LCP1521SRL [STMICROELECTRONICS]

PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION; 可编程瞬态电压抑制器SLIC保护
LCP1521SRL
型号: LCP1521SRL
厂家: ST    ST
描述:

PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION
可编程瞬态电压抑制器SLIC保护

文件: 总11页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LCP1521S/LCP152DEE  
ASD (Application Specific Devices)  
Programmable transient voltage suppressor for SLIC protection  
Features  
Dual programmable transient suppressor  
Wide negative firing voltage range:  
V
MGL = -150 V max.  
Low dynamic switching voltages:  
FP and VDGL  
V
SO-8  
LCP1521S  
QFN 3x3 6 leads  
LCP152DEE  
Low gate triggering current: IGT = 5 mA max  
Peak pulse current: IPP = 30 A (10/1000 µs)  
Holding current: IH = 150 mA min  
Order codes  
Low space consuming package  
Part Number  
Marking  
Description  
LCP1521S  
LCP1521SRL  
LCP152DEERL  
CP152S  
CP152S  
LCP152  
These devices have been especially designed  
to protect new high voltage, as well as classical  
SLICs, against transient overvoltages.  
Positive overvoltages are clamped by 2 diodes.  
Negative surges are suppressed by 2 thyristors,  
their breakdown voltage being referenced to -VBAT  
through the gate.  
Figure 1.  
LCP1521S Functional diagram  
TIP  
GATE  
NC  
1
TIP  
These components present a very low gate  
triggering current (IGT) in order to reduce the  
current consumption on printed circuit board  
during the firing phase.  
GND  
GND  
RING  
RING  
Benefits  
TRISILs™ are not subject to ageing and provide a  
fail safe mode in short circuit for a better level of  
protection. Trisils are used to ensure equipment  
meets various standards such as UL60950,  
IEC950 / CSA C22.2, UL1459 and FCC part 68.  
Trisils have UL94 V0 approved resin (Trisils are  
UL497B approved [file: E136224]).  
Figure 2.  
LCP152DEE Functional diagram  
TIP  
TIP  
GATE  
RING  
GND  
NC  
RING  
TM: TRISIL is a trademark of STMicroelectronics  
July 2006  
Rev 5  
1/11  
www.st.com  
11  
Characteristics  
LCP1521S/LCP152DEE  
1
Characteristics  
Table 1.  
Standards compliance  
Peak  
surge  
voltage  
(V)  
Required  
peak  
current  
(A)  
Minimum serial  
resistor to meet  
standard ()  
Voltage  
waveform  
Current  
waveform  
Standard  
2500  
1000  
2/10 µs  
10/1000 µs  
500  
100  
2/10 µs  
10/1000 µs  
12  
24  
GR-1089 Core First level  
GR-1089 Core  
Second level  
5000  
1500  
2/10 µs  
2/10 µs  
500  
100  
2/10 µs  
2/10 µs  
5/310 µs  
24  
0
GR-1089 Core  
Intra-building  
6000  
1500  
150  
37.5  
110  
0
ITU-T-K20/K21  
ITU-T-K20 (IEC 61000-4-2)  
VDE0433  
10/700 µs  
1/60 ns  
8000  
15000  
ESD contact discharge  
ESD air discharge  
0
0
4000  
2000  
100  
60  
10  
10/700 µs  
1.2/50 µs  
5/310 µs  
50  
4000  
2000  
100  
0
0
VDE0878  
1/20 µs  
50  
4000  
4000  
10/700 µs  
1.2/50 µs  
100  
100  
5/310 µs  
8/20 µs  
60  
0
IEC61000-4-5  
FCC Part 68,  
lightning surge type A  
1500  
800  
10/160 µs  
10/560 µs  
200  
100  
10/160 µs  
10/560 µs  
22.5  
15  
FCC Part 68,  
lightning surge type B  
1000  
9/720 µs  
25  
5/320 µs  
0
Table 2.  
Symbol  
Thermal resistances  
Parameter  
Value  
Unit  
SO-8  
QFN  
120  
140  
Rth(j-a)  
Junction to ambient  
° C/W  
2/11  
LCP1521S/LCP152DEE  
Characteristics  
Table 3.  
Symbol  
Electrical characteristics (T  
= 25° C)  
amb  
Parameter  
I
IGT  
IH  
Gate triggering current  
Holding current  
IRM  
IRG  
VRM  
VGT  
VF  
Reverse leakage current LINE / GND  
Reverse leakage current GATE / LINE  
