RHF1201KSO-01V [STMICROELECTRONICS]

Rad-hard 12-bit 0.5 to 50 Msps A/D converter; 抗辐射12位0.5〜 50 Msps的A / D转换器
RHF1201KSO-01V
型号: RHF1201KSO-01V
厂家: ST    ST
描述:

Rad-hard 12-bit 0.5 to 50 Msps A/D converter
抗辐射12位0.5〜 50 Msps的A / D转换器

转换器 模数转换器 光电二极管
文件: 总18页 (文件大小:194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RHF1201  
Rad-hard 12-bit 0.5 to 50 Msps A/D converter  
Features  
SO-48 package  
Wide sampling range: 0.5Msps to 50Msps  
TM  
Optimwatt adaptive power:  
44mW @ 0.5Msps, 100mW @ 50Msps  
Input range: 2 V differential  
pp  
SFDR up to 75dB @ FS = 50Msps,  
Fin = 15MHz  
2.5V / 3.3V compatible digital I/O  
Pin connections (top view)  
Built-in reference voltage with external bias  
capability  
1
48  
Hermetic package  
Rad-hard: 300 kRad(Si) TID  
Failure immune (SEFI) and latchup immune  
2
(SEL) up to 120 MeV-cm /mg at 2.7V and  
125°C  
Qml-V qualified, smd 5962-05217  
24  
25  
Applications  
Digital communication satellites  
Space data acquisition systems  
Aerospace instrumentation  
Specifically designed for optimizing power  
consumption, the RHF1201 can dissipate as little  
as 100mW at 50Msps, while maintaining a high  
level of performance.  
Nuclear and high-energy physics  
It integrates a proprietary track-and-hold structure  
to ensure IF-sampling applications up to 150  
MHz.  
Description  
The RHF1201 is a 12-bit 50MHz maximum  
sampling frequency analog to digital converter  
using pure (ELDRS-free) CMOS 0.25µm  
technology combining high performance, radiation  
robustness and very low power consumption.  
A voltage reference is integrated in the circuit to  
simplify the design and minimize external  
components. A tri-state capability is available on  
the outputs to allow common bus sharing. Output  
data can be coded in two different formats.  
The RHF1201 is based on a pipeline structure  
and digital error correction to provide excellent  
static linearity and achieve 10.3 effective bits at  
A Data Ready signal which is raised when the  
data is valid on the output can be used for  
synchronization purposes.  
FS = 50Msps, and F = 15MHz.  
in  
The RHF1201 is available in -55° C to +125° C  
temperature range, in a small 48-pin hermetic  
SO-48 package.  
June 2007  
Rev 2  
1/18  
www.st.com  
18  
Contents  
RHF1201  
Contents  
1
2
3
4
5
6
7
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6  
Electrical characteristics (unchanged after 300kRad) . . . . . . . . . . . . . . 7  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.1  
7.2  
RHF1201 operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Driving the analog input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
7.2.1  
7.2.2  
7.2.3  
Differential inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
IF-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7.3  
Reference connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.3.1  
7.3.2  
Internal reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
External reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.4  
7.5  
7.6  
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power consumption optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
8
Definitions of specified parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Static parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Dynamic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10  
11  
2/18  
RHF1201  
Block diagram  
1
Block diagram  
Figure 1.  
Block diagram  
VREFP  
+2.5V  
+2.5V/3.3V  
GNDA  
IPOL  
VIN  
Reference  
circuit  
stage  
1
stage  
2
stage  
n
INCM  
VINB  
VREFM  
DFSB  
SRC  
OEB  
Sequencer-phase shifting  
Digital data correction  
CLK  
Timing  
DR  
DO  
TO  
Buffers  
D11  
OR  
GND  
2
Pin connections  
Figure 2.  
Pin connections (top view)  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
