RHF1401KSO1 [STMICROELECTRONICS]

Rad-hard 14-bit 20Msps 85mW A/D converter; 抗辐射的14位20Msps的85mW的A / D转换器
RHF1401KSO1
型号: RHF1401KSO1
厂家: ST    ST
描述:

Rad-hard 14-bit 20Msps 85mW A/D converter
抗辐射的14位20Msps的85mW的A / D转换器

转换器 模数转换器 CD
文件: 总29页 (文件大小:455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RHF1401  
Rad-hard 14-bit 20Msps 85mW A/D converter  
Features  
SO-48 package  
Ssingle +2.5V supply operation  
Low power: 85mW @ 20Msps  
High linearity: +/- 0.3 bit DNL  
SFDR = 90dB typ. SINAD = 73dB typ.  
@ F = 20Msps, F = 5MHz  
s
in  
2.5V/3.3V compatible digital I/O  
Switchable on/off built-in reference voltage  
Hermetic package  
Pin connections (top view)  
1
48  
Rad-hard: 300kRad(Si) TID  
Failure immune (SEFI) and latchup immune  
2
(SEL) up to 120 MeV-cm /mg at 2.7V and  
125°C  
Qml-V qualification on-going, smd 5962-06260  
Applications  
24  
25  
Digital communication satellites  
Space data acquisition systems  
Aerospace instrumentation  
Specifically designed for optimizing power  
consumption, the RHF1401 only dissipates  
85mW at 20Msps, while maintaining a high level  
of performance. It integrates a proprietary track-  
and-hold structure to ensure an effective  
resolution bandwidth of 70MHz.  
Nuclear and high-energy physics  
Description  
The RHF1401 is a 14-bit, 20MHz maximum  
sampling frequency analog-to-digital converter  
using pure (ELDRS-free) CMOS 0.25µm  
technology combining high performance, radiation  
robustness and very low power consumption.  
A voltage reference is integrated in the circuit to  
simplify the design and minimize external  
components. A tri-state capability is available on  
the outputs, to allow common bus sharing.  
A data-ready signal which is raised when the data  
is valid on the output can be used for  
synchronization purposes.  
The RHF1401 is based on a pipeline structure  
and digital error correction to provide excellent  
static linearity. Its very low internal noise permits  
to achieve more than 11.8 ENOB with a 2.2V  
5MHz input.  
pp  
The RHF1401 has an operating temperature  
range of -55°C to +125°C and is available in a  
small 48-pin hermetic SO-48 package.  
October 2007  
Rev 2  
1/29  
www.st.com  
29  
Contents  
RHF1401  
Contents  
1
2
3
4
5
6
7
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 8  
Electrical characteristics (unchanged after 300kRad) . . . . . . . . . . . . . . 9  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
7.1  
Analog input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
7.1.1  
7.1.2  
Setting the analog input range and references . . . . . . . . . . . . . . . . . . . 15  
Driving the analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.2  
7.3  
7.4  
7.5  
7.6  
Clock signal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Power consumption optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Low sampling rate recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Digital inputs/outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PCB layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8
Definitions of specified parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.1  
8.2  
Static parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Dynamic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
10  
11  
2/29  
RHF1401  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
RHF1401 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
S0-48 pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Linearity vs. F , internal references, F = 20 MHz, I = 40 mA. . . . . . . . . . . . . . . . . . . . 12  
in  
s
cca  
Linearity vs. F , external references (REFP = 1 V), F = 20 MHz, I = 28 mA . . . . . . . . 12  
in  
s
cca  
Distortion vs. F , internal refs, F = 20 MHz, I = 40 mA . . . . . . . . . . . . . . . . . . . . . . . . . 12  
in  
s
cca  
Distortion vs. F , external ref, (REFP = 1 V) F = 20 MHz; I = 28 mA . . . . . . . . . . . . . 12  
in  
s
cca  
nd  
nd  
rd  
2
2
& 3 harmonics vs. F , internal refs, F = 20 MHz; I = 40 mA. . . . . . . . . . . . . . . . . 13  
& 3 harmonics vs. F , external ref REFP=1 V, F =20MHz; I =28mA. . . . . . . . . . . 13  
in s cca  
rd  
in  
s
cca  
Figure 10. Single-tone 16K FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 11. Single-tone 16K FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 12. SFDR vs. input amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 13. Static parameter: differential non linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 14. Static parameter: integral non linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 15. Linearity vs. REFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
(1)  
Figure 16. Distortion vs. REFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 17. External reference setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 18. Linearity vs. F  
Figure 19. Distortion vs. F  
s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
(1)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
s
Figure 20. ADC input equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 21. Differential input configuration with transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 22. AC-coupled differential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 23. Analog current consumption vs. F according to value of R polarization resistances:  
s
pol  
internal references (for F < 10MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
in  
Figure 24. Impact of clock frequency on RHF1401 performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 25. CLK signal derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 26. SO-48 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3/29  
