STLC3055QTR [STMICROELECTRONICS]

WLL & ISDN-TA SUBSCRIBER LINE INTERFACE CIRCUIT; WLL和ISDN- TA用户线接口电路
STLC3055QTR
型号: STLC3055QTR
厂家: ST    ST
描述:

WLL & ISDN-TA SUBSCRIBER LINE INTERFACE CIRCUIT
WLL和ISDN- TA用户线接口电路

综合业务数字网 WLL
文件: 总22页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STLC3055  
WLL & ISDN-TA SUBSCRIBER LINE INTERFACE CIRCUIT  
MONOCHIP SLIC OPTIMISED FOR WLL &  
ISDN-TA APPLICATIONS  
IMPLEMENT ALL KEY FEATURES OF THE  
BORSHT FUNCTION  
SINGLE SUPPLY (5.5 TO 15.8V)  
BUILT IN DC/DC CONVERTER CONTROL-  
LER.  
TQFP44  
SOFT BATTERY REVERSAL WITH PRO-  
GRAMMABLE TRANSITION TIME.  
ORDERING NUMBERS: STLC3055Q  
ON-HOOK TRANSMISSION.  
PROGRAMMABLE OFF-HOOK DETECTOR  
THRESHOLD  
STLC3055QTR  
METERING PULSE GENERATION AND FIL-  
TER  
INTEGRATED RINGING  
INTEGRATED RING TRIP  
PARALLEL CONTROL INTERFACE (3.3V  
LOGIC LEVEL)  
PROGRAMMABLE CONSTANT CURRENT  
FEED  
DESCRIPTION  
The STLC3055 is a SLIC device specifically de-  
signed for WLL (Wireless Local Loop) and ISDN-  
Terminal Adaptors. One of the distinctive charac-  
teristic of this device is the ability to operate with  
a single supply voltage (from +5.5V to +15.8V)  
and self generate the negative battery by means  
of an on chip DC/DC converter controller that  
drives an external MOS switch.  
SURFACE MOUNT PACKAGE  
INTEGRATED THERMAL PROTECTION  
-40 TO +85°C OPERATING RANGE  
The battery level is properly adjusted depending  
on the operatingmode. A useful characteristic for  
BLOCK DIAGRAM  
D0  
D1  
D2  
DET  
INPUT LOGICAND DECODER  
OUTPUT LOGIC  
BGND  
Status and functions  
TIP  
TX  
RX  
LINE  
OUTPUT  
SUPERVISION  
DRIVER  
STAGE  
ZAC1  
ZAC  
RING  
AC PROC  
RS  
ZB  
CREV  
DC PROC  
CSVR  
CLK  
RSENSE  
DC/DC  
CONV.  
GATE  
VF  
CKTTX  
CTTX1  
TTX PROC  
Vcc  
CVCC  
VPOS  
REFERENCE  
CTTX2  
FTTX  
Vss  
VOLT.  
REG.  
VBAT  
Agnd  
Vbat  
RTTX CAC ILTF RD IREF RLIM RTH  
AGND  
October 1999  
1/22  
STLC3055  
DESCRIPTION (continued)  
these applications is the integrated ringing gener-  
ator.  
sible CODEC input saturation due to Metering  
pulse echo.  
The control interface is a parallel type with open  
drain output and 3.3V logic levels.  
Constant current feed can be set from 20mA to  
40mA. Off-hook detection threshold is program-  
mable from 5mA to 9mA.  
The device, developed in BCD100II technology  
(100V process), operates in the extended tem-  
perature range and integrates a thermal protec-  
tion that sets the device in power down when Tj  
exceeds 140°C.  
The metering pulses are generated on chip start-  
ing from two logic signals (0, 3.3V) one define the  
metering pulse frequency and the other the me-  
tering pulse duration. An on chip circuit then pro-  
vides the proper shaping and filtering. Metering  
pulse amplitude and shaping (rising and decay  
time) can be programmed by external compo-  
nents. A dedicated cancellation circuit avoid pos-  
PIN CONNECTION  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
1
2
3
4
5
6
7
8
9
D0  
D1  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
CSVR  
ILTF  
D2  
RD  
PD  
RTH  
RES  
IREF  
N.C.  
RLIM  
AGND  
CVCC  
VPOS  
RSENSE  
GATE  
N.C.  
DET  
CKTTX  
CTTX1  
CTTX2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
D97TL279A  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
Vpos  
A/BGND  
Vdig  
Positive Supply Voltage  
AGND to BGND  
-0.4 to +17  
-1 to +1  
-0.4 to 5.5  
150  
V
Pin D0, D1, D2, DET, CKTTX  
Max. junction Temperature  
V
Tj  
°C  
V
(1)  
Vbtot  
Vbtot=|Vpos|+|Vbat|. (Total voltage applied to the device  
supply pins).  
100  
(1) Vbat is self generated by the on chip DC/DC converter and can be programmed via RF1 and RF2.  
RF1 and RF2 shall be selected in order to fulfil the a.m limits (see External Components Table page 10)  
2/22  
STLC3055  
OPERATING RANGE  
Symbol  
Parameter  
Value  
Unit  
V
Vpos  
A/BGND  
Vdig  
Positive Supply Voltage  
AGND to BGND  
5.5 to +15.8  
-100 to +100  
-0.25 to 5.25  
-40 to +85  
-74 max.  
V
Pin D0, D1, D2, DET, CKTTX, PD  
Ambient Operating Temperature Range  
Self Generated Battery Voltage  
V
Top  
°C  
V
(1)  
Vbat  
(1) Vbat is self generated by the on chip DC/DC converter and can be programmed via RF1 and RF2.  
RF1 and RF2 shall be selected in order to fulfil the a.m limits (see External Components Table page 10)  
THERMAL DATA  
Symbol  
Parameter  
Value  
Unit  
Rth j-amb  
Thermal Resistance Junction to Ambient  
Typ.  
60  
°C/W  
PIN DESCRIPTION  
N.  
25  
34  
27  
16  
15  
17  
18  
Name  
VPOS  
BGND  
AGND  
ZAC  
Function  
Positive supply input ranging from 5.5V to 15.8V.  
Battery Ground, must be shorted with AGND.  
Analog Ground, must be shorted with BGND.  
AC impedance synthesis.  
ZAC1  
RS  
RX buffer output, the AC impedance is connected from this node to ZAC.  
Protection resistors image (the image resistor is connected from this node to ZAC).  
ZB  
Balance Network for 2 to 4 wire conversion (the balance impedance ZB is connected from this  
node to AGND. ZA impedance is connected from this node to ZAC1).  
20  
14  
TX  
4 wire output port (TX output). The signal is referred to AGND. If connected to single supply  
