RHF310K2 [STMICROELECTRONICS]

OP-AMP, 3900uV OFFSET-MAX, CDSO8, ROHS COMPLIANT, CERAMIC, FLAT PACKAGE-8;
RHF310K2
型号: RHF310K2
厂家: ST    ST
描述:

OP-AMP, 3900uV OFFSET-MAX, CDSO8, ROHS COMPLIANT, CERAMIC, FLAT PACKAGE-8

放大器 CD
文件: 总22页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RHF310  
Rad-hard 400 µA high-speed operational amplifier  
Preliminary data  
Features  
Pin connections  
TM  
OptimWatt device featuring ultra-low 2 mW  
consumption and low 400 μA quiescent  
(top view)  
(a)  
current  
Bandwidth: 120 MHz (gain = 2)  
Slew rate: 115 V/μs  
Ceramic Flat-8  
Specified on 1 kΩ  
1
4
8
5
Input noise: 7.5 nV/Hz  
Tested with 5 V power supply  
NC  
IN -  
NC  
+VCC  
IN +  
300 krad MIL-STD-883 1019.7 ELDRS free  
OUT  
NC  
-VCC  
compliant  
SEL immune at 125° C, LET up to  
2
110 MEV.cm /mg  
SET characterized, LET up to  
2
110 MEV.cm /mg  
Applications  
Low-power, high-speed systems  
Communication and space equipment  
Harsh radiation environments  
ADC drivers  
Description  
The RHF310 is a very low power, high-speed  
operational amplifier. A bandwidth of 120 MHz is  
achieved while drawing only 400 µA of quiescent  
current. This low-power characteristic is  
particularly suitable for high-speed, battery-  
powered equipment requiring dynamic  
performance. The RHF310 is a single operator  
available in Flat-8 package, saving board room as  
well as providing excellent thermal performance.  
TM  
a. OptimWatt is an STMIcroelectronics registered trademark  
that applies to products with specific features that optimize  
energy efficiency.  
May 2009  
Doc ID 15577 Rev 1  
1/22  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
22  
Contents  
RHF310  
Contents  
1
2
3
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Power supply considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
Single power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4
Noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
4.2  
4.3  
Measurement of the input voltage noise eN . . . . . . . . . . . . . . . . . . . . . . . 13  
Measurement of the negative input current noise iNn . . . . . . . . . . . . . . . 13  
Measurement of the positive input current noise iNp . . . . . . . . . . . . . . . . 13  
5
6
7
8
Intermodulation distortion product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Bias of an inverting amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Active filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
8.1  
Ceramic Flat-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10  
2/22  
Doc ID 15577 Rev 1  
RHF310  
Absolute maximum ratings and operating conditions  
1
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
Supply voltage (1)  
(voltage difference between -VCC and +VCC pins)  
VCC  
6
V
Vid  
Vin  
Differential input voltage(2)  
+/-0.5  
+/-2.5  
-65 to +150  
150  
V
V
Input voltage range(3)  
Tstg  
Tj  
Storage temperature  
°C  
Maximum junction temperature  
Thermal resistance junction to ambient area  
Thermal resistance junction to case  
°C  
Rthja  
Rthjc  
125  
°C/W  
°C/W  
40  
Maximum power dissipation(4) (at Tamb = 25° C)  
for Tj = 150° C  
Pmax  
250  
mW  
kV  
HBM: human body model (5)  
pins 1, 4, 5, 6, 7 and 8  
pins 2 and 3  
2
0.5  
ESD  
MM: machine model (6)  
V
pins 1, 4, 5, 6, 7 and 8  
pins 2 and 3  
200  
60  
CDM: charged device model (all pins)(7)  
1.5  
kV  
Latch-up immunity  
200  
mA  
1. All voltages values are measured with respect to the ground pin.  
2. Differential voltage is the non-inverting input terminal with respect to the inverting input terminal.  
3. The magnitude of input and output voltage must never exceed VCC +0.3 V.  
4. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on  