Block diagram  
RHF1401  
1
Block diagram  
Figure 1.  
RHF1401 block diagram  
VREFP  
REFMODE  
VIN  
INCM  
VINB  
Reference  
circuit  
stage  
1
stage  
2
stage  
n
IPOL  
VREFM  
DFSB  
OEB  
Sequencer-phase shifting  
Digital data correction  
VCCBE +2.5/3.3V  
CLK  
Timing  
GNDBE  
DR  
DO  
TO  
Buffers  
AVCC +2.5V  
AGND  
D13  
OR  
DGND AVDD +2.5V  
2
Pinout  
Figure 2.  
S0-48 pin connections (top view)  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
4/29  
RHF1401  
Table 1.  
Pinout  
Pin descriptions  
Description  
Pin  
Name  
Observations  
Pin  
Name  
Description  
Observations  
2.5 V/3.3 V CMOS  
input  
1
GNDBI  
Digital buffer ground  
0 V  
25  
REFMODE Ref. mode control input  
2.5 V/3.3 V CMOS  
input  
2
3
GNDBE  
VCCBE  
Digital buffer ground  
0 V  
26  
27  
OEB  
Output enable input  
Digital buffer power  
supply  
2.5 V/3.3 V CMOS  
input  
2.5 V/3.3 V  
DFSB  
Data format select input  
4
5
NC  
NC  
Non connected  
Non connected  
28  
29  
AVCC  
AVCC  
Analog power supply  
Analog power supply  
2.5 V  
2.5 V  
CMOS output  
(2.5 V/3.3 V)  
6
OR  
D13(MSB)  
D12  
D11  
D10  
D9  
Out of range output  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
AGND  
IPOL  
Analog ground  
0 V  
Most significant bit  
output  
CMOS output  
(2.5 V/3.3 V)  
7
Analog bias current input  
Top voltage reference  
CMOS output  
(2.5 V/3.3 V)  
8
Digital output MSB  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output LSB  
VREFP  
VREFM  
AGND  
VIN  
1 V  
CMOS output  
(2.5 V/3.3 V)  
9
Bottom voltage reference 0 V  
CMOS output  
(2.5 V/3.3 V)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Analog ground  
0 V  
1 V  
0 V  
1 V  
0 V  
CMOS output  
(2.5 V/3.3 V)  
Analog input  
pp  
pp  
CMOS output  
(2.5 V/3.3 V)  
D8  
AGND  
VINB  
Analog ground  
CMOS output  
(2.5 V/3.3 V)  
D7  
Inverted analog input  
Analog ground  
CMOS output  
(2.5 V/3.3 V)  
D6  
AGND  
INCM  
AGND  
AVCC  
AVCC  
DVCC  
DVCC  
DGND  
CMOS output  
(2.5 V/3.3 V)  
D5  
Input common mode  
Analog ground  
0.5 V  
0 V  
CMOS output  
(2.5 V/3.3 V)  
D4  
CMOS output  
(2.5V /3.3 V)  
D3  
Analog power supply  
Analog power supply  
Digital power supply  
Digital power supply  
Digital ground  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
0 V  
CMOS output  
(2.5 V/3.3 V)  
D2  
CMOS output  
(2.5 V/3.3 V)  
D1  
CMOS output  
(2.5 V/3.3 V)  
D0(LSB)  
DR  
CMOS output  
(2.5 V/3.3 V)  
(1)  
Data ready output  
Digital buffer power  
supply  
2.5 V compatible  
CMOS input  
22  
23  
24  
VCCBE  
GNDBE  
VCCBI  
2.5 V/3.3 V  
0 V  
46  
47  
48  
CLK  
Clock input  
Digital buffer ground  
DGND  
DGND  
Digital ground  
Digital ground  
0 V  
0 V  
Digital buffer power  
supply  
2.5 V  
1. See load considerations in Section 3: Timing.  
5/29  
Timing  
RHF1401  
3
Timing  
Table 2.  
Symbol  
Timing characteristics  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Fs  
Sampling frequency(1)  
Sampling clock cycle(1)  
Clock duty cycle  
1.5  
50  
20  
MHz  
ns  
Tck  
DC  
TC1  
TC2  
667  
F = 20 Msps  
50  
25  
25  
%
s
Clock pulse width (high)  
Clock pulse width (low)  
ns  
ns  
Data output delay (fall of  
clock to data valid) (2)  
Tod  
Tpd  
Tdr  
10 pF load capacitance  
5
7.5  
8.5  
0.5  
13  
ns  
Data pipeline delay  
8.5  
8.5 cycles  
cycles  
Data ready rising edge  
delay after data change  
Falling edge of OEB to  
digital output valid data  
Ton  
Toff  
1
1
ns  
ns  
Rising edge of OEB to  
digital output tri-state  
T
Data rising time  
Data falling time  
10 pF load capacitance  
10 pF load capacitance  
6
3
ns  
ns  
rD  
TfD  
1. See clock recommendations in Section 7.2: Clock signal requirements on page 19  
2. See Figure 3 and discussion below.  
6/29  
RHF1401  
Timing  
Figure 3.  
Timing diagram  
N+5  
N+6  
N+4  
N+7  
N-1  
N+3  
N+8  
N
N+2  
N+9  
N+1  
CLK  
OEB  
Tpd + Tod  
Tdr  
Ton  
Toff  
Tod  
DATA  
OUT  
N-9  
N-8  
N-7  
N-6  
N-5  
N-4  
N-3  
N-1  
N
DR  
HZ state  
The input signal is sampled on the rising edge of the clock while digital outputs are  
synchronized on the falling edge of the clock.  
Load considerations  
The size of the internal output buffers limits the maximum load on the data output signals  
and Data Ready to 10pF equivalent load. In particular, the shape and amplitude of the Data  
Ready signal, toggling at the clock frequency can be weakened by a higher equivalent load.  
In applications that impose higher load conditions, it is recommended to use the falling edge  
of the master clock instead of the Data Ready signal. This is possible because the output  
transitions are internally synchronized with the falling edge of the clock. For implementation  
information, refer to Section 7.2: Clock signal requirements on page 19.  
An alternative is to re-buffer the DR signal externally to avoid any risk of modifying the clock  
signal.  
7/29  
Absolute maximum ratings and operating conditions  
RHF1401  
4
Absolute maximum ratings and operating conditions  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Values  
Unit  
AVCC  
DVCC  
VCCBI  
VCCBE  
IDout  
Analog supply voltage(1)  
Digital supply voltage(1)  
0 to 3.3  
0 to 3.3  
0 to 3.3  
0 to 3.6  
-100 to 100  
-65 to +150  
22  
V
V
Digital buffer supply voltage(1)  
Digital buffer supply voltage(1)  
Digital output current  
V
V
mA  
°C  
°C/W  
Tstg  
Storage temperature  
Rthjc  
Junction - case thermal resistance  
Electrostatic discharge  
– HBM: human body model (2)  
