LNBP10L [STMICROELECTRONICS]

500 mA guaranteed output current;
LNBP10L
型号: LNBP10L
厂家: ST    ST
描述:

500 mA guaranteed output current

文件: 总21页 (文件大小:423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LNBP8L - LNBP9L  
LNBP10L - LNBP11L  
LNB supply and control voltage regulator  
Preliminary data  
Features  
Simplest integrated solution for LNB remote  
supply and control  
500 mA guaranteed output current  
Dual input supply for reducing power  
dissipation (DFN package)  
3-state function to enable/disable and select  
IPPAK  
DFN8 (5 x 6 mm)  
the output voltage level through a single pin  
Fast oscillator startup for DiSEq™ encoding  
(LNBP9L/11L versions)  
supplied at 22 V (min.). Additionally, the  
LNBP10L/11L versions have the LLC pin to  
increment the selected output voltage value by 1  
V (typ.) to compensate for the excess voltage  
drop along the coaxial cable (LLC pin HIGH).  
External 22 kHz modulation input pin  
(LNBP8L/10L versions)  
Cable length compensation, LLC pin  
(LNBP10L, LNBP11L versions)  
An analog 22 kHz modulation input pin (EXTM) is  
available in the LNBP8L and LNBP10L versions.  
An appropriate DC blocking capacitor must be  
used to couple the modulating signal source to  
the EXTM pin. The LNBP10L/11L versions are  
also equipped with over-current dynamic  
Short-circuit and over-temperature protection  
LNB overload and short-circuit dynamic  
protection (LNBP10L, LNBP11L versions)  
Available in DFN8 (5 x 6 mm) and IPPAK  
packages  
protection: as soon as an overload is detected the  
output is shut down for the time T  
determined by the capacitor connected between  
the CEXT pin and GND. After the time has  
which is  
OFF,  
Description  
Intended for analog and digital satellite receivers,  
the LNBP is a monolithic linear voltage regulator,  
assembled in the DFN8 5x6 and IPPAK packages,  
specifically designed to provide the powering  
voltages and the interfacing signals to the LNB  
down-converter. The regulator output can be logic  
controlled for 13 V or 18 V (typ.) by means of the  
EN/VSEL 3-state pin for remotely controlling the  
LNB. When the IC is powered and put in standby  
(EN/VSEL pin at high impedance), the regulator  
output is disabled. In order to reduce power  
dissipation, the LNBP10L/11L versions (on DFN  
elapsed, the output is resumed for a time T  
=
ON  
(1/12)*T  
(typ.). If the overload is still present,  
OFF  
the protection circuit will cycle again through T  
OFF  
and T until the overload is removed. A typical  
ON  
T
+T  
value is 1100 ms when a 4.7 µF  
ON OFF  
external capacitor is used on the C . This  
dynamic operation can greatly reduce the power  
dissipation in short-circuit condition, while  
EXT  
ensuring excellent power-on startup even with  
highly capacitive loads on the LNB outputs.  
The device is packaged in the IPPAK for through-  
hole mounting and in the DFN8 5x6 for surface  
mounting. Both package solutions are offered in  
two versions: with ten pins (LNBP9L/11L) to use  
with the integrated 22 kHz tone generator, or with  
the EXTM pin (LNBP8L/10L) to use external 22  
kHz sources. All versions have built-in thermal  
protection to prevent overheating damage.  
package) feature 2 supply inputs: V  
and V  
.
CC1  
CC2  
These pins must be powered, respectively, at 15  
V (min.) and 22 V (min.), and an internal switch  
will automatically select the appropriate supply  
voltage according to the selected output voltage.  
The LNBP8L/9L versions (in the IPPAK package)  
have only one supply input pin, which must be  
November 2008  
