STLC3055N_09 [STMICROELECTRONICS]

WLL and ISDN-TA subscriber line interface circuit; WLL和ISDN -TA的用户线接口电路
STLC3055N_09
型号: STLC3055N_09
厂家: ST    ST
描述:

WLL and ISDN-TA subscriber line interface circuit
WLL和ISDN -TA的用户线接口电路

综合业务数字网 WLL
文件: 总34页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STLC3055N  
WLL and ISDN-TA subscriber line interface circuit  
Features  
Monochip subscriber line interface circuit  
(SLIC) optimised for WLL and VoIP  
applications  
Implement all key features of the BORSHT  
LQFP44  
function  
Single supply (5.5 V to 12 V)  
generate the negative battery by means of an  
on chip DC/DC converter controller that drives an  
external MOS switch.  
Built in DC/DC converter controller  
Soft battery reversal with programmable  
transition time.  
The battery level is properly adjusted depending  
on the operating mode. A useful characteristic for  
these applications is the integrated ringing  
generator.  
On-hook transmission.  
Programmable off-hook detector threshold  
Metering pulse generation and filter  
Integrated ringing  
The control interface is a parallel type with open  
drain output and 3.3 V logic levels.  
Integrated ring trip  
The metering pulses are generated on chip  
starting from two logic signals (0 and 3.3 V) one  
define the metering pulse frequency and the other  
the metering pulse duration. An on chip circuit  
then provides the proper shaping and filtering.  
Metering pulse amplitude and shaping (rising and  
decay time) can be programmed by external  
components. A dedicated cancellation circuit  
avoid possible codec input saturation due to  
metering pulse echo.  
Parallel control interface (3.3 V logic level)  
Programmable constant current feed  
Surface mount package  
Integrated thermal protection  
Dual gain value option  
BCD III S, 90 V technology  
-40 to +85 °C operating range  
Constant current feed can be set from 20 mA to  
40 mA. Off-hook detection threshold is  
programmable from 5 mA to 9 mA.  
Description  
The STLC3055N is a SLIC device specifically  
designed for wireless local loop (WLL) and ISDN-  
terminal adaptors (ISDN-TA) and VoIP  
applications. One of the distinctive characteristic  
of this device is the ability to operate with a single  
supply voltage (from 5.5 V to 12 V) and self  
The device, developed in BCD III S technology  
(90 V process), operates in the extended  
temperature range and integrates a thermal  
protection that sets the device in power down  
when Tj exceeds 140 °C.  
Table 1.  
Device summary  
Order code  
Package  
Packing  
E-STLC3055N (1)  
LQFP44  
Tray  
1. ECOPACK® (see Section 10)  
February 2009  
Rev 11  
1/34  
www.st.com  
1
Contents  
STLC3055N  
Contents  
1
2
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1  
3.2  
3.3  
Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1  
4.2  
DC/DC converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
Power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
High impedance feeding (HI-Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Ringing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
6
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1  
5.2  
5.3  
Layout recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
External components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1  
Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7
8
9
Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Typical state diagram for STLC3055N operation . . . . . . . . . . . . . . . . . 30  
STLC3055Q vs STLC3055N compatibility. . . . . . . . . . . . . . . . . . . . . . . 31  
9.1  
9.2  
9.3  
Typical power consumption comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Hardware differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Parameter differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10  
11  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2/34  
STLC3055N  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SLIC operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Gain set in active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SLIC states in active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
CREST factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
External components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
External components @gain set = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
External components @gain set = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power consumption differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Hardware differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Parameter differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3/34  
List of figures  
STLC3055N  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DC characteristic in HI-Z mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DC characteristic in active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
TIP/RING typical transition from direct to reverse polarity . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Metering pulse generation circuit.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
TIP/RING typical ringing waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Application diagram with metering pulse generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Application diagram without metering pulse generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 10. 2W return loss 2WRL = 20Log(|Zref + Zs|/|Zref-Zs|) = 20Log(E/2Vs) . . . . . . . . . . . . . . . . 26  
Figure 11. THL trans hybrid loss THL = 20Log|Vrx/Vtx|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 12. G24 transmit gain G24 = 20Log|2Vtx/E| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 13. G42 receive gain G42 = 20Log|VI/Vrx| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 14. PSRRC power supply rejection Vpos to 2W port PSSRC = 20Log|Vn/Vl| . . . . . . . . . . . . . 27  
Figure 15. L/T longitudinal to transversal conversion L/T = 20Log|Vcm/Vl|. . . . . . . . . . . . . . . . . . . . . 27  
Figure 16. T/L transversal to longitudinal conversion T/L = 20Log|Vrx/Vcm|. . . . . . . . . . . . . . . . . . . . 28  
Figure 17. VTTX metering pulse level on line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 18. V2Wp and W4Wp: idle channel psophometric noise at line and TX.  
V2Wp = 20Log|Vl/0.774l|; V4Wp = 20Log|Vtx/0.774l| . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 19. Simplified configuration for indoor overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 20. Standard overvoltage protection configuration for K20 compliance . . . . . . . . . . . . . . . . . . 29  