ESD  
kV  
2
1. All voltage values, except differential voltage, are with respect to the network ground terminal. The  
magnitude of input and output voltages must never exceed -0.3 V or VCC+0.3 V.  
2. Human body model: 100pF discharged through a 1.5kΩ resistor between two pins of the device, done for  
all couples of pin combinations with other pins floating.  
Table 4.  
Symbol  
Operating conditions  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
AVCC  
DVCC  
VCCBI  
VCCBE  
VREFP  
Analog supply voltage  
2.3  
2.3  
2.3  
2.3  
0.5  
2.5  
2.5  
2.5  
2.5  
1
2.7  
2.7  
2.7  
3.4  
1.4  
V
V
V
V
V
Digital supply voltage  
Digital internal buffer supply  
Digital output buffer supply  
Forced top voltage reference  
Bottom internal reference  
voltage  
VREFM  
0
0
0.5  
V
8/29  
RHF1401  
Electrical characteristics (unchanged after 300kRad)  
Electrical characteristics (unchanged after 300kRad)  
Test conditions are the following (unless otherwise specified):  
5
AV = DV = V  
= 2.5 V  
CCB  
CC  
CC  
F = 20 Msps  
s
F = 2 MHz  
in  
V @ -1 dBSF  
in  
V
= 0 V  
REFM  
T
= 25° C  
amb  
Table 5.  
Symbol  
Analog inputs  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
VIN-VINB Full scale reference voltage VREFP= 1 V  
2
8
Vpp  
pF  
Cin  
Zin  
Input capacitance  
Input impedance  
F = 20 Msps  
3.3  
kOhms  
s
Effective resolution  
bandwidth(1)  
ERB  
70  
MHz  
1. See Section 8: Definitions of specified parameters on page 24 for more information.  
Table 6.  
Symbol  
Internal references  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
REFMODE=’0’  
internal reference on  
30  
Ohm  
Output resistance of  
internal ref  
Rout  
REFMODE=’1’  
internal reference off  
7.5  
kOhm  
Top internal reference  
voltage  
VREFP  
REFMODE=’0’  
0.84  
0
V
V
V
VREFM Bottom internal ref. voltage REFMODE=’0’  
Input common mode  
VINCM  
REFMODE=’0’  
0.44  
voltage  
Table 7.  
Symbol  
External references  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Forced top reference  
voltage  
VREFP  
REFMODE=’1’  
0.8  
0
1.4  
0.2  
1
V
V
V
VREFM Forced bottom ref. voltage REFMODE=’1’  
Forced common mode  
VINCM  
REFMODE=’1’  
0.4  
voltage  
9/29  
Electrical characteristics (unchanged after 300kRad)  
RHF1401  
Unit  
See Figure 14  
Table 8.  
Symbol  
Static accuracy  
Parameter  
Test conditions  
Min  
Typ  
Max  
DNL  
INL  
Differential non linearity(1)  
Integral non linearity(2)  
Fs=1.5 Msps  
Fs=1.5 Msps  
+/-0.3  
+/-2  
LSB  
LSB  
Monotonicity and no  
missing codes  
Guaranteed  
1. SeeFigure 13 and Section 8: Definitions of specified parameters on page 24 for more information.  
2. See Figure 14 and Section 8: Definitions of specified parameters on page 24 for more information.  
Table 9.  
Symbol  
Digital inputs and outputs  
Parameter Test conditions  
Min  
Typ  
Max  
Unit  
Clock input  
VIL  
VIH  
Logic "0" voltage  
Logic "1" voltage  
DVCC = 2.5 V  
DVCC = 2.5 V  
0
0
0.8  
2.5  
V
V
2.0  
Digital inputs  
0.25 x  
VCCBE  
VIL  
VIH  
Logic "0" voltage  
Logic "1" voltage  
VCCBE = 2.5 V  
VCCBE = 2.5 V  
0
V
V
0.75 x  
VCCBE  
VCCBE  
Digital outputs  
VOL  
VOH  
Logic "0" voltage  
IOL = -1 mA  
IOH = 1 mA  
0
0.2  
V
V
VCCBE  
-0.2  
Logic "1" voltage  
High impedance leakage  
current  
IOZ  
CL  
OEB set to VIH  
-15  
15  
15  
µA  
pF  
Output load capacitance  
10/29  
RHF1401  
Electrical characteristics (unchanged after 300kRad)  
Table 10. Dynamic characteristics  
Symbol  
Parameter(1)  
Test conditions  
Min  
Typ  
Max  
Unit  
Fin = 10 MHz,  
internal reference  
-91  
Spurious free dynamic  
range  
SFDR  
dBFS  
Fin = 10 MHz,  
VREFP =1 V  
-89  
70  
Fin = 10 MHz,  
internal reference  
SNR  
THD  
Signal to noise ratio  
dB  
dBc  
dB  
Fin= 10 MHz,  
VREFP = 1 V  
71.5  
-86  
-85  
70  
Fin= 10 MHz,  
internal reference  
Total harmonic distortion  
Fin= 10 MHz,  
VREFP = 1 V  
Fin= 10 MHz,  
internal reference  
Signal to noise and  
distortion ratio  
SINAD  
Fin= 10 MHz,  
VREFP = 1 V  
71  
Fin= 10 MHz,  
internal reference  
11.5  
11.7  
ENOB Effective number of bits  
bits  
Fin= 10 MHz,  
VREFP = 1 V  
1. See Section 8: Definitions of specified parameters on page 24 for more information.  
Higher values of SNR, SINAD and ENOB can be obtained by increasing the analog input full  
scale range. This is illustrated in Figure 11 on page 13, Figure 18, and Figure 19 on page 17  
with V  
= 1.25V, and also in Figure 15 and Figure 16 on page 16 with V  
up to 1.4V.  
REFP  
REFP  
11/29  
Typical performance characteristics  
RHF1401  
6
Typical performance characteristics  
Because of its intrinsic high-speed low-power capabilities, most of the characterization  
measurements for the RHF1401 were done in the analog frequency range from 1MHz to  
100MHz.  
An evaluation board designed to operate in this range, and including a transformer to  
generate on-board differential signals to input to the RHF1401 was used in characterization  
testing. This configuration is illustrated in Figure 21 on page 18.  
For best performance, the RHF1401 also requires a high enough sampling frequency or, in  
other terms, that the clock period is not too long, to avoid current leakage which would  
impact conversion accuracy. The recommended lowest sampling frequency is 1.5Msps.  
Note that under 1.2Msps, the RHF1401 performance is degraded. For more information on  
sampling frequency, see Section 7.2: Clock signal requirements, and Section 7.3: Power  
consumption optimization.  
Figure 4.  
Linearity vs. F , internal references,  
Figure 5.  
Linearity vs. F , external references  