Reverse voltage LINE / GND  
VR  
VRM  
VF  
V
IRM  
IR  
Gate triggering voltage  
Forward drop voltage LINE / GND  
Peak forward voltage LINE / GND  
Dynamic switching voltage GATE / LINE  
Reverse voltage GATE / LINE  
Capacitance LINE / GND  
IH  
VFP  
VDGL  
VRG  
C
IPP  
Table 4.  
Symbol  
Absolute ratings (T  
= 25° C, unless otherwise specified)  
amb  
Parameter  
Value  
Unit  
10/1000 µs  
8/20 µs  
30  
100  
35  
10/560 µs  
5/310 µs  
10/160 µs  
1/20 µs  
IPP  
Peak pulse current  
40  
A
50  
100  
150  
2/10 µs  
t = 20 ms  
t = 200 ms  
t = 1 s  
18  
10  
7
Non repetitive surge peak on-state current  
(50Hz sinusoidal)  
ITSM  
A
IGSM Maximum gate current (50Hz sinusoidal)  
t = 10 ms  
2
A
V
VMLG Maximum voltage LINE/GND  
VMGL Maximum voltage GATE/LINE  
-40° C < Tamb < +85° C  
-40° C < Tamb < +85° C  
-150  
-150  
Storage temperature range  
Tstg  
Tj  
-55 to +150  
150  
° C  
° C  
Maximum junction temperature  
TL  
Maximum lead temperature for soldering during 10 s.  
260  
Table 5.  
Symbol  
Repetitive peak pulse current  
Definition  
Example  
% I  
PP  
100  
tr  
Rise time (µs)  
Pulse waveform  
10/1000 µs:  
tr = 10 µs  
50  
0
tp  
Pulse duration (µs)  
t
tp = 1000 µs  
t
r
t
p
3/11  
Characteristics  
LCP1521S/LCP152DEE  
= 25° C)  
Table 6.  
Parameters related to the diode LINE / GND (T  
Test conditions  
amb  
Symbol  
Max  
Unit  
VF  
IF = 5A  
t = 500 µs  
RS = 10 Ω  
RS = 10 Ω  
RS = 62 Ω  
3
V
10/700 µs  
1.2/50 µs  
1.5 kV  
1.5 kV  
2.5 kV  
5
9
30  
(1)  
VFP  
V
2/10 µs  
1. See test circuit for V  
(Figure 4.): R is the protection resistor located on the line card.  
S
FP  
Table 7.  
Parameters related to the protection Thyristors (T = 25° C, unless  
amb  
otherwise specified)  
Symbol  
IGT  
IH  
Test conditions  
Typ  
0.1  
150  
Max  
Unit  
VGND / LINE = -48 V  
VGATE = -48 V(1)  
at IGT  
5
mA  
mA  
V
VGT  
2.5  
VRG = -150 V  
VRG = -150 V  
Tj = 25° C  
Tj = 85° C  
5
50  
IRG  
µA  
VGATE = -48 V(2)  
10/700 µs  
1.2/50 µs  
2/10 µs  
1.5 kV  
1.5 kV  
2.5 kV  
RS = 10 Ω  
RS = 10 Ω  
RS = 62 Ω  
I
PP = 30 A  
7
VDGL  
IPP = 30 A  
IPP = 38 A  
10  
25  
V
1. see functional holding current (I ) test circuit  
H
2. see test circuit for V  
The oscillations with a time duration lower than 50ns are not taken into account.  
DG  
Table 8.  
Symbol  
IRM  
Parameters related to diode and protection Thyristors (Tamb = 25° C,  
unless otherwise specified)  
Test conditions  
Typ  
Max  
Unit  
VGATE / LINE = -1 V VRM = -150 V  
VGATE / LINE = -1 V VRM = -150 V  
Tj = 25° C  
Tj = 85° C  
5
50  
µA  
VR = 50 V bias, VRMS = 1 V, F = 1 MHz  
VR = 2 V bias, VRMS = 1 V, F = 1 MHz  
15  
35  
C
pF  
4/11  
LCP1521S/LCP152DEE  
Figure 3.  
Characteristics  
Functional Holding Current (IH) test circuit: GO-NO GO test  
R
Surge generator  
V
= - 100V  
BAT  
D.U.T  
This is a GO-NO GO test which allows to confirm the holding current (I ) level in a functional test circuit.  
H
TEST PROCEDURE:  
- Adjust the current level at the I value by short circuiting the D.U.T.  
H
- Fire the D.U.T. with a surge current: I = 10A, 10/1000µs  
PP  
- The D.U.T. will come back to the off-state within a duration of 50ms max.  
Figure 4.  
Test circuit for VFP and VDGL parameters  
R
(VP is defined in unload condition)  
L
4
TIP  
R
2
RING  
R
3
R
V
P
C
C
2
1
1
G ND  
Pulse (µs)  
Vp  
C1  
C2  
L
R1  
R2  
R3  
R4  
IPP  
Rs  
(V)  
(µF)  
(nF)  
(µH)  
()  
()  
()  
()  
(A)  
()  
tr  
tp  
10  
1.2  
2
700  
50  
1500  
1500  
2500  
20  
1
200  
33  
0
0
0
50  
76  
15  
13  
0
25  
25  
3
25  
25  
3
30  
30  
38  
10  
10  
62  
10  
10  
1.1  
1.3  
5/11  
Technical information  
LCP1521S/LCP152DEE  
2
Technical information  
Figure 5.  
LCP152 concept behavior  
Rs1  
L 1  
TIP  
V Tip  
ID1  
IG  
T1  
Th1  
D1  
Gate  
-Vbat  
GND  
GND  
C
Rs2  
VRing  
RING  
L 2  
Figure 5. shows the classical protection circuit using the LCP152 crowbar concept. This  
topology has been developed to protect the new high voltage SLICs. It allows to program the  
negative firing threshold while the positive clamping value is fixed at GND.  
When a negative surge occurs on one wire (L1 for example) a current IG flows through the  
base of the transistor T1 and then injects a current in the gate of the thyristor Th1. Th1 fires  
and all the surge current flows through the ground. After the surge when the current flowing  
through Th1 becomes less negative than the holding current IH, then Th1 switches off.  
When a positive surge occurs on one wire (L1 for example) the diode D1 conducts and the  
surge current flows through the ground.  
Figure 6.  
Example of PCB layout based on LCP152S protection  
LCP1521S  
GND  
To  
SLIC side  
To  
line side  
Figure 6. shows the classical PCB layout used to optimize line protection.  
The capacitor C is used to speed up the crowbar structure firing during the fast surge edges.  
This allows to minimize the dynamical breakover voltage at the SLIC Tip and Ring inputs  
during fast strikes. Note that this capacitor is generally present around the SLIC - Vbat pin.  
So to be efficient it has to be as close as possible from the LCP152 Gate pin and from the  
reference ground track (or plan) (see Figure 6.). The optimized value for C is 220 nF.  
The series resitors Rs1 and Rs2 designed in Figure 5. represent the fuse resistors or the  
PTC which are mandatory to withstand the power contact or the power induction tests  
6/11  
LCP1521S/LCP152DEE  
Technical information  
imposed by the various country standards. Taking into account this fact the actual lightning  
surge current flowing through the LCP is equal to:  
I
= V  
/ (R + R )  
surge g s  
surge  
With:  
V
= peak surge voltage imposed by the standard.  
surge  
Rg = series resistor of the surge generator  
Rs = series resistor of the line card (e.g. PTC)  
e.g. For a line card with 30 of series resistors which has to be qualified under GR1089  
Core 1000V 10/1000 µs surge, the actual current through the LCP152 is equal to:  
I
= 1000 / (10 + 30) = 25 A  
surge  
The LCP152 is particularly optimized for the new telecom applications such as the fiber in  
the loop, the WLL, the remote central office. In this case, the operating voltages are smaller  
than in the classical system. This makes the high voltage SLICs particularly suitable.  
The schematics of Figure 7. give the most frequent topology used for these applications.  
Figure 7.  
Protection of high voltage SLIC  
-Vbat  
Rs (*)  
TIP  
Gate  
220nF  
TIP  
GND  
GND  
GND  
RING  
Line  
SLIC  
Rs (*)  
RING  
LCP152xx  
Line card  
Rs (*) = PTC or fuse resistor  
Figure 8.  
Surge peak current versus overload Figure 9.  
duration  
Relative variation of holding  
current versus junction  
temperature  
I [T ] / I [T =25°C]  
I (A)  
TSM  
H
j
H
j
1.3  
1.2  
1.1  
1
F=50Hz  
Tj initial=25°C  
24  
20  
16  
12  
8
0.9  
0.8  
0.7  
T (°C)  
j
4
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
t(s)  
0
1.E-02  
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
7/11  
Package information  
LCP1521S/LCP152DEE  
3
Package information  
Table 9.  
SO-8 Dimensions  
Dimensions  
Millimeters  
Ref.  
Inches  
Min. Typ. Max. Min. Typ. Max.  
A
1.75  
0.069  
0.010  
h x 45°  
C
ccc C  
(Seating  
Plane)  
A1  
0.1  
0.25 0.004  
0.049  
0.25mm  
(Gage Plane)  
A2  
A
C
A2 1.25  
L
A1  
e
b
k
L1  
b
C
D
E
0.28  
0.17  
0.48 0.011  
0.23 0.007  
0.019  
0.009  
D
4.80 4.90 5.00 0.189 0.193 0.197  
5.80 6.00 6.20 0.228 0.236 0.244  
8
1
5
4
E1  
E
E1 3.80 3.90 4.00 0.150 0.154 0.157  
e
h
1.27  
0.050  
0.25  
0.40  
0.50 0.010  
1.27 0.016  
0.020  
0.050  
L
L1  
k°  
ccc  
1.04  
0.041  
0
8
0
8
0.10  
0.004  
Figure 10. Footprint (dimensions in mm)  
8/11  
LCP1521S/LCP152DEE  
Package information  
Table 10. QFN 3x3 6 Leads Package dimensions  
DIMENSIONS  
Millimeters  
Typ.  
Inches  
Typ.  
REF.  
Min.  
Max.  
Min.  
Max.  
A
A1  
A2  
A3  
b
0.80  
0
1
0.031  
0
0.040  
0.002  
0.030  
0.05  
0.65  
0.75 0.026  
20  
3
0.787  
0.33  
2.90  
1.92  
2.90  
1.11  
0.43 0.013  
0.017  
D
3.10 0.114 0.118 0.122  
2.12 0.076 0.083  
3.10 0.114 0.118 0.122  
D2  
E
3
E2  
e
1.31 0.044  
0.051  
0.018  
0.005  
12°  
0.95  
0.24  
0.037  
0.009  
L
0.20  
0.45 0.008  
L1  
L2  
K
0.13  
0.20  
0°  
0.008  
<
12°  
0°  
Figure 11. QFN 3x3 6 Leads Footprint dimensions (in mm)  
0.95  
0.48  
1.05  
1.21  
0.35  
0.34  
2.02  
4.00  
9/11  
Ordering information  
LCP1521S/LCP152DEE  
4
Ordering information  
Part Number  
Marking  
Package  
Weight  
Base qty  
Delivery mode  
LCP1521S  
LCP1521SRL(1)  
LCP152DEERL(1)  
1. Preferred device  
CP152S  
CP152S  
LCP152  
100  
2500  
3000  
Tube  
SO-8  
0.11 g  
Tape and reel  
Tape and reel  
QFN 3x3 6L  
0.022 g  
5
Revision history  
Date  
Revision  
Description of Changes  
Sep-2003  
1A  
First issue.  
1/ Page 2 table 3: Thermal resistances changed from 130° C/W  
(SO-8) to 120° C/W and from 170° C/W (QFN) to 140° C/W.  
08-Dec-2004  
2
2/ SO-8 and QFN footprint dimensions added.  
17-Feb-2005  
03-May-2005  
3
4
Table 9 on page 4: correction of typo on capacitance unit.  
Table 5 on page 3: ITSM value @ t= 1s from 4 A to 4.5 A.  
Replaced QFN package illustration on page 1. Reformatted  
document to current layout standard. Values of ITSM modified in  
Table 4. SO-8 package dimensions updated in Table 9.  
07-Jul-2006  
5
10/11  
LCP1521S/LCP152DEE  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
11/11  

相关型号:

LCP1521S_06

Programmable transient voltage suppressor for SLIC protection
STMICROELECTR

LCP152DEE

PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION
STMICROELECTR

LCP152DEERL

PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION
STMICROELECTR

LCP152SD

PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION
ETC

LCP1531

Programmable transient voltage suppressor for SLIC protection
STMICROELECTR

LCP1531RL

Programmable transient voltage suppressor for SLIC protection
STMICROELECTR

LCP1G050M0R2R

Ultra-Low Capacitance ESD Suppressor for High-Speed Application
THINKING

LCP1G120M0R2

Ultra-Low Capacitance ESD Suppressor for High-Speed Application
THINKING

LCP2-0.36-330

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM

LCP2-0.44-220

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM

LCP2-0.54-150

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM

LCP2-0.66-100

Miniature Low Cost Toroidal Inductors
NUVOTEM TALEM