Rev 1  
1/21  
This is preliminary information on a new product in development or undergoing evaluation. Details are subject to change  
without notice.  
www.st.com  
21  
Contents  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Contents  
1
2
3
4
5
6
Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Typical application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Detailed description and application hints . . . . . . . . . . . . . . . . . . . . . . . 9  
6.1  
6.2  
6.3  
Input voltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Single supply for the DFN package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
IPPAK mounting and thermal considerations . . . . . . . . . . . . . . . . . . . . . . 11  
7
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
8
9
10  
2/21  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Diagram  
1
Diagram  
Figure 1.  
Block diagram  
VCC1  
VCC2  
RSENSE  
TRISTATE ENABLE &  
VOUT SELECTION  
EN/VSEL  
LLC  
VOLTAGE  
REFERENCE  
OUTPUT  
DYNAMIC  
CURRENT LIMIT  
CEXT  
TEN  
THERMAL  
PROTECTION  
22kKHHzz  
OSCILLATOR  
EXTM  
LNBP8L/9L/10L/11L  
GND  
3/21  
Pin configuration  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
2
Pin configuration  
Figure 2.  
Pin connections (top view for IPPAK, bottom view for DFN8)  
DFN8 (5x6 mm)  
IPPAK  
Table 1.  
Pin description  
Pin n°  
(IPPAK)  
LNBP8/9L  
Pin n° (DFN)  
LNBP10/11L  
Name  
Pin function  
Supply input 1: 15 V to 25 V supply. For DFN package it is  
automatically selected when VOUT = 13 V. For IPPAK package  
VCC1 and VCC2 are internally connected together to pin 1 to be  
supplied at 22 V min.  
VCC1  
(not available for  
IPPAK)  
1
2
-
Supply input 2: 22 V to 25 V supply. For DFN package it is  
automatically selected when VOUT = 18 V. For IPPAK package  
VCC1 and VCC2 are internally connected together to the pin 1 to be  
supplied at 22 V min.  
VCC2  
(VCC pin for  
IPPAK)  
1
Output: regulator output. It is 13 V typ when EN/VSEL LOW and  
18 V typ when EN/VSEL HIGH.  
3
2
OUTPUT  
GROUND  
4, ePAD  
3, ePAD  
GROUND  
Enable and output voltage selection 3-state pin: logic control  
input 3-state pin for the remote controlling of the LNB; if LOW  
VOUT = 13 V, when HIGH VOUT = 18 V, if left at high impedance the  
IC is set in shut down mode (VOUT = 0 V)  
6
5
4
5
EN/VSEL  
Tone enable (LNBP9-11): logic control input to enable internal  
tone generator.  
External modulation (LNBP8-10): Needs DC decoupling to the  
AC source. If not used can be left floating.  
EXTM/TEN  
8
7
NA  
NA  
LLC  
LLC: logic control input to add 1 V typ.  
CEXT: timing capacitor used by the dynamic overload protection.  
Typical application is 4.7 µF for a 1100 ms cycle  
CEXT  
4/21  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Maximum ratings  
3
Maximum ratings  
Table 2.  
Absolute maximum ratings  
Symbol  
Parameter  
Value  
Unit  
VCC1, VCC2  
Input voltages  
-0.3 to 28  
-0.3 to 25  
-0.3 to 25  
V
V
V
VCC1-OUTPUT VCC1 voltage with respect to OUTPUT voltage (1)  
VCC2-OUTPUT VCC2 voltage with respect to OUTPUT voltage (1)  
EN/VSEL, TEN,  
Logic input voltage  
LLC  
-0.3 to 7  
V
EXTM  
OUTPUT  
TSTG  
External modulation input voltage  
-0.3 to 1  
V
V
Output voltage  
-0.3 to 25  
Storage temperature range  
-50 to 150  
°C  
kV  
ESD rating with human body model (HBM) for all pins except 1, 2, 6  
ESD rating with human body model (HBM) for pins 1, 2, 6  
ESD rating with human body model (HBM) for all pins except 1, 4  
ESD rating with human body model (HBM) for pins 1, 4  
2
ESD  
DFN package  
1.5  