in  
in  
F = 20 MHz, I = 40 mA  
(REFP = 1 V), F = 20 MHz, I = 28 mA  
s
cca  
s cca  
80  
12  
11.9  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
11.2  
11.1  
11  
80  
77  
74  
71  
68  
65  
12  
77  
74  
71  
68  
11.8  
ENO  
ENOB  
11.6  
11.4  
11.2  
11  
SINA  
SNR  
SNR  
SINAD  
25  
5
15  
Fin (Mhz)  
25  
65  
0
5
10  
15  
Fin (Mhz)  
20  
30  
Figure 6.  
Distortion vs. F , internal refs,  
Figure 7.  
Distortion vs. F , external ref,  
in  
in  
F = 20 MHz, I  
= 40 mA  
(REFP = 1 V) F = 20 MHz; I = 28 mA  
s
cca  
s cca  
-70  
-75  
-70  
-75  
-80  
-85  
-90  
-95  
-80  
THD  
THD  
SFDR  
-85  
-90  
SFDR  
15  
-95  
-100  
5
-100  
10  
20  
25  
30  
0
5
10  
15  
Fin (Mhz)  
20  
25  
30  
Fin (Mhz)  
12/29  
RHF1401  
Figure 8.  
Typical performance characteristics  
nd  
rd  
nd  
rd  
2
& 3 harmonics vs. F , internal Figure 9.  
2
& 3 harmonics vs. F , external  
in  
in  
refs, F = 20 MHz; I  
= 40 mA  
ref REFP=1 V, F =20MHz; I =28mA  
s
cca  
s cca  
-60  
-65  
-60  
-65  
-70  
-70  
-75  
-75  
-80  
-80  
H3  
10  
-85  
-85  
H2  
-90  
-90  
H2  
-95  
-95  
-100  
-105  
-110  
H3  
-100  
-105  
-110  
5
15  
Fin (Mhz)  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Fin (Mhz)  
Figure 10. Single-tone 16K FFT  
0
-2 0  
-4 0  
-6 0  
-8 0  
-1 0 0  
-1 2 0  
-1 4 0  
-1 6 0  
-1 8 0  
0
1 0  
5
F ( M h z )  
1. At Fs = 20 Msps, internal references, Fin = 5 MHz, Icca = 40 mA, Vin@-1 dBFS,  
SFDR = -89.3 dBc, THD = -84.5 dBc, SNR = 70.5 dB, SINAD = 70.3 dB, ENOB = 11.5 bits  
Figure 11. Single-tone 16K FFT  
2 0  
0
-2 0  
-4 0  
-6 0  
-8 0  
-1 0 0  
-1 2 0  
-1 4 0  
-1 6 0  
0
5
1 0  
F ( M h z )  
1. At Fs=20 Msps, external references, Fin= 5 MHz, Icca = 40 mA, Vin@-1 dBFS, VREFP= 1.25V, SFDR = -87.5 dBc, THD = -  
85.4 dBc, SNR = 73.3 dB, SINAD = 73 dB, ENOB = 11.84 bits  
13/29  
Typical performance characteristics  
RHF1401  
Figure 12. SFDR vs. input amplitude  
-20  
-30  
-40  
-50  
-60  
SFDR(dBc)  
-70  
-80  
-90  
SFDR(dBFS)  
-20  
-100  
-110  
-30  
-25  
-15  
-10  
-5  
0
SFSR(dB)  
1. (Full scale = 2 x 0.86 V), Fs = 20 Msps, Fin = 5 MHz, Icca = 40 mA  
Figure 13. Static parameter: differential non linearity  
0.4  
0.3  
0.2  
0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
4
4
0
3276.6  
6553.2  
9829.8  
1.31 10  
1.64 10  
1. Fs = 1.5 Msps acquisition over 128 DC linear ramping input signals  
Figure 14. Static parameter: integral non linearity  
3
2.4  
1.8  
1.2  
0.6  
0
0.6  
1.2  
1.8  
2.4  
3
4
4
0
3276.6  
6553.2  
9829.8  
1.31 10  
1.64 10  
1. Fs = 1.5 Msps acquisition over 128 DC linear ramping input signals  
14/29  
RHF1401  
Application information  
7
Application information  
The RHF1401 is a high speed analog-to-digital converter based on a pipeline architecture  
and the ST 0.25µm CMOS process in order to achieve the best performance in terms of  
linearity, power consumption and radiation hardness.  
The pipeline structure consists of 14 internal conversion stages in which the analog signal is  
fed and sequentially converted into digital data.  
Each of the first 13 stages consists of an analog to digital converter, a digital to analog  
converter, a sample and hold and an amplifier with a gain of 2. A 1.5-bit conversion  
resolution is done at each stage. The last stage is a 2-bit flash ADC. Each resulting LSB-  
MSB couple is then time-shifted to recover from the delay caused by conversion. Digital data  
correction completes the processing by recovering from the redundancy of the (LSB-MSB)  
couple for each stage. The corrected data is output through the digital buffers.  
Signal input is sampled on the rising edge of the clock while digital outputs are synchronized  
on the falling edge of the clock.  
The advantages of this converter reside in the combination of a SEFI-free pipeline  
architecture and advanced low-voltage CMOS technology. The highest dynamic  
performance is achieved while consumption remains at the lowest level.  
7.1  
Analog input configuration  
7.1.1  
Setting the analog input range and references  
To optimize the high resolution and speed of the RHF1401, we strongly advise you to drive  
the analog input differentially. The half full-scale of RHF1401 is adjusted through the voltage  
values of V  
and V  
:
REFP  
REFM  
V
IN VINB = Full Scale = 2(VREFP VREFM  
)
The differential analog input signal always has a common mode voltage of:  
V
IN + VINB  
VCM = ---------------------------  
2
To select the references according to the constraints of your particular application, a control  
pin, REFMODE, allows you to switch from internal to external references.  
Internal references, common mode:  
When REFMODE is set to V level, the RHF1401 operates with its own reference voltage  
IL  
generated by its internal bandgap. If the VREFM pin is connected externally to the analog  
ground while VREFP is set to its internal voltage (0.86 V), the full scale of the ADC is  
2 x 0.86 = 1.72V.  
In this case, VREFP, VREFM and INCM are low impedance outputs. The INCM pin (voltage  
generator 0.46 V) may be used to supply the common mode, CM, of the analog input signal.  
15/29  
Application information  
RHF1401  
External references, common mode:  
In applications that require a different full scale magnitude, it is possible to force the VREFP  
and VREFM pins from an external voltage reference device. In this configuration, the  
RHF1401 has better performance, as illustrated in Figure 15 and Figure 16.  
Setting REFMODE to V level will put the internal references in standby mode, turning  
IH  
VREFP, VREFM and INCM into high impedance inputs that have to be forced by external  
references.  
(1)  
(1)  
Figure 15. Linearity vs. REFP  
Figure 16. Distortion vs. REFP  
80  
12.4  
12.2  
12  
-70  
-75  
-80  
77  
ENOB  
74  
71  
68  
65  
SINAD  
11.8  
11.6  
11.4  
11.2  
11  
THD  
-85  
-90  
SNR  
SFDR  
-95  
-100  
0.8  
0.9  
1
1.1  
REFP (V)  
1.2  
1.3  
1.4  
0.8  
0.9  
1
1.1  
REFP (V)  
1.2  
1.3  
1.4  
1. Fin = 5 MHz; Fs = 20 Mhz; Icca = 26 mA; VINCM=0.45 V  
Using the RHF1401 with an external voltage reference device yields optimum performance  
when configured as shown in Figure 17.  
Figure 17. External reference setting  
1kΩ  
“1”  
330pF 10nF 4.7µF  
REFMODE  
VCCA VREFP  
VIN  
RHF1401  
external  
reference  
VINB  
VREFM  
Note:  
In multi-channel applications, the high impedance input of the references allows you to drive  
several ADCs with only one voltage reference device.  
In the case of a 1.25V external reference, the full scale is increased to 2.5 V differential.  
pp  
The improved dynamic performance is shown in Figure 18 and Figure 19.  
16/29  
RHF1401  
Application information  
(1)  
(1)  
Figure 18. Linearity vs. F  
Figure 19. Distortion vs. F  
s
s
-70  
-75  
80  
77  
74  
71  
68  
65  
12.1  
12  
ENOB  
11.9  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
11.2  
11.1  
-80  
SNR  
-85  
SINAD  
THD  
-90  
SFDR  
-95  
-100  
3
5
7
9
11 13 15 17 19 21  
Fs (Mhz)  
3
5
7
9
11 13 15 17 19 21  
Fs (Mhz)  
1. At Fin = 5 MHz, using external REFP = 1.25 V, Icca optimized, VINCM = 0.65 V  
The magnitude of the analog input common mode, CM should stay close to V  
levels will introduce more distortion.  
/2. Higher  
REFP  
7.1.2  
Driving the analog inputs  
The RHF1401 is designed to be differentially driven for better noise immunity.  
Measurements done with single-ended signals show reduced levels of performance.  
The switch-capacitor input structure of RHF1401 has a high input impedance (3.3 kΩ at  
F = 20MHz) but it is not constant in time (see the equivalent input circuit in Figure 20)  
S
because, at the end of each conversion, the charge update of the sampling capacitor draws  
or injects a small transient current on the input signal.  
One method of masking this transient current is a low-pass RC filter as shown in Figure 21  
and Figure 22. A capacitor with a higher value than the sampling capacitor of 2.4 pF,  
mounted in parallel with the two analog input signals, will absorb the transient glitches.  
Figure 20. ADC input equivalent circuit  
AVcc  
Switch at Fs  
VIN  
VIN  
Cs=2.4pF  
AGND  
17/29  
Application information  
RHF1401  
Single-ended signal with transformer  
Using an RF transformer is an efficient method of achieving high performance.  
Figure 21 shows the schematic view. The input signal is fed to the primary of the  
transformer, while the secondary drives both ADC inputs.  
Figure 21. Differential input configuration with transformer  
ADT1-1  
Analog source  
1:1  
VIN  
RHF1401  
50Ω  
100pF  
VINB  
INCM  
330pF 10nF  
4.7µF  
The internal common mode voltage of the ADC (INCM) is connected to the center-tap of the  
secondary of the transformer in order to bias the input signal around this common voltage,  
internally set to 0.46 V. The INCM is decoupled to maintain a low noise level on this node.  
Our evaluation board is mounted with a 1:1 ADT1-1WT transformer from Minicircuits. You  
might also use a higher impedance ratio (1:2 or 1:4) to reduce the driving requirement on  
the analog signal source.  
AC coupled differential input:  
Figure 22 represents the biasing of a differential input signal in AC-coupled differential input  
configuration. Both inputs V and V  
are centered around the common mode voltage CM,  
IN  
INB  
that can be forced through INCM or supplied externally (in this case, INCM may be left  
internal).  
Figure 22. AC-coupled differential input  
VIN  
10nF  
50Ω  
100kΩ  
33pF  
RHF1401  
INCM  
common  
mode  
100kΩ  
VINB  
10nF  
50Ω  
18/29  
RHF1401  
Application information  
7.2  
Clock signal requirements  
The signal applied to the CLK pin is critical to obtain full performance from the RHF1401. It  
is recommended to use a 0V to 2.5V square signal with fast transition times, and to place  
proper termination resistors as close as possible to the device.  
It is the rising edge of the clock signal that determines the sampling instant. The jitter  
associated with this instant must be as low as possible to avoid SNR degradation on fast  
moving input signals. To achieve less than 0.5 LSB error, the total jitter T must satisfy the  
j
following condition for a full scale input signal:  
1
--------------------------------------  
Tj <  
π ⋅ Fin 2n + 1  
For example, the total jitter with 14-bit resolution for a 10 MHz full scale input should be no  
more than 1 picosecond (rms).  
In most cases, it is the clock signal jitter that is the major contributor to the total jitter.  
Therefore, you must pay particular attention to the clock signal in the case of acquisition of  
fast signals with a low frequency clock. For further considerations on low sampling  
conditions, refer to Section 7.4 on page 20.  
The clock signal must be active when you power up the device. Clock gating (stopping the  
clock) is not recommended due to possible undertermined states inside the circuit when the  
clock is off.  
7.3  
Power consumption optimization  
The internal architecture of the RHF1401 makes it possible for you to optimize the analog  
power consumption depending on the sampling frequency by adjusting the R resistor.  
pol  
This resistor is placed between the IPOL pin and the analog ground.  
Input signal below 10MHz  
Depending of the application sampling speed, the R value should be set between 120 kΩ  
pol  
(low sampling speed, low current) and 40 kΩ (high sampling speed, high current). With a low  
sampling speed, you should use a high value for R (for example 100 kΩ) in order to  
pol  
minimize the power consumption, often critical in space applications. This method is  
efficient with an input signal in the range from DC up to 10MHz.  
With a sampling frequency of 20 MHz, an R value of 41 kΩ provides optimized power  
pol  
consumption.  
Figure 23 shows the optimized power consumption of the circuit versus the sampling  
frequency in two different configurations:  
REFMODE=0 internal references with I  
in the range 30-40 mA  
in the range 20-30 mA  
AVCC  
REFMODE=1 external references with I  
AVCC  
19/29  
Application information  
RHF1401  
Figure 23. Analog current consumption vs. F according to value of R polarization  
s
pol  
resistances: internal references (for F < 10MHz)  
in  
45  
140  
120  
100  
80  
Rpol  
40  
35  
30  
25  
20  
REFMODE=0
60  
40  
REFMODE= 1  
20  
0
5
7
9
11  
13  
Fs (Mhz)  
15  
17  
19  
21  
Input signal above 10MHz  
However, with a higher frequency input signal (for example, in the 10-70MHz range), a high  
value does not supply enough current to the internal amplifiers, thus resulting in  
R
pol  
degraded SNR and THD performance. With an input signal in this range, the recommended  
value for R is in the 30-50 kΩ range.  
pol  
7.4  
Low sampling rate recommendations  
The RHF1401 offers a wide range of sampling rates from 1.5Msps to 20Msps with the  
minimum power consumption. However, under the minimum, the performance of the device  
deteriorates. Figure 24 shows the degradation in performance at sampling frequencies  
under 1.2Msps. The recommended minimum sampling frequency is 1.5Msps.  
20/29  
RHF1401  
Application information  
Figure 24. Impact of clock frequency on RHF1401 performance  
80  
70  
60  
50  
40  
30  
20  
10  
0
Fs = 1.0 Msps  
Fs = 1.2 Msps  
Fs = 1.5 Msps  
1
5
15  
25  
Fin  
In the case of under-sampling, that is when the sampling rate is much lower than the input  
signal frequency (for example a 2Msps sampling rate with a 41.3MHz input signal), there are  
two critical parameters to consider:  
The value of the R resistor  
pol  
The clock jitter  
7.5  
Digital inputs/outputs  
Data format select (DFSB)  
When set to low level (V ), the digital input DFSB provides a two’s complement digital  
IL  
output MSB. This can be of interest when performing further signal processing.  
When set to high level (V ), DFSB provides a standard binary output coding.  
IH  
Output enable (OEB)  
When set to low level (V ), all digital outputs remain active and are in low impedance state.  
IL  
When set to high level (V ), all digital output buffers are in high impedance state. It results  
IH  
in lower consumption while the converter goes on sampling.  
When OEB is set to low level again, the data is then delivered on the output with a very short  
T
delay.  
on  
Out of range (OR)  
This function is implemented on the output stage in order to set up an “Out of range” flag  
whenever the digital data is over the full scale range.  
Typically, there is a detection of all the data at ’0’ or all the data at ’1’. This ends up with an  
output signal OR which is in low level state (V ) when the data is within the range, or in  
OL  
high level state (V ) when the data is out of the range.  
OH  
21/29  
Application information  
RHF1401  
Data ready (DR)  
The data ready output signal is an image of the clock being synchronized on the output data  
(D0 to D13). This is a very helpful signal that simplifies the synchronization of the  
measurement equipment or the controlling DSP.  
As all other digital outputs, DR goes into high impedance state when OEB reaches high  
level as described in Figure 3: Timing diagram on page 7.  
Caution:  
Because the driving force of data outputs and the DR signal is relatively low, it is  
recommended to limit the equivalent load on these signals to 10-15pF maximum. This is to  
avoid a weak signal when the RHF1401 is clocked at full speed (20Msps). The DR signal is  
potentially the most affected because it has the highest frequency (20MHz maximum).  
If the equivalent load on the data outputs is slightly higher than 15pF, you can avoid  
resorting to external re-buffering of the data bus and DR signal by connecting the data bus  
to the acquisition device directly without using the DR. In this case, you can obtain a good  
validation signal from a derivation of the clock because the clock falling edge is used by the  
RHF1401 internally to generate data output transitions. A series resistor of approximately  
100-200 Ohms should be placed at the derivation to avoid the effect of current spikes on the  
critical CLK node. This configuration is illustrated in Figure 25.  
Figure 25. CLK signal derivation  
D0-D13  
DR  
CLK  
50Ω  
ASIC or FPGA  
above 15pF  
100-200Ω  
22/29  
RHF1401  
Application information  
7.6  
PCB layout precautions  
To use the ADC circuits most efficiently at high frequencies, some precautions have to be  
taken for power supplies:  
First of all, the implementation of 4 separate proper supplies and ground planes  
(analog, digital, internal and external buffer ones) on the PCB is recommended for high  
speed circuit applications to provide low-inductance and low-resistance common  
return.  
