M48T18PC [STMICROELECTRONICS]

64 Kbit 8Kb x 8 TIMEKEEPER SRAM; 64 Kbit的是8K ×8 TIMEKEEPER SRAM
M48T18PC
型号: M48T18PC
厂家: ST    ST
描述:

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
64 Kbit的是8K ×8 TIMEKEEPER SRAM

静态存储器
文件: 总27页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T08  
M48T08Y, M48T18  
®
5V, 64 Kbit (8 Kb x8) TIMEKEEPER SRAM  
FEATURES SUMMARY  
INTEGRATED ULTRA LOW POWER SRAM,  
Figure 1. 28-pin PCDIP, CAPHAT™ Package  
REAL TIME CLOCK, POWER-FAIL  
CONTROL CIRCUIT, AND BATTERY  
BYTEWIDE™ RAM-LIKE CLOCK ACCESS  
BCD CODED YEAR, MONTH, DAY, DATE,  
HOURS, MINUTES, and SECONDS  
TYPICAL CLOCK ACCURACY OF ±1  
MINUTE A MONTH, AT 25°C  
AUTOMATIC POWER-FAIL CHIP  
DESELECT AND WRITE PROTECTION  
WRITE PROTECT VOLTAGES  
28  
1
PCDIP28 (PC)  
Battery/Crystal  
CAPHAT  
(V  
= Power-fail Deselect Voltage):  
PFD  
M48T08: V = 4.75 to 5.5V  
CC  
4.5V V  
4.75V  
PFD  
M48T18/T08Y: V = 4.5 to 5.5V  
CC  
Figure 2. 28-pin SOIC Package  
4.2V V  
4.5V  
PFD  
SOFTWARE CONTROLLED CLOCK  
CALIBRATION FOR HIGH ACCURACY  
APPLICATIONS  
SELF-CONTAINED BATTERY AND  
CRYSTAL IN THE CAPHAT™ DIP  
PACKAGE  
SNAPHAT (SH)  
Battery/Crystal  
PACKAGING INCLUDES A 28-LEAD SOIC  
®
AND SNAPHAT TOP (to be ordered  
separately)  
SOIC PACKAGE PROVIDES DIRECT  
CONNECTION FOR A SNAPHAT TOP  
WHICH CONTAINS THE BATTERY AND  
CRYSTAL  
28  
1
SOH28 (MH)  
PIN AND FUNCTION COMPATIBLE WITH  
DS1643 and JEDEC STANDARD 8K x8  
SRAMs  
April 2004  
1/27  
M48T08, M48T08Y, M48T18  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. 28-pin PCDIP, CAPHAT™ Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2. 28-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 5. SOIC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 7. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 8. WRITE Enable Controlled, WRITE AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 9. Chip Enable Controlled, WRITE AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-fail Interrupt Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Reading the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 10.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 11.Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 12.Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 7. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 13.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 8. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/27  
M48T08, M48T08Y, M48T18  
Table 10. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 11. Power Down/Up Trip Points DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15.PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline . . . . . . . . . . . . . . . . 21  
Table 12. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Mechanical Data. . . . . . . . . 21  
Figure 16.SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline. 22  
Table 13. SOH28 – 28-lead Plastic SO, 4-socket battery SNAPHAT, Package Mech. Data . . . . . 22  
Figure 17.SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline . . . . . . . 23  
Table 14. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data. . . . 23  
Figure 18.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . . 24  
Table 15. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . . 24  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 16. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 17. SNAPHAT Battery Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 18. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3/27  
M48T08, M48T08Y, M48T18  
SUMMARY DESCRIPTION  
The M48T08/18/08Y TIMEKEEPER RAM is an  
8K x 8 non-volatile static RAM and real time clock  
which is pin and functional compatible with the  
DS1643. The monolithic chip is available in two  
special packages to provide a highly integrated  
battery backed-up memory and real time clock so-  
lution.  
The M48T08/18/08Y is a non-volatile pin and func-  
tion equivalent to any JEDEC standard 8K x 8  
SRAM. It also easily fits into many ROM, EPROM,  
and EEPROM sockets, providing the non-volatility  
of PROMs without any requirement for special  
WRITE timing or limitations on the number of  
WRITEs that can be performed.  
®
The 28-pin, 330mil SOIC provides sockets with  
gold plated contacts at both ends for direct con-  