amplifiers.  
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a  
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations  
while the other pins are floating.  
6. This is a minimum value. Machine model: a 200 pF capacitor is charged to the specified voltage, then  
discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω).  
This is done for all couples of connected pin combinations while the other pins are floating.  
7. Charged device model: all pins and package are charged together to the specified voltage and then  
discharged directly to the ground through only one pin. This is done for all pins.  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
Vicm  
Tj  
Supply voltage  
4.5 to 5.5  
V
-VCC +1.5 V to  
+VCC -1.5 V  
Common mode input voltage  
Operating junction temperature range  
V
-55 to +125  
°C  
Doc ID 15577 Rev 1  
3/22  
Electrical characteristics  
RHF310  
2
Electrical characteristics  
Table 3.  
Electrical characteristics for V = 2.5 V, T  
= 25° C  
CC  
amb  
(unless otherwise specified)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
DC performance  
Tamb  
1.7  
6.5  
3.9  
Input offset voltage  
Offset voltage between both inputs  
Vio  
ΔVio  
Iib+  
mV  
µV/°C  
µA  
Tmin < Tamb < Tmax  
Tmin < Tamb < Tmax  
Tamb  
Vio drift vs. temperature  
4
3.1  
12  
6.8  
5
Non-inverting input bias current  
DC current necessary to bias the + input  
Tmin < Tamb < Tmax  
Tamb  
0.1  
61  
82  
Inverting input bias current  
DC current necessary to bias the - input  
Iib-  
µA  
dB  
dB  
Tmin < Tamb < Tmax  
ΔVic = 1 V  
1.57  
57  
58  
65  
77  
Common mode rejection ratio  
CMR  
20 log (ΔVic/ΔVio)  
Tmin < Tamb < Tmax  
ΔVCC= 3.5 V to 5 V  
Tmin < Tamb < Tmax  
Supply voltage rejection ratio  
SVR  
PSRR  
ICC  
20 log (ΔVCC/ΔVio)  
Power supply rejection ratio  
AV = +1, ΔVCC= 100 mV  
at 1 kHz  
50  
dB  
µA  
20 log (ΔVCC/ΔVout  
)
No load  
400  
530  
479  
Positive supply current  
DC consumption with no input signal  
Tmin < Tamb < Tmax  
Dynamic performance and output characteristics  
Transimpedance  
Output voltage/input current gain in open  
loop of a CFA.  
For a VFA, the analog of this feature is the  
RL = 1 kΩ, Vout = 1 V  
0.6  
1.45  
MΩ  
MΩ  
ROL  
Tmin < Tamb < Tmax  
0.64  
open loop gain (AVD  
)
Small signal  
RL = 1 kΩ  
AV = +1, Rfb = 3 kΩ  
AV = +2, Rfb = 3 kΩ  
AV = +10, Rfb = 510 Ω  
230  
120  
26  
-3 dB bandwidth  
80  
Frequency where the gain is 3 dB below  
the DC gain AV  
MHz  
(1)  
Bw  
SR  
AV = +2, Rfb = 3 kΩ  
TBD  
Tmin < Tamb < Tmax  
Gain flatness at 0.1 dB  
Small signal  
Band of frequency where the gain variation Vout = 20 mVp-p  
25  
does not exceed 0.1 dB  
AV = +2, RL = 1kΩ  
Vout = 2 Vp-p, AV = +2,  
RL = 1 kΩ  
Slew rate  
75  
115  
90  
Maximum output speed of sweep in large  
signal  
V/µs  
Tmin < Tamb < Tmax  
4/22  
Doc ID 15577 Rev 1  
RHF310  
Table 3.  
Electrical characteristics  
Electrical characteristics for V = 2.5 V, T  
= 25° C  
CC  
amb  
(unless otherwise specified) (continued)  
Symbol  
Parameter  
Test conditions  
RL = 1 kΩ  
Min. Typ. Max.  
Unit  
1.55  
1.65  
VOH  
High level output voltage  
V
Tmin < Tamb < Tmax  
RL = 1 kΩ  
1.56  
-1.66 -1.55  
-1.58  
VOL  
Low level output voltage  
V
Tmin < Tamb < Tmax  
Output to GND  
Isink  
70  
88  
110  
Short-circuit output current coming into the  
op-amp(2)  
Tmin < Tamb < Tmax  
Iout  
mA  
Output to GND  
60  
75  
100  
Isource  
Output current coming out of the op-amp(3)  
Tmin < Tamb < Tmax  
Noise and distortion  
eN  
Equivalent input noise voltage(4)  
F = 100 kHz  
F = 100 kHz  
F = 100 kHz  
7.5  
13  
6
nV/Hz  
pA/Hz  
pA/Hz  
Equivalent input noise current (+)(4)  