Figure 21. State diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 22. LQFP44 (10 x 10 x 1.4 mm) mechanical data and package dimensions . . . . . . . . . . . . . . 32  
4/34  
STLC3055N  
Block diagram  
1
Block diagram  
Figure 1.  
Block diagram  
PD  
D0  
D1  
D2  
DET  
GAIN  
SETTING  
INPUT LOGIC AND DECODER  
OUTPUT LOGIC  
BGND  
TIP  
Status and functions  
TX  
RX  
LINE  
OUTPUT  
STAGE  
SUPERVISION  
DRIVER  
ZAC1  
ZAC  
RING  
AC PROC  
RS  
ZB  
CREV  
CSVR  
DC PROC  
CLK  
RSENSE  
GATE  
VF  
DC/DC  
CONV.  
CKTTX  
CTTX1  
CTTX2  
FTTX  
Vcc  
TTX PROC  
CVCC  
VPOS  
REFERENCE  
Vss  
VOLT.  
REG.  
VBAT  
Agnd  
Vbat  
RTTX CAC ILTF RD IREF RLIM RTH  
AGND  
5/34  
Pin description  
STLC3055N  
2
Pin description  
Figure 2.  
Pin connection (top view)  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
1
2
3
4
5
6
7
8
9
D0  
D1  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
CSVR  
ILTF  
D2  
RD  
PD  
RTH  
GAIN SET  
N.C.  
IREF  
RLIM  
AGND  
CVCC  
VPOS  
RSENSE  
GATE  
N.C.  
DET  
CKTTX  
CTTX1  
CTTX2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
D00TL488-MOD  
Table 2.  
N°  
Pin description  
Pin  
Function  
1
2
3
4
D0  
D1  
D2  
PD  
Control Interface: input bit 0.  
Control Interface: input bit 1.  
Control interface: input bit 2.  
Power down input. Normally connected to CVCC (or to logic level high).  
Control gain interface: 0 Level Rxgain = 0dB Txgain = -6dB  
1 Level Rxgain = +6dB Txgain = -12dB  
5
Gain SET  
6,7,36,  
38,39,40,42  
NC  
Not connected.  
Logic interface output of the supervision detector (active low).  
8
9
DET  
CKTTX Metering pulse clock input (12 KHz or 16KHz square wave).  
10  
11  
CTTX1  
CTTX2  
Metering burst shaping external capacitor.  
Metering burst shaping external capacitor.  
Metering pulse cancellation buffer output. TTX filter network should be connected to  
this point. If not used should be left open.  
12  
13  
RTTX  
FTTX  
Metering pulse buffer input this signal is sent to the line and used to perform TTX  
filtering.  
4 wire input port (RX input). A 100 kΩ external resistor must be connected to AGND to  
bias the input stage. This signal is referred to AGND. If connected to single supply  
CODEC output it must be DC decoupled with proper capacitor.  
14  
RX  
15  
16  
ZAC1  
ZAC  
RX buffer output, (the AC impedance is connected from this node to ZAC).  
AC impedance synthesis.  
6/34  
STLC3055N  
Pin description  
Table 2.  
N°  
Pin description (continued)  
Pin  
Function  
17  
18  
19  
20  
21  
RS  
ZB  
Protection resistors image (the image resistor is connected from this node to ZAC).  
Balance network for 2 to 4 wire conversion (the balance impedance ZB is connected  
from this node to AGND. ZA impedance is connected from this node to ZAC1).  
CAC  
TX  
AC feedback input, AC/DC split capacitor (CAC).  
4 wire output port (TX output). The signal is referred to AGND. If connected to single  
supply CODEC input it must be DC decoupled with proper capacitor.  
VF  
Feedback input for DC/DC converter controller.  
Power switch controller clock (typ. 125 kHz). This pin can also be connected to CVCC  
or AGND. When the CLK pin is connected to CVCC an auto-oscillation is internally  
generated and it is used instead of the external clock. When the CLK pin is connected  
to AGND, the GATE output is disabled.  
22  
CLK  
23  
24  
GATE  
Driver for external Power MOS transistor (P-channel).  
Voltage input for current sensing. RSENSE should be connected close to this pin and  
RSENSE VPOS pin. The PCB layout should minimize the extra resistance introduced by the  
copper tracks.  
25  
26  
27  
VPOS  
CVCC  
AGND  
Positive supply  
Internal positive voltage supply filter.  
Analog ground, must be shorted with BGND.  
Constant current feed programming pin (via RLIM). RLIM should be connected close to  
this pin and AGND pin to avoid noise injection.  
28  
29  
30  
31  
RLIM  
IREF  
RTH  
RD  
Internal bias current setting pin. RREF should be connected close to this pin and  
AGND pin to avoid noise injection.  
Off-hook threshold programming pin (via RTH). RTH should be connected close to this  
pin and AGND pin to avoid noise injection.  
DC feedback and ring trip input. RD should be connected close to this pin and AGND  
pin to avoid noise injection.  
32  
33  
34  
ILTF  
Transversal line current image output.  
Battery supply filter capacitor.  
CSVR  
BGND  
Battery ground, must be shorted with AGND.  
Regulated battery voltage self generated by the device via DC/DC converter. Must be  
shorted to VBAT1.  
35  
VBAT  
37  
41  
RING  
TIP  
2 wire port; RING wire (Ib is the current sunk into this pin).  
2 wire port; TIP wire (Ia is the current sourced from this pin).  
Reverse polarity transition time control. One proper capacitor connected between this  
pin and AGND is setting the reverse polarity transition time. This is the same transition  
time used to shape the "trapezoidal ringing" during ringing injection.  
43  
44  
CREV  
VBAT1  
Frame connection. Must be shorted to VBAT.  
7/34  
Electrical specification  
STLC3055N  
3
Electrical specification  
3.1  
Absolute maximum rating  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
Vpos  
Positive supply voltage  
-0.4 to +13  
-1 to +1  
-0.4 to 5.5  
150  
V
V
A/BGND AGND to BGND  
Vdig  
Tj  
Pin D0, D1, D2, DET, CKTTX  
V
Max. junction temperature  
°C  
Vbtot=|Vpos|+|Vbat|. (Total voltage applied to the device  
supply pins).  
(1)  
Vbtot  
90  
V
Human body model  
1750  
500  
V
V
ESD  
RATING  
Charged device model  
1. Vbat is self generated by the on chip DC/DC converter and can be programmed via RF1 and RF2.  
RF1 and RF2 shall be selected in order to fulfil the a.m limits (see Table 10: External components on  
page 17).  
3.2  
Operating range  
Table 4.  
Symbol  
Operating range  
Parameter  
Value  
Unit  
Vpos  
Positive supply voltage  
5.5 to +12  
-100 to +100  
-0.25 to 5.25  
-40 to +85  
-74 max.  
V
mV  
V
A/BGND AGND to BGND  
Vdig  
Top  
Pin D0, D1, D2, DET, CKTTX, PD  
Ambient operating temperature range  
Self generated battery voltage  
°C  
V
(1)  
Vbat  
1. Vbat is self generated by the on chip DC/DC converter and can be programmed via RF1 and RF2.  
RF1 and RF2 shall be selected in order to fulfill the a.m limits (see Table 10: External components on  
page 17).  
3.3  
Thermal data  
Table 5.  
Symbol  
Thermal data  
Parameter  
Value  
Unit  