nection to a separate SNAPHAT housing con-  
®
taining the battery and crystal. The unique design  
allows the SNAPHAT battery package to be  
mounted on top of the SOIC package after the  
completion of the surface mount process. Inser-  
tion of the SNAPHAT housing after reflow pre-  
vents potential battery and crystal damage due to  
the high temperatures required for device surface-  
mounting. The SNAPHAT housing is keyed to pre-  
vent reverse insertion.  
The SOIC and battery/crystal packages are  
shipped separately in plastic anti-static tubes or in  
Tape & Reel form. For the 28 lead SOIC, the bat-  
tery/crystal package (e.g., SNAPHAT) part num-  
ber is “M4T28-BR12SH” or “M4T32-BR12SH”  
(see Table 17., page 25).  
The 28-pin, 600mil DIP CAPHAT™ houses the  
M48T08/18/08Y silicon with a quartz crystal and a  
long- life lithium button cell in a single package.  
Figure 3. Logic Diagram  
Table 1. Signal Names  
A0-A12  
Address Inputs  
V
CC  
DQ0-DQ7  
Data Inputs / Outputs  
Power Fail Interrupt (Open Drain)  
Chip Enable 1  
13  
8
INT  
E1  
E2  
G
A0-A12  
DQ0-DQ7  
INT  
Chip Enable 2  
W
E1  
E2  
G
M48T08  
M48T08Y  
M48T18  
Output Enable  
W
WRITE Enable  
V
Supply Voltage  
CC  
V
Ground  
SS  
V
SS  
AI01020  
4/27  
M48T08, M48T08Y, M48T18  
Figure 4. DIP Connections  
Figure 5. SOIC Connections  
INT  
A12  
A7  
1
2
3
4
5
6
7
8
9
28  
27  
V
CC  
W
INT  
A12  
A7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
2
26 E2  
25 A8  
24 A9  
23 A11  
3
E2  
A6  
A6  
4
A8  
A5  
A5  
5
A9  
A4  
A4  
6
A11  
G
A3  
22  
G
A3  
7
M48T08  
M48T18  
M48T08Y  
A2  
21 A10  
20 E1  
A2  
8
A10  
E1  
A1  
A1  
9
A0 10  
DQ0 11  
DQ1 12  
DQ2 13  
19 DQ7  
18 DQ6  
17 DQ5  
16 DQ4  
15 DQ3  
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
DQ1  
DQ2  
V
14  
V
SS  
SS  
AI01182  
AI01021B  
Figure 6. Block Diagram  
OSCILLATOR AND  
CLOCK CHAIN  
8 x 8 BiPORT  
SRAM ARRAY  
32,768 Hz  
CRYSTAL  
A0-A12  
POWER  
DQ0-DQ7  
8184 x 8  
SRAM ARRAY  
LITHIUM  
CELL  
E1  
E2  
W
VOLTAGE SENSE  
AND  
V
PFD  
SWITCHING  
CIRCUITRY  
G
V
INT  
V
CC  
SS  
AI01333  
5/27  
M48T08, M48T08Y, M48T18  
OPERATION MODES  
As Figure 6., page 5 shows, the static memory ar-  
ray and the quartz-controlled clock oscillator of the  
M48T08/18/08Y are integrated on one silicon chip.  
The two circuits are interconnected at the upper  
eight memory locations to provide user accessible  
BYTEWIDE™ clock information in the bytes with  
addresses 1FF8h-1FFFh.  
The clock locations contain the year, month, date,  
day, hour, minute, and second in 24 hour BCD for-  
mat. Corrections for 28, 29 (leap year - valid until  
2100), 30, and 31 day months are made automat-  
ically. Byte 1FF8h is the clock control register. This  
byte controls user access to the clock information  
and also stores the clock calibration setting.  
cells. The M48T08/18/08Y includes a clock control  
circuit which updates the clock bytes with current  
information once per second. The information can  
be accessed by the user in the same manner as  
any other location in the static memory array.  
The M48T08/18/08Y also has its own Power-fail  
Detect circuit. The control circuitry constantly mon-  
itors the single 5V supply for an out of tolerance  
condition. When V is out of tolerance, the circuit  
CC  
write protects the SRAM, providing a high degree  
of data security in the midst of unpredictable sys-  
tem operation brought on by low V . As V falls  
CC  
CC  
below the Battery Back-up Switchover Voltage  
(V ), the control circuitry connects the battery  
SO  
which maintains data and clock operation until val-  
id power returns.  
The eight clock bytes are not the actual clock  
counters themselves; they are memory locations  
consisting of BiPORT™ READ/WRITE memory  
Table 2. Operating Modes  
V
Mode  
Deselect  
Deselect  
WRITE  
READ  
E1  
E2  
G
X
X
X
W
X
DQ0-DQ7  
High Z  
Power  
Standby  
Standby  
Active  
CC  
V
IH  
X
V
IL  
X
X
High Z  
4.75 to 5.5V  
or  
4.5 to 5.5V  
V
IL  
V
IH  
V
D
IL  
IH  
IH  
IN  
V
IL  
V
IH  
V
V
V
D
Active  
IL  
OUT  
V
IL  
V
IH  
V
IH  
READ  
High Z  
High Z  
High Z  
Active  
(1)  
Deselect  
Deselect  
X
X
X
X
X
X
CMOS Standby  
V
SO  
to V  
(min)  
PFD  
(1)  
X
X
Battery Back-up Mode  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage.  