CODEC input it must be DC decoupled with proper capacitor.  
RX  
4 wire input port (RX input); 300K input impedance. This signal is referred to AGND. If  
connected to single supply CODEC output it must be DC decoupled with proper capacitor.  
19  
32  
41  
37  
28  
CAC  
ILTF  
TIP  
AC feedback input, AC/DC split capacitor (CAC).  
Transversal line current image output.  
2 wire port; TIP wire (Ia is the current sourced from this pin).  
2 wire port; RING wire (Ib is the current sunk into this pin).  
RING  
RLIM  
Constant current feed programming pin (via RLIM). RLIM should be connected close to this  
pin and PCB layout should avoid noise injection on this pin.  
30  
29  
43  
RTH  
IREF  
CREV  
Off-hook threshold programming pin (via RTH). RTH should be connected close to this pin  
and PCB layout should avoid noise injection on this pin.  
Internal bias current setting pin. RREF should be connected close to this pin and PCB layout  
should avoid noise injection on this pin.  
Reverse polarity transition time control. One proper capacitor connected between this pin and  
AGND is setting the reverse polarity transition time. This is the same transition time used to  
shape the ”trapezoidal ringing” during ringing injection.  
31  
RD  
DC feedback and ring trip input. RD should be connected close to this pin and PCB layout  
should avoid noise injection on this pin.  
3/22  
STLC3055  
PIN DESCRIPTION (continued)  
N.  
Name  
Function  
4
PD  
Power Down input. Normally connected to CVCC (or to logic level high). Can be used to set  
TIP and Ring terminals in open circuit setting PD=0 and D0=D1=0.  
26  
35  
CVCC  
VBAT  
Internal positive voltage supply filter.  
Regulated battery voltage self generated by the device via DC/DC converter. Must be shorted  
to VBAT1.  
23  
21  
22  
GATE  
VF  
Driver for external Power MOS transistor.  
Feedback input for DC/DC converter controller.  
CLK  
Power Switch Controller Clock (typ. 125KHz). From version marked STLC3055 A5, this pin  
can also be connected to CVCC or AGND. When the CLK pin is connected to CVCC an  
internal auto-oscillation is internally generated and it is used instead of the external clock.  
When the CLK pin is connected to AGND, the GATE output is disabled.  
24  
RSENSE  
Voltage input for current sensing. RSENSE should be connected close to this pin and VPOS  
pin. The PCB layout should minimize the extra resistance introduced by the copper tracks.  
1
2
D0  
D1  
Control Interface: input bit 0.  
Control Interface: input bit 1.  
3
D2  
Control interface: input bit 2.  
8
DET  
CSVR  
RTTX  
Logic interface output of the supervision detector (active low).  
Battery supply filter capacitor.  
33  
12  
Metering pulse cancellation buffer output. TTX filter network should be connected to this point.  
If not used should be left open.  
13  
10  
11  
9
FTTX  
CTTX1  
CTTX2  
CKTTX  
VBAT1  
RES  
Metering pulse buffer input this signal is sent to the line and used to perform TTX filtering.  
Metering burst shaping external capacitor.  
Metering burst shaping external capacitor.  
Metering pulse clock input (12 KHz or 16KHz square wave).  
Frame connection. Must be shorted to VBAT.  
Reserved, must be connected to AGND.  
44  
5
6, 7,36,  
38,39,  
40,42  
NC  
Not connected.  
High ImpedanceFeeding (HI-Z)  
Active  
Ringing  
FUNCTIONAL DESCRIPTION  
The STLC3055 is a device specifically developed  
for WLL and ISDN-TA applications.  
Table 1 shows how to set the different SLIC oper-  
ating modes.  
It is based on a SLIC core, on purpose optimised  
for these applications, with the addition of a  
DC/DC converter controller to fulfil the WLL and  
ISDN-TA design requirements.  
Table 1. SLIC operating modes.  
The SLIC performs the standard feeding, signal-  
ling and transmissionfunctions.  
It can be set in three different operating modes  
via the D0, D1, D2 pins of the control logic inter-  
face (0 to 3.3V logic levels). The loop status is  
carried out on the DET pin (active low).  
PD D0 D1 D2  
Operating Mode  
Power Down  
0
1
1
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
1
1
0
X
X
0
1
0
1
H.I. Feeding (HI-Z)  
Active Normal Polarity  
Active Reverse Polarity  
Active TTX injection (N.P.)  
Active TTX injection (R.P.)  
The DET pin is an open drain output to allow easy  
interfacing with both 3.3V and 5V logic levels.  
The four possible SLIC’s operating modes are:  
0/1 Ring (D2 bit toggles @ fring)  
Power Down  
4/22  
STLC3055  
The DC/DC converter controller is driving an ex-  
ternal power MOS transistor (P-Channel) in order  
to generate the negative battery voltage needed  
for device operation.  
This operating mode is normally selected when  
the telephone is in on-hookin order to monitor the  
line status keeping the power consumption at the  
minimum.  
The DC/DC converter controller is synchronised  
with an externalCLK (125KHZtyp.).  
The output voltage in on-hook condition is equal  
to the self generated battery voltage (-50V typ).  
From version marked STLC3055 A5, it can be  
synchronised to an internal clock generated when  
the pin CLK is connected to CVCC. One sensing  
resistor in series to Vpos supply allows to fix the  