Equivalent input noise current (-)(4)  
iN  
Spurious free dynamic range  
The highest harmonic of the output  
spectrum when injecting a filtered sine  
wave  
Vout = 2 Vp-p, AV = +2,  
RL = 1 kΩ  
SFDR  
F = 1 MHz  
-87  
-55  
dBc  
dBc  
F = 10 MHz  
1. Gain bandwidth product criterion is not applicable for CFA.  
2. See Figure 10.  
3. See Figure 11.  
4. See Chapter 5 on page 14.  
Note:  
For Tmin < Tamb < Tmax, minimum and maximum values are the worst case of the parameter  
on a standard lot along the entire temperature variation. The evaluation is performed on 50  
units in Flat-8 package. The temperature curves on pages 6, 7 and 8 are a representation of  
the average of these 50 units.  
Table 4.  
Closed-loop gain and feedback components  
VCC (V)  
Gain  
Rfb (Ω)  
+10  
-10  
+4  
-4  
100  
180  
150  
300  
1.2k  
1k  
2.5  
+2  
-2  
+1  
-1  
3k  
3k  
Doc ID 15577 Rev 1  
5/22  
Electrical characteristics  
RHF310  
Figure 1.  
Frequency response, positive gain Figure 2.  
Frequency response vs. capa-load  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
C-Load=10pF  
C-Load=4.7pF  
R-iso=33 ohms  
R-iso=0  
Gain=+10  
6
4
Gain=+4  
Gain=+2  
C-Load=22pF  
R-iso=47ohms  
2
0
Vin  
6
4
+
-
Vout  
-2  
-4  
-6  
-8  
-10  
R-iso  
2
Gain=+1  
3k  
0
-2  
-4  
1k  
3k  
C-Load  
Small Signal  
Vcc=5V  
-6  
-8  
Gain=+2, Vcc=5V,  
Small Signal  
Load=1k  
Ω
-10  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Figure 3.  
Output amplitude vs. load  
Figure 4.  
Input voltage noise vs. frequency  
4.0  
Gain=32dB  
Rg=12ohms  
Rfb=510ohms  
non-inverting input in short-circuit  
Vcc=5V  
3.5  
3.0  
2.5  
2.0  
10  
100  
1k  
10k  
100k  
Load (ohms)  
Figure 5.  
Distortion at 1 MHz  
Figure 6.  
Distortion at 10 MHz  
-20  
0
Vcc=5V  
F=1MHz  
Load=1k  
Vcc=5V  
F=10MHz  
Load=1k  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Ω
Ω
H2  
H2  
H3  
H3  
0
1
2
3
4
0
1
2
3
4
Output (Vp-p)  
Output (Vp-p)  
6/22  
Doc ID 15577 Rev 1  
RHF310  
Electrical characteristics  
Figure 7.  
Positive slew-rate on 1 kΩ load  
Figure 8.  
Negative slew-rate on 1 kΩ load  
Figure 9.  
Quiescent current vs. V  
Figure 10. I  
CC  
sink  
150  
400  
200  
0
125  
100  
75  
Icc(+)  
Gain=+2  
Vcc=5V  
Inputs to ground, no load  
50  
-200  
Icc(-)  
25  
-400  
1.25  
1.50  
1.75  
2.00  
2.25  
2.50  
0
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
+/-Vcc (V)  
V (V)  
Figure 11. I  
Figure 12. Bandwidth vs. temperature  
source  
0
200  
190  
180  
170  
160  
150  
140  
130  
120  
-25  
-50  
-75  
-100  
-125  
110  
Gain=+2  
Vcc=5V  
100  
Load=1k  
-40  
Ω
90  
-20  
0
20  
40  
60  
80  
100  
120  
-150  
0.0  
0.5  
1.0  
1.5  
2.0  
Temperature (°C)  
V (V)  
Doc ID 15577 Rev 1  
7/22  
Electrical characteristics  
RHF310  
Figure 13. CMR vs. temperature  
Figure 14. SVR vs. temperature  
66  
90  
88  
86  
84  
82  
80  
78  
76  
74  
64  
62  
60  
58  
Vcc=5V  
Load=1k  
Vcc=5V  
72  
Ω
Load=1k  
Ω
56  
70  
-40  
-20  
0
20  
40  
60  
80  
100  
100  
100  
120  
120  
120  
-40  
-20  
0
20  
40  
60  
80  
80  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 15. Slew rate vs. temperature  
Figure 16. R vs. temperature  
OL  
140  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
neg. SR  
130  
120  
pos. SR  
110  
100  
Gain=+2  
Vcc=5V  
Load=1k  
90  
80  
1.25  
Open Loop  
Ω
Vcc=5V  
1.20  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 17. I  
vs. temperature  
Figure 18. V vs. temperature  
bias  
io  
5
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
4
Ib(+)  
3
2
1
0
Ib()  
-1  
-2 Vcc=5V  
Open Loop  
1.2  
Vcc=5V  
1.0  
-3  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
100  
120  
Temperature (°C)  
