RHF330K-02V [STMICROELECTRONICS]

OP-AMP, 1930uV OFFSET-MAX, CDFP8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT-8;
RHF330K-02V
型号: RHF330K-02V
厂家: ST    ST
描述:

OP-AMP, 1930uV OFFSET-MAX, CDFP8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT-8

放大器 CD
文件: 总24页 (文件大小:748K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RHF330  
Rad-hard 1 GHz low noise operational amplifier  
Preliminary data  
Features  
Pin connections  
Bandwidth: 1 GHz (gain = +2)  
Quiescent current: 16.6 mA  
Slew rate: 1800 V/μs  
(top view)  
Ceramic Flat-8  
Input noise: 1.3 nV/Hz  
Distortion: SFDR = -78 dBc (10 MHz, 2 V )  
pp  
100 Ω load optimized output stage  
5 V power supply  
1
4
8
5
NC  
IN -  
NC  
300 krad MIL-STD-883 1019.7 ELDRS free  
+VCC  
compliant  
IN +  
OUT  
NC  
SEL immune at 125° C, LET up to  
-VCC  
2
110 MEV.cm /mg  
SET characterized, LET up to  
2
110 MEV.cm /mg  
Applications  
Communication satellites  
Space data acquisition systems  
Aerospace instrumentation  
Nuclear and high energy physics  
Harsh radiation environments  
ADC drivers  
The RHF330 is a single operator available in the  
Flat-8 hermetic ceramic package, saving board  
space as well as providing excellent thermal and  
dynamic performance.  
Description  
The RHF330 is a current feedback operational  
amplifier that uses very high-speed  
complementary technology to provide a large  
bandwidth of 1 GHz in gains of 2 while drawing  
only 16.6 mA of quiescent current. In addition, the  
RHF330 offers 0.1 dB gain flatness up to  
160 MHz with a gain of 2.  
With a slew rate of 1800 V/µs and an output stage  
optimized for standard 100 Ω load, this device is  
highly suitable for applications where speed and  
low-distortion are the main requirements.  
May 2009  
Doc ID 15576 Rev 1  
1/24  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
24  
Contents  
RHF330  
Contents  
1
2
3
4
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Demonstration board schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power supply considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
Single power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5
Noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1  
5.2  
5.3  
Measurement of the input voltage noise eN . . . . . . . . . . . . . . . . . . . . . . . 15  
Measurement of the negative input current noise iNn . . . . . . . . . . . . . . . 15  
Measurement of the positive input current noise iNp . . . . . . . . . . . . . . . . 15  
6
7
8
9
Intermodulation distortion product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Bias of an inverting amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Active filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
9.1  
Ceramic Flat-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10  
11  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/24  
Doc ID 15576 Rev 1  
RHF330  
Absolute maximum ratings and operating conditions  
1
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Vid  
Supply voltage (1)  
6
+/-0.5  
+/-2.5  
-55 to + 125  
-65 to +150  
150  
V
V
Differential input voltage (2)  
Vin  
Input voltage range (3)  
V
Toper  
Tstg  
Tj  
Operating free air temperature range  
Storage temperature  
°C  
°C  
Maximum junction temperature  
Flat-8 thermal resistance junction to ambient  
Flat-8 thermal resistance junction to case  
°C  
Rthja  
Rthjc  
50  
°C/W  
°C/W  
30  
Flat-8 maximum power dissipation(4)  
(Tamb = 25° C) for Tj = 150° C  
Pmax  
830  
mW  
kV  
HBM: human body model (5)  
pins 1, 4, 5, 6, 7 and 8  
pins 2 and 3  
2
0.6  
MM: machine model (6)  
V
ESD  
pins 1, 4, 5, 6, 7 and 8  
pins 2 and 3  
200  
80  
CDM: charged device model(7)  
pins 1, 4, 5, 6, 7 and 8  
pins 2 and 3  
kV  
1.5  
1
Latch-up immunity  
200  
mA  
1. All voltage values are measured with respect to the ground pin.  
2. Differential voltage is the non-inverting input terminal with respect to the inverting input terminal.  
3. The magnitude of input and output voltage must never exceed VCC +0.3 V.  
4. Short-circuits can cause excessive heating. Destructive dissipation can result from short-circuits on all  
amplifiers.  
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a  
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations  
while the other pins are floating.  
6. This is a minimum value.  
Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between  
two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of  
connected pin combinations while the other pins are floating.  
7. Charged device model: all pins and package are charged together to the specified voltage and then  
discharged directly to the ground through only one pin.  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
Vicm  
Supply voltage  
4.5 to 5.5  
V
-VCC +1.5 V to  
+VCC-1.5V  
Common mode input voltage  
V
Doc ID 15576 Rev 1  
3/24  
Electrical characteristics  
RHF330  
2
Electrical characteristics  
Table 3.  
Electrical characteristics for V = 2.5 V, T  
= +25° C  
CC  
amb  
(unless otherwise specified)  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
Tamb  
Tmin < Tamb < Tmax  
Tamb  
-3.1  
0.18  
26  
7
+3.1  
+1.93  
55  
Input offset voltage  
Offset voltage between both inputs  
Vio  
mV  
μA  
μA  
dB  
(1)  
-1.47  
Non-inverting input bias current  
DC current necessary to bias the + input  
Iib+  
Tmin < Tamb < Tmax  
Tamb  
5
48  
22  
Inverting input bias current  
DC current necessary to bias the - input  
Iib-  
Tmin < Tamb < Tmax  
ΔVic = 1 V  
0
50  
17  
54  
74  
Common mode rejection ratio  
CMR  
20 log (ΔVic/ΔVio)  
Tmin < Tamb < Tmax  
ΔVCC = 3.5 V to 5 V  
Tmin < Tamb < Tmax  
50.5  
60  
Supply voltage rejection ratio  
SVR  
PSRR  
ICC  
dB  
dB  
20 log (ΔVCC/ΔVout  
)
64  
Power supply rejection ratio  
ΔVCC = 200 mVpp at  
1 kHz  
56  
20 log (ΔVCC/ΔVout  
)
No load  
16.6  
20.2  
17.5  
mA  
mA  
Supply current  
DC consumption with no input signal  
Tmin < Tamb < Tmax  
Dynamic performance and output characteristics  
Transimpedance  
Output voltage/input current gain in  
open loop of a CFA.  
For a VFA, the analog of this feature is  
ΔVout= 1 V, RL = 100 Ω  
104  
123  
153  
kΩ  
kΩ  
ROL  
Tmin < Tamb < Tmax  
the open loop gain (AVD  
)
Vout = 20 mVpp,  
RL = 100 Ω  
AV = +2  
-3 dB bandwidth  
Frequency where the gain is 3dB below  
the DC gain AV  
1000  
630  
AV = -4  
550  
Bw  
AV = -4,  
Tmin < Tamb < Tmax  
MHz  
TBD  
TBD  
160  
Gain flatness at 0.1 dB  
Band of frequency where the gain  
variation does not exceed 0.1 dB  
Small signal  
Vout = 20 mVpp  
AV = +2, RL = 100 Ω  
Slew rate  
Maximum output speed of sweep in  
large signal  
Vout = 2 Vpp, AV = +2,  
RL = 100 Ω  
SR  
1800  
1.64  
V/μs  
RL = 100 Ω  
1.5  
VOH  
High level output voltage  
V
Tmin < Tamb < Tmax  
1.55  
4/24  
Doc ID 15576 Rev 1  
RHF330  
Table 3.  
Electrical characteristics  
Electrical characteristics for V = 2.5 V, T  
= +25° C  
CC  
amb  
(unless otherwise specified) (continued)  
Symbol  
Parameter  
Test conditions  
RL = 100 Ω  
Min.  
Typ.  
Max.  
Unit  
-1.55  
-1.5  
VOL  
Low level output voltage  
V
Tmin < Tamb < Tmax  
Output to GND  
-1.49  
Isink  
360  
390  
453  
Short-circuit output current coming into  
the op-amp (2)  
Tmin < Tamb < Tmax  
Output to GND  
Iout  
mA  
Isource  
-320  
-319  
-400  
Output current coming out from the  
op-amp(3)  
Tmin < Tamb < Tmax  
Noise and distortion  
eN  
iN  
Equivalent input noise voltage (4)  
F = 100 kHz  
F = 100 kHz  
F = 100 kHz  
1.3  
22  
16  
nV/Hz  
pA/Hz  
pA/Hz  
Equivalent input noise current (+)(4)  
Equivalent input noise current (-) (4)  
AV = +2, Vout = 2 Vpp,  
RL = 100 Ω  
Spurious free dynamic range:  
the highest harmonic of the output  
F = 10 MHz  
-78  
-73  
-48  
-37  
SFDR  