maximum allowed input peak current. This feature  
is implemented in order to avoid overload on  
Vpos supply in case of line transient (ex. ring trip  
detection).  
When off-hook occurs the DET becomes active  
(low logic level).  
The off-hook threshold in HI-Z mode is the same  
value as programmed in ACTIVE mode.  
The DC characteristic in HI-Z mode is just equal  
to the self generated battery with 2x(1500W+Rp)  
in series (see fig.1), where Rp is the external pro-  
tection resistance.  
The typical value is obtained for a sensing resis-  
tor equal to 110mthat will guarantee an aver-  
age current consumptionfrom Vpos < 700mA.  
Figure 1. DC Characteristicin HI-Z Mode.  
When in on-hook the self generated battery volt-  
age is set to a predefinedvalue.  
IL  
This value can be adjusted via one externalresis-  
tor (RF1) and it is typical -50V. When RING mode  
is selectedthis value is increasedto -70V typ.  
Vbat  
2x(R1+Rp)  
Slope: 2x(R1+Rp)  
Once the line goes in off-hook condition, the  
DC/DC converter automatically adjust the gener-  
ated battery voltage in order to feed the line with  
a fixed DC current (programmable via RLIM) opti-  
mising in this way the power dissipation.  
(R1=1500ohm)  
VL  
Vbat (-50V)  
OPERATING MODES  
Power Down  
DC CHARACTERISTIC & SUPERVISION  
AC CHARACTERISTICS  
When this mode is selected the SLIC is switched  
off and the TIP and RING pins are in high imped-  
ance. Also the line detectors are disabled there-  
fore the off-hookcondition cannot be detected.  
This mode can be selected in emergency condi-  
tion when it is necessary to cut any current deliv-  
ered to the line.  
The AC impedance shown at the 2W port  
(TIP/RING) is the same as the DC one. The  
TIP/RING AC impedance will be 2x(1500 + Rp)  
or high impedance.  
This mode is also forced by STLC3055 in case of  
Active  
thermal overload(Tj > 140°C).  
DC CHARACTERISTICS & SUPERVISION  
When this mode is selected the STLC3055 pro-  
vides both DC feedingand AC transmission.  
In this case the device goes back to the previous  
status as soon as the junction temperature de-  
crease under the hysteresis threshold.  
The STLC3055 feeds the line with a constant cur-  
rent fixed by RLIM (20mA to 40mA range). The  
on-hook voltage is typically 40V allowing on-hook  
transmission; the self generatedVbat is -50V typ.  
AC CHARACTERISTICS  
The 2W port is set in high impedance, the TX  
output buffer is a low impedance output, no AC  
transmissionis possible.  
If the loop resistance is very high and the line  
current cannot reach the programmed constant  
current feed value, the STLC3055 behaves like a  
40V voltage source with a series impedance  
equal to the protection resistors 2xRp (typ.  
High Impedance Feeding (HI-Z)  
DC CHARACTERISTIC & SUPERVISION  
2x41 ) plus the internal resistance. Fig. 2 shows  
the typical DC characteristicin ACTIVE mode.  
5/22  
STLC3055  
Figure 2. DC characteristicin ACTIVE mode  
POLARITY REVERSAL  
The D2 bit controls the line polarity, the transition  
between the two polarities is performed in a ”soft”  
way. This means that the TIP and RING wire ex-  
change their polarities following a ramp transition  
(see fig.3). The transition time is controlled by an  
external capacitor CREV. This capacitor is also  
setting the shape of the ringing trapezoidal wave-  
form.  
IL  
Ilim  
(20 to  
40mA)  
2Rp  
When the control pins set battery reversal the line  
polarity is reversed with a proper transition time  
set via an external capacitor(CREV).  
VL  
10V  
Figure 3. TIP/RING typical transition from  
Direct to Reverse Polarity  
Vbat (-50V)  
The line status (on/off hook) is monitored by the  
SLIC’s supervision circuit. The off-hook threshold  
can be programmed via the external resistor RTH  
in the range from 5mA to 9mA.  
GND  
TIP  
4V typ.  
Independently on the programmed constant cur-  
rent value, the TIP and RING buffers have a cur-  
rent source capability limited to 70mA typ.  
40V typ  
ON-HOOK  
Moreover the power available at Vbat is control-  
led by the DC/DC converter that limits the peak  
current drawn from the Vpos supply. The maxi-  
mum allowed current peak is set by the RSENSE  
resistor and it is typically 900mApk.  
dV/dT set  
by CREV  
RING  
AC CHARACTERISTICS  
The SLIC provides the standard SLIC transmis-  
sion functions:  
METERING PULSE INJECTION (TTX)  
Input impedance synthesis: can be real or  
complex and is set by a scaled (x50) external  
ZAC impedance.  
Transmit and receive: The AC signal present  
on the 2W port (TIP/RING) is transferredto the  
TX output with a -6dB gain and from the RX in-  
put to the 2W port with a 0dB gain.  
2 to 4 wire conversion: The balance imped-  
ance can be real or complex, the proper can-  
cellation is obtained by means of two external  
impedanceZA and ZB.  
The metering pulses circuit consist of a burst  
shaping generator that gives a square wave  
shaped and a low pass filter to reduce the har-  
monic distortionof the output signal.  
The metering pulse is obtained starting from two  
logic signals:  
CKTTX: is a square wave at the TTX fre-  
quency (12 or 16KHz) and should be perma-  