Temperature ( C)  
8/22  
Doc ID 15577 Rev 1  
RHF310  
Electrical characteristics  
Figure 19. V and V vs. temperature  
Figure 20. I  
vs. temperature  
OH  
OL  
out  
200  
150  
100  
50  
2
1
VOH  
Isource  
Isink  
0
0
-50  
-1  
-2  
-3  
-4  
VOL  
-100  
-150  
-200  
Gain=+2  
Vcc=+/-2.5V  
Load=1k  
Output: short-circuit  
Vcc=5V  
-250  
-300  
Ω
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 21. I vs. temperature  
CC  
400  
Icc(+)  
200  
0
-200  
Icc(-)  
-400  
-600  
Gain=+2  
Vcc=5V  
no Load  
-800  
in(+) and in(-) to GND  
-1000  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature ( C)  
Doc ID 15577 Rev 1  
9/22  
Power supply considerations  
RHF310  
3
Power supply considerations  
Correct power supply bypassing is very important to optimize the performance in high-  
frequency ranges. The bypass capacitors should be placed as close as possible to the IC  
pins to improve high-frequency bypassing. A capacitor greater than 1 µF is necessary to  
minimize the distortion. For better quality bypassing, a capacitor of 10 nF can be added. It  
should also be placed as close as possible to the IC pins. The bypass capacitors must be  
incorporated for both the negative and positive supply.  
Figure 22. Circuit for power supply bypassing  
+VCC  
10 µF  
+
10 nF  
+
-
10 nF  
10 µF  
+
-VCC  
AM00835  
3.1  
Single power supply  
If you use a single supply system, biasing is necessary to obtain a positive output dynamic  
range between 0 V and +V supply rails. Considering the values of V and V , the  
CC  
OH  
OL  
amplifier will provide an output swing from +0.9 V to +4.1 V on 1 kΩ loads.  
The amplifier must be biased with a mid-supply (nominally +V /2), in order to maintain the  
CC  
DC component of the signal at this value. Several options are possible to provide this bias  
supply, such as a virtual ground using an operational amplifier or a two-resistance divider  
(which is the cheapest solution). A high resistance value is required to limit the current  
consumption. On the other hand, the current must be high enough to bias the non-inverting  
input of the amplifier. If we consider this bias current (55 µA maximum) as 1% of the current  
through the resistance divider, to keep a stable mid-supply, two resistances of 470 Ω can be  
used.  
The input provides a high-pass filter with a break frequency below 10 Hz, which is  
necessary to remove the original 0 V DC component of the input signal, and to set it at  
+V /2.  
CC  
Figure 23 on page 11 illustrates a 5 V single power supply configuration.  
A capacitor C is added in the gain network to ensure a unity gain in low frequencies to  
G
keep the right DC component at the output. C contributes to a high-pass filter with R //R  
G
fb  
G
and its value is calculated with a consideration of the cut-off frequency of this low-pass filter.  
10/22  
Doc ID 15577 Rev 1  
RHF310  
Power supply considerations  
Figure 23. Circuit for +5 V single supply  
+5 V  
10 µF  
+
IN  
OUT  
Rin  
1 kΩ  
+5 V  
_
1 kΩ  
R1  
470 Ω  
Rfb  
RG  
CG  
+ 1 µF 10 nF  
R2  
470 Ω  
+
AM00841  
Doc ID 15577 Rev 1  
11/22  
Noise measurements  
RHF310  
4
Noise measurements  
The noise model is shown in Figure 24.  
eN: input voltage noise of the amplifier.  
iNn: negative input current noise of the amplifier.  
iNp: positive input current noise of the amplifier.  
Figure 24. Noise model  
+
Output  
HP3577  
+
-
iN  
iN  
R3  
_
Input noise:  
8 nV/Hz  
N3  
eN  
R2  
N2  
R1  
N1  
AM00837  
The thermal noise of a resistance R is:  
4kTRΔF  
where ΔF is the specified bandwidth, and k is the Boltzmann's constant, equal to  
1,374.10-23J/°K. T is the temperature (°K).  
On a 1 Hz bandwidth the thermal noise is reduced to:  