Rth j-amb Thermal resistance junction to ambient  
Typ.  
60  
°C/W  
8/34  
STLC3055N  
Functional description  
4
Functional description  
The STLC3055N is a device specifically developed for WLL VoIP and ISDN-TA applications.  
It is based on a SLIC core, on purpose optimised for these applications, with the addition of  
a DC/DC converter controller to fulfil the WLL and ISDN-TA design requirements.  
The SLIC performs the standard feeding, signalling and transmission functions.  
It can be set in four different operating modes via the D0, D1, D2 pins of the control logic  
interface (0 to 3.3 V logic levels). The loop status is carried out on the DET pin (active low).  
The DET pin is an open drain output to allow easy interfacing with both 3.3 V and 5 V logic  
levels.  
The four possible SLIC’s operating modes are:  
Power down  
High impedance feeding (HI-Z)  
Active  
Ringing  
Table 6 shows how to set the different SLIC operating modes.  
Table 6.  
PD  
SLIC operating modes.  
D0  
D1  
D2  
Operating mode  
0
1
1
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
1
1
0
X
X
Power down  
H.I. feeding (HI-Z)  
Active normal polarity  
Active reverse polarity  
0
1
0
Active TTX injection (N.P.)  
Active TTX injection (R.P.)  
Ring (D2 bit toggles @ fring)  
1
0/1  
4.1  
DC/DC converter  
The DC/DC converter controller is driving an external power MOS transistor (P-channel) in  
order to generate the negative battery voltage needed for device operation.  
The DC/DC converter controller is synchronised with an external CLK (125 kHz typ.) or with  
an internal clock generated when the pin CLK is connected to CVCC. One sensing resistor  
in series to Vpos supply allows to fix the maximum allowed input peak current. This feature  
is implemented in order to avoid overload on Vpos supply in case of line transient (ex. ring  
trip detection).  
The typical value is obtained for a sensing resistor equal to 110 mΩ that will guarantee an  
average current consumption from Vpos < 700 mA. When in on-hook the self generated  
battery voltage is set to a predefined value.  
This value can be adjusted via one external resistor (RF1) and it is typical -50 V. When  
RING mode is selected this value is increased to -70 V typ.  
9/34  
Functional description  
STLC3055N  
Once the line goes in off-hook condition, the DC/DC converter automatically adjust the  
generated battery voltage in order to feed the line with a fixed DC current (programmable via  
RLIM) optimising in this way the power dissipation.  
4.2  
Operating modes  
4.2.1  
Power down  
When this mode is selected the SLIC is switched off and the TIP and RING pins are in high  
impedance. Also the line detectors are disabled therefore the off-hook condition cannot be  
detected.  
This mode can be selected in emergency condition when it is necessary to cut any current  
delivered to the line.  
This mode is also forced by STLC3055N in case of thermal overload (Tj > 140 °C).  
In this case the device goes back to the previous status as soon as the junction temperature  
decrease under the hysteresis threshold.  
No AC transmission is possible in this mode.  
4.2.2  
High impedance feeding (HI-Z)  
This operating mode is normally selected when the telephone is in on-hook in order to  
monitor the line status keeping the power consumption at the minimum.  
The output voltage in on-hook condition is equal to the self generated battery voltage (-50 V  
typ).  
When off-hook occurs the DET becomes active (low logic level).  
The off-hook threshold in HI-Z mode is the same value as programmed in ACTIVE mode.  
The DC characteristic in HI-Z mode is just equal to the self generated battery with  
2x(1600 Ω+Rp) in series (see Figure 3), where Rp is the external protection resistance.  
No AC transmission is possible in this mode.  
Figure 3.  
DC characteristic in HI-Z mode.  
IL  
Vbat  
2x(R1+Rp)  
Slope: 2x(R1+Rp)  
(R1=1600ohm)  
VL  
Vbat (-50V)  
4.2.3  
Active  
DC characteristics and supervision  
When this mode is selected the STLC3055N provides both DC feeding and AC  
transmission.  
10/34  
STLC3055N  
Functional description  
The STLC3055N feeds the line with a constant current fixed by RLIM (20 mA to 40 mA  
range). The on-hook voltage is typically 40 V allowing on-hook transmission; the self  
generated Vbat is -50 V typ.  
If the loop resistance is very high and the line current cannot reach the programmed  
constant current feed value, the STLC3055N behaves like a 40 V voltage source with a  
series impedance equal to the protection resistors 2xRp (typ. 2 x 50 Ω). Figure 4 shows the  
typical DC characteristic in Active mode.  
Figure 4.  
DC characteristic in active mode  
IL  
Ilim  
(20 to  
40mA)  
2Rp  
VL  
Vbat (-50V)  
10V  
The line status (on/off-hook) is monitored by the SLIC’s supervision circuit. The off-hook  
threshold can be programmed via the external resistor RTH in the range from 5 mA to 9 mA.  
Independently on the programmed constant current value, the TIP and RING buffers have a  
current source capability limited to 80 mA typ. Moreover the power available at Vbat is  
controlled by the DC/DC converter that limits the peak current drawn from the Vpos supply.  
The maximum allowed current peak is set by RSENSE resistor.  
AC characteristics  
The SLIC provides the standard SLIC transmission functions:  
Once in active mode the SLIC can operate with two different Tx, Rx Gain. Setting properly  
by the gain set control bit (see Table 7).  
Table 7.  
Gain set  
Gain set in active mode  
4 to 2 wire gain  
2 to 4 wire gain  
Impedance synthesis scale factor  
0
1
0 dB  
-6 dB  
x 50  
x 25  
+6 dB  
-12 dB  
Input impedance synthesis: can be real or complex and is set by a scaled (x 50 or  
x 25) external ZAC impedance.  
Transmit and receive: The AC signal present on the 2W port (TIP and RING pins) is  
transferred to the TX output with a -6 dB or -12 dB gain and from the RX input to the  
2W port with a 0 dB or +6 dB gain.  
2 to 4 wire conversion: The balance impedance can be real or complex, the proper  
cancellation is obtained by means of two external impedance ZA and ZB  
Once in Active mode (D1=1) the SLIC can operate in different states setting properly D0 and  
D2 control bits (see also Table 8).  
11/34  
Functional description  
STLC3055N  
Table 8.  
D0  
SLIC states in active mode  
D1  
D2  
Operating Mode  
0
0
1
1
1
1
1
1
0
1
0
1
Active normal polarity  
Active reverse polarity  
Active TTX injection (normal polarity)  
Active TTX injection (reverse polarity)  