nently applied to the CKTTX pin or at least for  
all the duration of the TTX pulse (including ris-  
ing and decay phases).  
D0: enable the TTX generation circuit and de-  
fine the TTX pulse duration.  
Once in Active mode (D1=1) the SLIC can oper-  
ate in different states setting properly D0 and D2  
control bits (see also Table 2).  
Table 2. SLIC states in ACTIVE mode  
This two signals are then processed by a dedi-  
cated circuitry integrated on chip that generate  
the metering pulse as an amplitude modulated  
shaped squarewave (SQTTX) (see fig.4).  
D0  
0
D1  
1
D2  
0
Operating Mode  
Active Normal Polarity  
Both the amplitude and the envelope of the  
squarewave (SQTTX) can be programmed by  
means of external components. In particular the  
amplitude is set by the two resistors RLV and the  
0
1
1
Active Reverse Polarity  
Active TTX injection (N.P.)  
Active TTX injection (R.P.)  
1
1
0
1
1
1
6/22  
STLC3055  
Figure 4. Metering pulse generation circuit.  
Low Pass Filter  
C1  
-
OP1  
+
CTTX1  
RLV  
RTTX  
BURST  
R2  
FTTX  
R1  
SQTTX  
CS  
SHAPING  
GENERATOR  
CFL  
C2  
RLV  
Sinusoidal wave  
pulse metering  
Required external components vs. filter order.  
CTTX2  
Order CFL R1  
C!  
R2  
C2 THD  
D0  
1
2
3
X
13%  
X
X
X
X
X
X
X
X
6%  
3%  
CKTTX  
X
Square wave pulse metering  
shaping by the capacitor CS.  
The waveform so generated is then filtered and  
injected on the line.  
As already mentioned the metering pulse echo  
cancellation is obtained by means of two external  
components (RTTX and CTTX) that should match  
the line impedance at the TTX frequency. This  
simple network has a double effect:  
The low pass filter can be obtained using the inte-  
grated buffer OP1 connected between pin FTTX  
(OP1 non inverting input) and RTTX (OP1 output)  
(see fig.4) and implementing a ”Sallen and Key”  
configuration.  
Synthesise a low output impedance at the  
TIP/RINGpins at the TTX frequency.  
Cut the eventual TTX echo that will be trans-  
ferred from the line to the TX output.  
Dependingon the external components count it is  
possible to build an optimised application de-  
pending on the distortion level required. In par-  
ticular harmonic distortion levels equal to 13%,  
6% and 3% can be obtained respectively with  
first, second and third order filters (see fig.4).  
The circuit showed in the ”Application diagram” is  
related to the simple first order filter.  
Once the shaped and filtered signal is obtained at  
RTTX buffer output it is injected on the TIP/RING  
pins with a +6dB gain.  
It should be noted that this is the nominal condi-  
tion obtained in presence of ideal TTX echo can-  
cellation (obtained via proper setting of RTTX and  
CTTX). In addition the effective level obtained on  
the line will depend on the line impedance, the  
protection resistor value and the series switch  
(SW1 or SW2) on resistance.  
In the typical application (TTX line impedance  
=200, RP = 41, SW1,2 on resistance = 9Ω  
and ideal TTX echo cancellation) the metering  
pulse level on the line will be 1.33 times the level  
applied to the RTTX pin.  
Ringing  
When this mode is selected STLC3055 self gen-  
erate an higher negative battery (-70V typ.) in or-  
der to allow a balanced ringing signal of typically  
65Vpeak.  
In this condition both the DC and AC feedback  
loop are disabled and the SLIC line drivers oper-  
ate as voltagebuffers.  
The ring waveform is obtained toggling the D2  
control bit at the desired ring frequency.This bit in  
fact controls the line polarity (0=direct; 1=re-  
verse). As in the ACTIVE mode the line voltage  
transition is performed with a ramp transition, ob-  
taining in this way a trapezoidal balanced ring  
waveform (see fig.5).  
The shaping is defined by the CREV external  
capacitor.  
Selecting the proper capacitor value it is possible  
to get differentcrest factor values.  
The following table shows the crest factor values  
7/22  
STLC3055  
Figure 5. TIP/RING typical ringing waveform  
If for any reason the ringer load will be too high  
the self generated battery will drop in order to  
keep the power consumption to the fixed limit and  
therefore also the ring voltage level will be re-  
duced.  
GND  
2.5V typ.  
TIP  
In the typical application with RSENSE = 110mΩ  
the peak current from Vpos is limited to about  
900mA, which correspond to an average current  
of 700mA max. In this condition the STLC3055  
can drive up to 3REN with a ring frequency  
fr=25Hz (1REN = 1800+ 1.0µF, European  
standard).  
65V  
typ.  
dV/dT set  
by CREV  
In order to drive up to 5REN (1REN= 6930+  
8 F, US standard) it is necessary to modify the  
µ
RING  
2.5V typ.  
VBAT  
externalcomponentsas follows:  
CREV = 15nF  
RD = 2.2KΩ  
obtained with a 20Hz and 25Hz ring frequency  
and with 1REN. This value are valid either with  
European or USA specification:  
Power On Requirements  
CREST  
FACTOR  
@20Hz  
CREST  
FACTOR  
@25Hz  
In order to avoid damage to the device when  
Vpos is first applied it is recommended to keep all  
the logic inputs to a low logic level (0V) until Vpos  
is >5.5V.  
CREV  
22nF  
27nF  
33nF  
1.2  