4kTR  
The output noise eNo is calculated using the superposition theorem. However, eNo is not  
the simple sum of all noise sources, but rather the square root of the sum of the square of  
each noise source, as shown in Equation 1.  
Equation 1  
eNo = V12 + V22 + V32 + V42 + V52 + V62  
12/22  
Doc ID 15577 Rev 1  
RHF310  
Noise measurements  
Equation 2  
2
2
2
2
2
2
2
R22  
R1  
R22  
R1  
eNo2 = eN × g + iNn × R2 + iNp × R3 × g +  
× 4kTR1 + 4kTR2 + 1 + ------- × 4kTR3  
-------  
The input noise of the instrumentation must be extracted from the measured noise value.  
The real output noise value of the driver is:  
Equation 3  
eNo = (Measured)2 (instrumentation)2  
The input noise is called equivalent input noise because it is not directly measured but is  
evaluated from the measurement of the output divided by the closed loop gain (eNo/g).  
After simplification of the fourth and fifth terms of Equation 2, you obtain:  
Equation 4  
R22  
R1  
2
2
2
2
2
2
2
eNo2 = eN × g + iNn × R2 + iNp × R3 × g + g × 4kTR2 + 1 + ------- × 4kTR3  
4.1  
Measurement of the input voltage noise eN  
Assuming a short-circuit on the non-inverting input (R3=0), from Equation 4 you can derive:  
Equation 5  
eNo = eN2 × g2 + iNn2 × R22 + g × 4kTR2  
In order to easily extract the value of eN, the resistance R2 must be chosen to be as low as  
possible. On the other hand, the gain must be high enough.  
R3=0, gain: g=100  
4.2  
4.3  
Measurement of the negative input current noise iNn  
To measure the negative input current noise iNn, R3 is set to zero and Equation 5 is used.  
This time, the gain must be lower in order to decrease the thermal noise contribution.  
R3=0, gain: g=10  
Measurement of the positive input current noise iNp  
To extract iNp from Equation 3, a resistance R3 is connected to the non-inverting input. The  
value of R3 must be chosen in order to keep its thermal noise contribution as low as  
possible against the iNp contribution.  
R3=100 Ω, gain: g=10  
Doc ID 15577 Rev 1  
13/22  
Intermodulation distortion product  
RHF310  
5
Intermodulation distortion product  
The non-ideal output of the amplifier can be described by the following series of equations.  
Vout = C0 + C1Vin + C2V2in + + C Vn  
in  
n
where the input is V = Asinωt, C is the DC component, C (V ) is the fundamental and C  
n
in  
0
1
in  
is the amplitude of the harmonics of the output signal V  
.
out  
A one-frequency (one-tone) input signal contributes to harmonic distortion. A two-tone input  
signal contributes to harmonic distortion and to the intermodulation product.  
The study of the intermodulation and distortion for a two-tone input signal is the first step in  
characterizing the driving capability of multi-tone input signals.  
In this case:  
Vin = Asinω t + Asinω t  
1
2
therefore:  
Vout = C0 + C1(Asinω t + Asinω t) + C2(Asinω t + Asinω t)2+ Cn(Asinω t + Asinω t)n  
1
2
1
2
1
2
From this expression, we can extract the distortion terms, and the intermodulation terms  
from a single sine wave.  
Second-order intermodulation terms IM2 by the frequencies (ω -ω ) and (ω +ω ) with an  
1 2 1 2  
2
amplitude of C2A .  
Third-order intermodulation terms IM3 by the frequencies (2ω -ω ), (2ω +ω ), (ω +2ω )  
1
2
1
2
1
2
3
and (ω +2ω ) with an amplitude of (3/4)C3A .  
1
2
The intermodulation product of the driver is measured by using the driver as a mixer in a  
summing amplifier configuration (Figure 25). In this way, the non-linearity problem of an  
external mixing device is avoided.  
14/22  
Doc ID 15577 Rev 1  
RHF310  
Intermodulation distortion product  
Figure 25. Inverting summing amplifier  
Rfb  
Vin1  
R1  
R2  
Vin2  
_
+
Vout  
1 kΩ  
R
AM00842  
Doc ID 15577 Rev 1  
15/22  