2
kV  
ESD  
IPPAK package  
1.5  
1. Exposure beyond the VCC1 and VCC2 with respect to OUTPUT absolute-maximum-rated voltages during OUTPUT pin  
overload or short-circuit to GROUND may cause permanent damage to the device.  
Note:  
Absolute maximum ratings are those values beyond which damage to the device may occur.  
These are stress ratings only and functional operation of the device at these conditions is  
not implied. Exposure to absolute-maximum-rated conditions for extended periods may  
affect device reliability. All voltage values are with respect to network ground terminal unless  
otherwise stated.  
Table 3.  
Operating ratings  
Symbol  
Parameter  
Value  
Unit  
TJ  
Operating junction temperature range  
Input voltage  
0 to 125  
15 to 25  
22 to 25  
°C  
V
VCC1  
VCC2  
Input voltage  
V
Table 4.  
Thermal data  
Symbol  
Parameter  
IPPAK  
DFN8  
Unit  
35  
RthJA  
RthJC  
Thermal resistance junction-ambient  
Thermal resistance junction-case  
°C/W  
°C/W  
(mounted on PCB 2s2p)  
8
5/21  
Electrical characteristics  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
4
Electrical characteristics  
Table 5.  
Electrical characteristics  
(1)  
Refer to the typical application circuits in Figure 3 and Figure 4, V  
= 16 V, V  
= 23 V , EN/VSEL =  
CC2  
CC1  
LOW, TEN = LLC = LOW, EXTM = FLOATING, I  
= 50 mA, T = 0 °C to 85 °C, unless otherwise stated.  
OUT  
J
Typical values are referred to T = 25 °C  
J
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
IOUT = 500 mA, TEN=HIGH,  
EN/VSEL=LOW, LLC=LOW  
15  
25  
VCC1  
VCC supply input 1 (1)  
V
I
OUT = 500 mA, TEN=HIGH,  
16  
22  
23  
25  
25  
25  
EN/VSEL=LOW, LLC= HIGH  
IOUT = 500 mA, TONE=HIGH,  
EN/VSEL=HIGH, LLC=LOW  
VCC2  
VCC supply input 2 (1)  
V
IOUT = 500 mA, TONE=HIGH,  
EN/VSEL=HIGH, LLC= HIGH  
IOUT = 500 mA, EN/VSEL=LOW  
IOUT = 500 mA, EN/VSEL=HIGH  
12.5 13.25  
14  
19  
V
V
17  
18  
14.25  
19  
VOUT  
Output voltage  
IOUT = 500 mA, EN/VSEL=LOW,  
LLC=HIGH (2)  
V
V
IOUT = 500 mA, EN/VSEL=LLC=HIGH (2)  
VCC1 from 15 V to 18 V, EN/VSEL=LOW  
or HIGH  
ΔVOUT  
ΔVOUT  
Line regulation (1)  
Load regulation  
5
40  
mV  
VCC1 = VCC2 = 22 V, IOUT from 50 mA to  
500 mA, EN/VSEL=LOW or HIGH  
50  
150  
mV  
IMAX  
FTONE  
ATONE  
DTONE  
tr, tf  
Output current limiting  
Tone frequency  
550  
20  
0.4  
40  
5
700  
22  
850  
24  
mA  
kHz  
VPP  
%
TEN=High  
TEN=High  
TEN=High  
TEN=High (3)  
Tone amplitude  
0.65  
50  
0.9  
60  
Tone duty cycle  
Tone Rise and Fall Time  
10  
15  
µs  
Δ VOUT/Δ VEXTM, freq. from 10 kHz to 40  
GEXTM  
VEXTM  
ZEXTM  
VILT  
External modulation Gain  
4.5  
5.5  
6.5  
kHz  
External modulation input  
voltage  
AC Coupling  
400  
mVPP  
Ω
External modulation  
impedance  
Freq. from 10 kHz to 40 kHz  
EN/VSEL  
400  
1
Control input logic LOW  
threshold for 3-state pin  
0.8  
1.8  
1.2  
2.2  
V
Control input logic HIGH  
threshold for 3-state pin  
VIHT  
EN/VSEL  
2
V
3-state control pin input  
current HIGH  
IIHT  
VIHT = 5 V, EN/VSEL  
-400  
µA  
6/21  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Electrical characteristics  
Table 5.  
Electrical characteristics (continued)  
(1)  
Refer to the typical application circuits in Figure 3 and Figure 4, V  
= 16 V, V  
= 23 V , EN/VSEL =  
CC2  
CC1  
LOW, TEN = LLC = LOW, EXTM = FLOATING, I  
= 50 mA, T = 0 °C to 85 °C, unless otherwise stated.  
OUT  
J
Typical values are referred to T = 25 °C  
J
Symbol  
Parameter  
Test conditions  
ILT = 0 V, EN/VSEL  
TEN, LLC  
Min. Typ. Max.  
Unit  
3-state control pin input  