1.26  
1.32  
1.25  
1.33  
In case this power up sequence cannot be guar-  
anteed it’s recommended to connect a shottkydi-  
ode (BAT46 or equivalent) between VBAT and  
BGND see figure below.  
Not significant (*)  
(*) Distorsion already less than 10%.  
Figure 6. Shottky diode connection  
The ring trip detection is performed sensing the  
variation of the AC line impedance from on hook  
(relatively high) to off-hook (low). This particular  
ring trip method allows to operate without DC off-  
set superimposed on the ring signal and therefore  
obtaining the maximum possible ring level on the  
load starting from a given negative battery.  
It should be noted that such a method is opti-  
mised for operation on shortloop applications and  
may not operateproperly in presenceof long loop  
applications (> 500).  
BGND  
STLC3055  
BAT46  
VBAT  
Once ring trip is detected,the DET output is acti-  
vated (logic level low), at this point the card con-  
troller or a simple logic circuit should stop the D2  
toggling in order to effectively disconnect the ring  
signal and then set the STLC3055 in the proper  
operatingmode (normally ACTIVE).  
RING LEVEL IN PRESENCE OF MORE TELE-  
PHONE IN PARALLEL  
As already mentioned above the maximum cur-  
rent that can be drawn from the Vpos supply is  
controlledand limited via the external RSENSE.  
This will limit also the power available at the self  
generatednegative battery.  
8/22  
STLC3055  
Layout Recommendation  
The AC input impedance shown by the SLIC at  
the line terminals ”Zs” to which the return loss  
measurement is referred. It can be real (typ.  
600) or complex.  
The AC balance impedance, it is the equiva-  
lent impedance of the line ”Zl” used for evalu-  
ation of the trans-hybrid loss performances  
(2/4 wire conversion). It is usually a complex  
impedance.  
The value of the two protection resistors Rp in  
series with the line termination.  
The line impedance at the TTX frequency  
”Zlttx”.  
A properly designed PCB layout is a basic issue  
to guarantee a correct behaviour and good noise  
performances.  
Particular care must be taken on the ground con-  
nection and in this case the star configuration al-  
lows surely to avoid possible problems (see Appli-  
cation Diagram Fig. 7).  
The ground of the power supply (VPOS) has to  
be connected to the center of the star, let’s call  
this point PGND. This point should show a resis-  
tance as low as possible, that means it should be  
a ground plane.  
Noise sources can be identified in not enough  
good grounds, not enough low impedance sup-  
plies and parasitic coupling between PCB tracks  
and high impedance pins of the device.  
In particular to avoid noise problems the layout  
should prevent any coupling between the DC/DC  
converter components and analog pins that are  
referred to AGND (ex: RD, IREF, RTH, RLIM,  
VF). As a first reccomendation the components  
CV, L, D1, CVPOS, RSENSE should be kept as  
close as possible to each other and isolated from  
the other components.  
The metering pulse level amplitude measured  
at line termination ”VLOTTX”. In case of low or-  
der filtering, VLOTTX represents the amplitude  
(Vrms) of the fundamental frequency compo-  
nent. (typ 12 or 16KHz).  
Pulse metering envelope rise and decay time  
constant ” ”.  
τ
The slope of the ringing waveform V / T ”.  
TR  
The value of the constant current limit current  
”Ilim”.  
The value of the off-hook current threshold  
”ITH”.  
The value of the ring trip rectified average  
threshold current ”IRTH”.  
The value of the required self generated nega-  
Additionalimprovements can be obtained:  
decoupling the center of the star from the ana-  
log ground of STLC3055 using small chokes.  
adding a capacitor in the range of 100nF be-  
tween VPOS and AGND in order to filter the  
switch frequency on VPOS.  
tive battery ”VBATR  
in ring mode (max value  
is 70V). This value can be obtained from the  
desired ring peak level + 5V.  
External Components List  
The value of the maximum current peak sunk  
from Vpos ”IPK”.  
In order to properly define the external compo-  
nents value the following system parameters  
have to be defined:  
9/22  
STLC3055  
EXTERNAL COMPONENTS  
Name  
Function  
Formula  
RREF = 1.3/Ibias  
Typ. Value  
RREF  
Bias setting current  
26k 1%  
Ibias = 50µA  
CSVR  
RD  
Negative Battery Filter  
CSVR = 1/(2π fp 1.8M)  
fp = 50Hz  
1.5nF 10%  
100VL  
Ring Trip threshold setting  
resistor  
RD = 100/IRTH  
4.12k 1%  
2K < RD < 5K  
@ IRTH = 24mA  
CAC  
AC/DC split capacitance  
22 F 20% 15VL  
µ
@ RD = 4.12kΩ  
RP  
RS  
Line protection resistor  
Rp > 30Ω  
411%  
Protection and series switches  
resistance image  
RS = 100 (Rp + 9)  
5k@ Rp = 41Ω  
ZAC  
ZA (1)  
ZB (1)  
CCOMP  
CH  
Two wire AC impedance  
ZAC = 50 (Zs - 2Rp - 18 )  
25k 1%  
@ Zs = 600  
SLIC impedance balancing  
network  
ZA = 50 Zs  
ZB = 50 Zl  
30k1%  
@ Zs = 600Ω  
Line impedance balancing  
network  
30k 1%  
@ Zl = 600  
AC feedback loop compensation CCOMP = 1/(2 fo 100 (RP+9 ))  
120pF 10% 10VL  
@ Rp = 41  
π
fo = 250kHz  
Trans-Hybrid Loss frequency  
compensation  
CH = CCOMP  
120pF 10% 10VL  
