LNBP12 [STMICROELECTRONICS]

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE; LNB电源和控制稳压器并行接口
LNBP12
型号: LNBP12
厂家: ST    ST
描述:

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
LNB电源和控制稳压器并行接口

稳压器
文件: 总18页 (文件大小:205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LNBP10 SERIES  
LNBP20  
LNB SUPPLY AND CONTROL VOLTAGE  
REGULATOR (PARALLEL INTERFACE)  
COMPLETE INTERFACE FOR TWO LNBs  
REMOTE SUPPLY AND CONTROL  
LNB SELECTION AND STAND-BY FUNCTION  
BUILT-INTONE OSCILLATOR FACTORY  
TRIMMED AT 22KHz  
FAST OSCILLATORSTART-UP  
FACILITATESDiSEqC ENCODING  
TWO SUPPLY INPUTS FOR LOWEST  
DISSIPATION  
BYPASSFUNCTION FOR SLAVE  
OPERATION  
LNB SHORT CIRCUIT PROTECTION AND  
DIAGNOSTIC  
AUXILIARYMODULATION INPUT EXTENDS  
FLEXIBILITY  
Multiwatt-15  
10  
CABLE LENGTH COMPENSATION  
INTERNAL OVER TEMPERATURE  
PROTECTION  
1
PowerSo-20  
PowerSO-10  
BACKWARD CURRENT PROTECTION  
DESCRIPTION  
The regulator outputs can be logic controlled to  
be 13 or 18 V (typ.) by mean of the VSEL pin for  
remote controlling of LNBs. Additionally, it is  
possible to increment by 1V (typ.) the selected  
voltage value to compensate the excess voltage  
drop along the coaxial cable (LLC pin HIGH).  
In order to reduce the power dissipation of the  
device when the lowest output voltage is  
selected, the regulator has two Supply Input pins  
Intended for analog and digital satellite receivers,  
the LNBP is a monolithic linear voltage regulator,  
assembled in Multiwatt-15, PowerSO-20 and  
PowerSO-10, specifically designed to provide the  
powering voltages and the interfacing signals to  
the LNB downconverter situated in the antenna  
via the coaxial cable. Since most satellite  
receivers have two antenna ports, the output  
voltage of the regulator is available at one of two  
logic-selectable output pins (LNBA, LNBB). When  
the IC is powered and put in Stand-by (EN pin  
LOW), both regulator outputs are disabled to  
allow the antenna downconverters to be  
supplied/controlled by others satellite receivers  
sharing the same coaxial lines. In this occurrence  
the device will limit at 3 mA (max) the backward  
current that could flow from LNBA and LNBB  
output pins to GND.  
VCC1 and VCC2  
.
They must be powered  
respectively at 16V (min) and 23V (min), and an  
internal switch automatically will select the  
suitable supply pin according to the selected  
output voltage. If adequate heatsink is provided  
and higher power losses are acceptable, both  
supply pins can be powered by the same 23V  
source without affecting any other circuit  
performance.  
The ENT (Tone Enable) pin activates the internal  
oscillator so that the DC output is modulated by a  
±0.3 V, 22KHz (typ.) square wave. This internal  
oscillator is factory trimmed within a tolerance of  
±2KHz, thus no further adjustments neither  
external components are required.  
For slave operation in single dish, dual receiver  
systems, the bypass function is implemented by  
an electronic switch between the Master Input pin  
(MI) and the LNBA pin, thus leaving all LNB  
powering and control functions to the Master  
