M48T201V-70MH1 [STMICROELECTRONICS]

3.3V-5V TIMEKEEPER CONTROLLER; 3.3V - 5V TIMEKEEPER控制器
M48T201V-70MH1
型号: M48T201V-70MH1
厂家: ST    ST
描述:

3.3V-5V TIMEKEEPER CONTROLLER
3.3V - 5V TIMEKEEPER控制器

控制器
文件: 总33页 (文件大小:479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T201Y  
M48T201V  
®
5.0 or 3.3V TIMEKEEPER Supervisor  
FEATURES SUMMARY  
CONVERTS LOW POWER SRAM INTO  
Figure 1. Package  
NVRAMs  
YEAR 2000 COMPLIANT  
BATTERY LOW FLAG  
INTEGRATED REAL TIME CLOCK, POWER-  
FAIL CONTROL CIRCUIT, BATTERY AND  
CRYSTAL  
SNAPHAT (SH)  
Crystal/Battery  
WATCHDOG TIMER  
CHOICE OF WRITE PROTECT VOLTAGES  
(V  
= Power-fail Deselect Voltage):  
PFD  
M48T201Y: V = 4.5 to 5.5V  
CC  
4.1V V  
4.5V  
PFD  
M48T201V: V = 3.0 to 3.6V  
CC  
44  
2.7V V  
3.0V  
PFD  
MICROPROCESSOR POWER-ON RESET  
(Valid even during battery back-up mode.)  
PROGRAMMABLE ALARM OUTPUT  
ACTIVE IN THE BATTERY BACKED-UP  
MODE  
1
SOH44 (MH)  
44-pin SOIC  
PACKAGING INCLUDES A 44-LEAD SOIC  
AND SNAPHAT TOP (to be ordered  
separately)  
®
SOIC PACKAGE PROVIDES DIRECT  
®
CONNECTION FOR A SNAPHAT TOP  
WHICH CONTAINS THE BATTERY AND  
CRYSTAL  
September 2004  
1/33  
M48T201Y, M48T201V  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. SOIC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4. Hardware Hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Address Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5. G  
Timing When Switching Between RTC and External SRAM. . . . . . . . . . . . . . . . . . 8  
CON  
Figure 6. READ Cycle Timing: RTC and External RAM Control Signals . . . . . . . . . . . . . . . . . . . . . 9  
Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 7. WRITE Cycle Timing: RTC & External RAM Control Signals . . . . . . . . . . . . . . . . . . . . . 11  
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
CLOCK OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TIMEKEEPER® Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reading the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 5. TIMEKEEPER® Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Setting the Alarm Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 8. Alarm Interrupt Reset Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 6. Alarm Repeat Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 9. Back-up Mode Alarm Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Square Wave Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 7. Square Wave Output Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reset Inputs (RSTIN1 & RSTIN2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10.RSTIN1 and RSTIN2 Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 8. Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12.Calibration Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Battery Low Warning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Initial Power-on Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2/33  
M48T201Y, M48T201V  
Table 9. Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13.Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 10. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 11. DC and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 14.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 12. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 13. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 15.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 14. Power Down/Up Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 16.SOH44 – 44-lead Plastic Small Outline, SNAPHAT, Package Outline . . . . . . . . . . . . . . 28  
Table 15. SOH44 – 44-lead Plastic Small Outline, SNAPHAT, Package Mechanical Data . . . . . . 28  
Figure 17.SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline . . . . . . . 29  
Table 16. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data. . . . 29  
Figure 18.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . . 30  
Table 17. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . . 30  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 18. Ordering Information Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 19. SNAPHAT® Battery Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 20. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3/33  
M48T201Y, M48T201V  
DESCRIPTION  
The M48T201Y/V are self-contained devices that  
include a real time clock (RTC), programmable  
alarms, a watchdog timer, and a square wave out-  
put which provides control of up to 512K x 8 of ex-  
ternal low-power static RAM. Access to all RTC  
functions and the external RAM is the same as  
conventional bytewide SRAM. The 16 TIME-  
mounted on top of the SOIC package after the  
completion of the surface mount process.  
Insertion of the SNAPHAT housing after reflow  
prevents potential battery damage due to the high  
temperatures required for device surface-mount-  
ing. The SNAPHAT housing is keyed to prevent  
reverse insertion. The SOIC and battery packages  
are shipped separately in plastic anti-static tubes  
or in Tape & Reel form. For the 44-lead SOIC, the  
battery/crystal package (e.g., SNAPHAT) part  
number is “M4Txx-BR12SH” (see Table  
19., page 31).  
®
KEEPER registers offer year, month, date, day,  
hour, minute, second, calibration, alarm, century,  
watchdog, and square wave output data. External-  
ly attached static RAMs are controlled by the  
M48T201Y/V via the G  
and E  
signals.  
CON  
CON  
The 44-pin, 330mil SOIC provides sockets with  
gold plated contacts at both ends for direct con-  
nection to a separate SNAPHAT housing con-  
taining the battery and crystal. The unique design  
allows the SNAPHAT battery package to be  
Caution: Do not place the SNAPHAT battery/crys-  
tal top in conductive foam as this will drain the lith-  
ium button-cell battery.  
®
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A18  
DQ0-DQ7  
RSTIN1  
RSTIN2  
RST  
Address Inputs  
Data Inputs / Outputs  
Reset 1 Input  
V
CC  
Reset 2 Input  
19  
8
Reset Output (Open Drain)  
Watchdog Input  
A0-A18  
DQ0-DQ7  
WDI  
WDI  
W
IRQ/FT  
RST  
E
Chip Enable Input  