The separation of the analog signal from the digital part and from the buffers power  
supply is essential to prevent noise from coupling onto the input signal.  
Power supply bypass capacitors must be placed as close as possible to the IC pins in  
order to improve high frequency bypassing and reduce harmonic distortion.  
Proper termination of all inputs and outputs is needed; with output termination  
resistors, the amplifier load is resistive only and the stability of the amplifier is improved.  
All leads must be wide and as short as possible especially for the analog input in order  
to decrease parasitic capacitance and inductance.  
To keep the capacitive loading as low as possible at digital outputs, short lead lengths  
of routing are essential to minimize currents when the output changes. To minimize this  
output capacitance, use buffers or latches close to the output pins. It is also helpful to  
use 47 Ω to 56 Ω series resistors at the ADC output pins, located as close to the ADC  
output pins as possible.  
Choose component sizes as small as possible (SMD).  
23/29  
Definitions of specified parameters  
RHF1401  
8
Definitions of specified parameters  
8.1  
Static parameters  
Static measurements are performed using the histograms method on a 2 MHz input signal,  
sampled at 50 Msps, which is high enough to fully characterize the test frequency response.  
The input level is +1 dBFS to saturate the signal.  
Differential non linearity (DNL)  
The average deviation of any output code width from the ideal code width of 1LSB.  
Integral non linearity (INL)  
An ideal converter exhibits a transfer function which is a straight line from the starting code  
to the ending code. The INL is the deviation from this ideal line for each transition.  
8.2  
Dynamic parameters  
Dynamic measurements are performed by spectral analysis, applied to an input sinewave of  
various frequencies and sampled at 50 Msps.  
Spurious free dynamic range (SFDR)  
The ratio between the power of the worst spurious signal (not always an harmonic) and the  
amplitude of fundamental tone (signal power) over the full Nyquist band. It is expressed in  
dBc.  
Total harmonic distortion (THD)  
The ratio of the rms sum of the first five harmonic distortion components to the rms value of  
the fundamental line. It is expressed in dB.  
Signal to noise ratio (SNR)  
The ratio of the rms value of the fundamental component to the rms sum of all other spectral  
components in the Nyquist band (F / 2) excluding DC, fundamental and the first five  
s
harmonics. SNR is reported in dB.  
Signal to noise and distortion ratio (SINAD)  
A similar ratio to the SNR but including the harmonic distortion components in the noise  
figure (not the DC signal). It is expressed in dB.  
From the SINAD, the Effective Number of Bits (ENOB) can easily be deduced using the  
formula:  
SINAD= 6.02 × ENOB + 1.76 dB.  
When the applied signal is not Full Scale (FS), but has an A amplitude, the SINAD  
0
expression becomes:  
SINAD= 6.02 × ENOB + 1.76 dB + 20 log (2A /FS)  
0
The ENOB is expressed in bits.  
24/29  
RHF1401  
Definitions of specified parameters  
Analog input bandwidth  
The maximum analog input frequency at which the spectral response of a full power signal  
is reduced by 3 dB. Higher values can be achieved with smaller input levels.  
Pipeline delay  
Delay between the initial sample of the analog input and the availability of the corresponding  
digital data output, on the output bus. Also called data latency. It is expressed as a number  
of clock cycles.  
25/29  
Package information  
RHF1401  
9
Package information  
Figure 26. SO-48 package mechanical drawing  
Table 11. SO-48 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Typ.  
Min.  
Max.  
Min.  
Max.  
A
b
2.18  
0.20  
0.12  
15.57  
9.52  
2.47  
0.254  
0.15  
2.72  
0.30  
0.18  
15.92  
9.78  
0.086  
0.008  
0.005  
0.613  
0.375  
0.097  
0.010  
0.006  
0.620  
0.380  
0.429  
0.250  
0.065  
0.025  
0.008  
0.495  
0.057  
0.031  
0.017  
0.107  
0.012  
0.007  
0.627  
0.385  
c
D
15.75  
9.65  
E
E1  
E2  
E3  
e
10.90  
6.35  
6.22  
1.52  
6.48  
1.78  
0.245  
0.060  
0.255  
0.070  
1.65  
0.635  
0.20  
f
L
12.28  
1.30  
0.66  
0.25  
12.58  
1.45  
12.88  
1.60  
0.92  
0.61  
0.483  
0.051  
0.026  
0.010  
0.507  
0.063  
0.036  
0.024  
P
Q
S1  
0.79  
0.43  
26/29  
RHF1401  
Ordering information  
10  
Ordering information  
Table 12. Order codes  
Part number  
Temperature range  
Package  
Marking  
RHF1401KSO1  
RHF1401KSO2  
RHF1401KSO-01V  
RHF1401KSO1  
RHF1401KSO2  
F0626001VXC  
-55 °C to 125 °C  
SO-48  
27/29  
Revision history  
RHF1401  
11  
Revision history  
Table 13. Document revision history  
Date  
Revision  
Changes  
First public release.  
Failure immune and latchup immune value increased to  
2
120 MeV-cm /mg.  
Updated package mechanical information.  
29-Jun-2007  
1
Removed reference to non rad-hard components from External  
references, common mode: on page 16.  
Updated Figure 1: RHF1401 block diagram.  
Added explanation on Figure 3: Timing diagram.  
Added introduction to Section 6: Typical performance characteristics.  
Updated Section 7.2: Clock signal requirements and Section 7.3:  
Power consumption optimization.  
29-Oct-2007  
2
Added Section 7.4: Low sampling rate recommendations.  
Updated information on Data Ready signal in Section 7.5: Digital  
inputs/outputs.  
Added Figure 24: Impact of clock frequency on RHF1401  
performance and Figure 25: CLK signal derivation.  
28/29  
RHF1401  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
29/29  