Receiver. This electronic switch is closed when  
the device is powered and EN pin is LOW.  
A burst coding of the 22KHz tone can be  
1/18  
September 1998  
LNBP10 SERIES - LNBP20  
accomplished thanks to the fast response of the  
ENT input and the prompt oscillator start-up. This  
helps designers who want to implement the  
DiSEqC protocols(*).  
In order to improve design flexibility and to allow  
implementation of newcoming LNB remote  
control standards, an analogic modulation input  
pin is available (EXTM). An appropriate DC  
blocking capacitor must be used to couple the  
modulating signal source to the EXTM pin. When  
external modulation is not used, the relevant pin  
can be left open.  
from HIGH IMPEDANCE state goes LOW. After  
the time has elapsed, the output is resumed for a  
time ton=1/15toff (typ.) and OLF goes in HIGH  
IMPEDANCE. If the overload is still present, the  
protection circuit will cycle again through toff and  
ton until the overload is removed. Typical ton+toff  
value is 1200ms when a 4.7µF external capacitor  
is used.  
This dynamic operation can greatly reduce the  
power dissipation in short circuit condition, still  
ensuring excellent power-on start up even with  
highly capacitive loads on LNB outputs.  
Two pins are dedicated to the overcurrent  
protection/monitoring: CEXT and OLF. The  
overcurrent protection circuit works dynamically:  
as soon as an overload is detected in either LNB  
output, the output is shut-down for a time Toff  
determined by the capacitor connected between  
CEXT and GND. Simultaneously the OLF pin,  
that is an open collector diagnostic output flag,  
The device is packaged in Multiwatt15 for  
thru-holes mounting and in PowerSO-20 for  
surface mounting. When a limited functionality in  
a smaller package matches design needs, a  
range of cost-effective PowerSO-10 solutions is  
also offered. All versions have built-in thermal  
protection against overheatingdamage.  
(*): External components are needed to comply to level 2.x and above (bidirectional) DiSEqC bus hardware requirements. DiSEqC is  
a trademark of EUTELSAT.  
ORDERING NUMBERS  
Type  
Multiwatt-15  
PowerSO-20  
PowerSO-10  
LNBP10SP  
LNBP10  
LNBP11  
LNBP12  
LNBP13  
LNBP14  
LNBP15  
LNBP16  
LNBP20  
LNBP11SP  
LNBP12SP  
LNBP13SP  
LNBP14SP  
LNBP15SP  
LNBP16SP  
LNBP20CR  
LNBP20PD  
PIN CONFIGURATIONS  
Multiwatt-15  
PowerSO-20  
PowerSO-10  
2/18  
LNBP10 SERIES - LNBP20  
TABLE A: PIN CONFIGURATIONS  
SYMBOL  
NAME  
FUNCTION  
PIN NUMBER vs SALES TYPE (LNBP)  
20CR 20PD 10SP 11SP 12SP 13SP 14SP 15SP 16SP  
VCC1  
Supply Input 1  
Supply Input 2  
Output Port  
15V to 25V supply. It is  
automatically selected  
when VOUT = 13 or 14V  
1
2
3
2
3
4
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
VCC2  
22V to 25V supply. It is  
automatically selected  
when VOUT = 18 or 19V  
LNBA  
See truth tables for voltage  
and port selection. In  
stand-by mode this port is  
powered by the MI pin via  
the internal Bypass Switch  
VSEL  
Output Voltage  
Selection: 13 or  
18V (typ)  
Logic control input: See  
truthtable  
4
5
4
4
5
4
5
4
5
4
5
4
5
4
5
EN  
Port Enable  
Port Selection  
Ground  
Logic control input: See  
truthtable  
5
7
8
6
7
5
9
6
OSEL  
GND  
Logic control input: See  
truthtable  
NA NA NA NA NA NA  
Circuit Ground. It is  
internally connected to the  
die frame  
1
6
6
6
6
6
6
10  
11  
20  
ENT  
22 KHz Tone  
Enable  
Logic control input: See  
truthtable  
9
13  
7
8
7
8
7
8
7
8
7
8
7
8
7
8
CEXT  
External Capacitor Timing capacitor used by  
the Dynamic Overload  
10  
14  
Protection. Typical  
application is 4.7 µF for a  
1200 ms cycle  
EXTM  
External  
Modulation  
External Modulation Input.  
Needs DC decoupling to  
the AC source. If not used,  
can be left open.  
11  
15  
NA NA NA  
9
NA  
9
9
LLC  
OLF  
Line Length  
Compens. (1V typ) truthtable  
Logic control input: See  
12  
13  
16  
17  
NA NA  
9
NA  
9
NA  
10  
10  
Over Load Flag  
Master Input  
Output Port  
Logic output (open  
NA  
NA  
10  
9
NA NA  
10  
NA  
Collector). Normally in  
HIGH IMPEDANCE, goes  
LOW when current or  
thermal overload occurs.  
MI  
In stand-by mode, the  
voltage on MI is routed to  
LNBA pin. Can be left  
open if bypass function is  
not needed  
14  
18  
10  
10  
10  
NA NA NA  
LNBB  
See truth tables for voltage 15  
and port selection.  
19  
NA NA NA NA NA NA  
NOTE: The limited pin availability of the PowerSO-10 package leads to drop some functions.  
3/18  
LNBP10 SERIES - LNBP20  
ABSOLUTE MAXIMUM RATING  
Symbol  
Parameter  
Value  
28  
Unit  
Vi  
Io  
DC Input Voltage (VCC1, VCC2, MI)  
V
Output Current (LNBA, LNBB)  
Internally limited  
-0.5 to 7  
900  
Vi  
Logic Input Voltage (ENT, EN, OSEL, VSEL, LLC)  
Bypass Switch Current  
V
mA  
W
oC  
oC  
ISW  
Ptot  
Tstg  
Top  
Power Dissipation at Tcase < 85oC  
14  
Storage Temperature Range  
- 40 to 150  
- 40 to 125  
Operating Junction Temperature Range  
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions  
is not implied  
THERMAL DATA  
Symbol  
Parameter  
Value  
Unit  
Rthj-case Thermal Resistance Junction-case  
2
oC/W  
LOGIC CONTROLS TRUTH TABLES  
Control I/O  
Pin Name  
L
H
OUT  
IN  
OLF  
IOUT > IOMAX or Tj > 150OC  
22KHz tone OFF  
See table below  
See table below  
See table below  
See table below  
IOUT < IOMAX  
ENT  
22KHz tone ON  
See table below  
See table below  
See table below  
See table below  
IN  
EN  
IN  
OSEL  
VSEL  
LLC  
IN  
IN  
EN  
OSEL  
VSEL  
LLCP  
VLNBA  
VMI -0.4V (typ.)  
13V (typ.)  
18V (typ.)  
14V (typ.)  
19V (typ.)  
Disabled  
VLNBB  
L
X
L
X
L
X
L
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
13V (typ.)  
18V (typ.)  
14V (typ.)  
19V (typ.)  
H
H
H
H
H
H
H
H
L
H
L
L
L
H
H
L
L
H
L
H
H
H
H
H
L
L
Disabled  
H
Disabled  
H
H
Disabled  
NOTE: All logic input pins have internal pull-down resistor (typ. = 250K)  
4/18  
LNBP10 SERIES - LNBP20  
BLOCK DIAGRAM  
5/18  
LNBP10 SERIES - LNBP20  
ELECTRICAL CHARACTERISTICS FOR LNBP SERIES (Tj = 0 to85 oC, Ci = 0.22 µF, Co = 0.1 µF,  
EN=H, ENT=L, LLC= L, VIN1 = 16V, VIN2 = 23V, IOUT = 50mA, (unless otherwise specified)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VIN1  
VCC1 Supply Voltage  
IO = 500mA, ENT=H, VSEL=L, LLC=L  
IO = 500mA, ENT=H, VSEL=L, LLC=H  
15  
16  
25  
25  
V
V
VIN2  
VO1  
VO2  
VO  
VO  
VCC2 Supply Voltage  
Output Voltage  
Output Voltage  
Line Regulation  
Load Regulation  
IO = 500mA, ENT=VSEL=H, LLC=L  
IO = 500mA, ENT=VSEL=H, LLC=H  
22  
23  
25  
25  
V
V
IO = 500 mA, VSEL=H, LLC=L  
IO = 500 mA, VSEL=H, LLC=H  
17.3  
18  
19  
18.7  
V
V
IO = 500 mA, VSEL=L, LLC=L  
IO = 500 mA, VSEL=L, LLC=H  
12.5  
13  
14  
13.5  
V
V
VIN1 = 15 to 18 V, VOUT = 13 V  
VIN2 = 22 to 25 V, VOUT = 18 V  
4
4
40  
40  
mV  
mV  
VIN1 = VIN2 = 22 V, VOUT = 13 or 18V,  
IO = 50 to 500 mA  
80  
180  
mV  
SVR Supply Voltage Rejection  
45  
dB  
mA  
ms  
VIN1 = VIN2 = 23 ± 0.5Vac, fac = 50 KHz  
IMAX  
tOFF  
Output Current Limiting  
500  
650  
800  
Dynamic Overload Protection  
OFF Time  
1100  
Output shorted, CEXT = 4.7µF  
Output shorted, CEXT = 4.7µF  
tON  
Dynamic Overload Protection  
ON Time  
t
OFF/15  
ms  
FTONE Tone Frequency  
ATONE Tone Amplitude  
DTONE Tone Duty Cucle  
ENT=H  
ENT=H  
ENT=H  
ENT=H  
20  
0.4  
40  
5
22  
0.6  
50  
10  
5
24  
0.8  
60  
KHz  
Vpp  
%
tr, tf  
Tone Rise or Fall Time  
15  
µs  
GEXTM External Modulation Gain  
VOUT/VEXTM, f = 10Hz to 40KHz  
VEXTM External Modulation Input  
Voltage  
AC Coupling  
400  
mVpp  
ZEXTM External Modulation  
Impedance  
f = 10Hz to 40KHz  
EN=L, ISW= 300mA, VCC2-VMI = 4V  
IOL = 8mA  
400  
0.35  
0.28  
VSW  
Bypass Switch Voltage Drop  
(MI to LNBA)  
0.6  
V
VOL  
IOZ  
Overload Flag Pin Logic Low  
0.5  
10  
V
Overload Flag Pin OFF State VOH = 6V  
Leakage Current  
µA  
VIL  
VIH  
IIH  
Control Input Pin Logic Low  
Control Input Pin Logic High  
0.8  
V
2.5  
V
Control Pins Input Current  
Supply Current  
VIH = 5V  
20  
µA  
mA  
mA  
mA  
ICC  
ICC  
IOBK  
Outputs Disabled (EN=L)  
ENT=H, IOUT = 500 mA  
0.3  
3.1  
0.2  
1
6
3
Supply Current  
Output Backward Current  
EN=L, VLNBA = VLNBB = 18V  
VIN1 = VIN2 = 22V or floating  
TSHDN Thermal Shutdown Threshold  
150  
oC  
6/18  
LNBP10 SERIES - LNBP20  
TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified Tj=25oC)  
Tone Frequency vs Temperature  
Output Voltage vs Output Current  
Tone Duty Cycle vs Temperature  
Tone Fall Time vs Temperature  
Tone Rise Time vs Temperature  
Tone Amplitude vs Temperature  
7/18  
LNBP10 SERIES - LNBP20  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
S.V.R. vs Frequency  
LNBA External Modulation Gain vs Frequency  
External Modulationvs Temperature  
Bypass Switch Drop vs Output Current  
Bypass Switch Drop vs Output Current  
OverloadFlag pin Logic Low vs Flag Current  
8/18  
LNBP10 SERIES - LNBP20  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Supply Current vs Temperature  
Supply Current vs Temperature  
Dynamic Overload protection (ISC vs Time)  
Tone Disable  
Tone Enable  
22 KHz Tone  
9/18  
LNBP10 SERIES - LNBP20  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Enable Time  
Disable Time  
18V to 13V Change  
13V to 18V Change  
10/18  
LNBP10 SERIES - LNBP20  
TYPICAL APPLICATION SCHEMATICS  
TWO ANTENNA PORTS RECEIVER  
MCU+V  
10uF  
17V  
24V  
ANT CONNECTORS  
JA  
C2  
11  
1
2
AUX DATA  
EXTM  
OLF  
VCC1  
VCC2  
R1  
3
LNBA  
LNBB  
MI  
47K  
13  
15  
14  
JB  
TUNER  
4
9
5
10  
VSEL  
ENT  
EN  
CEXT  
4.7µF C1  
C3  
C4 C5 C6  
2x 47nF  
+
7
OSEL  
LLC  
12  
8
GND  
2x 0.1µF  
LNBP20CR  
Vcc  
I/Os  
I/Os  
MCU  
SINGLE ANTENNA RECEIVER WITH MASTER RECEIVER PORT  
17V  
24V  
MCU+V  
10uF  
C2  
1
2
11  
13  
AUX DATA  
EXTM  
OLF  
VCC1  
VCC2  
R1  
ANT  
3
15  
14  
LNBA  
LNBB  
MI  
47K  
MASTER  
10  
4
9
5
7
12  
TUNER  
VSEL  
ENT  
EN  
OSEL  
LLC  
CEXT  
4.7µF  
C1  
+
C3 C4 C5  
47nF  
8
GND  
2x 0.1µF  
LNBP20CR  
Vcc  
I/Os  
I/Os  
MCU  
11/18  
LNBP10 SERIES - LNBP20  
TYPICAL APPLICATION SCHEMATICS (continued)  
USING SERIAL BUS TO SAVE MPU I/Os  
17V  
24V  
MCU+V  
ANT  
CONNECTORS  
C2  
R1  
11  
13  
1
2
AUX DATA  
EXTM  
VCC1  
VCC2  
47K  
JA  
JB  
10uF  
3
15  
14  
LNBA  
LNBB  
MI  
OLF  
TUNER  
1
2
3
15  
4
5
6
4
9
5
7
12  
10  
VSEL  
STR  
D
CLK  
OE  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Q8  
CEXT  
ENT  
EN  
OSEL  
LLC  
4.7µF  
C1  
C3 C4 C5 C6  
+
7
14  
13  
12  
11  
8
GND  
2x 0.1µF 2x 47nF  
LNBP20CR  
9
10  
QS  
QS  
4094  
SERIAL  
BUS  
MCU+V  
I/Os  
Vcc  
MCU  
TWO ANTENNA PORTS RECEIVER: LOW COST SOLUTION  
17V  
24V  
ANT CONNECTORS  
JA  
1
2
VCC1  
VCC2  
3
LNBA  
LNBB  
10  
JB  
8
6
4
7
5
9
TUNER  
CEXT  
GND  
VSEL  
ENT  
EN  
4.7µF C1  
C3  
C4  
C5  
C6  
+
OSEL  
2x 0.1µF  
2x 47nF  
LNBP10SP  
MCU+V  
Vcc  
I/Os  
I/Os  
MCU  
12/18  
LNBP10 SERIES - LNBP20  
TYPICAL APPLICATION SCHEMATICS (continued)  
CONNECTING TOGETHER VCC1 AND VCC2  
24V  
ANT CONNECTORS  
JA  
1
VCC1  
2
VCC2  
3
LNBA  
LNBB  
10  
JB  
8
6
4
7
5
9
TUNER  
CEXT  
GND  
VSEL  
ENT  
EN  
C1  
+
C4  
C5  
C6  
4.7µF  
OSEL  
0.1µF  
2x 47nF  
LNBP10SP  
MCU+V  
Vcc  
I/Os  
I/Os  
MCU  
SINGLE ANTENNA RECEIVER WITH MASTER RECEIVER PORT: LOW COST SOLUTION  
17V  
24V  
C2  
9
1
2
AUX DATA  
EXTM  
VCC1  
VCC2  
ANT  
10µF  
3
LNBA  
10  
8
MASTER  
MI  
TUNER  
4
7
5
VSEL  
ENT  
EN  
CEXT  
C3  
C4  
C5  
4.7µF C1  
+
6
47nF  
GND  
2x 0.1µF  
LNBP13SP  
MCU+V  
Vcc  
I/Os  
I/Os  
MCU  
13/18  
LNBP10 SERIES - LNBP20  
TYPICAL APPLICATION SCHEMATICS (continued)  
SINGLE ANTENNA RECEIVER WITH OVERLOAD DIAGNOSTIC  
17V  
24V  
MCU+V  
C2  
9
1
2
AUX DATA  
EXTM  
OLF  
VCC1  
VCC2  
10µF  
R1  
3
LNBA  
ANT  
10  
47K  
8
4
7
5
TUNER  
CEXT  
VSEL  
ENT  
EN  
4.7µF C1  
C3  
C4 C5  
+
47nF  
6
GND  
2x 0.1µF  
LNBP15SP  
Vcc  
I/Os  
I/Os  
MCU  
14/18  
LNBP10 SERIES - LNBP20  
MULTIWATT-15 MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
TYP.  
MAX.  
5
2.65  
1.6  
MIN.  
MAX.  
0.197  
0.104  
0.063  
A
B
C
D
1
0.039  
E
0.49  
0.66  
1.02  
17.53  
19.6  
0.55  
0.75  
1.52  
0.019  
0.026  
0.040  
0.690  
0.772  
0.022  
0.030  
0.060  
0.710  
F
G
1.27  
0.050  
0.700  
G1  
H1  
H2  
L
17.78  
18.03  
20.2  
22.5  
22.5  
18.1  
17.75  
10.9  
2.9  
4.85  
5.53  
2.6  
0.795  
0.886  
0.886  
0.713  
0.699  
0.429  
0.114  
0.191  
0.218  
0.102  
0.102  
0.152  
21.9  
21.7  
17.65  
17.25  