current LOW  
IILT  
V
+180  
µA  
VIL  
VIH  
IIH  
Control input logic LOW  
0.8  
V
V
Control input logic HIGH TEN, LLC  
2.5  
20  
Control pins input current VIH = 5 V, TEN, LLC  
µA  
Output disabled EN/VSEL=High  
impedance (floating)  
1.7  
3.7  
2.4  
6.3  
mA  
mA  
ms  
ICC  
Supply current  
Output enabled EN/VSEL=HIGH,  
TEN=HIGH, IOUT = 500 mA  
Dynamic overload  
protection OFF time  
TOFF  
Output shorted, CEXT = 4.7 µF (2)  
Output shorted, CEXT = 4.7 µF (2)  
1000  
Dynamic overload  
protection ON time  
TOFF  
/12  
TON  
IOBK  
ms  
mA  
°C  
Output backward current Output forced to 21 V  
6
Thermal shutdown  
threshold  
TSHDN  
165  
Thermal shutdown  
hysteresis  
ΔTSHDN  
25  
°C  
1. For IPPAK package VCC1 and VCC2 are internally connected to the pin 1 (VCC) to be supplied in the range from 22 V up to  
25 V  
2. Only DFN package  
3. Guaranteed by design  
7/21  
Typical application circuits  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
5
Typical application circuits  
Figure 3.  
Single input supply voltage solution for IPPAK package versions  
D1  
1N4001  
LNB OUTPUT  
23V  
VCC  
OUTPUT  
C1  
10µF  
C2  
220nF  
LNBP8/9L  
D2  
C3  
1N5818 100nF  
EN/VSEL (Tristate)  
MCU I/Os  
EXTM or TEN  
GND  
Figure 4.  
Dual input supply voltage solution for DFN8 (5 x 6 mm) package versions  
D1 1N4001  
16V  
LNB OUTPUT  
VCC1  
OUTPUT  
C1  
10µF  
C2  
220nF  
23V  
D3 1N4001  
C3  
100nF  
D2  
1N5818  
VCC2  
LLC  
LNBP10/11L  
C4  
10µF  
C5  
220nF  
CEXT  
C6  
4.7µF  
MCU I/Os  
EN/VSEL (Tristate)  
EXTM or TEN  
GND  
Figure 5.  
Single input supply voltage solution for DFN8 (5 x 6 mm) package versions  
D1  
1N4001  
R1  
15 Ohm >3W  
23V  
LNB OUTPUT  
VCC1  
VCC2  
OUTPUT  
C1  
10µF  
C2  
220nF  
D2  
C3  
1N5818 100nF  
C4  
220nF  
LNBP10/11L  
LLC  
CEXT  
C5  
4.7µF  
MCU I/Os  
EN/VSEL (Tristate )  
EXTM or TEN  
GND  
Note:  
In a single supply configuration with the DFN package, an R resistor in the 12-15 Ω range  
1
is recommended to reduce device power dissipation during the 13 V output condition. The  
resistor can be omitted, but the power dissipation will increase.  
8/21  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Detailed description and application hints  
6
Detailed description and application hints  
The LNBPxx is made up of several functional blocks (see Figure 1 on page 3), as described  
below:  
1. The oscillator is activated by setting the ENT pin (enable tone) = H, and is factory-  
trimmed at 22 kHz 2 kHz, eliminating the need to use external trimming. The rising  
and falling edges are maintained in the 5 to 15 µs range (10 µs typ.), to avoid RF  
pollution of the receiver. The duty cycle is 50% typ. It modulates the DC output with a  
0.325 V typ. amplitude and 0 V average. The presence of this signal usually gives the  
LNB information about the band to be received.  
2. The 3-state enable & V  
selection block, selects the two output voltages or sets the  
OUT  
IC to shutdown mode, depending on the voltage applied on the EN/VSEL pin.  
When EN/VSEL is set high (EN/VSEL > 2.2 V), an 18 V output voltage is selected;  
when the EN/VSEL is set low (EN/VSEL < 0.8 V), a 13 V output voltage is selected.  
If the EN/VSEL pin is left floating (high impedance) or if the pin is set in a range from  
1.2 V to 1.8 V (1.5 V typ.), the IC goes into shutdown mode and the output voltage will  
be set to 0 V.  
This feature changes the LNB polarization type. The LNB switches to horizontal or  
vertical polarization depending on the supply voltage it gets from the receiver.  