Output Enable Input  
WRITE Enable Input  
RAM Chip Enable Output  
RAM Enable Output  
G
M48T201Y  
M48T201V  
W
E
G
CON  
E
CON  
G
E
CON  
G
CON  
RSTIN1  
RSTIN2  
SQW  
Interrupt / Frequency Test Output  
(Open Drain)  
IRQ/FT  
SQW  
V
OUT  
Square Wave Output  
Supply Voltage Output  
Supply Voltage  
V
V
OUT  
SS  
AI02240  
V
CC  
V
SS  
Ground  
NC  
Not Connected Internally  
4/33  
M48T201Y, M48T201V  
Figure 3. SOIC Connections  
RSTIN1  
RSTIN2  
RST  
NC  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
V
V
CC  
2
OUT  
3
SQW  
IRQ/FT  
A17  
A15  
A13  
A8  
4
A18  
A16  
A14  
A12  
A7  
5
6
7
8
9
A9  
A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
A11  
G
A5  
M48T201Y  
M48T201V  
A4  
W
A3  
NC  
A2  
A10  
E
A1  
A0  
E
CON  
WDI  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
NC  
G
CON  
DQ0  
DQ1  
DQ2  
V
SS  
AI02241  
5/33  
M48T201Y, M48T201V  
Figure 4. Hardware Hookup  
A0-A18  
A0-Axx  
32,768 Hz  
CRYSTAL  
V
V
CC  
OUT  
(1)  
0.1µF  
E2  
LITHIUM  
CELL  
M48T201Y/V  
5V  
V
E
CC  
CMOS  
SRAM  
0.1µF  
W
ECON  
E
G
W
G
WDI  
GCON  
RST  
RSTIN1  
RSTIN2  
IRQ/FT  
SQW  
V
SS  
V
SS  
DQ0-DQ7  
DQ0-DQ7  
AI00604  
Note: 1. If the second chip enable pin (E2) is unused, it should be tied to V  
.
OUT  
6/33  
M48T201Y, M48T201V  
OPERATION  
Automatic backup and write protection for an ex-  
ternal SRAM is provided through V  
date, hours, minutes, and seconds of the clock  
registers. Byte 7FFF1h contains century informa-  
tion. Byte 7FFF0h contains additional flag informa-  
tion pertaining to the watchdog timer, the alarm  
condition, the battery status and square wave out-  
put operation. 4 bits are included within this regis-  
ter (RS0-RS3) that are used to program the  
Square Wave Output Frequency (see Table  
7., page 18). The M48T201Y/V also has its own  
Power-Fail Detect circuit. This control circuitry  
constantly monitors the supply voltage for an out  
, E  
, and  
OUT  
CON  
G
pins. (Users are urged to insure that voltage  
CON  
specifications, for both the SUPERVISOR chip  
and external SRAM chosen, are similar.) The  
SNAPHAT containing the lithium energy source  
®
is used to retain the RTC and RAM data in the ab-  
sence of V  
power through the V  
pin. The  
CC  
OUT  
chip enable output to RAM (E  
enable output to RAM (G  
ing power transients to prevent data corruption.  
The date is automatically adjusted for months with  
less than 31 days and corrects for leap years (valid  
until 2100). The internal watchdog timer provides  
programmable alarm windows.  
) and the output  
) are controlled dur-  
CON  
CON  
of tolerance condition. When V  
is out of toler-  
CC  
®
ance, the circuit write protects the TIMEKEEPER  
register data and external SRAM, providing data  
security in the midst of unpredictable system oper-  
ation. As V  
falls below the Battery Back-up  
CC  
The nine clock bytes (7FFFFh-7FFF9h and  
7FFF1h) are not the actual clock counters, they  
are memory locations consisting of BiPORT™  
READ/WRITE memory cells within the static RAM  
array. Clock circuitry updates the clock bytes with  
current information once per second. The informa-  
tion can be accessed by the user in the same man-  
ner as any other location in the static memory  
array. Byte 7FFF8h is the clock control register.  
This byte controls user access to the clock infor-  
mation and also stores the clock calibration set-  
ting.  
Byte 7FFF7h contains the watchdog timer setting.  
The watchdog timer can generate either a reset or  
an interrupt, depending on the state of the Watch-  
dog Steering Bit (WDS). Bytes 7FFF6h-7FFF2h  
include bits that, when programmed, provide for  
clock alarm functionality. Alarms are activated  
when the register content matches the month,  
Switchover Voltage (V ), the control circuitry au-  
SO  
tomatically switches to the battery, maintaining  
data and clock operation until valid power is re-  
stored.  
Address Decoding  
The M48T201Y/V accommodates 19 address  
lines (A0-A18) which allow direct connection of up  
to 512K bytes of static RAM. Regardless of SRAM  
density used, timekeeping, watchdog, alarm, cen-  
tury, flag, and control registers are located in the  
upper RAM locations. All TIMEKEEPER registers  
reside in the upper RAM locations without conflict  
by inhibiting the G  
(output enable RAM) signal  
CON  
during clock access. The RAM's physical locations  
are transparent to the user and the memory map  
looks continuous from the first clock address to the  
upper most attached RAM addresses.  
Table 2. Operating Modes  
V
Mode  
Deselect  
WRITE  
READ  
E
G
X
X
W
DQ7-DQ0  
Power  
Standby  
Active  
CC  
V
IH  
X
High-Z  
4.5V to 5.5V  
or  
3.0V to 3.6V  
V
IL  
V
IL  
V
IL  
V
D
IL  
IH  
IH  
IN  
V
V
V
D
Active  
IL  
OUT  
V
IH  
READ  
High-Z  
High-Z  
High-Z  
Active  
(1)  
Deselect  
X
X
X
CMOS Standby  
V
SO  
to V  
(min)  
PFD  
(1)  
Deselect  
X
X
X
Battery Back-Up  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage  
IH  
IL  
SO  
1. See Table 14., page 27 for details.  
7/33  
M48T201Y, M48T201V  
READ Mode  
The M48T201Y/V executes a READ Cycle when-  
ever W (WRITE Enable) is high and E (Chip En-  
able) is low. The unique address specified by the  
address inputs (A0-A18) defines which one of the  
must be measured from the latter occurring signal  
(E or G) and the limiting parameter is either t  
ELQV  
for E or t  
for G rather than the address access  
GLQV  
time. When one of the on-chip TIMEKEEPER reg-  
®
on-chip TIMEKEEPER registers or external  
isters is selected for READ, the G signal will  
CON  
SRAM locations is to be accessed. When the ad-  
dress presented to the M48T201Y/V is in the  
range of 7FFFFh-7FFF0h, one of the on-board  
TIMEKEEPER registers is accessed and valid  
data will be available to the eight data output driv-  
remain inactive throughout the READ Cycle.  
When the address value presented to the  
M48T201Y/V is outside the range of TIMEKEEP-  
ER registers, an external SRAM location will be  
selected. In this case the G signal will be passed  
ers within t  