10.3  
2.65  
4.25  
4.63  
1.9  
22.2  
22.1  
0.862  
0.854  
0.695  
0.679  
0.406  
0.104  
0.167  
0.182  
0.075  
0.075  
0.144  
0.874  
0.870  
L1  
L2  
L3  
L4  
L7  
M
17.5  
10.7  
0.689  
0.421  
4.55  
5.08  
0.179  
0.200  
M1  
S
S1  
Dia1  
1.9  
2.6  
3.65  
3.85  
0016036  
15/18  
LNBP10 SERIES - LNBP20  
PowerSO-20 MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
TYP.  
MAX.  
3.60  
0.30  
3.30  
0.10  
0.53  
0.32  
16.00  
14.50  
MIN.  
MAX.  
0.1417  
0.0118  
0.1299  
0.0039  
0.0209  
0.0126  
0.6299  
0.570  
A
a1  
a2  
a3  
b
0.10  
0.0039  
0
0
0.40  
0.23  
15.80  
13.90  
0.0157  
0.009  
0.6220  
0.5472  
c
D (1)  
E
e
1.27  
0.050  
0.450  
e3  
E1 (1)  
E2  
G
11.43  
10.90  
0
11.10  
2.90  
0.10  
1.10  
1.10  
0.4291  
0
0.437  
0.1141  
0.0039  
0.0433  
0.0433  
h
L
0.80  
0.0314  
N
10o (max.)  
8o (max.)  
S
T
10.0  
0.3937  
(1) ”D and E1” do not include mold flash or protusions  
- Mold flash or protusions shall not exceed 0.15mm (0.006”)  
R
N
N
a2  
A
c
a1  
b
e
DETAILB  
DETAILA  
E
e3  
D
DETAILA  
lead  
20  
11  
slug  
a3  
DETAILB  
0.35  
E2  
E1  
Gage Plane  
T
- C -  
SEATING PLANE  
S
L
G
C
(COPLANARITY)  
1
10  
PSO20MEC  
h x 45°  
0056635  
16/18  
LNBP10 SERIES - LNBP20  
PowerSO-10 MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
3.35  
0.00  
0.40  
0.35  
9.40  
7.40  
9.30  
7.20  
7.20  
6.10  
5.90  
TYP.  
MAX.  
3.65  
0.10  
0.60  
0.55  
9.60  
7.60  
9.50  
7.40  
7.60  
6.35  
6.10  
MIN.  
0.132  
0.000  
0.016  
0.013  
0.370  
0.291  
0.366  
0.283  
0.283  
0.240  
0.232  
MAX.  
0.144  
0.004  
0.024  
0.022  
0.378  
0.300  
0.374  
0.291  
0.300  
0.250  
0.240  
A
A1  
B
c
D
D1  
E
E1  
E2  
E3  
E4  
e
1.27  
0.050  
F
1.25  
1.35  
0.049  
0.543  
0.053  
0.567  
H
13.80  
14.40  
h
0.50  
1.70  
0.002  
0.067  
L
1.20  
0o  
1.80  
8o  
0.047  
0.071  
q
α
B
0.10  
A
B
10  
6
H
E
E3 E1  
E2  
E4  
1
5
SEATING  
PLANE  
DETAILA”  
e
B
A
C
M
0.25  
Q
D
=
=
=
=
h
D1  
SEATING  
PLANE  
A
F
A1  
L
A1  
DETAILA”  
α
0068039-C  
17/18  
LNBP10 SERIES - LNBP20  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a trademark of STMicroelectronics  
1998 STMicroelectronics – Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
.
18/18  

相关型号:

LNBP12SP

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP12SP-TR

LNBP supply and control voltage regulator (parallel interface)
STMICROELECTR

LNBP13

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP13SP

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP13SP-TR

LNBP supply and control voltage regulator (parallel interface)
STMICROELECTR

LNBP14

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP14SP

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP14SP-T

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP14SP-TR

LNBP supply and control voltage regulator (parallel interface)
STMICROELECTR

LNBP15

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP15SP

LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE
STMICROELECTR

LNBP15SP-TR

LNBP supply and control voltage regulator (parallel interface)
STMICROELECTR