Polarity reversal  
The D2 bit controls the line polarity, the transition between the two polarities is performed in  
a "soft" way. This means that the TIP and RING wire exchange their polarities following a  
ramp transition (see Figure 5). The transition time is controlled by an external capacitor  
CREV. This capacitor is also setting the shape of the ringing trapezoidal waveform. When  
the control pins set battery reversal the line polarity is reversed with a proper transition time  
set via an external capacitor (CREV).  
Figure 5.  
TIP/RING typical transition from direct to reverse polarity  
GND  
TIP  
4V typ.  
40V typ  
ON-HOOK  
dV/dT set  
by CREV  
RING  
Metering pulse injection (Ttx)  
The metering pulses circuit consists of a burst shaping generator that gives a square wave  
shaped and a low pass filter to reduce the harmonic distortion of the output signal.  
The metering pulse is obtained starting from two logic signals:  
CKTTX: is a square wave at the TTX frequency (12 or 16 kHz) and should be  
permanently applied to the CKTTX pin or at least for all the duration of the TTX pulse  
(including rising and decay phases).  
D0: enable the TTX generation circuit and define the TTX pulse duration.  
These two signals are processed by a dedicated circuitry integrated on chip that generate  
the metering pulse as an amplitude modulated shaped squarewave (SQTTX)  
(see Figure 6).  
Both the amplitude and the envelope of the squarewave (SQTTX) can be programmed by  
means of external components. In particular the amplitude is set by the two resistors RLV  
and the shaping by the capacitor CS.  
12/34  
STLC3055N  
Functional description  
Figure 6.  
Metering pulse generation circuit.  
Low Pass Filter  
C1  
-
CTTX1  
RLV  
RTTX  
BURST  
R2  
FTTX  
OP1  
R1  
SQTTX  
CS  
+
SHAPING  
GENERATOR  
CFL  
C2  
RLV  
Sinusoidal wave  
pulse metering  
Required external components vs. filter order.  
CTTX2  
Order  
CFL  
R1  
C1  
R2  
C2  
THD  
D0  
1
2
3
X
13%  
6%  
CKTTX  
X
X
X
X
X
X
X
X
X
3%  
Square wave pulse metering  
The waveform so generated is then filtered and injected on the line.  
The low pass filter can be obtained using the integrated buffer OP1 connected between pin  
FTTX (OP1 non inverting input) and RTTX (OP1 output) (see Figure 6) and implementing a  
"Sallen and Key" configuration. Depending on the external components count it is possible  
to build an optimised application depending on the distortion level required. In particular  
harmonic distortion levels equal to 13 %, 6 % and 3 % can be obtained respectively with  
first, second and third order filters (see Figure 6).  
The circuit showed in Figure 8: Application diagram with metering pulse generation. on  
page 20 is related to the simple first order filter.  
Once the shaped and filtered signal is obtained at RTTX buffer output it is injected on the  
TIP/RING pins with a +6 dB gain or +12 dB gain.  
It should be noted that this is the nominal condition obtained in presence of ideal TTX echo  
cancellation (obtained via proper setting of RTTX and CTTX).  
In addition, the effective level obtained on the line will depend on the line impedance and the  
protection resistors value. In the typical application (TTX line impedance =200 Ω, RP = 50 Ω,  
and ideal TTX echo cancellation) the metering pulse level on the line will be 1.33 or 2.66  
times the level applied to the RTTX pin.  
As already mentioned the metering pulse echo cancellation is obtained by means of two  
external components (RTTX and CTTX) that should match the line impedance at the TTX  
frequency. This simple network has a double effect:  
Synthesize a low output impedance at the TIP/RING pins at the TTX frequency.  
Cut the eventual TTX echo that will be transferred from the line to the TX output.  
4.2.4  
Ringing  
When this mode is selected STLC3055N self generate an higher negative battery (-70 V  
typ.) in order to allow a balanced ringing signal of typically 65 Vpeak.  
In this condition both the DC and AC feedback are disabled and the SLIC line drivers  
operate as voltage buffers. The ring waveform is obtained toggling the D2 control bit at the  
13/34  
Functional description  
STLC3055N  
desired ring frequency. This bit in fact controls the line polarity (0=direct; 1=reverse). As in  
the Active mode the line voltage transition is performed with a ramp transition, obtaining in  
this way a trapezoidal balanced ring waveform (see Figure 7). The shaping is defined by the  
CREV external capacitor.  
Selecting the proper capacitor value it is possible to get different CREST factor values.  
The following table shows the CREST factor values obtained with a 20 Hz and 25 Hz ring  
frequency and with 1REN. These value are valid either with European or USA specification.  
Figure 7.  
TIP/RING typical ringing waveform  
GND  
TIP  
2.5V typ.  
65V  
typ.  
dV/dT set  
by CREV  
RING  
2.5V typ.  
VBAT  
Table 9.  
CREST factor  
CREV  
CREST factor @20 Hz  
CREST factor @25 Hz  
22nF  
27nF  
33nF  
1.2  
1.26  
1.32  
1.25  
1.33  
(1)  
Not significant  
1. Distortion already less than 10%.  
The ring trip detection is performed sensing the variation of the AC line impedance from on-  
hook (relatively high) to off-hook (low). This particular ring trip method allows to operate  
without DC offset superimposed on the ring signal and therefore obtaining the maximum  
possible ring level on the load starting from a given negative battery. It should be noted that  
such a method is optimised for operation on short loop applications and may not operate  
properly in presence of long loop applications (> 500 Ω). Once ring trip is detected, the DET  
output is activated (logic level low), at this point the card controller or a simple logic circuit  
should stop the D2 toggling in order to effectively disconnect the ring signal and then set the  
STLC3055N in the proper operating mode (normally Active).  
Ring level in presence of more telephone in parallel  
As already mentioned above the maximum current that can be drawn from the Vpos supply  
is controlled and limited via the external R  
the self generated negative battery.  
. This will limit also the power available at  
SENSE  
If for any reason the ringer load will be too low the self generated battery will drop in order to  
keep the power consumption to the fixed limit and therefore also the ring voltage level will be  
reduced.  
In the typical application with RSENSE = 110 mΩ the peak current from Vpos is limited to  