3/18  
Pin descriptions  
RHF1201  
3
Pin descriptions  
Table 1.  
Pin  
Pin descriptions  
Name  
Description  
Observation  
Pin  
Name  
Description  
Observation  
2.5 V/3.3 V CMOS  
input  
1
2
3
GNDBI  
GNDBE  
VCCBE  
Digital buffer ground  
0 V  
25  
SRC  
Slew rate control input  
2.5 V/3.3 V CMOS  
input  
Digital buffer ground  
0 V  
26  
27  
OEB  
Output Enable input  
Digital buffer power  
supply  
2.5 V/3.3 V CMOS  
input  
2.5 V/3.3 V  
DFSB  
Data Format Select input  
4
5
NC  
NC  
Non connected  
Non connected  
28  
29  
AVCC  
AVCC  
Analog power supply  
Analog power supply  
2.5 V  
2.5 V  
CMOS output  
(2.5 V/3.3 V)  
6
OR  
D11(MSB)  
D10  
D9  
Out Of Range output  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
AGND  
IPOL  
Analog ground  
0 V  
Most Significant Bit  
output  
CMOS output  
(2.5 V/3.3 V)  
7
Analog bias current input  
Top voltage reference  
CMOS output  
(2.5 V/3.3 V)  
8
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
VREFP  
VREFM  
AGND  
VIN  
1 V  
0 V  
0 V  
CMOS output  
(2.5 V/3.3 V)  
Bottom voltage  
reference  
9
CMOS output  
(2.5 V/3.3 V)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
D8  
Analog ground  
CMOS output  
(2.5 V/3.3 V)  
D7  
Analog input  
1 V  
0 V  
1 V  
0 V  
pp  
pp  
CMOS output  
(2.5 V/3.3 V)  
D6  
AGND  
VINB  
Analog ground  
CMOS output  
(2.5 V/3.3 V)  
D5  
Inverted analog input  
Analog ground  
CMOS output  
(2.5 V/3.3 V)  
D4  
AGND  
INCM  
AGND  
AVCC  
AVCC  
DVCC  
CMOS output  
(2.5 V/3.3 V)  
D3  
Input common mode  
Analog ground  
0.5 V  
0 V  
CMOS output  
(2.5 V/3.3 V)  
D2  
CMOS output  
(2.5 V/3.3 V)  
D1  
Analog power supply  
Analog power supply  
Digital power supply  
2.5 V  
2.5 V  
2.5 V  
Least Significant Bit  
output  
CMOS output  
(2.5 V/3.3 V)  
D0(LSB)  
DR  
CMOS output  
(2.5 V/3.3 V)  
Data Ready output  
20  
21  
NC  
NC  
Non connected  
Non connected  
44  
45  
DVCC  
Digital power supply  
Digital ground  
2.5 V  
0 V  
DGND  
Digital Buffer power  
supply  
2.5 V compatible  
CMOS input  
22  
23  
24  
VCCBE  
GNDBE  
VCCBI  
2.5 V/3.3 V  
0 V  
46  
47  
48  
CLK  
Clock input  
Digital Buffer ground  
DGND  
DGND  
Digital ground  
Digital ground  
0 V  
0 V  
Digital Buffer power  
supply  
2.5 V  
4/18  
RHF1201  
Timing characteristics  
4
Timing characteristics  
Table 2.  
Symbol  
Timing table  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
FS  
Tck  
DC  
TC1  
TC2  
Sampling frequency  
Sampling clock cycle  
Clock duty cycle  
0.5  
20  
45  
10  
8
50  
MHz  
ns  
2000  
65  
FS = 45 Msps  
50  
%
Clock pulse width (high)  
Clock pulse width (low)  
1800  
1800  
ns  
ns  
Data output delay (fall of  
clock to data valid)  
Tod  
Tpd  
Tdr  
10 pF load capacitance  
4
5
6
ns  
Data pipeline delay  
5.5  
5.5  
0.5  
5.5  
cycles  
cycles  
Data ready delay after data  
change  
Falling edge of OEB to  
digital output valid data  
Ton  
Toff  
1
1
3
3
ns  
ns  
ns  
ns  
ns  
ns  
Rising edge of OEB to  
digital output tri-state  
SRC = 0 5 pF load  
capacitance  
2.8  
5.7  
2
T
Data rising time  
rD  
SRC = 1 5pF load  
capacitance  
SRC = 0 5pF load  
capacitance  
TfD  
Data falling time  
SRC = 1 5pF load  
capacitance  
4.3  
Figure 3.  
Timing diagram  
N+2  
N+3  
N+1  
N+4  
N
N+5  
N-3  
N-1  
N+6  
N-2  
CLK  
Tpd + Tod  
Tdr  
OEB  
Ton  
Toff  
Tod  
DATA  
OUT  
N-9  
N-8  
N-7  
N-6  
N-5  
N-4  
N-3  
N-1  
N
DR  
HZ state  
5/18  
Absolute maximum ratings and operating conditions  
RHF1201  
5
Absolute maximum ratings and operating conditions  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Values  
Unit  
AVCC  
DVCC  
VCCBI  
VCCBE  
IDout  
Analog supply voltage(1)  
Digital supply voltage(1)  
0 to 3.3  
0 to 3.3  
0 to 3.3  
0 to 3.6  