after the address input signal is  
AVQV  
to the G  
pin, with the specified delay times of  
CON  
stable, providing that the E and G access times  
are also satisfied. If they are not, then data access  
t
or t  
.
AOEL  
OERL  
Figure 5. G  
Timing When Switching Between RTC and External SRAM  
CON  
7FFF0h - 7FFFFh  
00000h - 7FFEFh  
7FFF0h - 7FFFFh  
00000h - 7FFEFh  
ADDRESS  
RTC  
External SRAM  
RTC  
External SRAM  
G
G
CON  
tAOEL  
tAOEH  
tOERL  
tRO  
E
AI02333  
8/33  
M48T201Y, M48T201V  
Figure 6. READ Cycle Timing: RTC and External RAM Control Signals  
READ  
tAVAV  
READ  
tAVAV  
WRITE  
tAVAV  
ADDRESS  
tELQV  
tAVQV  
tAVWL  
tWHAX  
E
tELQX  
tGLQV  
G
tRO  
G
CON  
E
CON  
tEPD  
tWLWH  
W
tGLQX  
tAXQX  
tGHQZ  
DATA OUT  
VALID  
DATA OUT  
VALID  
DATA IN  
VALID  
DQ0-DQ7  
AI02334  
9/33  
M48T201Y, M48T201V  
Table 3. READ Mode AC Characteristics  
M48T201Y  
–70  
M48T201V  
–85  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
READ Cycle Time  
70  
85  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to Output Valid  
70  
70  
25  
85  
85  
35  
AVQV  
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable Low to Output Transition  
ELQV  
t
GLQV  
(2)  
5
0
5
0
t
ELQX  
GLQX  
EHQZ  
(2)  
(2)  
(2)  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
ns  
ns  
ns  
t
t
20  
20  
25  
25  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
t
GHQZ  
t
5
5
ns  
ns  
ns  
ns  
ns  
ns  
AXQX  
t
External SRAM Address to G  
Low  
CON  
20  
20  
10  
15  
10  
30  
30  
15  
20  
15  
AOEL  
AOEH  
t
SUPERVISOR SRAM Address to G  
High  
CON  
t
E to E  
Low or High  
CON  
EPD  
t
G Low to G  
Low  
OERL  
CON  
t
G High to G  
High  
CON  
RO  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF.  
L
10/33  
M48T201Y, M48T201V  
WRITE Mode  
The M48T201Y/V is in the WRITE Mode whenever  
W (WRITE Enable) and E (Chip Enable) are low  
state after the address inputs are stable. The start  
of a WRITE is referenced from the latter occurring  
falling edge of W or E. A WRITE is terminated by  
the earlier rising edge of W or E. The addresses  
must be held valid throughout the cycle. E or W  
tention; although, if the output bus has been acti-  
vated by a low on E and G a low on W will disable  
the outputs t  
after W falls.  
WLQZ  
When the address value presented to the  
M48T201Y/V during the WRITE is in the range of  
7FFFFh-7FFF0h, one of the on-board TIME-  
®
KEEPER registers will be selected and data will  
must return high for a minimum of t  
from Chip  
EHAX  
be written into the device. When the address value  
presented to M48T201Y/V is outside the range of  
TIMEKEEPER registers, an external SRAM loca-  
tion is selected.  
Enable or t  
from WRITE Enable prior to the  
WHAX  
initiation of another READ or WRITE Cycle. Data-  
in must be valid t prior to the end of WRITE  
DVWH  
and remain valid for t  
afterward. G should be  
WHDX  
kept high during WRITE Cycles to avoid bus con-  
Figure 7. WRITE Cycle Timing: RTC & External RAM Control Signals  
WRITE  
tAVAV  
WRITE  
tAVAV  
READ  
tAVAV  
ADDRESS  
tAVEH  
tELEH  
tAVWH  
tEHAX tWHAX  
tAVEL  
tAVQV  
E
tEPD  
E
CON  
tEPD  
tGLQV  
G
tRO  
tEHDX  
G
CON  
tAVWL  
tWLWH  
tWHQX  
tWLQZ  
W
tEHQZ  
tDVEH tDVWH  
tWHDX  
DATA OUT  
VALID  
DATA IN  
VALID  
DATA IN  
VALID  
DATA OUT  
VALID  
DQ0-DQ7  
AI02336  
11/33  
M48T201Y, M48T201V  
Table 4. WRITE Mode AC Characteristics  
M48T201Y  
–70  
M48T201V  
–85  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
WRITE Cycle Time  
70  
0
85  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to WRITE Enable Low  
Address Valid to Chip Enable Low  
WRITE Enable Pulse Width  
AVWL  
t
0
0
AVEL  
t
45  
50  
0
55  
60  
0
WLWH  
t
Chip Enable Low to Chip Enable High  
WRITE Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to WRITE Enable High  
Input Valid to Chip Enable High  
ELEH  
t
WHAX  
t
0
0
EHAX  
t
25  
25  
0
30  
30  
0
DVWH  
t
DVEH  
t
WRITE Enable High to Input Transition  
Chip Enable High to Input Transition  
WHDX  
t
0
0
EHDX  
(2,3)  
WRITE Enable Low to Output High-Z  
Address Valid to WRITE Enable High  
Address Valid to Chip Enable High  
WRITE Enable High to Output Transition  
20  
25  
ns  
ns  
ns  
ns  
t
WLQZ  
t
55  
55  
5
65  
65  
5
AVWH  
t
AVEH  
(2,3)  
t
WHQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF  
L
3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.  
12/33  
M48T201Y, M48T201V  
Data Retention Mode  
With valid V applied, the M48T201Y/V can be  
accessed as described above with READ or  
WRITE cycles. Should the supply voltage decay,  
the M48T201Y/V will automatically deselect, write  
protecting itself (and any external SRAM) when  
100µA of current to the attached memory with less  
than 0.3V drop under this condition. On power up,  
CC  
when V returns to a nominal value, write protec-  
CC  
tion continues for 200ms (max) by inhibiting E  
.
CON  
The RST signal also remains active during this  
time (see Figure 15., page 27).  
V
falls between V  
(max) and V  
(min).  
CC  
PFD  
PFD  
This is accomplished by internally inhibiting ac-  
cess to the clock registers via the E signal. At this  
time, the Reset pin (RST) is driven active and will  
Note: Most low power SRAMs on the market to-  
day can be used with the M48T201Y/V TIME-  
®
KEEPER SUPERVISOR. There are, however  
remain active until V  
returns to nominal levels.  
CC  
some criteria which should be used in making the  
final choice of an SRAM to use.  
The SRAM must be designed in a way where the  
chip enable input disables all other inputs to the  
SRAM. This allows inputs to the M48T201Y/V and  
External RAM access is inhibited in a similar man-  
ner by forcing E to a high level. This level is  
CON  
within 0.2V of the V  
. E  
will remain at this  
BAT  
CON  
level as long as V  
remains at an out-of-toler-  
CC  
ance condition. When V falls below the level of  
CC  
SRAMs to be “Don't care” once V  
falls below  
CC  
), power input is switched from  
BAT  
V
(min). The SRAM should also guarantee  
®
PFD  
data retention down to V  
= 2.0V. The chip en-  