IH  
IL SO  
1. See Table 11., page 20 for details.  
6/27  
M48T08, M48T08Y, M48T18  
READ Mode  
The M48T08/18/08Y is in the READ Mode when-  
ever W (WRITE Enable) is high, E1 (Chip Enable  
1) is low, and E2 (Chip Enable 2) is high. The de-  
vice architecture allows ripple-through access of  
data from eight of 65,536 locations in the static  
storage array. Thus, the unique address specified  
by the 13 address inputs defines which one of the  
8,192 bytes of data is to be accessed. Valid data  
will be available at the Data I/O pins within address  
available after the latter of the Chip Enable Access  
times (t  
or t  
) or Output Enable Access  
E1LQV  
E2HQV  
time (t  
).  
GLQV  
The state of the eight three-state Data I/O signals  
is controlled by E1, E2 and G. If the outputs are ac-  
tivated before t  
an indeterminate state until t  
, the data lines will be driven to  
AVQV  
. If the address  
AVQV  
inputs are changed while E1, E2 and G remain ac-  
tive, output data will remain valid for Output Data  
access time (t  
) after the last address input  
AVQV  
Hold time (t  
) but will go indeterminate until the  
AXQX  
signal is stable, providing that the E1, E2, and G  
access times are also satisfied. If the E1, E2 and  
G access times are not met, valid data will be  
next address access.  
Figure 7. READ Mode AC Waveforms  
tAVAV  
VALID  
A0-A12  
tAVQV  
tAXQX  
tE1LQV  
tE1HQZ  
E1  
tE1LQX  
tE2HQV  
tE2LQZ  
E2  
tE2HQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI00962  
Note: WRITE Enable (W) = High.  
7/27  
M48T08, M48T08Y, M48T18  
Table 3. READ Mode AC Characteristics  
M48T08/M48T18/T08Y  
–100/–10 (T08Y) –150/–15 (T08Y)  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
READ Cycle Time  
100  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to Output Valid  
100  
100  
100  
50  
150  
150  
150  
75  
AVQV  
t
Chip Enable 1 Low to Output Valid  
Chip Enable 2 High to Output Valid  
Output Enable Low to Output Valid  
Chip Enable 1 Low to Output Transition  
Chip Enable 2 High to Output Transition  
Output Enable Low to Output Transition  
Chip Enable 1 High to Output Hi-Z  
Chip Enable 2 Low to Output Hi-Z  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
E1LQV  
t
E2HQV  
t
GLQV  
t
10  
10  
5
10  
10  
5
E1LQX  
t
E2HQX  
t
GLQX  
t
50  
50  
40  
75  
75  
60  
E1HQZ  
t
E2LQZ  
t
GHQZ  
t
5
5
AXQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
8/27  
M48T08, M48T08Y, M48T18  
WRITE Mode  
The M48T08/18/08Y is in the WRITE Mode when-  
ever W, E1, and E2 are active. The start of a  
WRITE is referenced from the latter occurring fall-  
ing edge of W or E1, or the rising edge of E2. A  
WRITE is terminated by the earlier rising edge of  
W or E1, or the falling edge of E2. The addresses  
must be held valid throughout the cycle. E1 or W  
Enable prior to the initiation of another READ or  
WRITE Cycle. Data-in must be valid t  
the end of WRITE and remain valid for t  
prior to  
DVWH  
af-  
WHDX  
terward. G should be kept high during WRITE Cy-  
cles to avoid bus contention; however, if the output  
bus has been activated by a low on E1 and G and  
a high on E2, a low on W will disable the outputs  
must return high or E2 low for a minimum of t  
t
after W falls.  
E1HAX  
WLQZ  
or t  
from Chip Enable or t  
from WRITE  
E2LAX  
WHAX  
Figure 8. WRITE Enable Controlled, WRITE AC Waveform  
tAVAV  
A0-A12  
VALID  
tAVWH  
tAVE1L  
tAVE2H  
tWHAX  
E1  
E2  
tWLWH  
tAVWL  
W
tWLQZ  
tWHQX  
tWHDX  
DATA INPUT  
tDVWH  
DQ0-DQ7  
AI00963  
9/27  
M48T08, M48T08Y, M48T18  
Figure 9. Chip Enable Controlled, WRITE AC Waveforms  
tAVAV  
A0-A12  
VALID  
tAVE1H  
tE1LE1H  
tAVE1L  
tE1HAX  
tE2LAX  
E1  
tAVE2L  
tE2HE2L  
tAVE2H  
E2  
tAVWL  
W
tE1HDX  
tE2LDX  
DQ0-DQ7  
DATA INPUT  
tDVE1H  
tDVE2L  
AI00964B  
10/27  
M48T08, M48T08Y, M48T18  
Table 4. WRITE Mode AC Characteristics  
M48T08/M48T18/T08Y  
–100/–10 (T08Y) –150/–15 (T08Y)  
(1)  
Symbol  
Unit  
Parameter  
Min  
100  
0
Max  
Min  
150  
0
Max  
t
WRITE Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to WRITE Enable Low  
Address Valid to Chip Enable 1 Low  
Address Valid to Chip Enable 2 High  
WRITE Enable Pulse Width  
AVWL  
t
0
0
AVE1L  
t
0
0
AVE2H  
t
80  
80  
80  