RLIM  
Current limiting programming  
RLIM = 1300/Ilim  
32.5k < RLIM < 65k  
52.3k 1%  
@ Ilim = 25mA  
RTH  
Off-hook threshold programming RTH = 260/ITH  
28.7k 1%  
(ACTIVE mode)  
27k< RTH < 52kΩ  
@ITH = 9mA  
CREV  
RTTX (3)  
CTTX (3)  
RLV  
Reverse polarity transition time  
programming  
CREV = (1/3750) T/VTR  
)
22nF 10% 10V  
@ 12V/ms  
Pulse metering cancellation  
resistor  
RTTX = 50Re[(Zlttx+2Rp+18 )]  
15k  
@Zlttx = 200 real  
Pulse metering cancellation  
capacitor  
CTTX = 1/{50 2 fttx[-lm(Zlttx)]}  
100nF 10% 10V (2)  
@ Zlttx = 200real  
π
Pulse metering level resistor  
RLV = 63.3 103 α VLOTTX  
27k1%  
@ VLOTTX = 275mVrms  
= (|Zlttx + 2Rp + 18 |/|Zlttx|)  
α
CS  
Pulse metering shaping  
capacitor  
CS = /(2 RLV)  
100nF 10% 10V  
= 6ms, RLV = 27.1k  
τ
@
τ
CFL  
Pulse metering filter capacitor  
CFL = 2/(2 fttx RLV)  
1nF 10% 10V  
@fttx = 12kHz  
π
RLV = 27k  
RDD  
CVCC  
CVpos  
Pull up resistors  
100k  
Internally supply filter capacitor  
100nF 20% 10V  
100 F(4)  
Positive supply filter capacitor  
with low impedance for switch  
mode power supply  
µ
CV  
Battery supply filter capacitor  
with low impedance for switch  
mode power supply  
100µF 20% 100V (5)  
CVB  
High frequency noise filter  
470nF 20% 100VL  
10/22  
STLC3055  
EXTERNAL COMPONENTS (continued)  
Name  
CRD (6)  
Q1  
Function  
Formula  
Typ. Value  
100nF 10% 15VL  
Possible choiches:  
IRF9510 or IRF9520 or  
IRF9120 or equivalent  
High frequency noise filter  
DC/DC converter switch P ch.  
MOS transistor  
RDS(ON)1.2,VDS = -100V  
Total gate charge=20nC max.  
with VGS=4.5V and VDS=1V  
ID>500mA  
D1  
RSENSE  
L (8)  
DC/DC converter series diode  
Vr > 100V, tRR 50ns  
SMBYW01-200  
or equivalent  
DC/DC converter peak current  
limiting  
RSENSE = 100mV/IPK  
110mΩ  
@IPK = 900mA  
DC/DC converter inductor  
DC Resistance 0.1 (9)  
L=125 H RFP1304PV  
µ
(Manuf.: All Inductive)  
or SUMIDA CDRH125  
or equivalent  
CF1  
RF1  
RF2  
DC/DC converter feedback loop  
stability  
220pF to 470pF (10)  
Negative battery programming  
level  
250K <RF1<300K (7)  
300kW 1%  
@ VBATR = -70V  
Negative battery programming  
level  
9.1k1%  
(1) In case Zs=Zl, ZA and ZB can be replaced by two resistors of same value: RA=RB=|Zs|.  
(2) In this case CTTX is justoperating as a DC decoupling capacitor (fp=100Hz).  
(3) Defining ZTTX as the impedance of RTTX in series with CTTX, RTTX and CTTX can also be calculated from the following formula:  
ZTTX=50*(Zlttx+2Rp+18 ).  
(4) CVpos should be defined depending on the power supply current capability and maximum allowable ripple.  
(5) For low ripple application use 2x47 F in parallel.  
µ
(6) Can be saved if proper PCB layout avoid noise coupling on RD pin (high impedance input).  
(7) RF1 sets the self generated battery voltage in RING and ACTIVE(Il=0) mode as follows:  
267k  
280k  
294kW  
-49V  
300k  
VBAT(ACTIVE)  
VBATR(RING)  
-46V  
-62V  
-48V  
-65V  
-50V  
-70V  
-68V  
VBATR should be defined considering the ring peak level required (Vringpeak=VBATR-6V typ.).  
The above relation is valid provided that the Vpos power supply current capability and the RSENSE programming allow to source all the  
current requested by the particular ringer load configuration.  
(8) Core: MICROMETALS T50-26C IRON POWDER, AL-VALUE 61nH/N2  
Current rating: 2A (50/60Hz)  
Operating Temperature -25° to +60° Centigrades  
Inductance: 14 H +/-15% at 1KHz, 1mA  
µ
DC resistance of winding: MAX.100 mOhm  
Code: RFY1303  
Wire: UEW2, 0,60 mm  
Turns: 50  
Inductance (f=1KHz): >125 H  
µ
(9) For high efficiency in HI-Z mode coil resistance @125kHz must be <3ohm  
(10) Function of this capacitor is to introduce a zero at the resonance frequency for loop stability. In case some parasitic resistance are already  
present in the loop (Coil, CVBAT, PCB layout), the presence of this capacitor can degrade the device noise performances; in this case CF1  
should be removed being the loop stability already guaranteed by the parasitic resistance.  
11/22  
STLC3055  
Figure 6. Application Diagram.  
VPOS  
CVPOS  
CVCC  
RSENSE  
RX TX  
RX TX  
RS  
AGND BGND  
CVCC  
VPOS  
RS  
RSENSE  
GATE  
ZAC  
Q1  
L
CCOMP  
D1  
ZAC1  
VBAT  
ZAC  
ZA  
CVB  
CF1  
RF1  
RF2  
ZB  
VF  
CV  
CH  
ZB  
VDD  
CLK  
TIP  
CLK  
RDD  
RP  
RP  
TIP  
RING  
RING  
DET  
DET  
D0  
STLC3055  
CONTROL  
INTERFACE  
D0  
CSVR  
CREV  
D1  
D2  
D1  
D2  
CREV  
CSVR  
TTX CLOCK  
RLV  
CKTTX  
CTTX1  
RTH  
RLIM  
IREF  
CS  
RLV  
CTTX2  
FTTX  
RREF  
RLIM  
RTH  
RTTX  
CAC  
ILTF  
RD  
CFL  
RTTX  
RD  
CRD  
D96TL275D  
AGND  
BGND  
CTTX  
CAC  
SUPPLY GND  
SUGGESTED GROUND LAY-OUT  
PGND  
Figure 7. Application Diagram without Metering Pulse Generation.  
VPOS  
CVPOS  
CVCC  
RSENSE  
RX TX  
RX TX  
RS  
AGND BGND  
CVCC  
VPOS  
RS  
RSENSE  
GATE  
ZAC  
Q1  
L
CCOMP  
D1  
ZAC1  
VBAT  
ZAC  
ZA  
CVB  
CF1  
RF1  
ZB  
VF  
CV  
CH  
VDD  
RDD  
ZB  
RF2  
CLK  
TIP  
CLK  
RP  
RP  
TIP  
RING  
STLC3055  
RING  
DET  
D0  
DET  
D0  
CONTROL  
INTERFACE  
CSVR  
CREV  
D1  
D1  
D2  
D2  
CREV  
CSVR  
TTX CLOCK  
CKTTX  
CTTX1  
CTTX2  
FTTX  
RTH  
RLIM  
IREF  
RREF  
RLIM  
RTH  
RTTX  