-100 to 100  
-65 to +150  
22  
V
V
Digital buffer supply voltage(1)  
Digital buffer supply voltage(1)  
Digital output current  
V
V
mA  
°C  
°C/W  
Tstg  
Storage temperature  
Rthjc  
Junction - case thermal resistance  
Electrostatic discharge  
- HBM  
ESD  
2
kV  
1. All voltage values, except differential voltage, are with respect to network ground terminal. The magnitude  
of input and output voltages must never exceed -0.3 V or VCC +0.3 V.  
Table 4.  
Symbol  
Operating conditions  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
AVCC  
DVCC  
Analog supply voltage  
Digital supply voltage  
2.3  
2.3  
2.5  
2.5  
2.7  
2.7  
V
V
Digital internal buffer  
supply  
VCCBI  
VCCBE  
VREFP  
2.3  
2.3  
0.5  
2.5  
2.5  
1
2.7  
3.4  
V
V
V
Digital output buffer supply  
Forced top voltage  
reference  
AVCC  
Bottom internal reference  
voltage  
VREFM  
0
0
0.5  
V
6/18  
RHF1201  
Electrical characteristics (unchanged after 300kRad)  
6
Electrical characteristics (unchanged after 300kRad)  
Test conditions, unless otherwise specified are: AVCC = DVCC = V  
= 2.5 V, FS = 50 Msps,  
CCB  
F = 2 MHz, V @ -1 dBSF, VREFP = Internal, V  
= 0 V, T  
= 25° C  
in  
IN  
REFM  
amb  
Table 5.  
Symbol  
Analog inputs  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
VIN-VINB  
Cin  
Full scale reference voltage  
Input capacitance  
2.0  
7.0  
Vpp  
pF  
Rin  
Input resistance  
Effective resolution  
bandwidth(1)  
ERB  
95  
MHz  
1. See Section 8: Definitions of specified parameters on page 14 for more information.  
Table 6.  
Symbol  
Reference voltage  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
AVCC from 2.3V to 2.7V  
VREFP  
Top internal reference voltage  
Input common mode voltage  
0.82  
0.95  
1.16  
V
Tmin = -55° C to  
Tmax = 125° C(1)  
AVCC=2.3 V to  
AVCC=2.7 V  
VINCM  
0.43  
052  
0.67  
V
Tmin = -55° C to  
Tmax = 125° C(1)  
VREFP  
0.12  
0.12  
mV/°C  
mV/°C  
Tmin = -55° C to  
Tmax = 125° C(1)  
TempCo  
Temperature coefficients  
VINCM  
Tmin = -55° C to  
Tmax = 125° C(1)  
1. Not fully tested over the temperature range. Guaranteed by sampling.  
Table 7.  
Symbol  
Digital inputs and outputs  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Clock input  
VIL  
Logic "0" voltage  
Logic "1" voltage  
0
0.8  
V
V
VIH  
2.0  
2.5  
Digital inputs  
0.25  
VCCBE  
VIL  
Logic "0" voltage  
Logic "1" voltage  
0
V
V
0.75  
VCCBE  
VIH  
VCCBE  
7/18  
Electrical characteristics (unchanged after 300kRad)  
RHF1201  
Unit  
Table 7.  
Symbol  
Digital inputs and outputs (continued)  
Parameter Test conditions  
Min  
Typ  
Max  
Digital outputs  
VOL  
VOH  
Logic "0" voltage  
Logic "1" voltage  
IOL = -1mA  
0
0.2  
V
V
VCCBE  
- 0.2  
IOH = 1mA  
IOZ  
CL  
High impedance leakage current  
Output load capacitance  
OEB set to VIH  
-15  
15  
15  
µA  
pF  
Table 8.  
Symbol  
Accuracy  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Fin = 2 MHz,  
VIN @ +1 dBFS  
OE  
Offset error  
±0.3  
%
Fin = 2 MHz,  
VIN @ +1 dBFS  
DNL  
Differential non linearity(1)  
±0.5  
±1.7  
LSB  
LSB  
Fin = 2 MHz,  
VIN @ +1 dBFS  
INL  
-
Integral non linearity(1)  
Monotonicity and no missing codes  
Guaranteed  
1. See Section 8: Definitions of specified parameters on page 14 for more information.  
Table 9.  
Symbol  
Dynamic characteristics  
Parameter(1)  
Test  
Min  
Typ  
Max  
Unit  
conditions(2)  
Fin = 15 MHz  
Fin = 95 MHz  
Fin = 145 MHz  
Fin = 15 MHz  
Fin = 95 MHz  
Fin = 145 MHz  
Fin = 15 MHz  
-75  
-70  
-57  
63  
-63  
dBc  
SFDR  
SNR  
Spurious free dynamic range  
Signal to noise ratio  
dBc  
dB  
59  
60  
dB  
59  
-76  
-72  
-58  
63  
-64  
dB  
dB  
THD  
Total harmonics distortion  
F
in = 95 MHz  
Fin = 145 MHz  
in = 15 MHz  
F
59  
dB  
SINAD  
ENOB  