CC  
clock registers are maintained from the attached  
battery supply. External RAM is also powered by  
able access time must be sufficient to meet the  
system needs with the chip enable (and output en-  
able) output propagation delays included.  
the SNAPHAT battery. All outputs except G  
,
CON  
E
, RST, IRQ/FT and V , become high im-  
OUT  
CON  
pedance. The V  
pin is capable of supplying  
OUT  
13/33  
M48T201Y, M48T201V  
CLOCK OPERATION  
®
TIMEKEEPER Registers  
Setting the Clock  
The M48T201Y/V offers 16 internal registers  
which contain TIMEKEEPER , Alarm, Watchdog,  
Bit D7 of the Control Register (7FFF8h) is the  
WRITE Bit. Setting the WRITE Bit to a '1,' like the  
READ Bit, halts updates to the TIMEKEEPER reg-  
isters. The user can then load them with the cor-  
rect day, date, and time data in 24-hour BCD  
format (see Table 5., page 15).  
Resetting the WRITE Bit to a '0' then transfers the  
values of all time registers (7FFFFh-7FFF9h,  
7FFF1h) to the actual TIMEKEEPER counters and  
allows normal operation to resume. After the  
WRITE Bit is reset, the next clock update will occur  
approximately one second later.  
®
Flag, and Control data (see Table 5., page 15).  
These registers are memory locations which con-  
tain external (user accessible) and internal copies  
of the data (usually referred to as BiPORT™  
TIMEKEEPER cells). The external copies are in-  
dependent of internal functions except that they  
are updated periodically by the simultaneous  
transfer of the incremented internal copy. TIME-  
KEEPER and Alarm Registers store data in BCD.  
Control, Watchdog and Flags (Bits D0 to D3) Reg-  
isters store data in Binary Format.  
Note: Upon power-up following a power failure,  
both the WRITE Bit and the READ Bit will be reset  
to '0.'  
Reading the Clock  
Updates to the TIMEKEEPER registers should be  
halted before clock data is read to prevent reading  
data in transition. The BiPORT TIMEKEEPER  
cells in the RAM array are only data registers and  
not the actual clock counters, so updating the reg-  
isters can be halted without disturbing the clock it-  
self.  
Updating is halted when a '1' is written to the  
READ Bit, D6 in the Control Register (7FFF8h). As  
long as a '1' remains in that position, updating is  
halted. After a halt is issued, the registers reflect  
the count; that is, the day, date, and time that were  
current at the moment the halt command was is-  
sued.  
Stopping and Starting the Oscillator  
The oscillator may be stopped at any time. If the  
device is going to spend a significant amount of  
time on the shelf, the oscillator can be turned off to  
minimize current drain on the battery. The STOP  
Bit is located at Bit D7 within the Seconds Register  
(7FFF9h). Setting it to a '1' stops the oscillator.  
When reset to a '0,' the M48T201Y/V oscillator  
starts within one second.  
Note: It is not necessary to set the WRITE Bit  
when setting or resetting the FREQUENCY TEST  
Bit (FT) or the STOP Bit (ST).  
All of the TIMEKEEPER registers are updated si-  
multaneously. A halt will not interrupt an update in  
progress. Updating occurs approximately 1 sec-  
ond after the READ Bit is reset to a '0.'  
14/33  
M48T201Y, M48T201V  
®
Table 5. TIMEKEEPER Register Map  
Data  
Function/Range  
BCD Format  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
7FFFFh  
7FFFEh  
7FFFDh  
7FFFCh  
7FFFBh  
7FFFAh  
7FFF9h  
7FFF8h  
7FFF7h  
7FFF6h  
7FFF5h  
7FFF4h  
7FFF3h  
7FFF2h  
7FFF1h  
7FFF0h  
10 Years  
Year  
Year  
Month  
00-99  
01-12  
01-31  
01-07  
00-23  
00-59  
00-59  
0
0
0
0
0
10 M  
0
Month  
10 Date  
Date: Day of Month  
Day  
Date  
0
FT  
0
0
0
Day  
0
10 Hours  
Hours (24 Hour Format)  
Minutes  
Hours  
0
10 Minutes  
10 Seconds  
S
Minutes  
Seconds  
Control  
Watchdog  
Al. Month  
Al. Date  
Al. Hours  
Al. Minutes  
Al. Seconds  
Century  
Flags  
ST  
W
Seconds  
R
Calibration  
WDS BMB4 BMB3 BMB2 BMB1 BMB0  
RB1  
RB0  
AFE  
SQWE ABE Al.10M  
Alarm Month  
Alarm Date  
01-12  
01-31  
00-23  
00-59  
00-59  
00-99  
RPT4 RPT5  
Al. 10 Date  
RPT3  
RPT2  
RPT1  
0
Al. 10 Hours  
Alarm Hours  
Alarm Minutes  
Alarm Seconds  
100 Years  
Alarm 10 Minutes  
Alarm 10 Seconds  
1000 Years  
WDF  
AF  
0
BL  
RS3  
RS2  
RS1  
RS0  
Keys: S = Sign Bit  
SQWE = Square Wave Enable Bit  
BMB0-BMB4 = Watchdog Multiplier Bits  
RB0-RB1 = Watchdog Resolution Bits  
AFE = Alarm Flag Enable Flag  
FT = Frequency Test Bit  
R = READ Bit  
W = WRITE Bit  
ST = Stop Bit  
ABE = Alarm in Battery Back-Up Mode Enable Bit  
RPT1-RPT5 = Alarm Repeat Mode Bits  
WDF = Watchdog Flag  
0 = Must be set to '0'  
WDS = Watchdog Steering Bit  
AF = Alarm Flag  
RS0-RS3 = SQW Frequency  
BL = Battery Low Flag  
15/33  
M48T201Y, M48T201V  
Setting the Alarm Clock  
Registers 7FFF6h-7FFF2h contain the alarm set-  
tings. The alarm can be configured to go off at a  
prescribed time on a specific month, day of month,  
hour, minute, or second or repeat every month,  
day of month, hour, minute, or second.  
It can also be programmed to go off while the  
M48T201Y/V is in the battery back-up to serve as  
a system wake-up call.  
Bits RPT5-RPT1 put the alarm in the repeat mode  
of operation. Table 6 shows the possible configu-  
rations. Codes not listed in the table default to the  
once per second mode to quickly alert the user of  
an incorrect alarm setting.  
Note: User must transition address (or toggle chip  
enable) to see Flag Bit change.  
When the clock information matches the alarm  
clock settings based on the match criteria defined  
by RPT5-RPT1, the AF (Alarm Flag) is set. If AFE  
(Alarm Flag Enable) is also set, the alarm condi-  
tion activates the IRQ/FT pin. To disable alarm,  
write ’0’ to the Alarm-Date register and RPT1-5.  
The IRQ/FT output is cleared by a READ to the  
Flags Register as shown in Figure 8. A subse-  
quent READ of the Flags Register is necessary to  
see that the value of the Alarm Flag has been re-  
set to '0.'  
The IRQ/FT pin can also be activated in the bat-  
tery back-up mode. The IRQ/FT will go low if an  
alarm occurs and both ABE (Alarm in Battery  
Back-up Mode Enable) and AFE are set. The ABE  
and AFE Bits are reset during power-up, therefore  
an alarm generated during power-up will only set  
AF. The user can read the Flag Register at system  
boot-up to determine if an alarm was generated  
while the M48T201Y/V was in the deselect mode  
during power-up. Figure 9., page 17 illustrates the  
back-up mode alarm timing.  
Figure 8. Alarm Interrupt Reset Waveforms  
A0-A18  
ADDRESS 7FFF0h  
15ns Min  
ACTIVE FLAG BIT  
IRQ/FT  
HIGH-Z  
AI02331  
Table 6. Alarm Repeat Modes  
RPT5  
RPT4  
RPT3  
RPT2  
RPT1  
Alarm Setting  
Once per Second  
Once per Minute  
Once per Hour  
Once per Day  
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
Once per Month  
Once per Year  
16/33  
M48T201Y, M48T201V  
Figure 9. Back-up Mode Alarm Waveforms  
tREC  
V
V
V
CC  
PFD  
PFD  
(max)  
(min)  
V
SO  
AFE bit/ABE bit  
AF bit in Flags Register  
IRQ/FT  
HIGH-Z  
HIGH-Z  
AI03520  
Watchdog Timer  
The watchdog timer can be used to detect an out-  
of-control microprocessor. The user programs the  
watchdog timer by setting the desired amount of  
time-out into the Watchdog Register, address  
7FFF7h. Bits BMB4-BMB0 store a binary multiplier  
and the two lower order bits RB1-RB0 select the  
resolution, where 00 = 1/16 second, 01 = 1/4 sec-  
ond, 10 = 1 second, and 11 = 4 seconds. The  
amount of time-out is then determined to be the  
multiplication of the five-bit multiplier value with the  
resolution. (For example: writing 00001110 in the  
Watchdog Register = 3*1 or 3 seconds).  
The watchdog timer can be reset by two methods:  
1. a transition (high-to-low or low-to-high) can be  
applied to the Watchdog Input pin (WDI) or  
2. the microprocessor can perform a WRITE of  
the Watchdog Register.  
The time-out period then starts over. The WDI pin  
should be tied to V if not used. The watchdog  
SS  
will be reset on each transition (edge) seen by the  
WDI pin.  
In order to perform a software reset of the watch-  
dog timer, the original time-out period can be writ-  
ten into the Watchdog Register, effectively  
restarting the count-down cycle.  
Note: Accuracy of timer is within ± the selected  
resolution.  
Should the watchdog timer time-out, and the WDS  
Bit is programmed to output an interrupt, a value of  
00h needs to be written to the Watchdog Register  
in order to clear the IRQ/FT pin. This will also dis-  
able the watchdog function until it is again pro-  
grammed correctly. A READ of the Flags Register  
will reset the Watchdog Flag (Bit D7; Register  
7FFF0h).  
The watchdog function is automatically disabled  
upon power-down and the Watchdog Register is  
cleared. If the watchdog function is set to output to  
the IRQ/FT pin and the frequency test function is  
activated, the watchdog or alarm function prevails  
and the frequency test function is denied.  
If the processor does not reset the timer within the  
specified period, the M48T201Y/V sets the WDF  
(Watchdog Flag) and generates a watchdog inter-  
rupt or a microprocessor reset. WDF is reset by  
reading the Flag Register (Address 7FFF0h).  
The most significant bit of the Watchdog Register  
is the Watchdog Steering Bit (WDS). When set to  
a '0', the watchdog will activate the IRQ/FT pin  
when timed-out. When WDS is set to a '1,' the  
watchdog will output a negative pulse on the RST  
pin for t  
. The Watchdog register and the AFE,  
REC  
SQWE, ABE, and FT Bits will reset to a '0' at the  
end of a Watchdog time-out when the WDS Bit is  
set to a '1.'  
Note: The user must transition the address (or  
toggle chip enable) to see the Flag Bit change.  
17/33  
M48T201Y, M48T201V  
Square Wave Output  
The M48T201Y/V offers the user a programmable  
square wave function which is output on the SQW  
pin. RS3-RS0 Bits located in 7FFF0h establish the  
square wave output frequency. These frequencies  
are listed in Table 7. Once the selection of the  
SQW frequency has been completed, the SQW  
pin can be turned on and off under software con-  
trol with the Square Wave Enable Bit (SQWE) lo-  
cated in Register 7FFF6h.  
Table 7. Square Wave Output Frequency  
Square Wave Bits  
Square Wave  
RS3  
0
RS2  
0
RS1  
0
RS0  
0
Frequency  
Hi-Z  
32.768  
8.192  
4.096  
2.048  
1.024  
512  
256  
128  
64  
Units  
-
0
0
0
1
kHz  
kHz  
kHz  
kHz  
kHz  
Hz  
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
Hz  
1
0
0
0
Hz  
1
0
0
1
Hz  
1
0
1
0
32  
Hz  
1
0
1
1
16  
Hz  
1
1
0
0
8
Hz  
1
1
0
1
4
Hz  
1
1
1
0
2
Hz  
1
1
1
1
1
Hz  
18/33  
M48T201Y, M48T201V  
Power-on Reset  
Reset Inputs (RSTIN1 & RSTIN2)  
The M48T201Y/V continuously monitors V  
.
The M48T201Y/V provides two independent in-  
puts which can generate an output reset. The du-  
ration and function of these resets is identical to a  
reset generated by a power cycle. Figure 10 and  
Table 8 illustrate the AC reset characteristics of  
CC  
When V  
falls to the power fail detect trip point,  
CC  
the RST pulls low (open drain) and remains low on  
power-up for t after V passes V (max).  
REC  
CC  
PFD  
The RST pin is an open drain output and an appro-  
priate pull-up resistor to V  
control rise time.  
should be chosen to  
this function. Pulses shorter than t and t will  
not generate a reset condition. RSTIN1 and  
CC  
R1 R2  
RSTIN2 are each internally pulled up to V  
CC  
through a 100Kresistor.  
Figure 10. RSTIN1 and RSTIN2 Timing Waveforms  
RSTIN1  
RSTIN2  
RST  
tR2  
Hi-Z  
Hi-Z  
tR1  
tR1HRZ  
tR2HRZ  
AI01679  
Table 8. Reset AC Characteristics  
Symbol  
(1)  
Min  
50  
Max  
Unit  
ns  
Parameter  
t
t
RSTIN1 Low to RST Low  
200  
100  
200  
R1  
R2  
RSTIN2 Low to RST Low  
RSTIN1 High to RST Hi-Z  
RSTIN2 High to RST Hi-Z  
20  
ms  
ms  
(2)  
(2)  
40  
t
t
R1HRZ  
R2HRZ  
40  
200  
ms  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF (see Figure 14., page 25).  
L
19/33  
M48T201Y, M48T201V  
Calibrating the Clock  
The M48T201Y/V is driven by a quartz controlled  
oscillator with a nominal frequency of 32,768Hz.  
The devices are factory calibrated at 25°C and  