CAC  
ILTF  
RD  
RD  
CRD  
D98TL380A  
AGND  
BGND  
CAC  
SUPPLY GND  
SUGGESTED GROUND LAY-OUT  
PGND  
12/22  
STLC3055  
ELECTRICAL CHARACTERISTICS  
Test conditions: Vpos = 6.0V,AGND = BGND, Normal Polarity, Tamb = 25°C.  
Externalcomponentsas listed in the ”Typical Values” column of EXTERNAL COMPONENTS Table.  
Note: Testing of all parameter is performed at 25°C. Characterisation as well as design rules used allow  
correlation of tested performances at other temperatures. All parameters listed here are met in the oper-  
ating range: -40 to +85°C.  
DC CHARACTERISTICS  
Symbol  
Parameter  
Line voltage  
Test Condition  
Il = 0, HI-Z  
(High impedance feeding)  
Min.  
Typ.  
Max.  
Unit  
Vlohi  
44  
50  
V
T
amb = 0 to 85°C  
Vlohi  
Line voltage  
Il = 0, HI-Z  
(High impedance feeding)  
42  
48  
V
T
amb = -40 to 85°C  
Vloa  
Vloa  
Line voltage  
Line voltage  
Il = 0, ACTIVE  
33  
31  
40  
37  
V
V
T
amb = 0 to 85°C  
Il = 0, ACTIVE  
T
amb = -40 to 85°C  
Ilim  
Lim. current programming range ACTIVE mode  
20  
40  
10  
mA  
mA  
Ilima  
Lim. current accuracy  
ACTIVE mode.  
-10  
Rel. to programmed value  
20mA to 40mA  
Rfeed HI  
Zrx  
Feeding resistance  
HI-Z (High Impedance feeding)  
2.4  
3.6  
k
k
RX port input impedance  
280  
AC CHARACTERISTICS  
L/T  
T/L  
T/L  
Long. to transv.  
(see Appendix for test circuit)  
Rp = 41 , 1% tol.,  
48  
40  
48  
50  
45  
53  
26  
dB  
dB  
dB  
ACTIVE N. P., R = 600 (*)  
L
f = 300 to 3400Hz  
Transv. to long.  
(see Appendix for test circuit)  
Rp = 41, 1% tol.,  
ACTIVE N. P., R = 600 (*)  
L
f = 300 to 3400Hz  
Transv. to long.  
(see Appendix for test circuit)  
Rp = 41 , 1% tol.,  
ACTIVE N. P., RL = 600(*)  
f = 1kHz  
2WRL  
THL  
2W return loss  
300 to 3400Hz,  
22  
30  
dB  
dB  
ACTIVE N. P., R = 600 (*)  
L
Trans-hybrid loss  
300 to 3400Hz,  
20Log|VRX/VTX|,  
ACTIVE N. P., R = 600 (*)  
L
Ovl  
2W overload level  
at line terminals on ref. imped.  
10  
dBm  
ACTIVE N. P., R = 600 (*)  
L
TXoff  
G24  
TX output offset  
ACTIVE N. P., R = 600 (*)  
-150  
-6.4  
150  
-5.6  
mV  
dB  
L
Transmit gain abs.  
0dBm @ 1020Hz,  
ACTIVE N. P., RL = 600(*)  
G42  
Receive gain abs.  
0dBm @ 1020Hz,  
-0.4  
0.4  
dB  
dB  
ACTIVE N. P., R = 600 (*)  
L
G24f  
TX gain variation vs. freq.  
rel. 1020Hz; 0dBm,  
300 to 3400Hz,  
-0.12  
0.12  
ACTIVE N. P., RL = 600(*)  
13/22  
STLC3055  
ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
Parameter  
Test Condition  
rel. 1020Hz; 0dBm,  
Min.  
Typ.  
Max.  
Unit  
G42f  
RX gain variation vs. freq.  
-0.12  
0.12  
dB  
300 to 3400Hz,  
ACTIVE N. P., R = 600 (*)  
L
V2Wp  
V2Wp  
V4Wp  
V4Wp  
Idle channel noise at line  
Idle channel noise at line  
Idle channel noise at line  
Idle channel noise at line  
psophometric filtered  
ACTIVE N. P., RL = 600(*)  
-73  
-68  
-75  
-75  
-68  
-70  
dBmp  
dBmp  
dBmp  
dBmp  
T
amb = 0 to +85°C  
psophometric filtered  
ACTIVE N. P., R = 600 (*)  
L
T
amb = -40 to +85°C  
psophometric filtered  
ACTIVE N. P., R = 600 (*)  
L
T
amb = 0 to +85°C  
psophometric filtered  
ACTIVE N. P., RL = 600(*)  
T
amb = -40 to +85°C  
Thd  
Total Harmonic Distortion  
Metering pulse level on line  
ACTIVE N. P., R = 600 (*)  
-46  
dB  
L
VTTX  
ACTIVE - TTX  
200  
250  
125  
mVrms  
Zl = 200 fttx = 12kHz  
CLKfreq  
CLK operating range  
-10%  
10%  
kHz  
(*) RL: Line Resistance  
RING  
Vring  
Line voltage  
RING D2 toggling @ fr = 25Hz  
Load = 3REN;  
Crest Factor = 1.25  
45  
44  
49  
48  
Vrms  
Vrms  
1REN = 1800 + 1.0 F  
µ
T
amb = 0 to +85°C  
Vring  
Line voltage  
RING D2 toggling @ fr = 25Hz  
Load = 3REN;  
Crest Factor = 1.25  
1REN = 1800+ 1.0µF  
T
amb = -40 to +85°C  
DETECTORS  
IOFFTHA  
Off/hook current threshold  
ACT. mode, RTH = 28.7k 1%  
10.5  
mA  
(Prog. ITH = 9mA)  
ROFTHA  
IONTHA  
RONTHA  
IOFFTHI  
ROFFTHI  
IONTHI  
Off/hook loop resistance  
threshold  
ACT. mode, RTH = 28.7k 1%  
(Prog. ITH = 9mA)  
3.4  
6
k
On/hook current threshold  
ACT. mode, RTH = 28.7k1%  
(Prog. ITH = 9mA)  
mA  
On/hook loop resistance  
threshold  
ACT. mode, RTH = 28.7k 1%  
8
k
(Prog. ITH = 9mA)  
Off/hook current threshold  
Hi Z mode, RTH = 28.7k 1%  
10.5  
mA  
(Prog. ITH = 9mA)  
Off/hook loop resistance  
threshold  
Hi Z mode, RTH = 28.7k1%  
(Prog. ITH = 9mA)  
800  
6
On/hook current threshold  
Hi Z mode, RTH = 28.7k 1%  
mA  
(Prog. ITH = 9mA)  
RONTHI  
On/hook loop resistance  
threshold  
Hi Z mode, RTH = 28.7k 1%  
(Prog. ITH = 9mA)  
8
k
14/22  
STLC3055  
ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Irt  
Ring Trip detector threshold  
range  
RING  
RING  
20  
50  
mA  
Irta  
Ring Trip detector threshold  
accuracy  
-15  
-1  
15  
%
Trtd  
Td  
Ring trip detection time  
Dialling distortion  
RING  
TBD  
160  
ms  
ms  
ACTIVE  
1
Rlrt (1)  
ThAl  
Loop resistance  
500  
Tj for th. alarm activation  
°C  
(1) Rlrt = Maximum loop resistance (incl. telephone) for correct ring trip detection.  
DIGITAL INTERFACE  
INPUTS: D0, D1, D2, PD, CLK  
OUTPUTS: DET  
Vih  
Vil  
Iih  
Iil  
In put high voltage  
Input low voltage  
Input high current  
Input low current  
Output low voltage  
2
V
V
0.8  
10  
-10  
-10  
A
A
µ
µ
10  
Vol  
Iol = 1mA  
0.45  
V
PSRR AND POWER CONSUMPTION  
PSERRC  
Power supply rejection Vpos to  
2W port  
Vripple = 100mVrms  
50 to 4000Hz  
26  
36  
dB  
Ivpos  
Vpos supply current @ ii = 0  
HI-Z On-Hook  
ACTIVE On-Hook,  
RING (line open)  
52  
93  
120  
60  
115  
140  
mA  
mA  
mA  
Ipk  
Peak current limiting accuracy  
RING Off-Hook  
RSENSE = 110m  
-20%  
950  
+20%  
mApk  
15/22  
STLC3055  
APPENDIX A  
STLC3055 Test Circuits  
Referring to the application diagram shown in fig. 7 of the STLC3055 datasheet and using as external  
components the Typ. Values specified in the ”External Components” Table (page 13) find below the  
proper configurationfor each measurement.  
All measurements requiring DC current termination should be performed using ”Wandel & Goltermann  
DC Loop Holding Circuit GH-1” or equivalent.  
Figure A1. 2W Return Loss  
2WRL = 20Log(|Zref + Zs|/|Zref-Zs|) = 20Log(E/2Vs)  
W&G GH1  
Zref  
TX  
TIP  
600ohm  
100µF  
Vs  
STLC3055  
application  
circuit  
100mA  
DC max  
1Kohm  
E
Zin = 100K  
200 to 6kHz  
100µF  
1Kohm  
RX  
RING  
Figure A2. THL Trans Hybrid Loss  
THL = 20Log|Vrx/Vtx|  
W&G GH1  
TIP  
TX  
100µF  
Vtx  
STLC3055  
application  
circuit  
100mA  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
100µF  
RX  
RING  
Vrx  
16/22  
STLC3055  
Figure A3. G24 Transmit Gain  
G24 = 20Log|2Vtx/E|  
W&G GH1  
TIP  
TX  
100µF  
Vtx  
STLC3055  
application  
circuit  
100mA  
DC max  
600ohm  
E
Zin = 100K  
200 to 6kHz  
100 F  
µ
RX  
RING  
Figure A4. G42 Receive Gain  
G42 = 20Log|VI/Vrx|  
W&G GH1  
TIP  
TX  
100µF  
STLC3055  
application  
circuit  
100mA  
Vl  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
100µF  
RX  
RING  
Vrx  
Figure A5. PSRRC Power supply rejection Vpos to 2W port  
PSSRC = 20Log|Vn/Vl|  
W&G GH1  
TIP  
TX  
100 F  
µ
STLC3055  
application  
circuit  
100mA  
Vl  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
100µF  
RX  
RING  
VPOS  
Vn  
~
17/22  
STLC3055  
Figure A6. L/T Longitudinal to Transversal Conversion  
L/T = 20Log|Vcm/Vl|  
W&G GH1  
300ohm  
100µF  
TIP  
TX  
µ
100 F  
STLC3055  
application  
circuit  
100mA  
DC max  
Vl  
Impedance matching  
better than 0.1%  
Zin = 100K  
200 to 6kHz  
Vcm  
100µF  
RX  
RING  
300ohm  
100µF  
Figure A7. T/L Transversal to Longitudinal Conversion  
T/L = 20Log|Vrx/Vcm|  
W&G GH1  
100µF  
300ohm  
TIP  
TX  
100µF  
STLC3055  
application  
circuit  
100mA  
DC max  
Impedancematching  
better than 0.1%  
Zin = 100K  
200 to 6kHz  
Vcm  
600ohm  
100µF  
RX  
RING  
Vrx  
300ohm  
µ
100 F  
Figure A8. VTTX Metering Pulse level on line  
TIP  
TX  
STLC3055  
application  
circuit  
Vlttx  
200ohm  
RX  
RING  
CKTTX  
fttx (12 or 16kHz)  
18/22  
STLC3055  
Figure A9. V2Wp and W4Wp: Idle channel psophometric noise at line and TX.  
V2Wp = 20Log|Vl/0.774l|;V4Wp = 20Log|Vtx/0.774l|  
W&G GH1  
TIP  
TX  
100µF  
Vtx  
psophometric  
filtered  
STLC3055  
application  
circuit  
100mA  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
Vl  
psophometric  
filtered  
100 F  
µ
RX  
RING  
APPENDIX B  
STLC3055 Overvoltage Protection  
Figure B1. Simplified configuration for indoor overvoltage protection  
BGND  
STLC3055  
RP1  
RP1  
RP2  
RP2  
TIP  
TIP  
RING  
RING  
VBAT  
RP2: Fuse orPTC  
Figure B2. Standard overvoltage protection configuration for K20 compliance  
BGND  
STLC3055  
RP1  
RP1  
RP2  
RP2  
TIP  
TIP  
LCP1511  
RING  
RING  
VBAT  
RP2: Fuse or PTC  
19/22  
STLC3055  
APPENDIX C  
TYPICAL STATE DIAGRAM FOR STLC3055 OPERATION  
Figure C1.  
Normally used for  
On Hook  
Transmission  
Tj>Tth  
PD=0, D0=D1=0  
Active  
On Hook  
Power  
Down  
Ring Pause  
D0=0, D1=1,  
D2=0  
Ring Burst  
Ring Burst  
D0=1, D1=0, D2=0/1  
Ringing  
PD=1, D0=D1=0  
On Hook Detection for T>Tref  
HI-Z  
Feeding  
Ring Trip  
Detection  
Active  
On Hook Condition  
Off Hook  
D0=0, D1=1,  
D2=0  
Off Hook Detection  
Off Hook Detection  
Note: all state transitionsare under the microprocessor control.  
20/22  
STLC3055  
21/22  
STLC3055  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express writtenapproval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
1999 STMicroelectronics – Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
22/22  

相关型号:

STLC3065

WLL SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3065Q

WLL SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3065QTR

WLL SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3075

INTEGRATED POTS INTERFACE FOR HOME ACCESS GATEWAY AND WLL
STMICROELECTR

STLC3075_09

Integrated POTS interface for home access gateway and WLL
STMICROELECTR

STLC3080

SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3080TR

TELECOM-SLIC, PQFP44, 10 X 10 MM, 1.40 MM HEIGHT, TQFP-44
STMICROELECTR

STLC3085

Integrated Pots Interface for Home Access Gateway and WLL
STMICROELECTR

STLC30R80

INTEGRATED RINGING SLIC FOR SHORT LOOP APPLICATIONS
STMICROELECTR

STLC30R81

INTEGRATED RINGING SLIC FOR SHORT LOOP APPLICATIONS
STMICROELECTR

STLC4370

Single Chip 802.11b/g WLAN Radio for Mobile Applications
STMICROELECTR

STLC4420A

Single chip 802.11b/g/a WLAN radio
STMICROELECTR