about 900 mA, which correspond to an average current of 700 mA max. In this condition the  
STLC3055N can drive up to 3REN with a ring frequency fr=25 Hz (1REN = 1800 Ω + 1.0 µF,  
European standard).  
14/34  
STLC3055N  
Functional description  
In order to drive up to 5REN (1REN= 6930 Ω + 8 µF, US standard) it is necessary to modify  
the external components as follows:  
CREV = 15 nF  
RD = 2.2 kΩ  
Rsense = 100 mΩ .  
15/34  
Application information  
STLC3055N  
5
Application information  
5.1  
Layout recommendation  
A properly designed PCB layout is a basic issue to guarantee a correct behavior and good  
noise performances. Noise sources can be identified in not enough good grounds, not  
enough low impedance supplies and parasitic coupling between PCB tracks and high  
impedance pins of the device.  
Particular care must be taken on the ground connection and in this case the star  
configuration allows surely to avoid possible problems (see Figure 8 on page 20 and  
Figure 9 on page 21).  
The ground of the power supply (VPOS) has to be connected to the center of the star, let’s  
call this point Supply GND. This point should show a resistance as low as possible, that  
means it should be a ground plane.  
In particular to avoid noise problems the layout should prevent any coupling between the  
DC/DC converter components that are referred to PGND (CVPOS, CD, L) and analog pins  
that are referred to AGND (ex: RD, IREF, RTH, RLIM, VF). AGND and BGND must be  
shorter together. The GND connection of protection components have to be connected to  
the Supply GDND.  
As a first recommendation the components CV, L, D1, CVPOS, RSENSE should be kept as  
close as possible to each other and isolated from the other components.  
Additional improvements can be obtained:  
decoupling the center of the star from the analog ground of STLC3055N using small  
chokes.  
adding a capacitor in the range of 100 nF between VPOS and AGND in order to filter  
the switch frequency on VPOS.  
16/34  
STLC3055N  
Application information  
5.2  
External components list  
In order to properly define the external components value the following system parameters  
have to be defined:  
The AC input impedance shown by the SLIC at the line terminals "Zs" to which the  
return loss measurement is referred. It can be real (typ. 600 Ω) or complex.  
The AC balance impedance, it is the equivalent impedance of the line "Zl" used for  
evaluation of the trans-hybrid loss performances (2/4 wire conversion). It is usually a  
complex impedance.  
The value of the two protection resistors Rp in series with the line termination. The line  
impedance at the TTX frequency "Zlttx".  
The metering pulse level amplitude measured at line termination "VLOTTX". In case of  
low order filtering, VLOTTX represents the amplitude (Vrms) of the fundamental  
frequency component. (typ 12 or 16 kHz).  
Pulse metering envelope rise and decay time constant "τ".  
The slope of the ringing waveform "ΔVTR/ΔT ".  
The value of the constant current limit current "Ilim".  
The value of the off-hook current threshold "ITH".  
The value of the ring trip rectified average threshold current "IRTH".  
The value of the required self generated negative battery "VBATR" in ring mode (max  
value is 70 V). This value can be obtained from the desired ring peak level +5 V.  
The value of the maximum current peak sunk from Vpos "IPK".  
Table 10. External components  
Name  
Function  
Formula  
Typ. value  
RRX  
Rx input bias resistor  
100 kΩ 5%  
RREF = 1.3/Ibias  
RREF Bias setting current  
CSVR Negative battery filter  
26 kΩ 1%  
Ibias = 50 μA  
CSVR = 1/(2π ⋅ fp 1.8 MΩ)  
fp = 50 Hz  
1.5 nF 10%  
100 V  
RD = 100/IRTH  
4.12 kΩ 1%  
@ IRTH = 24 mA  
Ring Trip threshold setting  
resistor  
RD  
2 kΩ < RD < 5 kΩ  
22 μF 20% 15 V  
@ RD = 4.12 kΩ  
CAC  
RP  
AC/DC split capacitance  
Line protection resistor  
Rp > 30 Ω  
50 Ω 1%  
RLIM = 1300/Ilim  
52.3 kΩ 1%  
@ Ilim = 25 mA  
RLIM  
Current limiting programming  
32.5kΩ < RLIM < 65kΩ  
Off-hook threshold programming RTH = 290/ITH  
32.4 kΩ 1%  
@ITH = 9 mA  
RTH  
(ACTIVE mode)  
27 kΩ < RTH < 52 kΩ  
22 nF 10% 10 V  
@ 12 V/ms  
Reverse polarity transition time  
programming  
CREV  
RDD  
CREV = ((1/3750) · ΔT/ΔVTR  
)
Pull up resistors  
100 kΩ  
CVCC Internally supply filter capacitor  
100 nF 20% 10 V  
17/34  
Application information  
STLC3055N  
Table 10. External components (continued)  
Name  
Function  
Formula  
Typ. value  
Positive supply filter capacitor  
CVpos with low impedance for switch  
mode power supply  
(1)  
100 μF  
Battery supply filter capacitor  
with low impedance for switch  
mode power supply  
(2)  
CV  
100 μF 20% 100 V  
CVB  
High frequency noise filter  
High frequency noise filter  
470 nF 20% 100 V  
100 nF 10% 15 V  
(3)  
CRD  
RDS(ON) 1.2 Ω,VDS = -100 V  
Total gate charge = 20 nC max.  
with VGS = 4.5 V and VDS = 1 V  
ID > 500 mA  
Possible choiches:  
IRF9510 or IRF9520 or  
IRF9120 or equivalent  
DC/DC converter switch P-  
channel MOS transistor  
Q1  
SMBYW01-200  
or equivalent  
D1  
DC/DC converter series diode  
Vr > 100 V, tRR 50 ns  
110 mΩ  
@IPK = 900 mA  
DC/DC converter peak current  
limiting  
RSENSE  
RSENSE = 100 mV/IPK  
300 kΩ 1%  
@ VBATR = -70 V  
Negative battery programming  
level  
(4)  
RF1  
RF2  
L
250 kΩ < RF1 < 300 kΩ  
Negative battery programming  
9.1 kΩ 1 %  
leve  
l
L=100 μH  
SUMIDA CDRH125 or equivalent  
(5)  
DC/DC converter inductor  
DC resistance 0.1 Ω  
1. CVpos should be defined depending on the power supply current capability and maximum allowable ripple.  
2. For low ripple application use 2 x 47 μF in parallel.  
3. Can be saved if proper PCB layout avoid noise coupling on RD pin (high impedance input).  
4
RF1 sets the self generated battery voltage in Ring and Active (Il=0) mode as follows:  
267 kΩ  
280 kΩ  
294 kΩ  
300 kΩ  
VBAT(ACTIVE)  
VBATR(RING)  
-46 V  
-62 V  
-48 V  
-65 V  
-49 V  
-68 V  
-50 V  
-70 V  
V
BATR should be defined considering the ring peak level required (Vringpeak=VBATR-6 V typ.). The above relation is valid  
provided that the Vpos power supply current capability and the RSENSE programming allow to source all the current  
requested by the particular ringer load configuration.  
5
For high efficiency in HI-Z mode coil resistance @125 kHz must be < 3 Ω  
Table 11. External components @gain set = 0  
Name  
Function  
Formula  
RS = 50 (2Rp)  
Typ. value  
RS  
Protection resistance image  
Two wire AC impedance  
5 kΩ @ Rp = 50 Ω  
ZAC  
ZAC = 50 (Zs - 2Rp)  