tested for accuracy. Clock accuracy will not ex-  
ceed ±35 ppm (parts per million) oscillator fre-  
quency error at 25°C, which equates to about  
±1.53 minutes per month. When the Calibration  
circuit is properly employed, accuracy improves to  
better than +1/–2 ppm at 25°C.  
which corresponds to a total range of +5.5 or –2.75  
minutes per month.  
Two methods are available for ascertaining how  
much calibration a given M48T201Y/V may re-  
quire. The first involves setting the clock, letting it  
run for a month and comparing it to a known accu-  
rate reference and recording deviation over a fixed  
period of time. Calibration values, including the  
number of seconds lost or gained in a given peri-  
The oscillation rate of crystals changes with tem-  
perature (see Figure 11., page 21). The  
M48T201Y/V design employs periodic counter  
correction. The calibration circuit adds or subtracts  
counts from the oscillator divider circuit at the di-  
vide by 256 stage, as shown in Figure  
12., page 21.  
The number of times pulses which are blanked  
(subtracted, negative calibration) or split (added,  
positive calibration) depends upon the value load-  
ed into the five Calibration bits found in the Control  
Register. Adding counts speeds the clock up, sub-  
tracting counts slows the clock down.  
The Calibration bits occupy the five lower order  
bits (D4-D0) in the Control Register 7FFF8h.  
These bits can be set to represent any value be-  
tween 0 and 31 in binary form. Bit D5 is a Sign Bit;  
'1' indicates positive calibration, '0' indicates nega-  
tive calibration (see Figure 12., page 21). Calibra-  
tion occurs within a 64 minute cycle. The first 62  
minutes in the cycle may, once per minute, have  
one second either shortened by 128 or lengthened  
by 256 oscillator cycles. If a binary '1' is loaded into  
the register, only the first 2 minutes in the 64  
minute cycle will be modified; if a binary 6 is load-  
ed, the first 12 will be affected, and so on.  
Therefore, each calibration step has the effect of  
adding 512 or subtracting 256 oscillator cycles for  
every 125,829,120 actual oscillator cycles, that is  
+4.068 or –2.034 ppm of adjustment per calibra-  
tion step in the calibration register. Assuming that  
the oscillator is running at exactly 32,768Hz, each  
of the 31 increments in the Calibration byte would  
represent +10.7 or –5.35 seconds per month  
od, can be found in the STMicroelectronics Appli-  
®
cation  
Note  
AN934,  
“TIMEKEEPER  
CALIBRATION.” This allows the designer to give  
the end user the ability to calibrate the clock as the  
environment requires, even if the final product is  
packaged in a non-user serviceable enclosure.  
The designer could provide a simple utility that ac-  
cesses the Calibration byte.  
The second approach is better suited to a manu-  
facturing environment, and involves the use of the  
IRQ/FT pin. The pin will toggle at 512Hz, when the  
Stop Bit (ST, D7 of 7FFF9h) is '0,' the Frequency  
Test Bit (FT, D6 of 7FFFCh) is '1,' the Alarm Flag  
Enable Bit (AFE, D7 of 7FFF6h) is '0,' and the  
Watchdog Steering Bit (WDS, D7 of 7FFF7h) is '1'  
or the Watchdog Register (7FFF7h=0) is reset.  
Note: A 4-second settling time must be allowed  
before reading the 512Hz output.  
Any deviation from 512Hz indicates the degree  
and direction of oscillator frequency shift at the test  
temperature. For example,  
a
reading of  
512.010124Hz would indicate a +20 ppm oscillator  
frequency error, requiring a –10 (WR001010) to be  
loaded into the Calibration Byte for correction.  
Note that setting or changing the Calibration Byte  
does not affect the Frequency Test output fre-  
quency.  
The IRQ/FT pin is an open drain output which re-  
quires a pull-up resistor to V  
for proper opera-  
CC  
tion. A 500-10kresistor is recommended in order  
to control the rise time. The FT Bit is cleared on  
power-down.  
20/33  
M48T201Y, M48T201V  
Figure 11. Crystal Accuracy Across Temperature  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
–80  
2
F  
F
ppm  
C2  
= -0.038  
(T - T0) ± 10%  
–100  
–120  
–140  
–160  
T0 = 25 °C  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI00999  
Figure 12. Calibration Waveform  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
21/33  
M48T201Y, M48T201V  
Battery Low Warning  
The M48T201Y/V automatically performs battery  
voltage monitoring upon power-up and at factory-  
programmed time intervals of approximately 24  
hours. The Battery Low (BL) Bit, Bit D4 of Flags  
Register 7FFF0h, will be asserted if the battery  
voltage is found to be less than approximately  
2.5V. The BL Bit will remain asserted until comple-  
tion of battery replacement and subsequent bat-  
tery low monitoring tests, either during the next  
power-up sequence or the next scheduled 24-hour  
interval.  
If a battery low is generated during a power-up se-  
quence, this indicates that the battery is below ap-  
proximately 2.5V and may not be able to maintain  
data integrity in the SRAM. Data should be consid-  
ered suspect and verified as correct. A fresh bat-  
tery should be installed.  
subsequent periods of battery back-up mode, the  
battery should be replaced. The SNAPHAT top  
®
may be replaced while V  
vice.  
is applied to the de-  
CC  
Note: This will cause the clock to lose time during  
the interval the battery/crystal is removed.  
The M48T201Y/V only monitors the battery when  
a nominal V is applied to the device. Thus appli-  
CC  
cations which require extensive durations in the  
battery back-up mode should be powered-up peri-  
odically (at least once every few months) in order  
for this technique to be beneficial. Additionally, if a  
battery low is indicated, data integrity should be  
verified upon power-up via a checksum or other  
technique.  
Initial Power-on Defaults  
Upon application of power to the device, the fol-  
lowing register bits are set to a '0' state: WDS;  
BMB0-BMB4; RB0-RB1; AFE; ABE; SQWE; W; R;  
FT (see Table 9).  
If a battery low indication is generated during the  
24-hour interval check, this indicates that the bat-  
tery is near end of life. However, data is not com-  
promised due to the fact that a nominal V  
is  
CC  
supplied. In order to insure data integrity during  
Table 9. Default Values  
WATCHDOG  
Condition  
W
R
FT  
AFE  
ABE  
SQWE  
(1)  
Register  
Initial Power-up  
0
0
0
0
0
0
0
(2)  
(Battery Attach for SNAPHAT)  
(3)  
0
0
0
0
0
0
0
1
0
1
0
1
0
0
RESET  
(4)  
Power-down  
Note: 1. WDS, BMB0-BMB4, RB0, RB1.  
2. State of other control bits undefined.  
3. State of other control bits remains unchanged.  
4. Assuming these bits set to '1' prior to power-down.  
22/33  
M48T201Y, M48T201V  
V
Noise And Negative Going Transients  
Figure 13. Supply Voltage Protection  
CC  
I
transients, including those produced by output  
CC  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic by-  
pass capacitor value of 0.1µF (as shown in Figure  
13) is recommended in order to provide the need-  
ed filtering.  
V
CC  
V
V
CC  
0.1µF  
DEVICE  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
CC  
SS  
below V by as much as one volt. These negative  
SS  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, STMicroelectronics recom-  
AI00605  
mends connecting a schottky diode from V  
to  
CC  
V
(cathode connected to V , anode to V ).  
SS  
CC SS  
Schottky diode 1N5817 is recommended for  
through hole and MBRS120T3 is recommended  
for surface mount.  
23/33  
M48T201Y, M48T201V  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 10. Absolute Maximum Ratings  
Symbol  
Parameter  
Ambient Operating Temperature  
Value  
0 to 70  
Unit  
°C  
T
A
®
–40 to 85  
–55 to 125  
260  
°C  
SNAPHAT  
SOIC  
T
Storage Temperature  
STG  
°C  
(1)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltage  
°C  
T
SLD  
–0.3 to V  
+ 0.3  
V
V
V
V
IO  
CC  
M48T201Y  
M48T201V  
–0.3 to 7.0  
–0.3 to 4.6  
V
Supply Voltage  
CC  
(2)  
Output Current  
20  
1
mA  
W
I
O
P
D
Power Dissipation  
Note: 1. Reflow at peak temperature of 215°C to 225°C for < 60 seconds (total thermal budget not to exceed 180°C for between 90 to 120  
seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
24/33  
M48T201Y, M48T201V  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 11. DC and AC Measurement Conditions  
Parameter  
M48T201Y  
4.5 to 5.5  
0 to 70  
100  
M48T201V  
3.0 to 3.6  
0 to 70  
50  
Unit  
V
V
Supply Voltage  
CC  
Ambient Operating Temperature  
°C  
pF  
ns  
V
Load Capacitance (C )  
L
Input Rise and Fall Times  
5  
5  
Input Pulse Voltages  
0 to 3  
1.5  
0 to 3  
1.5  
Input and Output Timing Ref. Voltages  
V
Note: Output High Z is defined as the point where data is no longer driven.  
Figure 14. AC Testing Load Circuit  
645Ω  
DEVICE  
UNDER  
TEST  
C
= 100pF  
1.75V  
L
C
includes JIG capacitance  
L
AI04764  
Notes:Excluding open-drain output pin; 50pF for M48T201V.  
Table 12. Capacitance  
(1,2)  
Symbol  
Min  
Max  
10  
Unit  
Parameter  
Input Capacitance  
C
pF  
pF  
IN  
(3)  
Input/Output Capacitance  
10  
C
OUT  
Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested.  
2. At 25°C; f = 1MHz.  
3. Outputs deselected.  
25/33  
M48T201Y, M48T201V  
Table 13. DC Characteristics  
M48T201Y  
–70  
M48T201V  
–85  
(1)  
Sym  
Parameter  
Unit  
Test Condition  
Min  
Typ  
Max  
Min  
Typ  
Max  
(2)  
0V V V  
Input Leakage Current  
Output Leakage Current  
Supply Current  
±1  
±1  
µA  
µA  
I
IN  
CC  
LI  
(3)  
0V V  
V  
CC  
±1  
15  
±1  
10  
I
OUT  
LO  
I
Outputs open  
8
4
mA  
CC  
Supply Current (Standby)  
TTL  
I
I
E = V  
5
3
mA  
CC1  
CC2  
IH  
Supply Current (Standby)  
CMOS  
E = V –0.2  
3
2
mA  
nA  
nA  
V
CC  
Battery Current OSC ON  
575  
800  
100  
0.8  
575  
800  
100  
0.8  
I
V
CC  
= 0V  
BAT  
Battery Current OSC  
OFF  
V
Input Low Voltage  
Input High Voltage  
–0.3  
2.2  
–0.3  
2.0  
IL  
V
+
V
+
CC  
0.3  
CC  
0.3  
V
V
IH  
I
= 2.1mA  
= 10mA  
Output Low Voltage  
Output Low Voltage  
0.4  
0.4  
0.4  
0.4  
V
OL  
V
V
OL  
I
V
OL  
(4)  
(open drain)  
I
= –1.0mA  
= –1.0µA  
Output High Voltage  
2.4  
2.0  
2.4  
2.0  
V
V
OH  
OH  
(5)  
V
V
V
Battery Back-up  
Current (Active)  
I
OUT2  
3.6  
3.6  
70  
V
OH  
OHB  
(6)  
V
> V –0.3  
CC  
100  
mA  
I
OUT  
OUT1  
OUT1  
Current (Battery  
OUT  
I
V
> V  
–0.3  
100  
4.5  
100  
3.0  
µA  
V
OUT2  
OUT2  
BAT  
Back-up)  
Power-fail Deselect  
Voltage  
V
4.1  
4.35  
2.7  
2.9  
PFD  
V
Battery Back-up  
Switchover Voltage  
PFD  
V
3.0  
3.0  
V
V
SO  
100mV  
V
BAT  
Battery Voltage  
3.0  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. RSTIN1 and RSTIN2 internally pulled-up to V through 100Kresistor. WDI internally pulled-down to V through 100Kresistor.  
CC  
SS  
3. Outputs deselected.  
4. For IRQ/FT & RST pins (Open Drain).  
5. Conditioned outputs (E  
will reduce battery life.  
- G  
) can only sustain CMOS leakage currents in the battery back-up mode. Higher leakage currents  
CON  
CON  
6. External SRAM must match TIMEKEEPER SUPERVISOR chip V specification.  
CC  
26/33  
M48T201Y, M48T201V  
Figure 15. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tR  
tFB  
tRB  
tREC  
INPUTS  
VALID  
DON'T CARE  
VALID  
VALID  
HIGH-Z  
OUTPUTS  
VALID  
RST  
AI03519  
Table 14. Power Down/Up Mode AC Characteristics  
(1)  
Symbol  
Min  
Max  
Unit  
Parameter  
(2)  
V
V
(max) to V  
(min) to V  
(min) V Fall Time  
300  
µs  
t
PFD  
PFD  
CC  
F
M48T201Y  
M48T201V  
10  
150  
10  
40  
5
µs  
µs  
µs  
ms  
µs  
(3)  
V
Fall Time  
t
PFD  
SS CC  
FB  
t
V
V
V
(min) to V  
(max) V Rise Time  
PFD CC  
R
PFD  
t
(max) to RST High  
(min) V Rise Time  
200  
REC  
PFD  
t
to V  
RB  
SS  
PFD  
CC  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than t may result in deselection/write protection not occurring until 200µs after V pass-  
PFD F CC  
PFD  
es V  
(min).  
PFD  
3. V  
(min) to V fall time of less than t may cause corruption of RAM data.  
SS FB  
PFD  
27/33  
M48T201Y, M48T201V  
PACKAGE MECHANICAL INFORMATION  
Figure 16. SOH44 – 44-lead Plastic Small Outline, SNAPHAT, Package Outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note: Drawing is not to scale.  