3. For the DFN package, in order to keep the power dissipation of the device as low as  
possible, the input selector automatically selects V  
; that is, the lowest input voltage,  
CC1  
when 13 V output is selected (i.e. EN/VSEL is low). If the 18 V output is selected (i.e.  
EN/VSEL is high), the V input pin is selected. For example, power dissipation at  
CC2  
I
= 350 mA is:  
OUT  
P = (23 - 18) x 0.35 = 1.75 W  
D
with V  
= 23 V (voltage on the V  
pin) and V  
OUT  
= 18 V, and  
= 13 V  
CC2  
CC2  
CC1  
P = (16 - 13) x 0.35 = 1.05 W  
D
with V  
= 16 V (voltage on the V  
pin) and V  
OUT  
CC1  
For IPPAK package, V  
and V  
are internally connected and must be supplied from a  
CC1  
CC2  
single input voltage line (22 V min.) to the V pin. In this case the worst case power  
CC  
dissipation is 13 V output. For example: at I  
= 350 mA and V = 23 V (voltage on the  
OUT  
CC  
V
pin):  
CC  
P = (23 - 13) x 0.35 = 3.5 W  
D
4. The line length compensation function is useful when the antenna is connected to the  
receiver by a long coaxial cable that adds a considerable DC voltage drop. When the  
LCC pin is H, the output voltage selected is increased by about 1 V. This function is  
available for the DFN package only.  
5. The reference drives all the internal blocks that require a high-precision thermally  
compensated voltage source.  
6. The LNBPxx has two different protection features, and both turn off the outputs. The  
first one protects against overheating (i.e. for T 150 °C), and the second against  
J
overload conditions (i.e. for output current > 550 mA) or short-circuit:  
a) In the thermal protection case the output is disabled until the chip temperature has  
fallen below 140 °C typ. and the LNBPxx output is restored.  
b) The overload protection case occurs when output current request is 500 mA. For  
the DFN package only, the IC features dynamic overload and short-circuit  
9/21  
Detailed description and application hints  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
protection. When an overload occurs the device limits the output current for the  
time T depending on the C value (see Figure 24 and Figure 25). When T  
ON  
ON  
EXT  
has elapsed, the output goes low for a time of T  
= 12 x T . This keeps the  
OFF  
ON  
power dissipated by the device low in overload conditions, and avoids the need for  
an oversized heat sink in this condition. For the IPPAK package, when the  
overload or the short-circuit occurs, the device clamps the output current in a  
range between 550 mA and 850 mA.  
7. EXTM modulates the V  
by means of a capacitor connected in series (see Figure 6).  
OUT  
The following equation is used to calculate the peak-to-peak voltage of V  
:
OUT  
V
(AC) = V  
(AC) x G  
EXTM EXTM  
OUT  
where V  
(AC) and V  
(AC) are, respectively, the peak-to-peak voltage of V  
and  
OUT  
EXTM  
OUT  
V
. G  
is the external modulation gain.  
EXTM  
EXTM  
Figure 6.  
EXTM application circuit  
D1  
1N4001  
LNB OUTPUT  
23V  
VCC  
OUTPUT  
C1  
10µF  
C2  
220nF  
LNBP8/9L  
D2  
C3  
1N5818 100nF  
EN/VSEL (Tristate)  
Vextm  
EXTM  
GND  
C4  
F  
6.1  
Input voltage protection  
In some cases two or more receivers share the same coaxial cable, rendering their outputs  
hard-paralleled, so the same voltage is present at the outputs of the receivers. If a receiver  
is not disconnected at the mains, a current will flow from the OUTPUT to the V  
or V  
CC1  
CC2  
pins, depending the EN/VSEL pin setting. To avoid this, two diodes (only one for the IPPAK  