dBc  
spectrum when injecting a filtered sine F = 20 MHz  
wave.  
F = 100 MHz  
F = 150 MHz  
1. Worst case of the parameter on a standard sample across the range Tmin < Tamb < Tmax. The evaluation is done on 50  
units in the SO-8 plastic package.  
2. See Figure 11 for more details.  
3. See Figure 10 for more details.  
4. See Chapter 5 on page 14.  
Table 4.  
Closed-loop gain and feedback components  
VCC (V)  
Gain  
Rfb (Ω)  
+10  
-10  
+4  
-4  
200  
200  
240  
240  
300  
270  
300  
270  
2.5  
+2  
-2  
+1  
-1  
Doc ID 15576 Rev 1  
5/24  
Electrical characteristics  
RHF330  
Figure 1.  
Frequency response, positive gain Figure 2.  
Flatness, gain = +2 compensated  
6.5  
6.1  
6.0  
5.9  
5.8  
24  
22  
20  
18  
16  
14  
12  
10  
8
Gain=10  
Vin  
Vout  
100  
+
-
0.5pF  
300  
300  
Gain=4  
Gain=2  
Gain=1  
Gain=+2, Vcc=+5V,  
Small Signal  
6
4
2
0
-2  
-4  
Small Signal  
Vcc=5V  
-6  
-8  
Load=100  
Ω
-10  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
Figure 3.  
Flatness, gain = +4 compensated  
Figure 4.  
Flatness, gain = +10 compensated  
12.2  
12.1  
11.5  
11.4  
11.3  
20.3  
20.2  
19.6  
19.5  
19.4  
Vin  
Vin  
Vout  
100  
+
-
Vout  
100  
+
-
2.7pF  
12pF  
240  
200  
82  
22  
Gain=+4, Vcc=+5V,  
Small Signal  
Gain=+10, Vcc=+5V,  
Small Signal  
11.2  
1M  
19.3  
1M  
10M  
100M  
1G  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
Figure 5.  
Quiescent current vs. V  
Figure 6.  
Positive slew rate  
CC  
20  
15  
10  
5
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
Gain=+2  
Vcc=+5V  
Load=100  
Icc(+)  
Ω
0
-5  
-10  
Icc(-)  
Gain=+2  
Vcc=5V  
Input to ground, no load  
-15  
-20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
-2ns  
-1ns  
0s  
1ns  
2ns  
Vcc (V)  
Time (ns)  
6/24  
Doc ID 15576 Rev 1  
RHF330  
Electrical characteristics  
Figure 7.  
Negative slew rate  
Figure 8.  
Output amplitude vs. load  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
4.0  
Gain=+2  
Vcc=+5V  
Load=100  
Ω
3.5  
3.0  
2.5  
Gain=+2  
Vcc=5V  
Load=100  
Ω
2.0  
10  
-2ns  
-1ns  
0s  
1ns  
2ns  
100  
1k  
10k  
100k  
Time (ns)  
Load (ohms)  
Figure 9.  
Distortion vs. amplitude  
Figure 10. I  
source  
0
-50  
Gain=+2  
Vcc=+5V  
F=10MHz  
Load=100  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
-500  
-550  
Ω
HD2  
HD3  
-600  
0.0  
0.5  
1.0  
1.5  
2.0  
V (V)  
Figure 11. I  
Figure 12. Noise figure  
sink  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Vcc=5V  
0
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
V (V)  
Doc ID 15576 Rev 1  
7/24  
Electrical characteristics  
RHF330  
Figure 13. Input current noise vs. frequency  
Figure 14. Input voltage noise vs. frequency  
Gain=14.1dB  
Rg=180ohms  
Rfb=750ohms  
Gain=37dB  
Rg=10ohms  
Rfb=750ohms  
non-inverting input in short-circuit  
Vcc=5V  
non-inverting input in short-circuit  
Vcc=5V  
Neg. Current  
Noise  
Pos. Current  
Noise  
Figure 15. Reverse isolation vs. frequency  
Figure 16. I  
vs. temperature  
out  
0
2.0  
1.5  
Isource  
-20  
-40  
-60  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
Isink  
-80  
Small Signal  
Vcc=5V  
Output: short-circuit  
Vcc=5V  
Load=100  
Ω
-100  
1M  
10M  
100M  
1G  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Frequency (Hz)  
Temperature (°C)  
Figure 17. CMR vs. temperature  
Figure 18. SVR vs. temperature  
85  
80  
75  
70  
65  
60  
64  
62  
60  
58  
56  
54  
52  
50  
Gain=+1  
55  
48  
Vcc=5V  
Vcc=5V  
Load=100  
Ω
46  
Load=100Ω  
50  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
8/24  
Doc ID 15576 Rev 1  
RHF330  
Electrical characteristics  
Figure 19. R vs. temperature  
Figure 20. V and V vs. temperature  
OH OL  
OL  
180  
160  
140  
120  
2
1
VOH  
0
-1  
-2  
-3  
-4  
VOL  
100  
Gain=+2  
Vcc=5V  
Open Loop  
Vcc=5V  
Load=100  
Ω
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