10  
10  
10  
50  
50  
50  
5
100  
130  
130  
10  
10  
10  
70  
70  
70  
5
WLWH  
t
Chip Enable 1 Low to Chip Enable 1 High  
Chip Enable 2 High to Chip Enable 2 Low  
WRITE Enable High to Address Transition  
Chip Enable 1 High to Address Transition  
Chip Enable 2 Low to Address Transition  
Input Valid to WRITE Enable High  
Input Valid to Chip Enable 1 High  
E1LE1H  
t
E2HE2L  
t
WHAX  
t
E1HAX  
t
E2LAX  
t
DVWH  
t
DVE1H  
t
Input Valid to Chip Enable 2 Low  
DVE2L  
t
WRITE Enable High to Input Transition  
Chip Enable 1 High to Input Transition  
Chip Enable 2 Low to Input Transition  
WRITE Enable Low to Output Hi-Z  
Address Valid to WRITE Enable High  
Address Valid to Chip Enable 1 High  
Address Valid to Chip Enable 2 Low  
WRITE Enable High to Output Transition  
WHDX  
t
5
5
E1HDX  
t
5
5
E2LDX  
t
50  
70  
WLQZ  
t
80  
80  
80  
10  
130  
130  
130  
10  
AVWH  
t
AVE1H  
t
AVE2L  
t
WHQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
11/27  
M48T08, M48T08Y, M48T18  
Data Retention Mode  
With valid V applied, the M48T08/18/08Y oper-  
Note: Requires use of M4T32-BR12SH  
SNAPHAT top when using the SOH28 package.  
CC  
®
ates as a conventional BYTEWIDE™ static RAM.  
Should the supply voltage decay, the RAM will au-  
tomatically power-fail deselect, write protecting it-  
As system power returns and V  
rises above  
CC  
V
, the battery is disconnected and the power  
SO  
self when V  
falls within the V  
(max), V  
PFD PFD  
CC  
supply is switched to external V  
.
CC  
(min) window. All outputs become high imped-  
ance, and all inputs are treated as “Don't care.”  
Note: A power failure during a WRITE cycle may  
corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM's con-  
Write protection continues until V reaches V  
CC  
PFD  
(min) plus t (min). E1 should be kept high or E2  
rec  
low as V  
rises past V  
(min) to prevent inad-  
CC  
PFD  
vertent WRITE cycles prior to system stabilization.  
Normal RAM operation can resume t after V  
rec  
CC  
tent. At voltages below V  
(min), the user can be  
PFD  
exceeds V  
(max).  
PFD  
assured the memory will be in a write protected  
For more information on Battery Storage Life refer  
to the Application Note AN1012.  
Power-fail Interrupt Pin  
state, provided the V fall time is not less than t .  
CC  
F
The M48T08/18/08Y may respond to transient  
noise spikes on V that reach into the deselect  
CC  
window during the time the device is sampling  
The M48T08/18/08Y continuously monitors V  
.
CC  
V
. Therefore, decoupling of the power supply  
When V  
falls to the power-fail detect trip point,  
CC  
CC  
lines is recommended.  
an interrupt is immediately generated. An internal  
clock provides a delay of between 10µs and 40µs  
before automatically deselecting the M48T08/18/  
08Y. The INT pin is an open drain output and re-  
quires an external pull up resistor, even if the inter-  
rupt output function is not being used.  
When V drops below V , the control circuit  
CC  
SO  
switches power to the internal battery which pre-  
serves data and powers the clock. The internal  
button cell will maintain data in the M48T08/18/  
08Y for an accumulated period of at least 10 years  
when V is less than V  
.
CC  
SO  
12/27  
M48T08, M48T08Y, M48T18  
CLOCK OPERATIONS  
Reading the Clock  
Setting the Clock  
®
Updates to the TIMEKEEPER registers should  
be halted before clock data is read to prevent  
reading data in transition. The BiPORT™ TIME-  
KEEPER cells in the RAM array are only data reg-  
isters and not the actual clock counters, so  
updating the registers can be halted without dis-  
turbing the clock itself.  
Updating is halted when a '1' is written to the  
READ Bit, the seventh bit in the control register.  
As long as a '1' remains in that position, updating  
is halted. After a halt is issued, the registers reflect  
the count; that is, the day, date, and the time that  
were current at the moment the halt command was  
issued.  
The eighth bit of the control register is the WRITE  
Bit. Setting the WRITE Bit to a '1,' like the READ  
Bit, halts updates to the TIMEKEEPER registers.  
The user can then load them with the correct day,  
date, and time data in 24 hour BCD format (on Ta-  
ble 5). Resetting the WRITE Bit to a '0' then trans-  
fers the values of all time registers (1FF9h-1FFFh)  
to the actual TIMEKEEPER counters and allows  
normal operation to resume. The FT Bit and the  
bits marked as '0' in Table 5 must be written to '0'  
to allow for normal TIMEKEEPER and RAM oper-  
ation.  
®
See the Application Note AN923, “TIMEKEEPER  
Rolling Into the 21 Century” for information on  
st  
Century Rollover.  
All of the TIMEKEEPER registers are updated si-  
multaneously. A halt will not interrupt an update in  
progress. Updating is within a second after the bit  
is reset to a '0.'  
Table 5. Register Map  
Data  
Function/Range  
BCD Format  
Address  
D7  
D6  
D5  
D4  
10 M  
0
D3  
D2  
D1  
D0  
1FFFh  
1FFEh  
1FFDh  
1FFCh  
1FFBh  
1FFAh  
1FF9h  
1FF8h  
10 Years  
Year  
Month  
Date  
Year  
Month  
Date  
00-99  
01-12  
01-31  
01-07  
00-23  
00-59  
00-59  
0
0
0
0
0
10 Date  
0
FT  
0
0
0
Day  
Hours  
Day  
0
10 Hours  
Hours  
Minutes  
Seconds  
Control  
0
10 Minutes  
10 Seconds  
S
Minutes  
ST  
W
Seconds  
R
Calibration  
Keys: S = SIGN Bit  
FT = FREQUENCY TEST Bit (Set to '0' for normal clock operation)  
R = READ Bit  
W = WRITE Bit  
ST = STOP Bit  
0 = Must be set to '0'  
13/27  
M48T08, M48T08Y, M48T18  
Stopping and Starting the Oscillator  
The oscillator may be stopped at any time. If the  
device is going to spend a significant amount of  
time on the shelf, the oscillator can be turned off to  
minimize current drain on the battery. The STOP  
Bit (ST) is the MSB of the seconds register. Setting  
it to a '1' stops the oscillator. The M48T08/18/08Y  
(in the PCDIP28 package) is shipped from STMi-  
croelectronics with the STOP Bit set to a '1.' When  
reset to a '0,' the M48T08/18/08Y oscillator starts  
within one second.  
is loaded into the register, only the first 2 minutes  
in the 64 minute cycle will be modified; if a binary  
6 is loaded, the first 12 will be affected, and so on.  
Therefore, each calibration step has the effect of  
adding 512 or subtracting 256 oscillator cycles for  
every 125,829,120 actual oscillator cycles; that is  
+4.068 or –2.034 ppm of adjustment per calibra-  
tion step in the calibration register. Assuming that  
the oscillator is in fact running at exactly 32,768Hz,  
each of the 31 increments in the Calibration Byte  
would represent +10.7 or –5.35 seconds per  
month which corresponds to a total range of +5.5  
or –2.75 minutes per month.  
Note: To guarantee oscillator start-up after initial  
power-up, first write the STOP Bit (ST) to '1,' then  
reset to '0.'  
Calibrating the Clock  
Two methods are available for ascertaining how  
much calibration a given M48T08/18/08Y may re-  
quire. The first involves simply setting the clock,  
letting it run for a month and comparing it to a  
known accurate reference (like WWV broadcasts).  
While that may seem crude, it allows the designer  
to give the end user the ability to calibrate his clock  
as his environment may require, even after the fi-  
nal product is packaged in a non-user serviceable  
enclosure. All the designer has to do is provide a  
simple utility that accesses the Calibration Byte.  
The M48T08/18/08Y is driven by a quartz-con-  
trolled oscillator with a nominal frequency of  
32,768 Hz. A typical M48T08/18/08Y is accurate  
within 1 minute per month at 25°C without calibra-  
tion. The devices are tested not to exceed ± 35  
ppm (parts per million) oscillator frequency error at  
25°C, which equates to about ±1.53 minutes per  
month. With the calibration bits properly set, the  
accuracy of each M48T08/18/08Y improves to  
better than +1/–2 ppm at 25°C.  
The second approach is better suited to a manu-  
facturing environment, and involves the use of  
standard test equipment. When the Frequency  
Test (FT) Bit, the seventh-most significant bit in  
the Day Register, is set to a '1,' and the oscillator  
is running at 32,768 Hz, the LSB (DQ0) of the Sec-  
onds Register will toggle at 512 Hz. Any deviation  
from 512 Hz indicates the degree and direction of  
oscillator frequency shift at the test temperature.  
For example, a reading of 512.01024 Hz would in-  
dicate a +20 ppm oscillator frequency error, requir-  
ing a –10 (WR001010) to be loaded into the  
Calibration Byte for correction.  
Note: Setting or changing the Calibration Byte  
does not affect the Frequency Test output fre-  
quency. The device must be selected and ad-  
dresses must be stable at Address 1FF9h when  
reading the 512 Hz on DQ0.  
The LSB of the Seconds Register is monitored by  
holding the M48T08/18/08Y in an extended READ  
of the Seconds Register, but without having the  
READ Bit set. The FT Bit MUST be reset to '0' for  
normal clock operations to resume.  
The oscillation rate of any crystal changes with  
temperature. Figure 10., page 15 shows the fre-  
quency error that can be expected at various tem-  
peratures. Most clock chips compensate for  
crystal frequency and temperature shift error with  
cumbersome “trim” capacitors. The M48T08/18/  
08Y design, however, employs periodic counter  
correction. The calibration circuit adds or subtracts  
counts from the oscillator divider circuit at the di-  
vide by 256 stage, as shown in Figure  
11., page 15. The number of times pulses are  
blanked (subtracted, negative calibration) or split  
(added, positive calibration) depends upon the  
value loaded into the five-bit Calibration Byte  
found in the Control Register. Adding counts  
speeds the clock up, subtracting counts slows the  
clock down.  
The Calibration Byte occupies the five lower order  
bits in the Control register. This byte can be set to  
represent any value between 0 and 31 in binary  
form. The sixth bit is the Sign Bit; '1' indicates pos-  
itive calibration, '0' indicates negative calibration.  
Calibration occurs within a 64 minute cycle. The  
first 62 minutes in the cycle may, once per minute,  
have one second either shortened by 128 or  
lengthened by 256 oscillator cycles. If a binary '1'  
For more information on calibration, see the Appli-  
®
cation Note AN934, “TIMEKEEPER Calibration.”  
14/27  
M48T08, M48T08Y, M48T18  
Figure 10. Crystal Accuracy Across Temperature  
ppm  
20  
0
-20  
-40  
2
F  
F
ppm  
C2  
= -0.038  
(T - T0) ± 10%  
-60  
-80  
T0 = 25 °C  
-100  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
°C  
AI02124  
Figure 11. Clock Calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
15/27  
M48T08, M48T08Y, M48T18  
V
Noise And Negative Going Transients  
Figure 12. Supply Voltage Protection  
CC  
I
transients, including those produced by output  
CC  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic by-  
pass capacitor value of 0.1µF (as shown in Figure  
12) is recommended in order to provide the need-  
ed filtering.  
V
CC  
V
CC  
0.1µF  
DEVICE  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
CC  
V
SS  
below V by as much as one volt. These negative  
SS  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, it is recommended to con-  
AI02169  
nect a schottky diode from V  
to V  
(cathode  
CC  
SS  
connected to V , anode to V ). Schottky diode  
CC  
SS  
1N5817 is recommended for through hole and  
MBRS120T3 is recommended for surface mount.  
16/27  
M48T08, M48T08Y, M48T18  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 6. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
0 to 70  
Unit  
°C  
T
A
Ambient Operating Temperature  
T
Storage Temperature (V Off, Oscillator Off)  
–40 to 85  
°C  
STG  
CC  
(1,2,3)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltages  
Supply Voltage  
260  
–0.3 to 7  
–0.3 to 7  
20  
°C  
V
T
SLD  
V
IO  
V
V
CC  
I
Output Current  
mA  
W
O
P
D
Power Dissipation  
1
Note: 1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer  
than 30 seconds).  
2. For SO package, standard (SnPb) lead finish: Reflow at peak temperature of 225°C (total thermal budget not to exceed 180°C for  
between 90 to 150 seconds).  
3. For SO package, Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal budget not to exceed 245°C  
for greater than 30 seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
17/27  
M48T08, M48T08Y, M48T18  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 7. Operating and AC Measurement Conditions  
Parameter  
M48T08  
M48T18/T08Y  
4.5 to 5.5  
0 to 70  
100  
Unit  
V
Supply Voltage (V  
)
4.75 to 5.5  
0 to 70  
100  
CC  
Ambient Operating Temperature (T )  
°C  
pF  
ns  
V
A
Load Capacitance (C )  
L
Input Rise and Fall Times  
5  
5  
Input Pulse Voltages  
0 to 3  
1.5  
0 to 3  
Input and Output Timing Ref. Voltages  
1.5  
V
Note: Output Hi-Z is defined as the point where data is no longer driven.  
Figure 13. AC Testing Load Circuit  
5V  
1.8kΩ  
DEVICE  
UNDER  
TEST  
OUT  
1kΩ  
C
= 100pF  
L
C
includes JIG capacitance  
L
AI01019  
Table 8. Capacitance  
Symbol  
(1,2)  
Min  
Max  
Unit  
pF  
Parameter  
C
Input Capacitance  
Input / Output Capacitance  
10  
10  
IN  
(3)  
pF  
C
IO  
Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
18/27  
M48T08, M48T08Y, M48T18  
Table 9. DC Characteristics  
M48T08/M48T18/T08Y  
Unit  
(1)  
Symbol  
Parameter  
Test Condition  
Min  
Max  
I
0V V V  
Input Leakage Current  
Output Leakage Current  
Supply Current  
±1  
µA  
µA  
LI  
IN  
CC  
(2)  
0V V  
V  
CC  
±1  
80  
3
I
OUT  
LO  
I
Outputs open  
mA  
mA  
CC  
(3)  
E1 = V E2 = V  
IL  
Supply Current (Standby) TTL  
I
I
IH,  
CC1  
E1 = V – 0.2V,  
CC  
(3)  
Supply Current (Standby) CMOS  
Input Low Voltage  
3
mA  
V
CC2  
E2 = V + 0.2V  
SS  
(4)  
–0.3  
2.2  
0.8  
V
IL  
V
V
CC  
+ 0.3  
Input High Voltage  
Output Low Voltage  
V
V
V
V
IH  
I
I
= 2.1mA  
= 0.5mA  
= –1mA  
0.4  
0.4  
OL  
V
OL  
(5)  
OL  
Output Low Voltage (INT)  
V
I
Output High Voltage  
2.4  
OH  
OH  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
2. Outputs deselected.  
3. Measured with Control Bits set as follows: R = '1'; W, ST, FT = '0.'  
4. Negative spikes of –1V allowed for up to 10ns once per Cycle.  
5. The INT pin is Open Drain.  
19/27  
M48T08, M48T08Y, M48T18  
Figure 14. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tDR  
tR  
tPD  
tFB  
tPFX  
tRB  
tPFH  
INT  
trec  
RECOGNIZED  
NOTE  
RECOGNIZED  
INPUTS  
DON'T CARE  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI00566  
Note: Inputs may or may not be recognized at this time. Caution should be taken to keep E1 high or E2 low as V rises past V  
(min).  
PFD  
CC  
Some systems may perform inadvertent WRITE cycles after V rises above V  
(min) but before normal system operations begin.  
CC  
PFD  
Even though a power on reset is being applied to the processor, a reset condition may not occur until after the system clock is running.  
Table 10. Power Down/Up AC Characteristics  
(1)  
Symbol  
Min  
0
Max  
Unit  
µs  
Parameter  
t
PD  
E1 or W at V or E2 at V before Power Down  
IH  
IL  
(2)  
V
(max) to V  
(min) V Fall Time  
300  
µs  
t
PFD  
PFD  
PFD  
PFD  
CC  
F
(3)  
V
V
V
(min) to V  
V
Fall Time  
10  
0
µs  
µs  
µs  
ms  
µs  
µs  
t
SS CC  
FB  
t
(min) to V  
(max) V Rise Time  
PFD CC  
R
t
t
to V  
(min) V Rise Time  
PFD CC  
1
RB  
SS  
E1 or W at V or E2 at V before Power Up  
1
rec  
IH  
IL  
t
INT Low to Auto Deselect  
V (max) to INT High  
PFD  
10  
40  
PFX  
t
120  
PFH  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than t may result in deselection/write protection not occurring until 200µs after V pass-  
PFD F CC  
PFD  
es V  
(min).  
PFD  
3. V  
(min) to V fall time of less than t may cause corruption of RAM data.  
SS FB  
PFD  
Table 11. Power Down/Up Trip Points DC Characteristics  
(1,2)  
Symbol  
Min  
4.5  
4.2  
Typ  
4.6  
4.3  
3.0  
Max  
4.75  
4.5  
Unit  
V
Parameter  
M48T08  
V
PFD  
Power-fail Deselect Voltage  
M48T18/T08Y  
V
V
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
V
SO  
(3)  
t
YEARS  
DR  
10  
Note: 1. All voltages referenced to V  
.
SS  
2. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).  
A
CC  
®
3. At 55°C, V = 0V; t = 8.5 years (typ) at 70°C. Requires use of M4T32-BR12SH SNAPHAT top when using the SOH28 package.  
CC  
DR  
20/27  
M48T08, M48T08Y, M48T18  
PACKAGE MECHANICAL INFORMATION  
Figure 15. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline  
A2  
A
L
A1  
e1  
C
B1  
B
eA  
e3  
D
N
1
E
PCDIP  
Note: Drawing is not to scale.  
Table 12. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.65  
0.76  
8.89  
0.53  
1.78  
0.31  
39.88  
18.34  
2.79  
36.32  
16.00  
3.81  
Typ  
Max  
A
A1  
A2  
B
8.89  
0.38  
8.38  
0.38  
1.14  
0.20  
39.37  
17.83  
2.29  
29.72  
15.24  
3.05  
28  
0.350  
0.015  
0.330  
0.015  
0.045  
0.008  
1.550  
0.702  
0.090  
1.170  
0.600  
0.120  
28  
0.380  
0.030  
0.350  
0.021  
0.070  
0.012  
1.570  
0.722  
0.110  
1.430  
0.630  
0.150  
B1  
C
D
E
e1  
e3  
eA  
L
N
21/27  
M48T08, M48T08Y, M48T18  