Signal to noise and distortion ratio Fin = 95 MHz  
60  
Fin = 145 MHz  
Fin = 15 MHz  
56.5  
10.3  
9.5  
9.1  
dB  
bits  
bits  
9.7  
Effective number of bits  
Fin = 95 MHz  
Fin = 145 MHz  
1. See Section 8: Definitions of specified parameters on page 14 for more information.  
2. VREFP = 1 V with external supply.  
8/18  
RHF1201  
Application information  
7
Application information  
The RHF1201 is a high speed analog to digital converter based on a pipeline architecture  
and a 0.25 µm CMOS process to achieve the best performance in terms of linearity and  
power consumption.  
The pipeline structure consists of 11 internal conversion stages in which the analog signal is  
fed and sequentially converted into digital data. Signal input is sampled on the rising edge of  
the clock.  
The first 10 stages of the conversion include at each stage, an analog to digital converter, a  
digital to analog converter, a Sample and Hold, and an amplifier with a gain of 2. A 1.5 bit  
conversion resolution is also performed at each stage. The final stage is simply a  
comparator. Each resulting LSB-MSB couple is then time shifted to recover from the delay  
caused by the conversion. Digital data correction completes the processing by recovering  
from the redundancy of the (LSB-MSB) couple at each stage. The corrected data is output  
through the digital buffers.  
The advantages of such a converter reside in the combination of pipeline architecture and  
the most advanced technologies. The highest dynamic performances are achieved while  
consumption remains at the lowest level.  
7.1  
RHF1201 operating modes  
Extra functionalities are provided to simplify the application board as much as possible. The  
operation modes offered by the RHF1201 are described in the following table.  
Table 10. RHF1201 operating modes  
Inputs  
Outputs  
Most significant  
Analog input differential level  
DFSB OEB SRC  
OR  
DR  
bit (MSB)  
(VIN-VINB  
)
>
RANGE  
H
H
H
L
L
L
L
L
L
L
H
X
X
X
X
X
X
X
X
X
H
L
H
H
L
CLK  
CLK  
CLK  
D11  
D11  
D11  
-RANGE  
RANGE>  
>
(VIN-VINB)  
(VIN-VINB  
)
>-RANGE  
RANGE  
(VIN-VINB  
-RANGE  
RANGE>  
)
>
H
H
L
CLK D11 Complemented  
CLK D11 Complemented  
CLK D11 Complemented  
>
(VIN-VINB  
)
L
(VIN-VINB  
)
>-RANGE  
L
X
X
X
X
X
X
HZ  
X
HZ  
HZ  
CLK  
CLK  
Low slew rate  
High slew rate  
X
Data format select (DFSB)  
When set to low level (V ), the digital input DFSB provides a two’s complement digital  
IL  
output MSB. This can be of interest when performing some further signal processing.  
When set to high level (V ), DFSB provides a standard binary output coding.  
IH  
9/18  
Application information  
RHF1201  
Output enable (OEB)  
When set to low level (V ), all digital outputs remain active and are in low impedance state.  
IL  
When set to high level (V ), all digital output buffers are in high impedance state while the  
IH  
converter goes on sampling. When OEB is set to a low level again, the data arrives on the  
output with a very short T delay. This mechanism allows the chip select of the device.  
on  
Figure 3: Timing diagram on page 5 summarizes this functionality.  
Slew rate control (SRC)  
When set to high level (V ), all digital output currents are limited to a clamp value so that  
IH  
digital noise power is reduced to the minimum. When set to low level (V ), the output edges  
IL  
are twice as fast.  
Out of range (OR)  
This function is implemented on the output stage in order to set an “Out of Range” flag  
whenever the digital data is over the full scale range.  
Typically, there is a detection of all the data at ’0’ or all the data at ’1’. It sets an output signal  
OR which is in low level state (V ) when the data stays within the range, or in high level  
OL  
state (V ) when the data is out of range.  
OH  
Data ready (DR)  
The Data Ready output is an image of the clock being synchronized on the output data (D0  
to D11). This is a very helpful signal that simplifies the synchronization of the measurement  
equipment or of the controlling DSP.  
As all other digital outputs, DR goes into high impedance state when OEB is set to high level  
as shown in Figure 3: Timing diagram on page 5.  
7.2  
Driving the analog input  
7.2.1  
Differential inputs  
The RHF1201is designed to obtain optimum performance when driven on differential inputs.  
An RF transformer is an efficient way of achieving this high performance.  
Figure 4: Differential input configuration describes the schematics. The input signal is fed to  
the primary of the transformer, while the secondary drives both ADC inputs. The common  
mode voltage of the ADC (INCM) is connected to the center-tap of the secondary of the  
transformer in order to bias the input signal around this common voltage, internally set close  
to 0.5V. The INCM is de-coupled to maintain a low noise level on this node. Our evaluation  
board is mounted with a 1:1 ADT1-1 transformer from Minicircuits. You might also use a  
higher impedance ratio (1:2 or 1:4) to reduce the driving requirement on the analog signal  
source.  
Each analog input can drive a 1 V amplitude input signal, so the resulting differential  
pp  
amplitude is 2 V .  
pp  
10/18  
RHF1201  
Application information  
Figure 4.  
Differential input configuration  
ADT1-1  
Analog source  
1:1  
VIN  
RHF1201  
50Ω  
10-100pF  
VINB  
INCM  
330pF  
10nF  
470nF  
7.2.2  
Single-ended input configuration  
Some applications may require a single-ended input which is easily achieved with the  
configuration shown in Figure 5: Single-ended input configuration.  
The lack of accurate differential driving with its common-mode noise and even harmonics  
cancellation advantages can degrade the rated RHF1201 performance. It is then  
recommended to use a well de-coupled DC reference to bias the RHF1201 inputs.  
In this case, one can use an AC-coupled analog input and set the DC analog level with high  
value (10 kΩ to 100 kΩ) resistor connected to a proper DC source.  
The internal references INCM (0.52 V) or REFP (1 V) can be used as proper DC sources.  
Using 1 V DC with a single signal of 2 V input amplitude gives better SNR performance.  
pp  
Figure 5.  
Single-ended input configuration  
Signal source  
10nF  
VIN  
10-100kΩ  
50Ω  
RHF1201  
VINB  
330pF  
10nF  
470nF  
DC source or REFP  
7.2.3  
IF-sampling  
The RHF1201 is specifically designed to meet sampling requirements for intermediate  
frequency input signals. In particular, the Track-and-Hold in the first stage of the pipeline is  
designed to minimize the linearity limitations as analog frequency increases.This is  
achieved by making the input impedance independent from the input frequency.  
As a result, the RHF1201 can maintain high performance up to an analog frequency of  
150 MHz.  
11/18  
Application information  
RHF1201  
7.3  
Reference connection  
7.3.1  
Internal reference  
In the standard configuration, the ADC is biased with the internal reference voltage. The  
pin is connected to Analog Ground while V is internally set to a voltage close to  
V
REFM  
REFP  
1.0 V. It is recommended to de-couple the V  
in order to minimize low and high  
REFP  
frequency noise. Refer to Figure 6: Internal reference setting for the schematics.  
Figure 6.  
Internal reference setting  
~1V  
470nF  
330pF  
10nF  
VREFP  
VIN  
RHF1201  
VINB  
VREFM  
7.3.2  
External reference  
It is possible to use an external reference voltage instead of the internal one for specific  
applications requiring even better linearity or enhanced temperature behavior. In this case,  
the amplitude of the external voltage must be at least equal to the internal one (1.0 V). You  
can use an external voltage reference with the configuration shown in Figure 7: External  
reference setting to obtain optimum performance.  
Figure 7.  
External reference setting  
1kΩ  
470nF  
10nF  
330pF  
VCCA VREFP  
VIN  
RHF1201  
VINB  
external  
reference  
VREFM  
This can be very helpful in multichannel applications for example to maintain a good  
matching along the sampling frequency range.  
12/18  
RHF1201  
Application information  
7.4  
Clock input  
The quality of your converter is very dependent on your clock input accuracy, in terms of  
aperture jitter; the use of a low jitter crystal controlled oscillator is recommended.  
Further points to consider in your implementation are:  
The input signal must be square-shaped with sharp edges of less than 1 ns.  
At 45 Msps, the duty cycle must be between 45% and 65%; in any case, the high level  
duration of Clock must be longer than 10 ns.  
The clock power supplies must be independent from the ADC output supplies to avoid  
digital noise modulation on the output.  
When powered-on, the circuit needs several clock periods to reach its normal operating  
conditions.  
7.5  
Power consumption optimization  
The internal architecture of the RHF1201 makes it possible to optimize power consumption  
according to the sampling frequency of the application. For this purpose, an External R  
resistor is placed between the IPOL pin and the analog Ground. Therefore, the total  
pol  
dissipation can be adjusted across all the sampling range 0.5 Msps to 50 Msps to fulfil the  
requirements of applications where power saving is a must.  
For low sampling frequency, this value of resistor may be adjusted in order to decrease the  
analog current without any degradation of dynamic performance.  
Table 11 sums up the relevant data.  
Table 11. Total power consumption optimization depending on R value  
pol  
FS (Msps)  
pol (kΩ)  
Optimized power (mW)  
0.85  
100  
44  
1.7  
70  
47  
13.6  
35  
45  
24  
93  
50  
18  
R
60  
100  
7.6  
Layout precautions  
Use of dedicated ground planes (analog, digital, internal and external buffer ones) on  
the PCB is recommended for high speed circuit applications to provide low inductance  
and low resistance common return.  
The separation of the analog signal from the digital output part is mandatory to prevent  
noise from coupling onto the input signal.  
Power supply bypass capacitors must be placed as close as possible to the IC pins in  
order to improve high frequency bypassing and reduce harmonic distortion.  
All leads must be wide and as short as possible especially for the analog input in order  
to decrease parasitic capacitance and inductance.  
Keep the capacitive loading as low as possible at digital outputs, short lead lengths of  
routing are essential to minimize currents when the output changes.  
Choose component sizes as small as possible (SMD).  
13/18  
Definitions of specified parameters  
RHF1201  
8
Definitions of specified parameters  
Static parameters  
Static measurements are performed using the histograms method on a 2 MHz input signal,  
sampled at 50 Msps, which is high enough to fully characterize the test frequency response.  
The input level is +1 dBFS to saturate the signal.  
Differential non linearity (DNL)  
The average deviation of any output code width from the ideal code width of 1 LSB.  
Integral non linearity (INL)  
An ideal converter exhibits a transfer function which is a straight line from the starting code  
to the ending code. The INL is the deviation from this ideal line for each transition.  
Dynamic parameters  
Dynamic measurements are performed by spectral analysis, applied to an input sine wave  
of various frequencies and sampled at 50 Msps.  
Spurious free dynamic range (SFDR)  
The ratio between the power of the worst spurious signal (not always an harmonic) and the  
amplitude of fundamental tone (signal power) over the full Nyquist band. It is expressed in  
dBc.  
Total harmonic distortion (THD)  
The ratio of the rms sum of the first five harmonic distortion components to the rms value of  
the fundamental line. It is expressed in dB.  
Signal to noise ratio (SNR)  
The ratio of the rms value of the fundamental component to the rms sum of all other spectral  
components in the Nyquist band (f / 2) excluding DC, fundamental and the first five  
s
harmonics. SNR is reported in dB.  
Signal to noise and distortion ratio (SINAD)  
Similar ratio as for SNR but including the harmonic distortion components in the noise figure  
(not DC signal). It is expressed in dB.  
The effective number of bits (ENOB) is easily deduced from the SINAD, using the formula:  
SINAD = 6.02 × ENOB + 1.76 dB.  
When the applied signal is not full scale (FS), but has an amplitude A , the SINAD  
0
expression becomes:  
SINAD = 6.02 × ENOB + 1.76 dB + 20 log (2A /FS)  
0
The ENOB is expressed in bits.  
14/18  
RHF1201  
Definitions of specified parameters  
Effective resolution bandwidth  
For a given sampling rate and clock jitter, the analog input frequency at which the SINAD is  
reduced of 3 dB.  
Pipeline delay  
Delay between the initial sample of the analog input and the availability of the corresponding  
digital data output on the output bus. Also called data latency. It is expressed as a number of  
clock cycles.  
15/18  
Package information  
RHF1201  
9
Package information  
Figure 8.  
Ref.  
SO-48 package  
Dimensions  
Millimeters  
Inches  
Typ.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
b
2.18  
0.20  
0.12  
15.57  
9.52  
2.47  
0.254  
0.15  
2.72  
0.30  
0.18  
15.92  
9.78  
0.086  
0.008  
0.005  
0.613  
0.375  
0.097  
0.010  
0.006  
0.620  
0.380  
0.429  
0.250  
0.065  
0.025  
0.008  
0.495  
0.057  
0.031  
0.017  
0.107  
0.012  
0.007  
0.627  
0.385  
c
D
15.75  
9.65  
E
E1  
E2  
E3  
e
10.90  
6.35  
6.22  
1.52  
6.48  
1.78  
0.245  
0.060  
0.255  
0.070  
1.65  
0.635  
0.20  
f
L
12.28  
1.30  
0.66  
0.25  
12.58  
1.45  
12.88  
1.60  
0.92  
0.61  
0.483  
0.051  
0.026  
0.010  
0.507  
0.063  
0.036  
0.024  
P
Q
S1  
0.79  
0.43  
16/18  
RHF1201  
Ordering information  
10  
Ordering information  
Part number  
Temperature range  
Package  
Marking  
RHF1201KSO1  
RHF1201KSO2  
RHF1201KSO-01V  
-55 °C to 125 °C  
-55 °C to 125 °C  
-55 °C to 125 °C  
SO-48  
SO-48  
SO-48  
RHF1201KSO1  
RHF1201KSO2  
F0521701VXC  
11  
Revision history  
Date  
Revision  
Changes  
01-Sep-2006  
1
Initial release in new format.  
Updated failure immune and latchup immune value to 120 MeV-  
2
cm /mg.  
29-Jun-2007  
2
Updated package mechanical data.  
Removed reference to non rad-hard components from Section 7.3.2:  
External reference on page 12.  
17/18  
RHF1201  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
18/18  

相关型号:

RHF1201KSO1

Rad-hard 12-bit 0.5 to 50 Msps A/D converter
STMICROELECTR

RHF1201KSO2

Rad-hard 12-bit 0.5 to 50 Msps A/D converter
STMICROELECTR

RHF1201_11

Rad-hard 12-bit 50 Msps A/D converter
STMICROELECTR

RHF1203CL

Transistor
ROHM

RHF1203CM

Transistor
ROHM

RHF1204CM

RF Small Signal Field-Effect Transistor, N-Channel,
ROHM

RHF1205CM

RF Small Signal Field-Effect Transistor, N-Channel,
ROHM

RHF1401

Rad-hard 14-bit 20Msps 85mW A/D converter
STMICROELECTR

RHF1401KSO-01V

Rad-hard 14-bit 20Msps 85mW A/D converter
STMICROELECTR

RHF1401KSO1

Rad-hard 14-bit 20Msps 85mW A/D converter
STMICROELECTR

RHF1401KSO2

Rad-hard 14-bit 20Msps 85mW A/D converter
STMICROELECTR

RHF1401_12

Rad-hard 14-bit 30 Msps A/D converter
STMICROELECTR