100  
100  
120  
120  
120  
Temperature (°C)  
Temperature (°C)  
Figure 21. I  
vs. temperature  
Figure 22. I vs. temperature  
bias  
CC  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
20  
15  
Ib(+)  
Icc(+)  
10  
5
0
-5  
-10  
Icc(-)  
-15  
Ib()  
-20  
Gain=+2  
Vcc=5V  
no Load  
In+/In- to GND  
-25  
-30  
-35  
8
6
Vcc=5V  
Load=100  
Ω
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature ( C)  
Figure 23. V vs. temperature  
io  
1000  
Open Loop  
Vcc=5V  
Load=100  
Ω
800  
600  
400  
200  
0
-40  
-20  
0
20  
40  
60  
80  
Temperature ( C)  
Doc ID 15576 Rev 1  
9/24  
Demonstration board schematics  
RHF330  
3
Demonstration board schematics  
Figure 24. Electrical schematics (inverting and non-inverting gain configuration)  
Figure 25. RHF3xx demonstration board  
10/24  
Doc ID 15576 Rev 1  
RHF330  
Demonstration board schematics  
Figure 26. Top view layout  
Figure 27. Bottom view layout  
Doc ID 15576 Rev 1  
11/24  
Power supply considerations  
RHF330  
4
Power supply considerations  
Correct power supply bypassing is very important for optimizing performance in high-  
frequency ranges. The bypass capacitors should be placed as close as possible to the IC  
pins to improve high-frequency bypassing. A capacitor greater than 1 μF is necessary to  
minimize the distortion. For better quality bypassing, a 10 nF capacitor can be added. It  
should also be placed as close as possible to the IC pins. The bypass capacitors must be  
incorporated for both the negative and the positive supply.  
For example, on the RHF3xx single op-amp demonstration board, these capacitors are C6,  
C7, C8, C9.  
Figure 28. Circuit for power supply bypassing  
+VCC  
10 µF  
+
10 nF  
+
-
10 nF  
10 µF  
+
-VCC  
AM00835  
4.1  
Single power supply  
In the event that a single supply system is used, biasing is necessary to obtain a positive  
output dynamic range between 0 V and +V supply rails. Considering the values of V  
CC  
OH  
and V , the amplifier will provide an output swing from +0.9 V to +4.1 V on a 100 Ω load.  
OL  
The amplifier must be biased with a mid-supply (nominally +V /2), in order to maintain the  
CC  
DC component of the signal at this value. Several options are possible to provide this bias  
supply, such as a virtual ground using an operational amplifier or a two-resistance divider  
(which is the cheapest solution). A high resistance value is required to limit the current  
consumption. On the other hand, the current must be high enough to bias the non-inverting  
input of the amplifier. If we consider this bias current (55 μA maximum) as 1% of the current  
through the resistance divider, to keep a stable mid-supply, two resistances of 470 Ω can be  
used.  
The input provides a high-pass filter with a break frequency below 10 Hz which is necessary  
to remove the original 0 V DC component of the input signal, and to set it at +V /2.  
CC  
Figure 29 on page 13 illustrates a 5 V single power supply configuration for the RHF3xx  
single op-amp demonstration board.  
12/24  
Doc ID 15576 Rev 1  
RHF330  
Power supply considerations  
A capacitor C is added in the gain network to ensure a unity gain in low frequencies to  
G
keep the right DC component at the output. C contributes to a high-pass filter with R //R  
G
fb  
G
and its value is calculated with regard to the cut-off frequency of this low-pass filter.  
Figure 29. Circuit for +5 V single supply  
+5 V  
10 µF  
+
IN  
+5 V  
100 µ F  
OUT  
Rin  
1 kΩ  
_
100 Ω  
R1  
470 Ω  
Rfb  
RG  
CG  
+ 1 µF 10 nF  
R2  
470 Ω  
+
AM00836  
Doc ID 15576 Rev 1  
13/24  
Noise measurements  
RHF330  
5
Noise measurements  
The noise model is shown in Figure 30.  
eN: input voltage noise of the amplifier  
iNn: negative input current noise of the amplifier  
iNp: positive input current noise of the amplifier  
Figure 30. Noise model  
+
Output  
HP3577  
+
-
iN  
iN  
R3  
_
Input noise:  
8 nV/Hz  
N3  
eN  
R2  
N2  
R1  
N1  
AM00837  
The thermal noise of a resistance R is:  
4kTRΔF  
where ΔF is the specified bandwidth.  
On a 1 Hz bandwidth the thermal noise is reduced to:  
4kTR  
where k is the Boltzmann's constant, equal to 1,374.E(-23)J/°K. T is the temperature (°K).  
The output noise eNo is calculated using the superposition theorem. However, eNo is not  
the simple sum of all noise sources, but rather the square root of the sum of the square of  
each noise source, as shown in Equation 1.  
Equation 1  
eNo = V12 + V22 + V32 + V42 + V52 + V62  
14/24  
Doc ID 15576 Rev 1  
RHF330  
Noise measurements  
Equation 2  
2
2
2
2
2
2
2
R22  
R1  
R22  
R1  
eNo2 = eN × g + iNn × R2 + iNp × R3 × g +  
× 4kTR1 + 4kTR2 + 1 + ------- × 4kTR3  
-------  
The input noise of the instrumentation must be extracted from the measured noise value.  
The real output noise value of the driver is:  
Equation 3  
eNo = (Measured)2 (instrumentation)2  
The input noise is called equivalent input noise because it is not directly measured but is  
evaluated from the measurement of the output divided by the closed loop gain (eNo/g).  
After simplification of the fourth and the fifth term of Equation 2 we obtain:  
Equation 4  
R22  
R1  
2
2
2
2
2
2
2
eNo2 = eN × g + iNn × R2 + iNp × R3 × g + g × 4kTR2 + 1 + ------- × 4kTR3  
5.1  
Measurement of the input voltage noise eN  
If we assume a short-circuit on the non-inverting input (R3=0), from Equation 4 we can  
derive:  
Equation 5  
eNo = eN2 × g2 + iNn2 × R22 + g × 4kTR2  
In order to easily extract the value of eN, the resistance R2 will be chosen to be as low as  
possible. On the other hand, the gain must be large enough.  
R3=0, gain: g=100  
5.2  
5.3  
Measurement of the negative input current noise iNn  
To measure the negative input current noise iNn, we set R3=0 and use Equation 5. This  
time, the gain must be lower in order to decrease the thermal noise contribution.  
R3=0, gain: g=10  
Measurement of the positive input current noise iNp  
To extract iNp from Equation 3, a resistance R3 is connected to the non-inverting input. The  
value of R3 must be chosen in order to keep its thermal noise contribution as low as  
possible against the iNp contribution.  
R3=100 W, gain: g=10  
Doc ID 15576 Rev 1  
15/24  
Intermodulation distortion product  
RHF330  
6
Intermodulation distortion product  
The non-ideal output of the amplifier can be described by the following series of equations.  
Vout = C0 + C1Vin + C2V2in + + C Vn  
in  
n
where the input is V =Asinωt, C is the DC component, C (V ) is the fundamental and C is  
in  
0
1
in  
n
the amplitude of the harmonics of the output signal V  
.
out  
A one-frequency (one-tone) input signal contributes to harmonic distortion. A two-tone input  
signal contributes to harmonic distortion and to the intermodulation product.  
The study of the intermodulation and distortion for a two-tone input signal is the first step in  
characterizing the driving capability of multi-tone input signals.  
In this case:  
Vin = Asinω t + Asinω t  
1
2
then:  
Vout = C0 + C1(Asinω t + Asinω t) + C2(Asinω t + Asinω t)2+ Cn(Asinω t + Asinω t)n  
1
2
1
2
1
2
From this expression, we can extract the distortion terms and the intermodulation terms  
from a single sine wave.  
Second order intermodulation terms IM2 by the frequencies (ω -ω ) and (ω +ω ) with an  
1 2 1 2  
2
amplitude of C2A .  
Third order intermodulation terms IM3 by the frequencies (2ω -ω ), (2ω +ω ), (ω +2ω )  
1
2
1
2
1
2
3
and (ω +2ω ) with an amplitude of (3/4)C3A .  
1
2
The intermodulation product of the driver is measured by using the driver as a mixer in a  
summing amplifier configuration (Figure 31 on page 17). In this way, the non-linearity  
problem of an external mixing device is avoided.  
16/24  
Doc ID 15576 Rev 1  
RHF330  
Intermodulation distortion product  
Figure 31. Inverting summing amplifier  
Rfb  
Vin1  
Vin2  
R1  
R2  
_
+
Vout  
100 Ω  
R
AM00838  
Doc ID 15576 Rev 1  
17/24  
Bias of an inverting amplifier  
RHF330  
7
Bias of an inverting amplifier  
A resistance is necessary to achieve good input biasing, such as resistance R shown in  
Figure 32.  
The value of this resistance is calculated from the negative and positive input bias current.  
The aim is to compensate for the offset bias current, which can affect the input offset voltage  
and the output DC component. Assuming I , I , R , R and a zero volt output, the  
ib- ib+  
in  
fb  
resistance R is:  
Rin × Rfb  
R = ------------------------  
R
in + Rfb  
Figure 32. Compensation of the input bias current  
Rfb  
Rin  
-
Iib  
VCC  
+
_
+
Output  
Load  
-
+
VCC  
Iib  
R
AM00839  
18/24  
Doc ID 15576 Rev 1  
RHF330  
Active filtering  
8
Active filtering  
Figure 33. Low-pass active filtering, Sallen-Key  
C1  
R1  
R2  
+
IN  
OUT  
C2  
_
100 Ω  
Rfb  
RG  
AM00840  
From the resistors R and R we can directly calculate the gain of the filter in a classic non-  
fb  
G
inverting amplification configuration.  
Rfb  
AV = g = 1 + --------  
Rg  
We assume the following expression is the response of the system.  
Voutjω  
g
Tjω = ---------------- = ----------------------------------------  
(jω)2  
Vinjω  
jω  
----  
1 + 2ζ + -----------  
ω 2  
ω
c
c
The cut-off frequency is not gain-dependent and so becomes:  
1
ω = ------------------------------------  
c
R1R2C1C2  
The damping factor is calculated by the following expression.  
1
--  
ζ = ω (C1R1 + C1R2 + C2R1 C1R1g)  
c
2
The higher the gain, the more sensitive the damping factor is. When the gain is higher than  
1, it is preferable to use very stable resistor and capacitor values. In the case of R1=R2=R:  
Rfb  
--------  
2C2 C  
1 Rg  
ζ = --------------------------------  
2 C1C2  
Due to a limited selection of capacitor values in comparison with resistors, we can set  
C1=C2=C, so that:  
Rfb  
--------  
2R2 R  
1 Rg  
ζ = --------------------------------  
2 R1R2  
Doc ID 15576 Rev 1  
19/24  
Package information  
RHF330  
9
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
20/24  
Doc ID 15576 Rev 1  
RHF330  
Package information  
9.1  
Ceramic Flat-8 package information  
Figure 34. Ceramic Flat-8 package mechanical drawing  
Table 5.  
Ref.  
Ceramic Flat-8 package mechanical data  
Dimensions  
Millimeters  
Inches  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
b
2.24  
0.38  
0.10  
6.35  
6.35  
4.32  
0.88  
2.44  
0.43  
0.13  
6.48  
6.48  
4.45  
1.01  
1.27  
3.00  
0.79  
1.12  
08  
2.64  
0.48  
0.16  
6.61  
6.61  
4.58  
1.14  
0.088  
0.015  
0.004  
0.250  
0.250  
0.170  
0.035  
0.096  
0.017  
0.005  
0.255  
0.255  
0.175  
0.040  
0.050  
0.118  
0.031  
0.044  
08  
0.104  
0.019  
0.006  
0.260  
0.260  
0.180  
0.045  
c
D
E
E2  
E3  
e
L
Q
S1  
N
0.66  
0.92  
0.92  
1.32  
0.026  
0.036  
0.092  
0.052  
Doc ID 15576 Rev 1  
21/24  
Ordering information  
RHF330  
10  
Ordering information  
Table 6.  
Order codes  
Description  
Temperature  
range  
Order code  
Package  
Terminal finish  
Marking  
RHF330K-01V  
RHF330K-02V  
RHF330K1  
Flight parts (QMLV) -55°C to +125°C  
Flight parts (QMLV) -55°C to +125°C  
Engineering samples -55°C to +125°C  
Flat-8  
Flat-8  
Flat-8  
Gold  
Solder  
Gold  
TBD  
TBD  
RHF330K1  
Engineeringsamples  
-55°C to +125°C  
RHF330K2  
Flat-8  
Gold  
-
RHF330K2  
No marking  
with 48-hrs burn-in  
RHF330DIE2V  
Flight parts (QMLV) -55°C to +125°C  
Bare die  
22/24  
Doc ID 15576 Rev 1  
RHF330  
Revision history  
11  
Revision history  
Table 7.  
Date  
20-May-2009  
Document revision history  
Revision  
Changes  
1
Initial release.  
Doc ID 15576 Rev 1  
23/24  
RHF330  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
24/24  
Doc ID 15576 Rev 1  

相关型号:

RHF330K2

OP-AMP, 1930uV OFFSET-MAX, CDFP8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT-8
STMICROELECTR

RHF350

Rad-hard 550 MHz low noise operational amplifier
STMICROELECTR

RHF350DIE2V

OP-AMP, 2150uV OFFSET-MAX, UUC, ROHS COMPLIANT, DIE
STMICROELECTR

RHF350K-02V

OP-AMP, 2150uV OFFSET-MAX, CDSO8, HERMETIC SEALED, CERAMIC, FLAT PACKAGE-8
STMICROELECTR

RHF350K2

OP-AMP, 2150uV OFFSET-MAX, CDSO8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT PACKAGE-8
STMICROELECTR

RHF43B

RAD-hardened precision bipolar single operational amplifier
STMICROELECTR

RHF43BDIE2V

OP-AMP, 500uV OFFSET-MAX, 7.5MHz BAND WIDTH, UUC
STMICROELECTR

RHF43BK-01Q

OP-AMP, 500uV OFFSET-MAX, 7.5MHz BAND WIDTH, CDFP8, ROHS COMPLIANT, CERAMIC, FLAT-8
STMICROELECTR

RHF43BK-01V

RAD-hardened precision bipolar single operational amplifier
STMICROELECTR

RHF43BK1

RAD-hardened precision bipolar single operational amplifier
STMICROELECTR

RHF43BK2

RAD-hardened precision bipolar single operational amplifier
STMICROELECTR

RHF43B_11

Rad-hard precision bipolar single operational amplifier
STMICROELECTR