相关型号:

RHF1401KSO2

Rad-hard 14-bit 20Msps 85mW A/D converter
STMICROELECTR

RHF1401_12

Rad-hard 14-bit 30 Msps A/D converter
STMICROELECTR

RHF310

Rad-hard 400 μA high-speed operational amplifier
STMICROELECTR

RHF310DIE2V

OP-AMP, 3900uV OFFSET-MAX, UUC, ROHS COMPLIANT, DIE
STMICROELECTR

RHF310K-02V

OP-AMP, 3900uV OFFSET-MAX, CDSO8, CERAMIC, FLAT PACKAGE-8
STMICROELECTR

RHF310K2

OP-AMP, 3900uV OFFSET-MAX, CDSO8, ROHS COMPLIANT, CERAMIC, FLAT PACKAGE-8
STMICROELECTR

RHF330

Rad-hard 1 GHz low noise operational amplifier
STMICROELECTR

RHF330DIE2V

OP-AMP, 1930uV OFFSET-MAX, UUC, ROHS COMPLIANT, DIE
STMICROELECTR

RHF330K-02V

OP-AMP, 1930uV OFFSET-MAX, CDFP8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT-8
STMICROELECTR

RHF330K2

OP-AMP, 1930uV OFFSET-MAX, CDFP8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT-8
STMICROELECTR

RHF350

Rad-hard 550 MHz low noise operational amplifier
STMICROELECTR

RHF350DIE2V

OP-AMP, 2150uV OFFSET-MAX, UUC, ROHS COMPLIANT, DIE
STMICROELECTR