package) in series are recommended at input pins V and V (see Figure 3). These  
CC1  
CC2  
diodes do not cause a change at V  
, but only a voltage drop, which can be minimized by  
OUT  
using Schottky diodes. Diodes used in Figure 4 and Figure 5 must withstand a continuous  
current of almost 1 A and a breakdown voltage of 30 V (suggested type is 1N4001 or  
BYV10-30). Be aware that the minimum voltage needed at the V pins must be respected,  
CC  
considering the voltage drop across the input diodes).  
10/21  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Detailed description and application hints  
6.2  
Single supply for the DFN package  
If only one power supply source is available, the V  
and V  
pins can be powered by the  
CC2  
CC1  
same power source without affecting the performance of other circuits, at the cost of higher  
power losses in the device and higher heat sink surface. Also, in order to reduce the power  
dissipation in the device, an appropriate-value resistor can be inserted in series with the  
V
line (see Figure 5). This resistor must be dimensioned considering that the minimum  
CC1  
voltage on the V  
pin must be >= 16 V (15 V if LLC is not used).  
CC1  
For example, with I  
= 500 mA:  
R
OUT  
-
-
(23 Vf 16)  
500 x 10-3  
12 Ω  
Where V is the forward voltage of the input diode D1 (see Figure 5).  
f
Power dissipated in this resistor is:  
2
3
-
2
=
=
=
PD R* IOUT  
12* 500*10  
3 W  
pins using 220 nF electrolytic capacitors.  
CC2  
(
)
It is recommended to bypass the V and V  
CC1  
6.3  
IPPAK mounting and thermal considerations  
First, it should be noted that the tab is directly connected to the GND pin, so care must be  
taken when the device is connected to a heat-sink. If the heat sink is at a different voltage  
than the ground, an electrical insulator must be added between the tab and the heat sink at  
the cost of an increase in the thermal resistance. For better thermal performance, an  
isolated heat sink or connection to ground is recommended.  
11/21  
Detailed description and application hints  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Several clips can be used depending on the heat sink type:  
Saddle clips (Figure 7) for slim heat sinks  
U-clips (Figure 8) for thick heat sinks  
Dedicated clips for special shaped heat sinks  
Figure 7.  
IPPAK mounted with a saddle clip.  
Figure 8.  
IPPAK mounted with a U-clip.  
Note that the thickness of the IPPAK package (2.3 +/- 0.1 mm) is similar to that of the SOT-  
32 and SOT-82 (2.55 +/- 0.15 mm). The same clips can also be used for these packages.  
The junction-to-ambient thermal resistance for the IPPAK can be calculated as follows:  
RTH-JA = RTH-JC + RTH-CH + RTH-HA  
where: RTH-JC is the junction-to-case thermal resistance of the IPPAK (see Table 4: Thermal  
data), RTH-CH is the case-to-heat sink thermal resistance and the RTH-HA is the heat sink-to-  
air thermal resistance.  
12/21  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Typical performance characteristics  
7
Typical performance characteristics  
(Refer to the typical application circuit, TJ from 0 to 85 °C. Typical values are referred to  
TJ = 25 °C).  
Figure 9.  
Output voltage vs. temperature  
Figure 10. Output voltage vs. temperature  
14  
14  
VCC1 = 15 V  
VCC2 = 23 V  
IOUT = 50 mA  
VOUT = 13 V  
VCC1 = 15 V  
VCC2 = 23 V  
IOUT = 500 mA  
13.8  
13.6  
13.4  
13.2  
13  
13.8  
13.6  
13.4  
13.2  
13  
VOUT = 13 V  
12.8  
12.6  
12.4  
12.2  
12  
12.8  
12.6  
12.4  
12.2  
12  
EN/VSEL=L  
TEN=L, LLC=L  
EN/VSEL=L  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