Table 15. SOH44 – 44-lead Plastic Small Outline, SNAPHAT, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
3.05  
0.36  
2.69  
0.46  
0.32  
18.49  
8.89  
Typ  
Max  
0.120  
0.014  
0.106  
0.018  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
0.81  
0.032  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
44  
44  
CP  
0.10  
0.004  
28/33  
M48T201Y, M48T201V  
Figure 17. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 16. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
29/33  
M48T201Y, M48T201V  
Figure 18. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 17. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
10.54  
8.51  
Typ  
Max  
A
A1  
A2  
A3  
B
0.415  
.0335  
0.315  
0.015  
0.022  
0.860  
.0710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
30/33  
M48T201Y, M48T201V  
PART NUMBERING  
Table 18. Ordering Information Example  
Example:  
M48T  
201Y  
–70  
MH  
1
TR  
Device Type  
M48T  
Supply and Write Protect Voltage  
201Y = V = 4.5 to 5.5V; V  
= 4.1V to 4.5V  
= 2.7V to 3.0V  
CC  
PFD  
201V = V = 3.0 to 3.6V; V  
CC  
PFD  
Speed  
–70 = 70ns (for M48T201Y)  
–85 = 85ns (for M48T201V)  
Package  
(1)  
MH = SOH44  
Temperature Range  
1 = 0 to 70°C  
Shipping Method for SOIC  
blank = Tubes  
TR = Tape & Reel  
®
Note: 1. The SOIC package (SOH44) requires the battery package (SNAPHAT ) which is ordered separately under the part number  
“M4Txx-BR12SH” in plastic tube or “M4Txx-BR12SHTR” in Tape & Reel form.  
Note: 1. Caution: Do not place the SNAPHAT battery package “M4Txx-BR12SH” in conductive foam as it will drain the lithium button-cell  
battery.  
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest to you.  
®
Table 19. SNAPHAT Battery Table  
Part Number  
M4T28-BR12SH  
M4T32-BR12SH  
Description  
Lithium Battery (48mAh) SNAPHAT  
Lithium Battery (120mAh) SNAPHAT  
Package  
SH  
SH  
31/33  
M48T201Y, M48T201V  
REVISION HISTORY  
Table 20. Document Revision History  
Date  
Rev. #  
1.0  
Revision Details  
November 1999  
10-May-01  
14-May-01  
30-May-01  
First Issue  
2.0  
Reformatted; added Industrial temperature (Table 10, 13, 3, 4, 14)  
Corrected table footnote (Table 14)  
2.1  
2.2  
Change “Controller” references to “SUPERVISOR”  
Formatting changes from recent document review findings; E2 added to Hookup (Figure  
4)  
01-Aug-01  
2.3  
08-Aug-01  
18-Dec-01  
13-May-02  
16-Jul-02  
2.4  
2.5  
2.6  
2.7  
3.0  
Improve text in “Setting the Alarm Clock” section  
Added I  
values for Industrial Temperature device (Table 13)  
BAT  
Modify reflow time and temperature footnote (Table 10)  
Update DC Characteristics, footnotes (Table 13)  
v2.2 template applied; update test condition (Table 13)  
27-Mar-03  
Reformatted, remove Industrial Temperature (Ambient Operating) references (Table 3, 4,  
8, 10, 13, 14, 18)  
24-Sep-04  
4.0  
M48T201, M48T201Y, M48T201V, 48T201, 48T201Y, 48T201V, T201, T201Y, T201V, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPER-  
VISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, SUPERVISOR, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIME-  
KEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER,  
TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, TIMEKEEPER, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM,  
NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, NVRAM, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Micro-  
processor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microproces-  
sor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Microprocessor, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low,  
Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Low, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,  
Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,  
Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,  
Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Watchdog, Watch-  
dog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog,  
Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog,  
Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI,  
PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFI, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO, PFO,  
PFO, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset,  
Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset,  
Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset, Reset,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Switchover, Switchover, Switchover, Switchover, Switchover, Switchover, Switchover, Switchover, Switchover, Switchover,  
Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Power-fail, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Com-  
parator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator,  
Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, Comparator, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT,  
SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT,  
SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SNAPHAT, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC,  
SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V,  
5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 5V, 3.3V, 3.3V, 3.3V, 3.3V, 3.3V, 3.3V, 3.3V, 3.3V, 3.3V, 3.3V  
32/33  
M48T201Y, M48T201V  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
33/33  

相关型号:

M48T201V-70MH1E

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-70MH1F

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-70MH1TR

3.3V-5V TIMEKEEPER CONTROLLER
STMICROELECTR

M48T201V-80MH1

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-80MH1E

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-80MH1F

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-80MH1TR

5.0 or 3.3 V TIMEKEEPER? supervisor
STMICROELECTR

M48T201V-85MH1

3.3V-5V TIMEKEEPER CONTROLLER
STMICROELECTR

M48T201V-85MH1E

5.0 or 3.3 V TIMEKEEPER&#174; supervisor
STMICROELECTR

M48T201V-85MH1F

5.0 or 3.3 V TIMEKEEPER&#174; supervisor
STMICROELECTR

M48T201V-85MH1TR

3.3V-5V TIMEKEEPER CONTROLLER
STMICROELECTR

M48T201VMH

3.3V-5V TIMEKEEPER CONTROLLER
STMICROELECTR