Bias of an inverting amplifier  
RHF310  
6
Bias of an inverting amplifier  
A resistance is necessary to achieve good input biasing, such as resistance R shown in  
Figure 26.  
The value of this resistance is calculated from the negative and positive input bias current.  
The aim is to compensate for the offset bias current, which can affect the input offset voltage  
and the output DC component. Assuming I , I , R , R and a 0 V output, the resistance  
ib- ib+  
in  
fb  
R is:  
Rin × Rfb  
R = ------------------------  
R
in + Rfb  
Figure 26. Compensation of the input bias current  
Rfb  
Rin  
-
Iib  
VCC  
+
_
+
Output  
Load  
-
+
VCC  
Iib  
R
AM00839  
16/22  
Doc ID 15577 Rev 1  
RHF310  
Active filtering  
7
Active filtering  
Figure 27. Low-pass active filtering, Sallen-Key  
C1  
R1  
R2  
+
IN  
OUT  
C2  
_
1 kΩ  
Rfb  
RG  
AM00843  
From the resistors R and R , it is possible to directly calculate the gain of the filter in a  
fb  
G
classic non-inverting amplification configuration.  
Rfb  
AV = g = 1 + --------  
Rg  
The response of the system is assumed to be:  
Voutjω  
g
Tjω = ---------------- = ----------------------------------------  
(jω)2  
Vinjω  
jω  
----  
1 + 2ζ + -----------  
ω 2  
ω
c
c
The cut-off frequency is not gain-dependent and so becomes:  
1
ω = ------------------------------------  
c
R1R2C1C2  
The damping factor is calculated using the following expression.  
1
--  
ζ = ω (C1R1 + C1R2 + C2R1 C1R1g)  
c
2
The higher the gain, the more sensitive the damping factor. When the gain is higher than 1,  
it is preferable to use very stable resistor and capacitor values. In the case of R1=R2=R:  
Rfb  
--------  
2C2 C  
1 Rg  
ζ = --------------------------------  
2 C1C2  
Due to a limited selection of capacitor values in comparison with the resistors, you can set  
C1=C2=C, so that:  
Rfb  
--------  
2R2 R  
1 Rg  
ζ = --------------------------------  
2 R1R2  
Doc ID 15577 Rev 1  
17/22  
Package information  
RHF310  
8
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
18/22  
Doc ID 15577 Rev 1  
RHF310  
Package information  
8.1  
Ceramic Flat-8 package information  
Figure 28. Ceramic Flat-8 package mechanical drawing  
Table 5.  
Ref.  
Ceramic Flat-8 package mechanical data  
Dimensions  
Millimeters  
Inches  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
b
2.24  
0.38  
0.10  
6.35  
6.35  
4.32  
0.88  
2.44  
0.43  
0.13  
6.48  
6.48  
4.45  
1.01  
1.27  
3.00  
0.79  
1.12  
08  
2.64  
0.48  
0.16  
6.61  
6.61  
4.58  
1.14  
0.088  
0.015  
0.004  
0.250  
0.250  
0.170  
0.035  
0.096  
0.017  
0.005  
0.255  
0.255  
0.175  
0.040  
0.050  
0.118  
0.031  
0.044  
08  
0.104  
0.019  
0.006  
0.260  
0.260  
0.180  
0.045  
c
D
E
E2  
E3  
e
L
Q
S1  
N
0.66  
0.92  
0.92  
1.32  
0.026  
0.036  
0.092  
0.052  
Doc ID 15577 Rev 1  
19/22  
Ordering information  
RHF310  
9
Ordering information  
Table 6.  
Order codes  
Description  
Temperature  
range  
Order code  
Package  
Terminal finish  
Marking  
RHF310K-01V  
RHF310K-02V  
RHF310K1  
Flight parts (QMLV) -55°C to +125°C  
Flight parts (QMLV) -55°C to +125°C  
Engineering samples -55°C to +125°C  
Flat-8  
Flat-8  
Flat-8  
Gold  
Solder  
Gold  
TBD  
TBD  
RHF310K1  
Engineeringsamples  
-55°C to +125°C  
RHF310K2  
Flat-8  
Gold  
-
RHF310K2  
No marking  
with 48-hour burn-in  
RHF310DIE2V  
Flight parts (QMLV) -55°C to +125°C  
Bare die  
20/22  
Doc ID 15577 Rev 1  
RHF310  
Revision history  
10  
Revision history  
Table 7.  
Date  
26-May-2009  
Document revision history  
Revision  
Changes  
1
Initial release.  
Doc ID 15577 Rev 1  
21/22  
RHF310  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
22/22  
Doc ID 15577 Rev 1  

