELECTR

STLC3080

SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3080TR

TELECOM-SLIC, PQFP44, 10 X 10 MM, 1.40 MM HEIGHT, TQFP-44
STMICROELECTR

STLC3085

Integrated Pots Interface for Home Access Gateway and WLL
STMICROELECTR

STLC30R80

INTEGRATED RINGING SLIC FOR SHORT LOOP APPLICATIONS
STMICROELECTR