Figure 16. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note: Drawing is not to scale.  
Table 13. SOH28 – 28-lead Plastic SO, 4-socket battery SNAPHAT, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
Typ  
Max  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
22/27  
M48T08, M48T08Y, M48T18  
Figure 17. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 14. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
23/27  
M48T08, M48T08Y, M48T18  
Figure 18. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 15. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
10.54  
8.51  
Typ  
Max  
A
A1  
A2  
A3  
B
0.415  
.0335  
0.315  
0.015  
0.022  
0.860  
.0710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
24/27  
M48T08, M48T08Y, M48T18  
PART NUMBERING  
Table 16. Ordering Information Scheme  
Example:  
M48T  
18  
–100  
PC  
1
E
Device Type  
M48T  
Supply Voltage and Write Protect Voltage  
(1)  
08 = V = 4.75 to 5.5V; V  
= 4.5 to 4.75V  
PFD  
CC  
18/08Y = V = 4.5 to 5.5V; V  
= 4.2 to 4.5V  
PFD  
CC  
Speed  
–100 = 100ns  
–150 = 150ns  
–10 = 100ns (M48T08Y)  
Package  
(1)  
PC = PCDIP28  
(2)  
MH = SOH28  
Temperature Range  
1 = 0 to 70°C  
Shipping Method  
For SOH28:  
blank = Tubes (Not for New Design - Use E)  
®
E = Lead-free Package (ECO PACK ), Tubes  
®
F = Lead-free Package (ECO PACK ), Tape & Reel  
TR = Tape & Reel (Not for New Design - Use F)  
For PCDIP28:  
blank = Tubes  
Note: 1. The M48T08/18 part is offered with the PCDIP28 (e.g., CAPHAT™) package only.  
®
2. The SOIC package (SOH28) requires the SNAPHAT battery/crystal package which is ordered separately under the part number  
“M4TXX-BR12SH” in plastic tube or “M4TXX-BR12SHTR” in Tape & Reel form (see Table 17). The M48T08Y part is offered in the  
SOH28 (SNAPHAT) package only.  
Caution: Do not place the SNAPHAT battery package “M4TXX-BR12SH” in conductive foam as it will drain the lithium button-cell bat-  
tery.  
For other options, or for more information on any aspect of this device, please contact the ST Sales Office  
nearest you.  
Table 17. SNAPHAT Battery Table  
Part Number  
M4T28-BR12SH  
M4T32-BR12SH  
Description  
Lithium Battery (48mAh) SNAPHAT  
Lithium Battery (120mAh) SNAPHAT  
Package  
SH  
SH  
25/27  
M48T08, M48T08Y, M48T18  
REVISION HISTORY  
Table 18. Document Revision History  
Date  
Rev. #  
Revision Details  
December 1999  
1.0  
First Issue  
From Preliminary Data to Data Sheet; Battery Low Flag paragraph changed; 100ns  
speed class identifier changed (Tables 3, 4)  
07-Feb-00  
11-Jul-00  
16-Jul-01  
2.0  
2.1  
3.0  
t
FB  
changed (Table 10); Watchdog Timer paragraph changed  
Reformatted; SNAPHAT battery table added (Table 17); added temp./voltage info. to  
tables (Tables 8, 9, 3, 4, 10, 11)  
01-Aug-01  
21-Dec-01  
06-Mar-02  
20-May-02  
29-Aug-02  
28-Mar-03  
10-Dec-03  
30-Mar-04  
3.1  
3.2  
3.3  
3.4  
3.5  
4.0  
5.0  
6.0  
Reference to App. Note corrected in “Calibrating the Clock” section  
Changes to text in document to reflect addition of M48T08Y option  
Fix Ordering Information table and add to footnote (Table 16)  
Modify reflow time and temperature footnotes (Table 6)  
t
specification temperature updated (Table 11)  
DR  
v2.2 template applied; updated test conditions (Table 10)  
Reformatted  
Reformatted; Lead-free (Pb-free) information package update (Table 6, 16)  
26/27  
M48T08, M48T08Y, M48T18  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners.  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore -  
Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
27/27  

相关型号:

M48T18SH

64 Kbit 8Kb x 8 TIMEKEEPER SRAM
STMICROELECTR

M48T201V

3.3V-5V TIMEKEEPER CONTROLLER
STMICROELECTR

M48T201V-70MH1

3.3V-5V TIMEKEEPER CONTROLLER
STMICROELECTR

M48T201V-70MH1E

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-70MH1F

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-70MH1TR

3.3V-5V TIMEKEEPER CONTROLLER
STMICROELECTR

M48T201V-80MH1

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-80MH1E

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-80MH1F

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-80MH1TR

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-85MH1

3.3V-5V TIMEKEEPER CONTROLLER
STMICROELECTR

M48T201V-85MH1E

5.0 or 3.3 V TIMEKEEPER® supervisor
STMICROELECTR