相关型号:

RHF330

Rad-hard 1 GHz low noise operational amplifier
STMICROELECTR

RHF330DIE2V

OP-AMP, 1930uV OFFSET-MAX, UUC, ROHS COMPLIANT, DIE
STMICROELECTR

RHF330K-02V

OP-AMP, 1930uV OFFSET-MAX, CDFP8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT-8
STMICROELECTR

RHF330K2

OP-AMP, 1930uV OFFSET-MAX, CDFP8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT-8
STMICROELECTR

RHF350

Rad-hard 550 MHz low noise operational amplifier
STMICROELECTR

RHF350DIE2V

OP-AMP, 2150uV OFFSET-MAX, UUC, ROHS COMPLIANT, DIE
STMICROELECTR

RHF350K-02V

OP-AMP, 2150uV OFFSET-MAX, CDSO8, HERMETIC SEALED, CERAMIC, FLAT PACKAGE-8
STMICROELECTR

RHF350K2

OP-AMP, 2150uV OFFSET-MAX, CDSO8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT PACKAGE-8
STMICROELECTR

RHF43B

RAD-hardened precision bipolar single operational amplifier
STMICROELECTR

RHF43BDIE2V

OP-AMP, 500uV OFFSET-MAX, 7.5MHz BAND WIDTH, UUC
STMICROELECTR

RHF43BK-01Q

OP-AMP, 500uV OFFSET-MAX, 7.5MHz BAND WIDTH, CDFP8, ROHS COMPLIANT, CERAMIC, FLAT-8
STMICROELECTR

RHF43BK-01V

RAD-hardened precision bipolar single operational amplifier
STMICROELECTR