H = Logic High = 5 V  
L = Logic Low = 0 V  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
T [°C]  
T [°C]  
Figure 11. Output voltage vs. temperature  
Figure 12. Output voltage vs. temperature  
19  
19  
VCC1 = 15 V  
VCC1 = 15 V  
VCC2 = 23 V  
18.8  
18.8  
VCC2 = 23 V  
IOUT = 50 mA  
VOUT = 18 V  
IOUT = 500 mA  
VOUT = 18 V  
18.6  
18.4  
18.2  
18  
18.6  
18.4  
18.2  
18  
17.8  
17.6  
17.4  
17.2  
17  
17.8  
17.6  
17.4  
17.2  
17  
EN/VSEL=H  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
EN/VSEL=H  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
T [°C]  
T [°C]  
Figure 13. Line regulation vs. temperature  
Figure 14. Load regulation vs. temperature  
250  
200  
150  
100  
50  
40  
30  
20  
VCC1 = 15 V  
VCC2 = 23 V  
IOUT = from 50 mA to 500 mA  
VOUT = 13 V  
VCC1 = 16 V to 25 V  
V
CC2 = 23 V  
OUT = 50 mA  
OUT = 13 V  
I
V
50  
0
10  
0
-50  
-100  
-150  
-200  
-250  
-10  
-20  
-30  
-40  
-50  
EN/VSEL=L  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
EN/VSEL=L  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
T [°C]  
T [°C]  
13/21  
Typical performance characteristics  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Figure 15. Load regulation vs. temperature  
Figure 16. Output current limiting vs.  
temperature  
900  
250  
VCC1 = 15 V  
850  
VCC1 = 15 V  
VCC2 = 23 V  
V
CC2 = 23 V  
200  
800  
750  
700  
650  
600  
550  
500  
450  
400  
VOUT = 13 V  
I
OUT = from 50 mA to 500 mA  
150  
100  
50  
VOUT = 18 V  
0
-50  
-100  
-150  
EN/VSEL=H  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
EN/VSEL=L  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
T [°C]  
T [°C]  
Figure 17. Output current limiting vs.  
temperature  
Figure 18. Dynamic overload protection ON  
time vs. temperature  
900  
210  
VCC1 = 15 V  
VCC2 = 23 V  
850  
VCC1 = 16 V  
190  
VCC2 = 23 V  
800  
750  
700  
650  
600  
550  
500  
450  
400  
VOUT = 18 V  
170  
150  
130  
110  
90  
Cext = 4.7 µF  
OUT = 13 V  
V
70  
50  
EN/VSEL=L  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
EN/VSEL=H  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
30  
10  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
T [°C]  
T [°C]  
Figure 19. Dynamic overload protection OFF Figure 20. Tone enable  
time vs. temperature  
VCC1 = 23 V  
V
CC2 = 23 V  
I
OUT = 50 mA  
1200  
1100  
1000  
900  
VOUT = 13 V  
VCC1 = 15 V  
VCC2 = 23 V  
Cext = 4.7 µF  
EN/VSEL=L  
TEN=H, LLC=L  
VOUT = 13 V  
800  
700  
EN/VSEL=L  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
600  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
T [°C]  
14/21  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Figure 21. Tone disable  
Typical performance characteristics  
Figure 22. External modulation gain vs.  
temperature  
VCC1 = 23 V  
VCC2 = 23 V  
IOUT = 50 mA  
VOUT = 13 V  
8
7.5  
7
6.5  
6
5.5  
5
VCC1 = 15 V  
VCC2 = 23 V  
IOUT = 50 mA  
EN/VSEL=L  
TEN=H, LLC=L  
VOUT = 13 V  
f = 22 kHz  
4.5  
4
3.5  
3
2.5  
2
EN/VSEL=L  
TEN=L, LLC=L  
H = Logic High = 5 V  
L = Logic Low = 0 V  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
T [°C]  
Figure 23. External modulation gain vs.  
frequency  
Figure 24. T time vs. C  
ON  
EXT  
400  
350  
300  
250  
200  
150  
100  
50  
7
VCC1 = 15 V  
6.5  
6
VCC2 = 23 V  
IOUT = 50 mA  
VOUT = 13 V  
5.5  
5
4.5  
4
H = Logic High = 5 V  
L = Logic Low = 0 V  
EN/VSEL=L  
TEN=L, LLC=L  
3.5  
1000  
0
10000  
F [Hz]  
100000  
0
5
10  
15  
CAPACITOR CEXT [µF]  
Figure 25. T  
time vs. C  
OFF  