ZA = 50 Zs  
25 kΩ 1% @ Zs = 600 Ω  
SLIC impedance balancing  
network  
(1)  
ZA  
30 kΩ 1% @ Zs = 600 Ω  
18/34  
STLC3055N  
Application information  
Table 11. External components @gain set = 0 (continued)  
Name  
Function  
Formula  
Typ. value  
Line impedance balancing  
network  
(1)  
ZB  
ZB = 50 Zl  
30 kΩ 1% @ Zl = 600 Ω  
fo = 250 kHz  
CCOMP AC feedback loop compensation  
120 pF 10% 10 V @ Rp = 50 Ω  
120 pF 10% 10 V  
CCOMP = 1/(2π⋅fo100(RP))  
Trans-Hybrid Loss frequency  
CH  
CH = CCOMP  
compensation  
Pulse metering cancellation  
resistor  
(2)  
(2)  
RTTX  
CTTX  
RTTX = 50Re (Zlttx+2Rp)  
15 kΩ @Zlttx = 200 Ω real  
(3)  
100nF 10% 10V  
Pulse metering cancellation  
capacitor  
CTTX = 1/{502π⋅fttx[-  
lm(Zlttx)]}  
@ Zlttx = 200Ω real  
RLV = 63.3·10·α·VLOTTX  
α = (|Zlttx + 2Rp|/|Zlttx|)  
RLV  
CS  
Pulse metering level resistor  
16.2 kΩ @ VLOTTX = 170mVrms  
100 nF 10% 10V  
Pulse metering shaping  
capacitor  
CS = τ/(2RLV)  
@ τ = 3.2 ms, RLV = 16.2 kΩ  
1.5 nF 10% 10 V  
CFL  
Pulse metering filter capacitor  
CFL = 2/(2π⋅fttxRLV)  
@fttx = 12 kHz RLV = 16.2 kΩ  
1. In case Zs=Zl, ZA and ZB can be replaced by two resistors of same value: RA=RB=|Zs|.  
2. Defining ZTTX as the impedance of RTTX in series with CTTX, RTTX and CTTX can also be calculated from the following  
formula:  
ZTTX=50*(Zlttx+2Rp).  
3. In this case CTTX is just operating as a DC decoupling capacitor (fp=100 Hz).  
Table 12. External components @gain set = 1  
Name  
Function  
Formula  
RS = 25 (2Rp)  
Typ. value  
RS  
Protection resistance image  
Two wire AC impedance  
2.55 kΩ @ Rp = 50 Ω  
ZAC  
ZAC = 25 (Zs - 2Rp)  
ZA = 25 Zs  
12.5 kΩ 1% @ Zs = 600 Ω  
SLIC impedance balancing  
network  
(1)  
ZA  
15 kΩ 1% @ Zs = 600 Ω  
15 kΩ 1% @ ZI = 600 Ω  
220 pF 10% 10VL @ Rp = 50 Ω  
220 pF 10% 10 V  
Line impedance balancing  
network  
(1)  
ZB  
ZB = 25 Zl  
fo = 250kHz  
CCOMP AC feedback loop compensation  
CCOMP = 2/(2π⋅fo100(RP))  
Trans-Hybrid Loss frequency  
compensation  
CH  
CH = CCOMP  
Pulse metering cancellation  
resistor  
(2)  
(2)  
RTTX  
CTTX  
RTTX = 25Re (Zlttx+2Rp)  
7.5 kΩ @Zlttx = 200 Ω real  
(3)  
100 nF 10% 10 V  
Pulse metering cancellation  
capacitor  
CTTX = 1/252π⋅fttx[-lm(Zlttx)]  
@ Zlttx = 200 Ω real  
RLV = 31.7·10·α·VLOTTX  
α = (|Zlttx + 2Rp|/|Zlttx|)  
RLV  
Pulse metering level resistor  
16.2 kΩ @ VLOTTX = 340 mVrms  
19/34  
Application information  
STLC3055N  
Table 12. External components @gain set = 1 (continued)  
Name  
Function  
Formula  
Typ. value  
100 nF 10% 10V  
Pulse metering shaping  
capacitor  
CS  
CS = τ/(2RLV)  
@ τ = 3.2 ms, RLV = 16.2 kΩ  
1.5nF 10% 10 V  
CFL  
Pulse metering filter capacitor  
CFL = 2/(2π⋅fttxRLV)  
@fttx = 12 kHz RLV = 16.2 kΩ  
1. In case Zs=Zl, ZA and ZB can be replaced by two resistors of same value: RA=RB=|Zs|.  
2. Defining ZTTX as the impedance of RTTX in series with CTTX, RTTX and CTTX can also be calculated from the following  
formula:  
ZTTX=50*(Zlttx+2Rp).  
3. In this case CTTX is just operating as a DC decoupling capacitor (fp=100 Hz).  
5.3  
Application diagram  
Figure 8.  
Application diagram with metering pulse generation.  
VPOS  
CVCC  
CVPOS  
RSENSE  
RX TX  
RRX  
RX TX AGND BGND  
RS  
CVCC  
VPOS  
RS  
RSENSE  
GATE  
Q1  
ZAC  
P-ch  
CCOMP  
D1  
ZAC1  
VBAT  
ZAC  
ZA  
CVB  
RF1  
RF2  
ZB  
L
VF  
CV  
CH  
VDD  
ZB  
CLK  
TIP  
CLK  
GAIN SET  
RDD  
RP  
RP  
TIP  
STLC3055N  
RING  
RING  
DET  
D0  
DET  
D0  
CONTROL  
INTERFACE  
CSVR  
CREV  
D1  
D1  
D2  
D2  
CREV  
CSVR  
PD  
PD  
TTX CLOCK  
CKTTX  
RTH  
RLIM  
IREF  
RLV  
RLV  
CTTX1  
CS  
CTTX2  
FTTX  
RREF  
RLIM  
RTH  
RTTX  
CAC  
ILTF  
RD  
CFL  
RTTX  
RD  
CRD  
D00TL489A  
AGND  
BGND  
CTTX  
CAC  
SYSTEM GND  
SUGGESTED GROUND LAY-OUT  
PGND  
20/34  
STLC3055N  
Figure 9.  
Application information  
Application diagram without metering pulse generation  
VPOS  
CVCC  
CVPOS  
RSENSE  
RX TX  
RRX  
RX TX AGND BGND  
RS  
CVCC  
VPOS  
RS  
RSENSE  
GATE  
Q1  
ZAC  
P-ch  
D1  
CCOMP  
ZAC1  
VBAT  
ZAC  
ZA  
CVB  
RF1  
ZB  
L
VF  
CV  
CH  
VDD  
RDD  
ZB  
RF2  
CLK  
TIP  
CLK  
GAIN SET  
RP  
RP  
TIP  
STLC3055N  
RING  
RING  
DET  
D0  
DET  
D0  
CONTROL  
INTERFACE  
CSVR  
CREV  
D1  
D1  
D2  
D2  
CREV  
CSVR  
PD  
PD  
CKTTX  
CTTX1  
CTTX2  
FTTX  
RTH  
RLIM  
IREF  
RREF  
RLIM  
RTH  
RTTX  
CAC  
ILTF  
RD  
RD  
CRD  
D00TL490/B  
AGND  
BGND  
CAC  
SYSTEM GND  
SUGGESTED GROUND LAY-OUT  
PGND  
21/34  
Electrical characteristics  
STLC3055N  
6
Electrical characteristics  
Table 13. Electrical characteristics  
Test conditions: Vpos = 6.0V, AGND = BGND, normal polarity, Tamb = 25 °C.  
External components as listed in the "typical values" column of external components table.  
Note: Testing of all parameter is performed at 25 °C. Characterisation as well as design  
rules used allow correlation of tested performances at other temperatures. All parameters  
listed here are met in the operating range: -40 to +85 °C.  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
Unit  
DC characteristics  
Il = 0, HI-Z  
Vlohi  
Line voltage  
(High impedance feeding)  
Tamb = 0 to 85 °C  
44  
42  
50  
48  
V
V
Il = 0, HI-Z  
Vlohi  
Line voltage  
(High impedance feeding)  
Tamb = -40 to 85 °C  
Il = 0, ACTIVE  
Vloa  
Vloa  
Ilim  
Line voltage  
Line voltage  
33  
31  
20  
40  
37  
V
V
Tamb = 0 to 85 °C  
Il = 0, ACTIVE  
Tamb = -40 to 85 °C  
Lim. current programming  
range  
ACTIVE mode  
40  
mA  
ACTIVE mode.  
Ilima  
Lim. current accuracy  
Rel. to programmed value  
20 mA to 40 mA  
-10  
2.4  
10  
%
Rfeed HI Feeding resistance  
HI-Z (High Impedance feeding)  
3.6  
kΩ  
AC characteristics  
Rp = 50 Ω, 1% tol.,  
ACTIVE N. P., RL = 600 Ω  
f = 300 to 3400 Hz  
Long. to transv.  
L/T  
(1)  
50  
40  
58  
45  
dB  
dB  
(see Section 6.1: Test circuits.)  
Rp = 50 Ω, 1% tol.,  
ACTIVE N. P., RL = 600 Ω  
f = 300 to 3400 Hz  
Transv. to long.  
(1)  
T/L  
(see Section 6.1: Test circuits.)  
Rp = 50 Ω, 1% tol.,  
ACTIVE N. P., RL = 600 Ω  
f = 1 kHz  
Transv. to long.  
(1)  
T/L  
2WRL  
THL  
48  
22  
30  
53  
26  
dB  
dB  
dB  
(see Section 6.1: Test circuits.)  
300 to 3400 Hz,  
2W return loss  
(1)  
ACTIVE N. P., RL = 600 Ω  
300 to 3400 Hz,  
Trans-hybrid loss  
20Log|VRX/VTX|,  
(1)  
ACTIVE N. P., RL = 600 Ω  
22/34  
STLC3055N  
Electrical characteristics  
Table 13. Electrical characteristics (continued)  
Test conditions: Vpos = 6.0V, AGND = BGND, normal polarity, Tamb = 25 °C.  
External components as listed in the "typical values" column of external components table.  
Note: Testing of all parameter is performed at 25 °C. Characterisation as well as design  
rules used allow correlation of tested performances at other temperatures. All parameters  
listed here are met in the operating range: -40 to +85 °C.  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
Unit  
at line terminals on ref. imped.  
Ovl  
TXoff  
G24  
2W overload level  
3.2  
-250  
-6.4  
dBm  
mV  
dB  
(1)  
ACTIVE N. P., RL = 600 Ω  
(1)  
TX output offset  
ACTIVE N. P., RL = 600 Ω  
250  
-5.6  
0 dBm @ 1020 Hz,  
Transmit gain abs.  
(1)  
ACTIVE N. P., RL = 600 Ω  
0 dBm @ 1020 Hz,  
G42  
Receive gain abs.  
-0.4  
0.4  
dB  
dB  
(1)  
ACTIVE N. P., RL = 600 Ω  
rel. 1020Hz; 0 dBm,  
300 to 3400 Hz,  
G24f  
TX gain variation vs. freq.  
-0.12  
0.12  
(1)  
ACTIVE N. P., RL = 600 Ω  
rel. 1020 Hz; 0 dBm,  
300 to 3400 Hz,  
G24f  
V2Wp  
V2Wp  
V4Wp  
V4Wp  
RX gain variation vs. freq.  
-0.12  
0.12  
-68  
dB  
(1)  
ACTIVE N. P., RL = 600 Ω  
psophometric filtered  
Idle channel noise at line 0dB  
gainset  
(1)  
ACTIVE N. P., RL = 600 Ω  
Tamb = 0 to +85 °C  
-73  
-68  
-75  
-75  
dBmp  
dBmp  
dBmp  
dBmp  
psophometric filtered  
Idle channel noise at line 0dB  
gainset  
(1)  
ACTIVE N. P., RL = 600 Ω  
Tamb = -40 to +85 °C  
psophometric filtered  
Idle channel noise at line 0dB  
gainset  
(1)  
ACTIVE N. P., RL = 600 Ω  
Tamb = 0 to +85 °C  
-70  
psophometric filtered  
Idle channel noise at line 0dB  
gainset  
(1)  
ACTIVE N. P., RL = 600 Ω  
Tamb = -40 to +85 °C  
(1)  
Thd  
Total Harmonic Distortion  
Metering pulse level on line  
ACTIVE N. P., RL = 600 Ω  
-44  
dB  
mVrms  
kHz  
ACTIVE - TTX; Gain Set = 1  
VTTX  
260  
340  
125  
Zl = 200 Ω fttx = 12 kHz;  
CLKfreq CLK operating range  
Ring  
-10%  
10%  
RING D2 toggling @ fr = 25 Hz  
Load = 3REN;  
Vring  
Line voltage  
Crest Factor = 1.25  
45  
49  
Vrms  
1REN = 1800 Ω + 1.0 μF  
Tamb = 0 to +85°C  
23/34  
Electrical characteristics  
STLC3055N  
Table 13. Electrical characteristics (continued)  
Test conditions: Vpos = 6.0V, AGND = BGND, normal polarity, Tamb = 25 °C.  
External components as listed in the "typical values" column of external components table.  
Note: Testing of all parameter is performed at 25 °C. Characterisation as well as design  
rules used allow correlation of tested performances at other temperatures. All parameters  
listed here are met in the operating range: -40 to +85 °C.  
Symbol  
Vring  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
Unit  
RING D2 toggling @ fr = 25Hz  
Load = 3REN;  
Line voltage  
Crest Factor = 1.25  
44  
48  
Vrms  
1REN = 1800Ω + 1.0μF  
Tamb = -40 to +85°C  
Detectors  
ACT. mode, RTH = 32.4kΩ 1%  
(Prog. ITH = 9mA)  
IOFFTHA Off/hook current threshold  
10.5  
mA  
kΩ  
mA  
kΩ  
mA  
Ω
Off/hook loop resistance  
ACT. mode, RTH = 32.4kΩ 1%  
(Prog. ITH = 9mA)  
ROFTHA  
threshold  
3.4  
6
ACT. mode, RTH = 32.4kΩ 1%  
(Prog. ITH = 9mA)  
IONTHA On/hook current threshold  
On/hook loop resistance  
ACT. mode, RTH = 32.4kΩ 1%  
(Prog. ITH = 9mA)  
RONTHA  
threshold  
8
Hi Z mode, RTH = 32.4kΩ 1%  
(Prog. ITH = 9mA)  
IOFFTHI Off/hook current threshold  
10.5  
Off/hook loop resistance  
Hi Z mode, RTH = 32.4kΩ 1%  
(Prog. ITH = 9mA)  
ROFFTHI  
threshold  
800  
6
Hi Z mode, RTH = 32.4kΩ 1%  
(Prog. ITH = 9mA)  
IONTHI On/hook current threshold  
mA  
On/hook loop resistance  
Hi Z mode, RTH = 32.4kΩ 1%  
(Prog. ITH = 9mA)  
RONTHI  
threshold  
8
kΩ  
mA  
%
Ring Trip detector threshold  
range  
Irt  
Ring mode  
Ring mode  
20  
-15  
50  
15  
Ring Trip detector threshold  
accuracy  
Irta  
Trtd  
Td  
Ring trip detection time  
Dialling distortion  
Ring mode  
60  
ms  
ms  
Ω
Active mode  
-1  
1
(2)  
Rlrt  
ThAl  
Loop resistance  
500  
Tj for th. alarm activation  
160  
°C  
24/34  
STLC3055N  
Electrical characteristics  
Table 13. Electrical characteristics (continued)  
Test conditions: Vpos = 6.0V, AGND = BGND, normal polarity, Tamb = 25 °C.  
External components as listed in the "typical values" column of external components table.  
Note: Testing of all parameter is performed at 25 °C. Characterisation as well as design  
rules used allow correlation of tested performances at other temperatures. All parameters  
listed here are met in the operating range: -40 to +85 °C.  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
Unit  
Digital interface  
INPUTS: D0, D1, D2, PD, CLK  
OUTPUTS: DET  
Vih  
Vil  
Iih  
Iil  
In put high voltage  
Input low voltage  
Input high current  
Input low current  
Output low voltage  
2
V
V
0.8  
10  
-10  
-10  
μA  
μA  
V
10  
Vol  
Iol = 1mA  
0.45  
PSRR and power consumption  
Vripple = 100mVrms  
50 to 4000Hz  
Power supply rejection Vpos to  
2W port  
PSERRC  
Ivpos  
26  
36  
dB  
HI-Z On-Hook  
13  
50  
55  
25  
80  
90  
mA  
mA  
mA  
Vpos supply current @ ii = 0  
ACTIVE On-Hook,  
RING (line open)  
RING Off-Hook  
Ipk  
Peak current limiting accuracy  
-20%  
950  
+20% mApk  
RSENSE = 110mΩ  
1. RL: Line Resistance  
2. Rlrt = Maximum loop resistance (incl. telephone) for correct ring trip detection.  
25/34  
Electrical characteristics  
STLC3055N  
6.1  
Test circuits  
Referring to the application diagram shown in Figure 8 on page 20 and using as external  
components the typical values specified in the Table 10 on page 17 and Table 11 on  
page 18, find below the proper configuration for each measurement.  
All measurements requiring DC current termination should be performed using "Wandel &  
Goltermann DC Loop Holding Circuit GH-1" or equivalent.  
Figure 10. 2W return loss 2WRL = 20Log(|Zref + Zs|/|Zref-Zs|) = 20Log(E/2Vs)  
W&G GH1  
Zref  
TX  
TIP  
600ohm  
100μF  
Vs  
STLC3055N  
application  
circuit  
100mA  
DC max  
1Kohm  
E
Zin = 100K  
200 to 6kHz  
100μF  
1Kohm  
RX  
RING  
Figure 11. THL trans hybrid loss THL = 20Log|Vrx/Vtx|  
W&G GH1  
TIP  
TX  
100μF  
Vtx  
Vrx  
Vtx  
STLC3055N  
application  
circuit  
100mA  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
100μF  
RX  
RING  
Figure 12. G24 transmit gain G24 = 20Log|2Vtx/E|  
W&G GH1  
TIP  
TX  
100μF  
STLC3055N  
application  
circuit  
100mA  
DC max  
600ohm  
E
Zin = 100K  
200 to 6kHz  
100μF  
RX  
RING  
26/34  
STLC3055N  
Electrical characteristics  
Figure 13. G42 receive gain G42 = 20Log|VI/Vrx|  
W&G GH1  
TIP  
TX  
100μF  
STLC3055N  
100mA  
Vl  
DC max  
application  
circuit  
600ohm  
Zin = 100K  
200 to 6kHz  
100μF  
RX  
RING  
Vrx  
Figure 14. PSRRC power supply rejection Vpos to 2W port PSSRC = 20Log|Vn/Vl|  
W&G GH1  
TIP  
TX  
100μF  
STLC3055N  
application  
circuit  
100mA  
DC max  
Vl  
600ohm  
Zin = 100K  
200 to 6kHz  
100μF  
RX  
RING  
VPOS  
Vn  
~
Figure 15. L/T longitudinal to transversal conversion L/T = 20Log|Vcm/Vl|  
W&G GH1  
300ohm  
100μF  
TIP  
TX  
100μF  
STLC3055N  
application  
circuit  
100mA  
DC max  
Vl  
Impedance matching  
better than 0.1%  
Zin = 100K  
200 to 6kHz  
Vcm  
100μF  
RX  
RING  
300ohm  
100μF  
27/34  
Electrical characteristics  
STLC3055N  
Figure 16. T/L transversal to longitudinal conversion T/L = 20Log|Vrx/Vcm|  
W&G GH1  
100μF  
300ohm  
TIP  
TX  
100μF  
STLC3055N  
100mA  
DC max  
application  
circuit  
Impedance matching  
better than 0.1%  
Zin = 100K  
200 to 6kHz  
Vcm  
600ohm  
100μF  
RX  
RING  
Vrx  
300ohm  
100μF  
Figure 17. VTTX metering pulse level on line  
TIP  
TX  
STLC3055N  
Vlttx  
application  
circuit  
200ohm  
RX  
RING  
CKTTX  
fttx (12 or 16kHz)  
Figure 18. V2Wp and W4Wp: idle channel psophometric noise at line and TX.  
V2Wp = 20Log|Vl/0.774l|; V4Wp = 20Log|Vtx/0.774l|  
W&G GH1  
TIP  
TX  
100μF  
Vtx  
psophometric  
filtered  
STLC3055N  
application  
circuit  
100mA  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
Vl  
psophometric  
filtered  
100μF  
RX  
RING  
28/34  
STLC3055N  
Overvoltage protection  
7
Overvoltage protection  
Figure 19. Simplified configuration for indoor overvoltage protection  
STPR120A  
BGND  
STLC3055N  
RP1  
RP1  
RP2  
RP2  
TIP  
TIP  
RING  
RING  
VBAT  
STPR120A  
RP1 = 30ohm:  
RP2 =Fuse or PTC > 18ohm  
Figure 20. Standard overvoltage protection configuration for K20 compliance  
BGND  
STLC3055N  
RP1  
RP1  
RP2  
RP2  
TIP  
TIP  
LCP1521  
RING  
RING  
VBAT  
RP1 = 30ohm:  
RP2 =Fuse or PTC > 18ohm  
29/34  
Typical state diagram for STLC3055N operation  
STLC3055N  
8
Typical state diagram for STLC3055N operation  
Figure 21. State diagram  
Normally used for  
On Hook Transmission  
Tj>Tth  
PD=0, D0=D1=0  
Active  
On Hook  
Power  
Down  
Ring Pause  
D0=0, D1=1,  
D2=0  
Ring Burst  
Ring Burst  
Ringing  
D0=1, D1=0,  
D2=0/1  
PD=1,  
D0=D1=0  
On Hook Detection for T>Tref  
HI-Z  
Feeding  
Ring Trip  
Detection  
Active  
On Hook Condition  
Off Hook  
Off Hook Detection  
D0=0, D1=1,  
D2=0  
Off Hook Detection  
Note: all state transitions are under the microprocessor control.  
30/34  
STLC3055N  
STLC3055Q vs STLC3055N compatibility.  
9
STLC3055Q vs STLC3055N compatibility.  
STLC3055N is pin to pin compatible with the old STLC3055Q but offer a better performance  
in term of power consumption and can be set in a new gain configuration in order to be  
compatible with the 3.3 V codec.  
9.1  
Typical power consumption comparison  
Table 14. Power consumption differences  
Operative mode  
STLC3055Q  
STLC3055N  
HI-Z  
52 - 60 mA  
93 - 115 mA  
120 - 140 mA  
13 - 25 mA  
50 - 80 mA  
55 - 90 mA  
Active on hook  
Ring (no REN)  
To meet this result some differences, with a minimum impact on the application, has been  
introduced in STLC3055N.  
9.2  
Hardware differences  
RX input. In STLC3055N it is necessary a 100 kΩ external resistor between RX input  
and AGND to bias the input stage.  
Rp. The STLC3055N required a Rp value of 50 Ω instead of 41 Ω.  
TTX filter. To optimize the ttx signal dynamic, the values of RLV and CFL have been  
changed;  
Table 15. Hardware differences  
Component  
STLC3055Q  
STLC3055N  
RRX  
Rp  
100 kΩ  
50 Ω  
41 Ω  
27 kΩ  
1 nF  
RLV  
CFL  
16.2 kΩ  
1.5 nF  
9.3  
Parameter differences  
Table 16. Parameter differences  
Parameter  
STLC3055Q  
STLC3055N  
Absolute max. rating  
17 V  
13 V  
12 V  
Operating range  
15.8 V  
Typ. metering pulse level (Gs 1)  
Typ. metering pulse level (Gs 0)  
340 mVrms  
200 mV  
170 mV  
rms  
rms  
31/34  
Package information  
STLC3055N  
10  
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 22. LQFP44 (10 x 10 x 1.4 mm) mechanical data and package dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN.  
TYP. MAX. MIN.  
1.60  
TYP. MAX.  
0.063  
A
A1  
A2  
B
0.05  
1.35  
0.30  
0.09  
0.15 0.002  
0.006  
1.40  
0.37  
1.45 0.053 0.055 0.057  
0.45 0.012 0.015 0.018  
C
0.20 0.004  
0.008  
D
11.80 12.00 12.20 0.464 0.472 0.480  
9.80 10.00 10.20 0.386 0.394 0.401  
D1  
D3  
E
8.00  
0.315  
11.80 12.00 12.20 0.464 0.472 0.480  
9.80 10.00 10.20 0.386 0.394 0.401  
E1  
E3  
e
8.00  
0.80  
0.60  
1.00  
0.315  
0.031  
0.75 0.018 0.024 0.030  
0.039  
L
0.45  
L1  
k
LQFP44 (10 x 10 x 1.4mm)  
0˚(min.), 3.5˚(typ.), 7˚(max.)  
0.10  
ccc  
0.0039  
0076922 E  
32/34  
STLC3055N  
Revision history  
11  
Revision history  
Table 17. Document revision history  
Date  
Revision  
Changes  
11-Sep-2003  
4
First Issue  
Update Functional Description and Electrical Characteristics.  
Aligned the graphic style to be compliant with the new “Corporate  
Technical Publications Design Guide”  
01-Oct-2004  
15-Oct-2004  
5
6
Modified the application diagrams and some typo errors.  
Removed all max. values of the ‘Line Voltage’ parameter on the page  
14/24.  
05-Nov-2004  
7
Changed the unit from mA to % of the ‘Ilima’ parameter on the page  
14/24.  
Add pin 4 PD in Applications and Block Diagram  
Add in Table 2 ‘ESD Rating’  
15-Jan-2005  
01-Jul-2005  
8
9
Changed VTTX value  
Added part number “E-STLC3055N” (ECOPACK).  
Added RRX resistance in the figures 9 and 10.  
Added Appendix D.  
21-Feb-2006  
12-Feb-2009  
10  
11  
Document reformatted.  
Updated Section 10: Package information on page 32.  
33/34  
STLC3055N  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
34/34  

相关型号:

STLC3055Q

WLL & ISDN-TA SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3055QTR

WLL & ISDN-TA SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3065

WLL SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3065Q

WLL SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3065QTR

WLL SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3075

INTEGRATED POTS INTERFACE FOR HOME ACCESS GATEWAY AND WLL
STMICROELECTR

STLC3075_09

Integrated POTS interface for home access gateway and WLL
STMICROELECTR

STLC3080

SUBSCRIBER LINE INTERFACE CIRCUIT
STMICROELECTR

STLC3080TR

TELECOM-SLIC, PQFP44, 10 X 10 MM, 1.40 MM HEIGHT, TQFP-44
STMICROELECTR

STLC3085

Integrated Pots Interface for Home Access Gateway and WLL
STMICROELECTR

STLC30R80

INTEGRATED RINGING SLIC FOR SHORT LOOP APPLICATIONS
STMICROELECTR

STLC30R81

INTEGRATED RINGING SLIC FOR SHORT LOOP APPLICATIONS
STMICROELECTR