EXT  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
5
10  
15  
CAPACITOR CEXT [µF]  
15/21  
Package mechanical data  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
8
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a lead-free second level interconnect. The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
Figure 26. IPPAK package dimensions  
0075222  
16/21  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Package mechanical data  
Table 6.  
IPPAK mechanical data  
Dim.  
(mm.)  
Typ.  
Min.  
Max.  
A
A1  
B
2.20  
0.90  
0.40  
5.20  
2.40  
1.10  
0.60  
5.40  
0.70  
B2  
B3  
B5  
B6  
C
0.30  
1
0.45  
0.48  
6
0.60  
0.60  
6.20  
6.60  
C2  
D
E
6.40  
e
1.27  
G
4.90  
2.38  
15.90  
9
5.25  
2.70  
16.30  
9.40  
1.20  
1
G1  
H
L
L1  
L2  
V1  
0.80  
0.80  
10°  
Note:  
1
2
Controlling dimensions: millimeter.  
Burrs larger than 0.25 mm are not allowed on the upper surface of the dissipater (FRONT)  
on the lower surface (REAR) the maximum allowed is: 0.05 mm.  
3
4
5
6
7
8
The side of the dissipater to be connected to the external dissipater must be flat within 30 µ  
The leads size is comprehensive of the thickness of the leads finishing material.  
Package outline exclusive of any mold flashes dimensions and metal burrs.  
Max resin gate protrusion: 0.5 mm.  
Max resin protrusion: 0.25 mm.  
The maximum bent leads allowed, in any direction, is: # 2° if the devices are packed in tube.  
17/21  
Package mechanical data  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
DFN8 (5x6 mm) mechanical data  
mm.  
Typ.  
inch.  
Typ.  
Dim.  
Min.  
Max.  
Min.  
Max.  
A
A1  
A3  
b
0.80  
0.90  
0.02  
0.20  
0.40  
5.00  
4.2  
1.00  
0.05  
0.032  
0.035  
0.001  
0.008  
0.016  
0.197  
0.165  
0.236  
0.142  
0.049  
0.078  
0.086  
0.015  
0.0086  
0.039  
0.002  
0.35  
4.15  
3.55  
0.47  
4.25  
3.65  
0.014  
0.163  
0.140  
0.018  
0.167  
0.144  
D
D2  
E
6.00  
3.6  
E2  
e
1.27  
1.99  
2.20  
0.40  
0.219  
F
G
H
I
L
0.70  
0.90  
0.028  
0.035  
7286463/C  
18/21  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Ordering information  
9
Ordering information  
Table 7.  
Order codes  
Order codes  
Part numbers  
Packing  
DFN8 (5x6 mm)  
IPPAK  
LNBP8L  
LNBP9L  
LNBP10L  
LNBP11L  
LNBP8LIT  
LNBP9LIT  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
LNBP10LPUR  
LNBP11LPUR  
19/21  
Revision history  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
10  
Revision history  
Table 8.  
Document revision history  
Revision  
Date  
11-Nov-2008  
Changes  
1
Initial release.  
20/21  
LNBP8L - LNBP9L - LNBP10L - LNBP11L  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
21/21  

相关型号:

LNBP10LPUR

0.85A SWITCHING REGULATOR, 24kHz SWITCHING FREQ-MAX, PDSO8, 5 X 6 MM, ROHS COMPLIANT, DFN-8
STMICROELECTR

LNBP10SP

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP10SP-TR

LNBP supply and control voltage regulator (parallel interface)
STMICROELECTR

LNBP11

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP11L

500 mA guaranteed output current
STMICROELECTR

LNBP11LPUR

0.85A SWITCHING REGULATOR, 24kHz SWITCHING FREQ-MAX, PDSO8, 5 X 6 MM, ROHS COMPLIANT, DFN-8
STMICROELECTR

LNBP11SP

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP11SP-TR

LNBP supply and control voltage regulator (parallel interface)
STMICROELECTR

LNBP12

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP12SP

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP12SP-TR

LNBP supply and control voltage regulator (parallel interface)
STMICROELECTR

LNBP13

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR